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Abstract The domestic robot platform ACROBOTER exploits a
novel concept of ceiling based locomotion. A climber unit moves on
the almost obstacle free ceiling, while carries a swinging unit with
a system of suspending and orienting cables. The objective of the
robot is the fine positioning of the swinging unit that accomplishes
path following or pick and place tasks. Its motion is controlled by
ducted fan actuators additionally to the variable length suspending
cables. The complexity of the mechanical structure induces the use
of natural coordinates for the kinematical description. An algorithm
is proposed to control this underactuated and also redundant ma-
nipulator, which can be characterized as a control-constraint based
computed torque control strategy.

1 Introduction

Recently, more and more robotic systems try to utilize the advantages of the
underactuation, like the ones in cases of agile motion and energy efficient
operation. The indoor domestic robot called ACROBOTER published by
[Stépán and et al. (2009)] is suspended from the ceiling on a cable similarly
to cranes, so it is able to utilize the pendulum-like motion efficiently, while
the suspending cable also provides power and signal transmission for the
swinging unit. The robot utilizes the ceiling that is almost obstacle-free
compared to the ground, since it avoids all problems of floor based locomo-
tion caused by randomly placed small objects obstructing the free motion.

The mechanical structure of ACROBOTER can be divided into two main
parts; the climber unit (CU) carries the swinging unit (SU), which hangs
on a main cable (MC) and three orienting secondary cables (SC) as shown
in Fig.1. The CU is a fully actuated, planar RRT robot and is able to move
the upper mounting point of the MC in arbitrary location in a plain parallel
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Figure 1. ACROBOTER prototype

to the ceiling. The length of the MC and SCs are varied by servo motors,
and the positioning of the SU is assisted by ducted fan actuators. Despite
the large number of actuators, the system is still underactuated, because
the number of actuators is lower than the DoFs. Additionally, the system
is kinematically redundant, because the position and orientation of the SU
are prescribed only and there are no requirements for the motion of the CU
and the horizontal motion of the cable connector (CC).

We propose a control algorithm for the ACROBOTER system and give
a general formalism, which is applicable for underactuated systems with
kinematic redundancy, and suits to the principle of natural coordinates.

2 Mechanical model and control task

The planar model of the ACROBOTER manipulator is shown in Fig.2. The
CU is substituted by a single horizontal linear drive, the CC is modeled by a
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particle with 2 DoFs and the SU is modeled by a rigid body with 3 DoFs. We
handle the manipulator as a multibody system described by the Cartesian
coordinates of the base points PL, PCC , P1 and P2 of the included bodies.
Such set of dependent coordinates is called natural coordinates by [de Jalón
and Bayo (1994)]. The vector of the n = 7 dependent descriptor coordinates
and the m = 1 dimensional single geometric constraint representing the
constant distance between P1 and P2 are introduced as:

q =
[
xL xCC zCC x1 z1 x2 z2

]T
, (1)

ϕϕϕ(q) =
[
(x2 − x1)2 + (z2 − z1)2 − (P1P2)2

]
. (2)

The system is controlled by g = 5 actuators, which is less than the
n−m = 6 DoFs, thus the system is underactuated. The actuator forces are
shown in Fig.2 and are arrayed in the control input vector u:

u =
[
FL FM F1 F2 FT

]T
. (3)

The task of the manipulator is to move a specified point of the SU on a
prescribed trajectory given by xd and zd as functions of time. Besides, the
cable connector has to be kept in a given vertical distance hdCC above the
centre of the swinging unit, and the SU has to be kept horizontal. These
tasks are expressed by the l = 4 dimensional control-constraint vector:

γγγ(q, t) =


z1+z2

2 + hdCC − zCC
x1+x2

2 − xd
z1+z2

2 − zd
z1 − z2

 . (4)

In general, fully actuated manipulators equipped with more internal
DoFs than required to perform a specified task are called kinematically
redundant [Spong and Vidyasagar (1989)]. For such systems the inverse
kinematic calculation is not unique. The above definition can be special-
ized for underactuated manipulators, for which the inverse kinematical and
dynamical calculations may lead to a unique solution, if the number of in-
dependent control inputs and the dimension of the task is equal: g = l
[Blajer and Kolodziejczyk (2008); Kovács et al. (2010); Zelei et al. (2011)].
Consequently it is possible to introduce the definition: underactuated ma-
nipulators equipped with more independent control inputs than required to
perform a specified task are called dynamically redundant underactuated sys-
tems. This definition is equivalent to kinematic redundancy for fully actu-
ated robots. In contrast, the inverse kinematics of underactuated systems
cannot be solved uniquely, so these are always kinematically redundant.
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Figure 2. Planar model
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n−m = g = l no no no
n−m > g = l yes yes no
n−m > g > l yes yes yes

Table 1. Redundancy

However, in g = l cases, considering the inverse dynamics, the determina-
tion of the control input and kinematics is unique, so dynamic redundancy
does not stand. Table 1. summarizes the possible cases for n −m DoFs, l
number of specified tasks and g independent actuators.

In the investigated problem l < g, thus the system is kinematically
and dynamically redundant. One can observe, that in (4) there are no
prescriptions for the xL position of the linear drive. For the redundancy
resolution, we use the idea of virtual springs adopted from [McLean and
Cameron (1996)]. The angle of the MC is minimized, thus we apply a
virtual spring between the xL and xCC horizontal positions with stiffness kv.
Additionally, the speed of the linear drive should be small, so we introduce
a virtual damping element with damping ratio dv. This optimization rule
can be formulated by the g − l = 1 dimensional non-holonomic constraint
equation ψψψ(q, q̇, t) = 0 with

ψψψ(q, q̇, t) =
[
dvẋL + kv(xL − xCC)

]
. (5)

The formalism published by [de Jalón and Bayo (1994)] provides the
equations of motion for the physical system showed in Fig.2. The dynamical
model can be written in the form of a differential-algebraic equation:

M(q)q̈ + C(q, q̇) +ϕϕϕT
q (q)λλλ = Q(q) + H(q)u, (6)

ϕϕϕ(q) = 0, (7)
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where the positive definite mass matrix M(q) ∈ Rn×n is constant in case of
the use of natural coordinates. However, in the next section we do not focus
on this special case, thus, in general the mass matrix may depend on the
descriptor coordinates. C(q, q̇) ∈ Rn is the vector of forces arising partly
from the dynamics of the system (Coriolis, centrifugal, etc.) and from active
forces (springs, dampers, etc.). Q(q) ∈ Rn is the vector of gravitational
forces. H(q) ∈ Rn×g is the control input matrix and u ∈ Rg is the control
input vector. Matrix ϕϕϕq(q) = ∂ϕϕϕ(q)/∂q ∈ Rm×n is the constraint Jacobian
associated with the geometric constraints ϕϕϕ(q) ∈ Rm. λλλ ∈ Rm is the vector
of the Lagrange multipliers. The dimension g of the control input vector is
lower than the DoFs n−m, thus the system is underactuated.

3 The control method

The eq. of motion (6) and (7) are complemented by the control-constraint
equation (also named servo-constraints) and the optimization rule:

γγγ(q, t) = 0, (8)

ψψψ(q, q̇, t) = 0. (9)

The control-constraint vector can be handled similarly to the geometric
constraints (7), however the control-constraints usually depend explicitly on
time. We assume that the geometric constraints (7), the control-constraints
(8) and the optimization rule (9) are linearly independent and consistent,
furthermore (8) and (9) can be satisfied with bounded control forces.

The method of Lagrange multipliers is well known from [de Jalón and
Bayo (1994)] regarding the numerical integration of the governing differential-
algebraic equation of multibody systems. That method is based on the dou-
ble time differentiation of the geometric constraints. Similarly, in our work,
the geometric constraint equation (7) and the control-constraint equation
(8) are formulated at the level of acceleration by differentiating them twice
with respect to time, in order to make the acceleration q̈ appear explicitly:

ϕϕϕq(q)q̈ + ϕ̇ϕϕq(q, q̇)q̇ = 0, (10)

γγγq(q, t)q̈ + γ̇γγq(q, q̇, t)q̇ + γ̇γγt(q, q̇, t) = 0, (11)

where γγγq(q, t) ∈ Rl×n is the Jacobian of the control-constraint and vector
γγγt(q, t) ∈ Rl is the partial time derivative of the explicitly time depen-
dent part of the control-constraint. In the application of the method of
Lagrange multipliers the geometric constraint equations can be stabilized
by the Baumgarte stabilization technique [Baumgarte (1972)]. Similarly,
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we extend the acceleration level control-constraint equation (11) as follows:

γγγq(q, t)q̈ + γ̇γγq(q, q̇, t)q̇ + γ̇γγt(q, q̇, t) +

KD[γγγq(q, t)q̇ + γγγt(q, t)] + KPγγγ(q, t) = 0. (12)

On the contrary, (10) is not stabilized, because the geometric constraints
are naturally satisfied. In (12) KP ∈ Rl×l and KD ∈ Rl×l are positive defi-
nite gain matrices. Equation (12) is asymptotically stable for fixed desired
positions [Bencsik and Kovács (2011)].

The optimization rule (9) is formulated by a non-holonomic constraint,
hence the acceleration q̈ appears in its first time derivative:

ψψψq(q, q̇, t)q̇ +ψψψq̇(q, q̇, t)q̈ +ψψψt(q, q̇, t) = 0, (13)

where ψψψq(q, q̇, t) ∈ R(g−l)×n and ψψψq̇(q, q̇, t) ∈ R(g−l)×n are the Jacobian
of the optimization rule regarding q and q̇ respectively. Vector ψψψt(q, q̇, t)
is the partial time derivative of the explicitly time dependent part of (9).
Since the optimization rule is given in the form of an artificial constraint,
(13) has to be stabilized similarly to the control-constraint. We extend (13)
with the positive definite gain matrix Kψ:

ψψψq(q, q̇, t)q̇ +ψψψq̇(q, q̇, t)q̈ +ψψψt(q, q̇, t) + Kψψψψ(q, q̇, t) = 0. (14)

The unconstrained dynamic equation (6), the acceleration level geo-
metric constraint equation (10), the stabilized acceleration level control-
constraint equation (12) and the optimization rule (14) is incorporated in
hyper-matrix form as follows:

M(q) ϕϕϕT
q (q) −H(q)

ϕϕϕq(q) 0 0
γγγq(q, t) 0 0
ψψψq̇(q, q̇, t) 0 0


 q̈
λλλ
u

 =


Q(q)−C(q, q̇)
−ϕ̇ϕϕq(q, q̇)q̇

−γ̇γγq(q, q̇, t)q̇− γ̇γγt(q, q̇, t)−KD[γγγq(q, t)q̇ + γγγt(q, t)]−KPγγγ(q, t)
−ψψψq(q, q̇, t)q̇ +−ψψψt(q, q̇, t) +−Kψψψψ(q, q̇, t)

(15)

from which the control input u, the acceleration q̈ and the vector of La-
grange multipliers λλλ can be calculated as the function of the measured state
q and q̇ of the system, where q and q̇ come from the measured values.

4 Simulation results

A round-cornered rectangular shaped trajectory was prescribed, on which
the SU was moved along periodically. Fig.3. shows one period of the motion.
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Figure 3. Simulated motion

Figure 4. Simulation results: time histories

In Fig.4. the time histories of the control forces, the control-constraint
violation and the time history of the violation of the optimization rule can
be seen in approximately 2.5 periods. It can be clearly observed that the
perturbation applied in the initial time instant is eliminated quickly by the
controller, however γ1...γ4 and ψ1 values grow up, when larger accelerations
are required in the corners of the prescribed trajectory. As a summary of
the simulation work, we can say that the violation of the control-constraints
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and the optimization rule could be driven to zero in a stable way, and the
motion of the manipulator was also stable and smooth.

5 Conclusions

An efficient motion control algorithm was presented and analyzed in case
of the cable suspended domestic robot ACROBOTER, which is an under-
actuated system and also dynamically redundant. A definition of dynamic
redundancy was given for underactuated robots. An existing computed
torque control algorithm was extended by means of the introduction of an
optimization rule in the form of an artificial non-holonomic constraint. The
corresponding general formalism was presented, and the numerical simula-
tions of case studies showed the efficiency of the method.
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