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Abstract: The research of human and robotic legged locomotion applies dy-
namic models with a wide range of complexity and aims to answer many dif-
ferent questions. In our research we focus on the effect of kinematic parame-
ters and foot placement techniques on the ground-foot impact intensity. Our
method is to use the multibody dynamic model of a segmented leg. We obtain
a quantitative measure for the foot collision intensity by analytic calculations.
The pre-impact velocity conditions are obtained by a hopping three-segmented
planar leg model that imitates pedal locomotion. The single legged model con-
tains the foot, the shank, the thigh and a reaction wheel attached in the hip.
Stable periodic motion, i.e. hopping was achieved by means of control torques
in the ankle, the knee and the hip joint. Different control strategies are speci-
fied for the grounded and flight phase. The parameters of the linear feedback
controller are tuned to optimise different cost functions, such as running speed,
energy efficiency and impact intensity. We also investigate how the stability of
periodic motion depends on the control gains.

1. Introduction

Understanding of human walking, running, jumping and the development of corresponding
bipedal robots require thorough analysis of complex dynamic models. Although, there are
many experimental and theoretical results, analysis of bipedal locomotion of humans and
mobile robots are still in the center of interests of biomechanics. In this paper, we develop

a segmented leg model, which can describe stable periodic motion associated with hopping.

1.1. Motivations

A yet unresolved issue is the effect of running kinematics and foot placement pattern on
the ground-foot collision intensity. Depending on the form of running, high impacts and
therefore high kinetic energy absorption may occur, which should actually be avoided in
order to minimize the risk of injuries and also to increase energy efficiency during running
[7,9,11,14]. The hopping leg model presented in this paper provides measures for the ground-
foot collision, like kinetic energy absorption and effective mass. The model provides realistic

pre-impact configuration.



In spite of the large number of publications, the mechanism of human balancing is still
not entirely understood and is still a strongly researched area [1,6]. A possible research goal
is to discover and compare the energy consumption needed for balancing when standing still
and during walking, running or hopping. The postural sway during standing still shows that
certain energy input is required for the stabilization of the otherwise unstable upright stand-
ing position, similarly to the stabilization of an inverted pendulum via a feedback controller.
Running, on the other hand, is a periodic motion for which the energy consumption can be
divided into two parts: 1) the energy required for the recovery of dissipation and the energy
loss due to dynamic reasons; and 2) the effort needed for the prevention of falling over. The
energy required for the stabilization may actually be smaller in case of running than in case

of standing still.

1.2. Models and results for ground-foot impact intensity

A mechanical model containing the foot and the shank was introduced in [11] for the inves-
tigation of the effect of the foot strike pattern. The foot-shank system falls vertically and
the foot hits a fixed pin. The contact point position is characterized by the strike pattern
s. A further developed but still two-segmented model was introduced in [9]. As an exten-
sion of the model in [11], a variable ankle angle and a horizontal velocity were introduced.
Both [11] and [9] report that the effective mass and therefore the impact intensity is lower
for forefoot-strike, when strike pattern is s = 0.7...1 than heel-strike, when s =0...0.2.

Results in [14] showed that in addition to the strike pattern, the angle of the shank
also strongly affects the properties of the ground-foot impact. The model in [14] involves
the thigh and the total mass of the human body. The segments perform a rigid-body-like
motion in the pre-impact phase with no relative motion of the body segments, which is not
realistic.

A realistic pre-impact velocity condition can be obtained either from experiments or from
a dynamic model that performs stable periodic running motion. In our previous work [3], we
introduced such a dynamic model subjected to a torque control in order to perform further
biomechanical analysis of human running performance. The advantage of this model over an
experiment is that the control parameters can be tuned to optimize different cost functions,
such as running speed, energy efficiency and impact intensity. Present paper reports new

results about the detailed analysis of the model.

1.3. Existing segmented hopping leg models and related results

This subsection overviews a few models developed to perform stable periodic motion, like

walking, hopping and running.



Many aspects of periodic motion of legged systems are detailed in [5], where several
walking, running and hopping models are reviewed. The classical spring-loaded inverted
pendulum (SLIP) model gives a fundamental background for hopping leg models. SLIP
represents the body inertia as a point mass which bounces along on a single elastic massless
leg. The supporting role of the leg in each stance phase is characterized by the SLIP.

Self-stable running-like locomotion is presented in [13] for a case where the inertia and
dynamic effects of the segments are neglected and the body weight is modeled by a point
mass in the hip. It is reported that the stable domain regarding landing angle and horizontal
speed is larger than in case of SLIP model. The presence of massless segments leads to 1)
smooth dynamics, i.e. there is no impulsive forces when the foot gets in contact with the
ground; 2) the elimination of all inertial forces due to the inertia of the leg segments. These
simplifications facilitates essential analytical and numerical results. Here, we extend this
model in such way, that 1) the energy loss and impact forces are possible to be obtained,
2) the effects due to inertial forces are discovered. While the model in [13] is self-stable, in
the extended model we use state feedback and control actions in order to achieve the stable

hopping motion.

2. Dynamic model of the controlled hopping leg

The single-legged, planar mechanical model depicted in Fig. 1 is an extended combination
of the ground-foot impact model in [14] and the self-stable hopping model in [13]. The new
aspect is that a feedback controller is introduced to the model from [14], which was not
actuated at all. In contrast with [13], self-stability without controller is not possible here,
because the rigid body collision absorbs energy. Another extension is that the proposed
control concept also involves a reaction wheel which is attached in the hip. The overall

model consists of the equations of motion and the control algorithm similarly as in [3].

2.1. Mechanical structure

The three segments 1, 2 and 3 correspond to the foot, shank and thigh, respectively. Points
A, B, C and D correspond to the tiptoe, the ankle, the knee and the hip, respectively. The
reaction wheel plays the role of the upper body: the torque Mp that rotates the thigh has
the reaction torque exerted on the wheel. The reaction wheel has mass m, and moment of
inertia J;. The homogeneous, prismatic bars have masses m; and lengths l;, s = 1...3. The
centre of gravity is located at point G. The segments are interconnected by torsional springs
with stiffnesses kg and kc. Actuating torques Mp and Mc assist the motion according to
the control, which will be introduced below.

The model has a total of 6 DoFs in the flight phase: qf = [za, za, 01, 612, 023, 0], where



reaction wheel

Figure 1. Segmented leg model

xa and za are the Cartesian coordinates of the tiptoe. There are 4 DoF's in grounded phase:

q® = [01, 612,023, 6;]. In both phases, the equation of motion assumes the general form:

M(a)4+ C(q.q) = Q(q, q), (1)

where M € R™*™ is the mass matrix, C € R" is the inertial force vector and Q € R™ general
force contains the control torques. Here q = qf and n =6 in flight-phase; while q = q® and
n = 4 in ground-phase.

We assume that the ground-foot impact is completely inelastic, there is no rebound and
the friction coefficient is high enough to prevent sliding of the foot. These assumptions allows
us to constrain the tiptoe to the ground until the contact force is positive. See Section 3.1
for more details.

The non-linear spring characteristics, which is caused by the muscle-tendon dynamics,
is not considered here in order to reduce the number of parameters. The torques exerted by

the linear torsional springs of stiffness kg and k¢ are given by
k(612 — a12) and kc (023 — ass), (2)

where a2 and ags denotes the joint angle values that corresponds to unstretched springs.
The anatomical data adopted from [2] of a 24 years old average male with bodyweight
of 73kg and body height of 173.1 cm were considered (see Table 1).

2.2. Control

On the top of the spring torques, additional torques are exerted with respect to the control

in equations (3) - (5) and (7) - (9). In our concept a control law is formulated that provides



Table 1. Inertial and geometric data of body segments

mass length/height | CoG mass moment of inertia
whole body my = 73 kg b =1.731m -
trunk m, = 0.6028my, - Jr = 1.9778 kgm2
feet my = 0.0274my, | 11 = 0.0885[;, Jy = 1/12my 13
shanks mg = 0.0866my, | Iz = 0.24700, Jy = 1/12ml3
thighs msz = 0.2832my, | I3 = 0.23201 Js = 1/12msl3

periodic motion of the body. The motion of the segments is dictated by their dynamics,
rather than having prescribed trajectories for the limb segments and a feedback control that
forces the segment onto these prescribed trajectories. These two concepts are distinguished
in [5]. Naturally, our control law needs the observation of the configuration of the segments

and needs information about the actual flight /ground-phase of the leg.

2.2.1. Passive motion does not exist because of ground-foot impact

In general, the tiptoe touches the ground with non-zero velocity. This causes an impact and
a certain kinetic energy loss, called constrained motion space kinetic energy (CMSKE) [9,14].
CMSKE is often used used as an energy efficiency indicator of passive walkers [4] because
their energy loss is the foot impact only.

As a consequence, periodic hopping motion is not possible without some kind of energy
input, which is provided by the muscles in humans and by motors in legged robots. An
alternative possibility to avoid energy loss is to achieve zero-velocity collision, which means
that the tiptoe velocity becomes zero at the instance of time when the foot touches down.
However, impact-free motion does not guarantee periodicity, because the model can fall over,

and using a controller is a more feasible approach.

2.2.2. Flight-phase

The vibrations of the leg segments are suppressed by Mg and Mc in the flight phase as (3)
and (4) show. A proportional-derivative controller defined in (5) tries to keep the tiptoe
(point A) at a specified horizontal position near to the centre of mass position zg of the

overall model in order to avoid falling over.
Mf = —Dgbia, (3)
ME& = —Dcbas (4)
M{, = P(za — (26 4 za)) + D(ia — &) . (5)



Term z A modifies the desired tiptoe position regarding the angular momentum IT calculated

for point A. Furthermore, a constant K, modifies the horizontal velocity:
A = Pnlla — K, . (6)

2.2.3. Ground-phase

A certain part of the kinetic energy called CMSKE is absorbed in each stride because of
the ground-foot impact. CMSKE is recovered by means of the control torques (7) and (8)
exerted in the ankle and the knee. The goal is to keep the total mechanical energy E at the
freely chosen desired energy level Fy. The mechanical power of these torques are positive
only if the joints are in extension, so that 612 is positive and 623 is negative. Torque M§ in

(9) prevents the continuous growth of the angular velocity 6 of the reaction wheel.

M§ = Pg(E — Eo)sgn(6:2) (7)
Mg = Pp(E — Eo) sgn(—023), (8)
MS == _Prer - Drér . (9)

2.2.4. Limitations

1) Depending on the configuration, bow and zigzag mode is possible, out of which only the
latter is considered, because only this is possible for human leg. 2) There is no specific
strategy for heel-strike yet. We consider hopping modes with ground-tiptoe contact only.
3) Since the segments are rigid, the behaviour of soft tissue is not possible yet. 4) As we
mentioned earlier, the slip of the foot relative to the ground is not possible in this model.

5) The elastic-plastic behaviour of the ground is not considered.

3. Methods

Present work is based on numerical simulations of the hopping leg model, which was explained

in Section 2. The most fundamental details are summarized in this Section.

3.1. Ground-foot impact intensity and energy loss

The foot touchdown is handled as an impulsive phenomenon, during which the velocity
condition of the model goes under abrupt change. We assume that the ground-foot collision
is instantaneous, which leads to infinitely large instantaneous forces over an infinitesimal
time duration so that the net impulse due to the impact force is finite [9,11]. Completely
inelastic collision is also assumed, so that there is no rebound [9,11,14]. These assumptions
lead us to consider the ground-foot contact as an instantly arising geometric constraint ¢(q)

as in [9,14]. While velocity condition changes instantly, the configuration does not change.



Before foot touchdown, the system moves freely during flying phase. The new constraints
©(q) = 0 related to the ground contact arise at the time instant of the impact. The post-

impact velocities are determined by the projection to the space of the admissible motion:
q+ = Paq_ ’ (10)

where ¢~ = ¢(t7) and g7 = ¢(t") are the pre- and post-impact generalized velocities re-
spectively. P, = I —P, projects into the null-space of the constraint Jacobian @4 = V4 (),
which is the subspace of the admissible motion. P, = ‘I>L<I>q projects into the constrained

subspace. The generalised inverse of the constraint Jacobian is calculated according to [10]:
e =M@, (B M 'B)) . (11)

The kinetic energy CMSKE related to the constrained motion vanishes when the foot

touches the ground and can be calculated based on [8] as:
T, = %(q—)TP?MPCq—. (12)

Papers [9] and [8] showed that foot strike intensity can be characterised by the CMSKE
which depends on the pre-impact configuration q~ and velocity q~ and the effective mass
matric M, = PYMP,. In this work the CMSKE is used for characterising the foot impact
intensity: CMSKE is directly proportional to the impulse of the contact reaction force and

also to the peak reaction force [8,9].

3.2. Periodic paths and tuning of control parameters

Our goal is to find the control parameter set resulting stable periodic motion, while some
cost function, like energy efficiency is minimized. We have 10 parameters in (3)-(9) collected
in the vector p = [Dg,Dc,P,D,Pu,K,,Pr,Eo, P.,D;]. Parameters p were tuned by
trial-and-error method until periodic motion was possible to be found in [3] by means of
shooting method.

For a given set of parameters p, xg = [q) ,qg]T : x; € R?" is a periodic solution, if the
system is in the same state at the beginning and at the end of the period, so that mapping

g(xo, p) has a fix point or in other words F(x, p) = 0, where

F(xo,p) = g(x0, P) — Xo. (13)

As Fig. 2 shows, the period starts at the beginning of the flight-phase and ends at the
end of the ground-phase: event function hg ¢ = Aa crosses 0 in positive direction (Aa is

the vertical contact force magnitude). Transition from flight- to ground-phase occurs when



event function hfg = 2za crosses 0 in negative direction. Between flight- and ground phase a
discontinuity mapping from x~ to x" is realized by (10). Systems with such discontinuities
are referred as hybrid systems in [12].

With a prosperous initial guess for xo, Newton-Raphson iteration provides the numerical
approximation for xg by finding the root of (13). The Jacobian J = Vy, (F) is necessarily
computed in the Newton-Raphson method, with which a possible approximation of the

Jacobian M = Vy, (g) of the mapping g can be computed as M =J + 1.
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cont. dynamics
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Figure 2. Schematic picture of a single period: flight-phase, ground-foot impact, ground-

phase and ground foot detachment

The periodic orbit is stable, if a perturbed initial condition x¢ is mapped ,,closer” to the
periodic path. Due to the non-smoothness of our system, the accuracy of M is not sufficient
for judging stability of the periodic path. Instead, the flow Jacobian is computed based
on [12]. The following 2n + (2n)? size ODE, which is referred as first variational equation in

the literature, is solved during the continuous dynamics:
x(t) = £(x(t)); x(0) =xo, (14)
B(t) = Vx (F(x(1) ®(t); ®(0) =T, (15)

where I is 2n by 2n identity. Equations (14) and (15) can be applied with substitution f = f;
in flight-phase and f = f; in ground-phase. Flow Jacobians ®; and ®, are obtained at the
end of the flight- and ground-phase respectively. The Jacobian of the composite flow needs
the Jacobian S of the discontinuity mapping, which is referred as saltation matriz in [12].
Finally the composite flow Jacobian, which can be reliably applied for determining stability

of the periodic orbit, is obtained as ® = ®,S®:.



The method described above makes possible to tune the parameters p in order to find
the optimum for a certain cost function to be minimized. The cost function may be the norm
of the largest eigenvalue of ®, which characterizes stability. An other possible alternative for
instance is to use Tc as cost function, which characterizes impact intensity. In order to find
the minimum of the cost function, several numerical algorithms, like simplex method could
be applied on the top of the above explained shooting method. The following sequence is
repeated until the minimum of the cost function is found: the simplex method modifies p,

and the shooting method serves the solution qj related to p.

4. Results

Periodic paths was found for the control parameters that are collected in Table 2. Parameter
Ey was swept for K, = 0 and 0.4m fixed values. Ey and K, are responsible for the height
and horizontal locomotion speed of the hopping motion respectively. Cases A and B are the
smallest and largest possible Ey values for K, = 0 m without loosing stability, while Cases
C and D are the same for K, = 0.4m. The stiffness parameters were set to kg = 1200 Nm

and kc = 1300 Nm. The unstretchered angle of the springs are a1z = 80° and ags = 225 °.

Table 2. Control parameters: Ey and K, are varied in the case examples, the rest are fixed

Ey K, Dg D¢ P D Pr Pg P, D,
case [J] [m] || [Nms] | [Nms] | [N] | [Ns] | [(Ns)7'] || [1] | [Nm] | [Nms]
A 752 0
B 2970 0 15 20 950 | 50 0.01 0.2 4 15
C 1027 | 0.4
D 3310 | 0.4

4.1. Hopping motion with different speed and height

Hopping motion for four illustrative case examples are shown in Fig. 3. We found stable
hopping motion from 0.018 to 2.141 m tiptoe elevation. The amplitude of the vertical centre
of mass motion are 0.064m in case A, 1.32m in B, 0.071m in C and 1.11 m in case D. The
average locomotion v, speed and the tiptoe elevation are plotted in the right panel of Fig. 3.
A wide range of locomotion speed and hopping height is covered by tuning Eo and K, only,

however we expect that the tuning of other control parameters provides larger stable domain.

4.2. Ground-foot impact intensity

The total kinetic energy T, the CMSKE (T:) and the preserved part of the kinetic energy
T, are calculated for the ground-foot impact as Fig. 4 left panel shows. The normalized T

and T, on the right panel has a minimum value for the different values of the speed control
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Figure 3. Results: the hopping motion with tiptoe and centre of mass path are illustrated
in cases A, B, C and D in the left panel; the velocity v, of the locomotion and the apex

height zamax Of the tiptoe path are plotted as the function of the desired energy level Ejy.

parameter K,. For K, = 0m the optimal Ey value is 821 J and 0.971 % of the kinetic energy
is absorbed by the ground-foot impact. The optimum for K, = 0.4m is Fy = 2230J and
the absorbed kinetic energy ratio is 2.09 %.
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Figure 4. Results: the pre-impact kinetic energy T, the absorbed kinetic energy T. related
to the constrained subspace and the remaining kinetic energy T, related to the admissible

subspace are plotted in left panel; the normalized T, and T, are plotted in the right panel.

5. Conclusions and further steps

Stable periodic motion, i.e. running was achieved with the planar three-segmented leg model

by means of control torques in the ankle and the knee joint and with a reaction wheel



placed at the hip. Wide range of locomotion velocity (—0.2...2.35m/s) and hopping motion
height (tiptoe elevation: 0.018...2.14m) were discovered, where the remaining fixed control
parameters guaranteed stable operation. However, the currently fixed parameters will be
tuned hereafter. The optimum of the hopping height was found, when the ground-foot impact
intensity is the smallest and therefore the largest amount of kinetic energy is preserved.
We applied shooting method to obtain periodic orbits of the hybrid system. However,
in future works, we plan to find and follow periodic orbits and their stability with advanced
continuation methods. The model will be developed further in order to achieve more human-
like motion; in particular, two legs and a more accurate model for the upper body can be
considered. The model can also be used to investigate the effect of the terrain on the optimal
motion, like inclination of the ground. Although some conclusion regarding human motion
can be drawn from mathematically generated trajectories of the a model, a comparison
with laboratory experiments with human subjects is also necessary. After refinement of
the proposed mechanical model and the controller other performance measures of human

running may become feasible.
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