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Abstract Our research aims the study of balancing on a rolling balance board with
respect to dynamic properties such as stability and stabilizability. The goal is to
identify the parameter regions where human subjects are able to keep themselves
stable in the upright position for at least 60 sec. The radius of the balance board and
the height of the foot platform are adjusted for each individual test, which is a time
demanding process.
We give a preliminary design of a substituting four-bar mechanism in order to speed
up the balance board experiments and to extend the limits of the parameter study.
The mechanism is tunable quickly in order to imitate the motion of the balance
board with different radii and platform heights; whilst the agreement of the kine-
matic behaviour is almost perfect for tilt angles within the region of ±30◦.
The dynamic behaviour of the mechanism and the balance board are compared
based on theoretically derived stability diagrams associated with the underlying me-
chanical models. The balancing process is modelled by a proportional-derivative
delayed feedback controller in order to account with the reaction time delay of the
subject. We show that the stable parameter regions of the balance board and the
mechanism are in good agreement, therefore the mechanism can be used as a sub-
stituting device for balance board.
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1 Introduction

Understanding the mechanism of keeping balance during everyday activities is an
important task for physiologists and neuroscientists. Balance disorders often leads
to falls, which may result in fatal injuries, especially in the elderly, therefore the
development of techniques and biomechanical devices to prevent falling is of high
importance [14, 15]. A key element of human balance research is to find an ap-
propriate mechanical model with some adjustable characteristic parameters, which
reflects balancing abilities of human subjects. For example, in stick balancing on
the fingertip, the mechanical model is an inverted pendulum and the characteris-
tic parameter is the smallest length of the stick that a subject is able to balance
for certain time [2, 5, 6, 10, 18]. Typically, human subjects cannot balance stick of
shorter than 30cm [11]. For quiet standing, the mechanical model is again an in-
verted pendulum [7, 16], however, the length of the pendulum, i.e., the height of
the subject, is fixed and cannot be considered as an adjustable parameter. The ad-
vantage of the controlled inverted pendulum model is its publicity in the literature,
e.g. [1, 4]. Balancing on a balance board is a generalized version of quiet standing,
where some parameters of the balance board (e.g., the geometry or the mass) can be
adjusted [3, 12]. Signals of balancing trials with different balance board geometry
can be analyzed and quantified using the method of stabilometry [13, 17]. This way
the ability of balancing in standing position can be analyzed as a function of some
well defined parameters [12]. A drawback of such analysis is that the configuration
of the balance board should be modified before each balancing trial, which, in case
of systematic series of measurements, may be time-consuming. This motivates the
idea of creating a simply adjustable mechanism, which provides the same motion as
the balance board.

The concept of a four-bar mechanism substitution of a rolling balance board is
proposed, which can speed up the balance board laboratory measurement process.
The adjustment of the parameters of the balance board for different balancing trials
takes considerable time. Especially the interchange of the arcs is time consuming,
because in this case the balance board have to be completely disassembled (see
Fig. 1/c). In addition to the quick adjustment, another advantage of the substituting
mechanism is that the parameters can be adjusted continuously. The first goal of this
work is to find the four-bar mechanism for which any point of the coupler link has
the same trajectory as the corresponding point of the balance board. This ensures
the same kinematic behavior. Secondly, it is shown that the dynamic behavior of the
balance board and the mechanism under delayed feedback control is similar.

2 Kinematic analysis

The main criteria to the mechanism is that the ankle joint position of the balance
board (see point A in Fig. 1/d) and the ankle joint position of the substituting mech-
anism (see point E in Fig. 2) must have the same trajectory when the tilt angle ϑ



Fig. 1 Balance board experiment set-up (a), Simplified mechanical model (b), Balance board with
interchangeable arcs (c), Geometry (d)

is varied. This results the same rigid body motion for the balance board and the
coupler link of the mechanism.

2.1 Balance Board

A rolling balance board shown in Fig. 1 is tilted by angle ϑ with respect to the
horizontal line. The subject’s feet are placed on the balance board. The geometric
parameters of the balance board are the radius R, the sole depth v and the parallel
shift e. The location of the foot is given by e, which is a fix parameter for each
subject, while R and v are tuned during balance experiments. Note that R and v can
be adjusted to discrete values only. The human body is modeled by a rigid body of
which the tilt angle ϕ is measured from the vertical.

Fig. 1/d introduces a global frame of reference denoted by 0 and a local frame B
that is fixed to the balance board. The following position vector and rotation matrix
provides the transformation between frames 0 and B:

0pB =

−RϑR
0

 , 0RB =

 cϑ −sϑ 0
sϑ cϑ 0
0 0 1

 . (1)



Fig. 2 Substituting four-bar
mechanism

The position of the ankle joint A in the local and global system with the simplified
notations sϑ = sinϑ and cϑ = cosϑ are given by:

BrA =

−e−v
0

 , 0rA =0 RB
BrA +0 pB =

−Rϑ+ v sϑ − e cϑ
R− v cϑ − e sϑ

0

 . (2)

2.2 Substituting mechanism

The geometric parameters of the four-bar mechanism shown in Fig. 2 are the dis-
tance d and the depth a of the pivot points, the crank lengths l, the coupler length c
and the horizontal shift e of ankle joint E. The coupler link is tilted by angle ϑ, which
angle corresponds to the tilt angle of the balance board. The foot is kept parallel to
the coupler bar such that the elevation of the ankle joint is h.

2.2.1 Closed form solution for the crank angles

In order to express the ankle joint position, we need to determine the crank angles
α1 and α2. The goal is to find α1 and α2 as functions of tilt angle ϑ such that the
following vector-loop equations satisfy:

c1 + c2 =
d

l
+
c

l
cϑ (3)

s1 − s2 =
c

l
sϑ, (4)



where s1 = sinα1, c1 = cosα1, s2 = sinα2 and c2 = cosα2. The following
identities are applied to reorganize the vector-loop equations:

c1 + c2 = 2cpcm and s1 − s2 = 2smcp , (5)

where sp = sin γp, cp = cos γp, sm = sin γm, cm = cos γm and the new variables

γp =
α1 + α2

2
, and γm =

α1 − α2

2
. (6)

Applying the identities (5) and the newly introduced variables (6), the vector-loop
equations (3) and (4) can be reformulated again in the form

2cpcm =
d

l
+
c

l
cϑ , (7)

2smcp =
c

l
sϑ . (8)

By dividing (8) and (7) the solution for γm and γp can be expressed as

γp = arccos

(
c

2l

sϑ
sm

)
and γm = arctan

(
c sϑ

d+ c cϑ

)
. (9)

Finally, the crank angles are expressed using equations (6) as direct functions of the
tilt angle ϑ:

α1 = γp + γm and α2 = γp − γm. (10)

2.2.2 Position of the ankle joint in the global frame of reference

The position vector of the local frame of reference M can be written based on Fig. 2.
Since the origin is in the middle of the coupler bar, the average of the endpoint
positions of the cranks are used.

0pM =

 0xM
0yM
0

 =

 1
2 (−d+ l c1) +

1
2 (d− l c2)

−a+ 1
2 l s1 +

1
2 l s2

0

 =

 l
2 (c1 − c2)

−a+ l
2 (s1 + s2)
0

 .(11)

The fully expanded expressions for the position of the origin of frame M as functions
of ϑ are

0xM = − cA sϑ
2(d+ c cϑ)B

, and 0yM = −a+ A

2B
, (12)

where



A =
√
4l2 − c2 − d2 − 2cd cϑ and B =

√
1 +

c2 s2ϑ
(d+ c cϑ)2

. (13)

Since the tilt angle ϑ are the same, the rotation matrix of reference frames 0 and M
is the same as in the case of the balance board:

0RM =0 RB . (14)

Finally, the ankle joint E position in the local and the global frames are expressed as

MrE =

−eh
0

 , 0rE =0 RM
MrE + 0pM =

 0xM − h sϑ − e cϑ
0yM + h cϑ − e sϑ

0

 . (15)

2.3 Optimization of the substituting mechanism

The cost function below expresses the integral of the error between the balance
board and the substituting mechanism ankle positions, which have to be minimized:

ϑmax∫
−ϑmax

∣∣0rE − 0rA
∣∣2 dϑ = min! (16)

The set of parameters {c, d, a, l, h} of the substituting mechanism has to be found
for which the cost function (16) is minimal in case of a certain set of parameters
{R, v} of the balance board. The number of unknown parameters is reduced by
considering ϑ = 0 horizontal position. Based on equations (2), (12), (13) and (15),
expression 0yE = 0yA reads:

R− v cϑ − e sϑ = −a+ A

2B
+ h cϑ − e sϑ, (17)

which simplifies after canceling the term e sϑ and substituting ϑ = 0. Substituting
expressions B(ϑ = 0) = 1 and A(ϑ = 0) = A0 we obtain an expression for a:

a = v +
A0

2
+ h−R, with A0 =

√
4l2 − c2 − d2 − 2cd . (18)

Parameter c can be fixed too by setting its value in a certain region found by
trial-and-error method. Out of this region there is no solution that results close to
zero cost function (16). We set c = 1.4R.

After fixing parameters a and c, the remaining unknown parameters are d, l and
h. The minimum cost function have to be found in the three dimensional parameter
space (d, l, h). By means of a well chosen initial guess and a local minimum search
algorithm we construct generally applicable formulae for the substituting mecha-



nism geometric parameters:

c = 1.4R ; d = 2.956R ; a = 0.8786R ; l = 2.530R ; h = 0.5896R− v .(19)

The above parameters of the substituting mechanism can be set according to
the desired R and v values of the equivalent balance board. A few examples are
collected in Table 1 and in Fig. 3. Note that parameter a does not play any role in
a real application, because it induces a shift only of the ankle joint path and hence
neither the gradient of the potential function nor the stability properties change.
Fig. 3 shows that the ankle joint paths for the balance board and the mechanism
overlap each other with a difference smaller than 1mm.

Table 1 Some examples for optimal parameters of the substituting mechanism (the parameter
values used in the dynamic analysis in Section 3 are indicated by boldface)

balance board radius R = 0.1m R = 0.25m

parameter set for any v value
coupler length c = 0.14m c = 0.35m
pivot points distance d = 0.2956m d = 0.739m

(pivot points depth) (a = 0.08786m) (a = 0.21965m)
crank length l = 0.253m l = 0.6325m

sole elevation for v = −0.1m h = 0.15896m h = 0.2474m

sole elevation for v = 0m h = 0.05896m h = 0.1474m

sole elevation for v = 0.1m h = −0.04104m h = 0.0474m

Fig. 3 Balance board and four bar mechanism together with parameters R = 0.1m, R = 0.25m

and v = −0.1m, v = 0m, v = 0.1m



3 Dynamic analysis

We construct the dynamic model both for the balance board and the mechanism. The
dynamic behaviour is compared via the mass and stiffness matrices and the stability
properties. Since the kinematics (i.e. the motion of the ankle joint as the function of
the tilt angle) are the same in case of both equipments, it is obvious that the dynamic
behaviour is the same when the inertial parameters of the equipments are neglected
(see Section 3.5). We observed that when considering the inertial parameters of the
equipments, the mass and stiffness matrix and the stability behavior are still similar.

3.1 Dynamic model of a human standing on the balance board

The mechanical model depicted in Fig. 1/a is applied. We consider undeformable
bodies and ground, therefore rolling resistance does not appear in the model. This is
an acceptable simplification, since the balance board is placed on hard surface and
the wooden made balance board itself is also stiff.

We apply the Lagrange equation of motion for which the kinetic energy T , the
potential function U and the generalized force Q of the ankle control torque M are
expressed as:

T =
1

2
mH |ṙCH

|2 + 1

2
mB |ṙCB

|2 + 1

2
JHϕ̇

2 +
1

2
JBϑ̇

2 , (20)

U = mH g yCH
+mB g yCB

+
1

2
kA (ϑ− ϕ+ ϕ0)

2
, (21)

Q = [−M, M ]
T
, (22)

where mH and mB are the mass and JH and JB are the mass moment inertia of
the human body and the balance board respectively, kA is the stiffness of the ankle
and ϕ0 = arcsin(e/lH) is the equilibrium angle of the human (Fig. 1/a shows the
tilted human body near equilibrium). The human body and balance board centre
of mass positions are simply given by rCH

= rA + lH [−sϕ, cϕ, 0]T and rCB
=

pB − cB [−sϑ, cϑ, 0]T respectively.
Using the generalized coordinates q = [ϕ(t), ϑ(t)], the following form of the

Lagrange equation of motion is used:

d

dt

∂T

∂q̇i
− ∂T

∂qi
+
∂U

∂qi
= Qi ; i = 1, 2 . (23)



3.2 Dynamic model of a human standing on the substituting
mechanism

The mechanical model in Fig. 2 is applied with frictionless joints and undeformable
bodies. The kinetic energy and potential function of the substituting mechanism
reads

T =
1

2
mH |ṙCH

|2 + 1

2
mc|ṗM|2 +

1

2
JHϕ̇

2 +
1

2
Jcϑ̇

2 +
1

2
Jlα̇

2
1 +

1

2
Jlα̇

2
2 , (24)

U = mH g yCH
+ml g

l

2
s1 +ml g

l

2
s2 +mcgyM +

1

2
kA (ϑ− ϕ+ ϕ0)

2
, (25)

where mc is the mass and Jc is the mass moment of inertia with respect to the
centre of mass of the coupler link. The crank mass is ml and Jl is the mass moment
of inertia of one crank with respect to the pivot point. The centre of mass of the
human body is rCH

= rE+ lH [−sϕ, cϕ, 0]T. The generalized force vector Q is the
same as in (22).

3.3 Computation of ankle torques during human balancing

During the balancing process the brain collects information from the environment
via the sensory organs and after processing sends signals to the muscles. This pro-
cess takes a certain time, which is modeled as a delay in the feedback loop. Here,
we assume a delayed linear feedback controller [16]. The ankle torque is calculated
based on the deviation from the equilibrium state q0 = [ϕ0, 0] as follows

M = Pϕ (ϕ(t− τ)− ϕ0) + Pϑ ϑ(t− τ) +Dϕ ϕ̇(t− τ) +Dϑ ϑ̇(t− τ) . (26)

3.4 Stability diagrams

The linearized equation of motion reads:

Mq̈(t) +Kq̇(t) + Sq(t) = Pq(t− τ) +Dq̇(t− τ) . (27)

The stability of (27) can be determined by the semidiscretisation method [8]. The
stability of the system is represented in the space of the four control gains Pϕ, Dϕ,
Pϑ and Dϑ. A projection of the stability diagrams to a fixed pair of Pϕ and Dϕ is
shown in Figure 4.



3.5 Comparison of stability properties in an illustrative example

The coefficient matrices and the stable region are compared in four cases:

• case BB0: balance board dynamic model, b. board inertia neglected
(mB = 0, JB = 0)

• case Me0: mechanism dynamic model, mechanism inertia neglected
(mc = 0, ml = 0),

• case BB: complete balance board dynamic model,
• case Me: complete substituting mechanism dynamic model.

It is important to note, that the dynamic models are still not singular, even in the case
when we neglect the inertia of the balancing equipments. If the balance board kine-
matics were imitated by the mechanism exactly, cases BB0 and Me0 would provide
exactly the same dynamic behaviour. When the inertia of the balancing equipment
is also considered, then a slightly modified dynamic behaviour is expected, which is
detailed in this section.

The balance board parameters were set to R = 0.25m and v = −0.1m and the
corresponding geometric parameters of the substituting mechanism are collected in
Table 1. The horizontal shift of the ankle joint is e = 0.1m. The inertial parameters
of the balance board are: mB = 3.42kg and JB = 0.0298kg/,m2. The centre of
mass position is given by cB = 0.136m. The inertial parameters of the substituting
mechanism are: mc = 2kg, ml = 1.5kg and the mass moments of inertia Jc and Jl
are calculated by considering homogeneous and prismatic bars. The parameters of
the bar that represents the human body are body mass mH = 65kg, centre of mass
distance from the ankle lH = 1m, estimated mass moment of inertia with respect
to the centre of mass JH ≈ 1/12mH n

2 = 16.21kgm2, where n = 1.73m is the
height of the subject. Ankle stiffness is kA ≈ 0.91mH g n/2 = 501.9Nm/rad [9].
The damping matrix and the coefficient matrices of the delayed terms are the same
in all cases:

K =

[
0 0
0 0

]
; P =

[
−Pϕ −Pϑ

Pϕ Pϑ

]
; D =

[
−Dϕ −Dϑ

Dϕ Dϑ

]
. (28)

The mass and stiffness matrices in cases BB0 and Me0 respectively are:

M =

[
81.211 21.986
21.986 8.6125

]
kgm2 ; S =

[
−132.53 −501.93
−501.93 438.16

]
Nm/rad . (29)

M =

[
81.211 22.040
22.040 8.6506

]
kgm2 ; S =

[
−132.53 −501.93
−501.93 451.09

]
Nm/rad . (30)

In cases BB0 and Me0, the difference between the elements of the mass matrices
of are less than 0.5% and less than 3% for the stiffness matrices. This difference is
because the mechanism can not imitate exactly the balance board motion. The mass
and stiffness matrices in cases BB and Me respectively are:



M =

[
81.211 21.986
21.986 8.6870

]
kgm2 ; S =

[
−132.53 −501.93
−501.93 442.71

]
Nm/rad . (31)

M =

[
81.211 22.040
22.040 8.7337

]
kgm2 ; S =

[
−132.53 −501.93
−501.93 456.85

]
Nm/rad . (32)

Comparing cases BB0 and BB one can notice that M22 and S22 changes only
with ∆MB

22 = 0.0745kgm2 and ∆SB
22 = 4.55Nm/rad. Comparing cases Me0 and

Me one can notice that M22 and S22 changes only with ∆MM
22 = 0.0831kgm2

and ∆SM
22 = 5, 76Nm/rad. Since ∆MB

22 ≈ ∆MM
22 and ∆SB

22 ≈ ∆SM
22, we can

conclude that adding the inertia of the balancing equipments changes the dynamic
behaviour similarly. Therefore the mechanism is suitable for the substitution of the
original balance board.

Fig. 4 shows the stability maps generated by the method explained in Section 3.4
for cases BB0, Me0, BB and Me. The stability maps differ slightly which leads
to the conclusion again that the substituting mechanism can be used in laboratory
experiments instead of the balance board.

Fig. 4 Stability maps for the balance board and the substituting mechanism with and without
neglecting the inertia of the balancing equipments (cases BB0, Me0, BB and Me).

4 Conclusions

We proposed the idea of a substituting mechanism that makes the balance board
laboratory experiments faster and easier. The mechanism avoids the reassemble of
the balance board in each measurement point regarding different parameter setting,
like arc radius. Furthermore, the substitution mechanism can imitate the feeling of
other balancing experimental equipments.

We have presented the geometric parameters of the mechanism that results the
approximately the same kinematic behaviour as the balance board in the relevant tilt
angle region. We showed that the dynamic properties of the balance board and the
substituting mechanism are very close to each other so that the measurement result
are not affected. The coefficients in the linearised equation of motion and the stable
region of a controlled dynamic model were compared considering realistic inertial
properties. We conclude that the application of a substituting mechanism is feasible.
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13. Nagymáté, G., R.M., K.: Stabilometry as a diagnostic tool in clinical medicine. Periodica
Polytechnica, Mechanical Engineering 60(4), 238–246 (2016)

14. Priplata, A., Niemi, J., Harry, J.D., Lipsitz, L.A., Collins, J.J.: Vibrating insoles and balance
control in elderly people. Lancet 362, 11231124 (2003)

15. Robinovitch, S., Feldman, F., Yang, Y., Schonnop R. Leung, P., Sarraf, T., Sims-Gould, J.,
Loughin, M.: Video capture of the circumstances of falls in elderly people residing in long-
term care: an observational study. Lancet 381, 47–54 (2013)

16. Stepan, G.: Delay effects in the human sensory system during balancing. Transactions of the
Royal Society A 367(1981), 1195–1212 (2009)

17. Terekhov, Y.: Stabilometry as a diagnostic tool in clinical medicine. Canadian Medical Asso-
ciation Journal 115(7), 631–633 (1976)

13



18. Yoshikawa, N., Suzuki, Y., Kiyono, K., Nomura, T.: Intermittent feedback-control strategy for
stabilizing inverted pendulum on manually controlled cart as analogy to human stick balanc-
ing. Frontiers in Computational Neuroscience 10, 34 pages (2016)


