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Abstract: The under-actuated systems have less control inputs than degrees of freedom. 
We assume that the investigated under-actuated systems have desired outputs of the same 
number as inputs. In spite of the fact that the inverse dynamical calculation leads to the 
solution of a system of differential algebraic equations (DAE), the desired control inputs can 
be determined uniquely by the method of computed torques. 

We often use natural (Cartesian) coordinates to describe the configuration of the robot, 
while a set of algebraic equations represents the geometric constraints. In this modeling 
approach the mathematical model of the dynamical system itself is also a DAE. 

The method of computed torque control with a PD controller is applied to under-
actuated systems described by natural coordinates. The inverse dynamics is solved via the 
backward Euler discretization of the DAE system for which a general formalism is proposed. 
Some results are presented in the form of a case study for a cart-pole system and confirmed 
by numerical simulation. 
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1. INTRODUCTION 
This paper proposes a generalized formalism for the computed torque control of under-

actuated dynamical systems with geometric constraints and prescribed servo constraints. 
The under-actuated dynamical systems have less control inputs than degrees of 

freedom. Typical examples of under-actuated systems involve the unmanned air vehicles, 
underwater vehicles, wheel driven mobile robots (see Fig.1./a). The elastic behavior of the 
components of the controlled dynamical system may cause the problem of under actuation 
[6]. On Fig.1./b we can see a motor and a rotor connected by an elastic shaft, where we can 
approximate the elastic shaft with a massless torsional spring element. Cranes (see fig.1./c) 
are also under-actuated because there is not direct action on the payload position. The crane-
like robot manipulator developed on the ACROBOTER project [4, 7] also has more DoFs 
than control inputs. The structure of the robot is shown in Fig.1./d. The system connects to the 
ceiling based anchor point system (AP). The climber unit (CU) is able to move on the anchor 
points. A windable main cable hangs down from the CU and connects to three windable 
secondary cables via the cable connector (CC). The three secondary cables orienting the 
swinging unit (SU), in which a gripper and most of the sensors can be found. The number of 
DoFs is 12 and the number of actuators is 10 including the ducted fan actuators of the 
swinging unit and the cable winding mechanisms. 
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       a                                    b                                  c                                 d   

Fig.1. Under-actuated systems: unmanned air vehicle (a), elastic shaft (b), crane (c) and 
ACROBOTER (d) 

In this work we assume that the system has desired outputs of the same number as 
control inputs. The servo constraints define the desired system outputs accordingly to the task. 
In spite of the fact that the inverse dynamical calculation leads to the solution of a system of 
differential algebraic equations (DAE), the desired control inputs can be determined uniquely 
by the computed torque method generalized for under-actuated systems. 

Several dynamical systems, especially robots with parallel kinematic chains have a 
complex dynamics, which may hardly be modeled using conventional robotic approaches. An 
alternative modeling technique is to use natural (Cartesian) coordinates to describe the 
configuration of the robot. The number of descriptor coordinates is larger than the DoFs thus 
a set of algebraic equations represents the geometric constraints. In this approach the 
dynamics of the controlled system is modeled by a DAE.  

The generalization of computed torque control for under-actuated systems is discussed 
in [8]. The method called CDCTC (computed desired computed torque control) can be 
applied only for systems that are represented by minimum number generalized coordinates q , 
and the mathematical model is an ODEs: 
 HuqqfqqM =+ ),,()( t&&& , (1) 
where M  is the mass matrix, ),,( tqqf &  represents the external and internal forces except the 
control forces, H  is the input matrix and u  is the input vector. The phrase “computed 
desired” means that the uncontrolled coordinates cannot be arbitrarily prescribed but they can 
be calculated from the internal dynamics of the controlled system. Contrarily the controlled 
coordinates are prescribed and the control law that eliminates the error of the controlled 
coordinates at ∞→t  is: 
 )()(),,()( qqKqqKqqfqqMHu &&&&& −+−++= d

D
d

P
dddd t , (2) 

where PK  and DK  are the gain matrices of the linear compensator. Equation (2) has to be 
solved for the control input u  and for the uncontrolled subset of generalized coordinates q . 
The basic idea is to use the null space N  of the input matrix H  to project the equations into 
the space of the uncontrolled motion (3). The projected system can be solved for the 
uncontrolled coordinates. If we know the uncontrolled coordinates, the control inputs can be 
determined by equation (4). 
 [ ])()(),,()(T qqKqqKqqfqqMN0 &&&&& −+−++= d

D
d

P
dddd t  (3)  

 ( ) [ ])()(),,()(T1T qqKqqKqqfqqMHHHu &&&&& −+−++=
− d

D
d

P
dddd t  (4) 

It is possible to adopt the CDCTC method for natural coordinate based system, which is 
described by a redundant set of descriptor coordinates q  and the equations of motion 
constitute a DAE. The solution requires an additional projection [5] that results an ODE. After 
the projection the CDCTC method can be applied, but it may be computationally too 
expensive because of the repeated projections.  

Instead of the application of the CDCTC method we solve the inverse dynamic problem 
via the backward Euler discretization of the DAE system. The backward method requires the 
solution of a system of nonlinear algebraic equations in each time step, which is solved by 
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Newton-Raphson iteration. A general formalism is proposed for the analytical calculation of 
the Jacobian of the Newton-Raphson method.  

The results are presented in the form of a case study for a cart-pole system and 
confirmed by numerical simulation. The numerical results are compared with analytical 
calculations. 

2. PROBLEM FORMULATION 
By using the redundant set of descriptor coordinates q  the equation of motion, the 

geometric constraint vector of the system and the servo constraint vector can be written as: 
 uqHQλqΦqM q )()(T +=+ g&& , (5) 

 ,)( 0qφ =  (6) 

 .))(,( 0pqφ =ts  (7) 
Equation (5) is the Lagrangian equation of motion of the first kind, where M  is the 

nn×  sized constant matrix [1]. Symbol gQ  is the generalized gravity force. The m  number 
of geometric constraints are represented by the vector )(qφ  in (6) and )(qΦq  is the Jacobian 
matrix of the constraints. The corresponding Lagrangian multipliers are denoted by λ . The l  
dimension input vector is u  and the ln×  sized )(qH  is the generalized input matrix. 

The number l  of the control inputs is less than the mn −  DoFs of the system, thus it is 
under-actuated. The task of the robot is formulated by the servo-constraint vector ))(,( ts pqφ  
[3, 6] given in equation (7). The dimension of the servo-constraint vector is also l  that means 
the l  number of control inputs can uniquely be determined. 

The servo constraints depend on the function )(tp  that can be handled as the desired 
system output and it may describe the desired trajectory of a certain point and/or the desired 
orientation of the end-effector. The servo-constraints can be formulated as: 
 )()())(,( tts pqhpqφ −= , (8) 
where )(qh  gives the prescribed system outputs as the function of the descriptor coordinates. 
We assume that the servo-constraints and a well chosen subset of geometric constraints can be 
solved for the controlled coordinates cq  in closed form. Than the task can be defined by 

d
cc qq = , where the superscript d  refers to the desired value. Important to notice that the 

computed torque control method by direct discretization does not require to use d
cc qq = , 

because the direct discretization can handle the full constraint system composed by )(qφ  and 
))(,( ts pqφ , but the size of the system increases. 

For the partitioning of the descriptor coordinates we introduce the vector of controlled 
coordinates with qSq T

cc =  and qSq T
uu = , respectively [8], where cS  and uS  are task 

dependent selector matrices. The vector of descriptor coordinates can be reassembled as 
uucc qSqSq += . 

3. COMPUTED TORQUE CONTROL METHOD 
We apply the backward Euler discretization of the DAE system and the resulting set of 

equations are solved by the Newton-Raphson method for the desired actuator forces and 
uncontrolled coordinates and Lagrangian multipliers. 

We assume that the servo constraints result a d
cc qq =  for which the control input u  is 

bounded. Considering a PD controller with gain matrices PK  and DK  the control law can be 
formulated as:  
 )()()()(T qqKqqKuqHQλqΦqM q &&&& −−−−+=+ d

D
d

P
d

g
dd , (9) 

 ,)( 0qφ =d  (10) 
where q  is the measured and dq  is the desired descriptor coordinate vector. The measured 
value of the coordinates appears only in the linear compensator.  

Introducing dd qy &=  we derive the first order form of equations (9-10). After the 
decomposition of the controlled and uncontrolled coordinates the control law can be written 
in the form: 
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 ,d
c

d
c yq =&  (11) 

 ,d
u

d
u yq =&  (12) 

 ( ))()()()(T1T qyKqqKuqHQλqΦMSy q && −−−−++−= − d
D

d
P

d
g

d
c

d
c , (13) 

 ( ))()()()(T1T qyKqqKuqHQλqΦMSy q && −−−−++−= − d
D

d
P

d
g

d
u

d
u , (14) 

 .)( 0qφ =d  (15) 
Equation (11) is identity thus we can leave it out of consideration. Equation (12-15) can 

be discretized by backward Euler method: 

         ,1,
,1, d

iu

d
iu

d
iu

h +
+ =
−

y
qq  (16) 

         ( ))()()()( 11111111
T1T,1,

++++++++
−+ −−−−++−=

−
i

d
iDi

d
iPi

d
igi

d
iu

d
iu

d
iu

h
qyKqqKuqHQλqΦMS

yy
q & , (17) 

         ( ))()()()( 11111111
T1T

1, ++++++++
−

+ −−−−++−+−= i
d
iDi

d
iPi

d
igi

d
ic

d
ic qyKqqKuqHQλqΦMSy0 q && , (18) 

         ).( 1
d
i+= qφ0  (19) 

Equations (16-19) constitute a system of mln +−2  number of nonlinear equations for the 
th)1( +i  value of the desired uncontrolled coordinates d

iu 1, +q , their time derivatives d
iu 1, +y , the 

control inputs 1+iu  and the Lagrange multipliers 1+iλ . It can be formulated as a function 1+iF  of 
the vector of unknowns T

111,1, ][ ++++= ii
d

iu
d

iu λuyqz  as follows:  

 ( )
( )
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d
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d
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i
h
h

qφ
qyKqqKuqHQλqΦMSy

qyKqqKuqHQλqΦMSyy
yqq

F
q

q

&&

&  (20) 

The system of nonlinear equations is solved by Newton-Raphson method in the form 
( ) 111 +++ −=− iiii FzzJ . The Jacobian is the following: 
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 (21) 

In some cases the Jacobian matrix may be ill-conditioned, but the problem can be handled by 
singular value decomposition where we leave out the relatively small elements. 

4. SIMULATIONS AND COMPARARISON WITH SEMI-ANALYTICAL RESULTS 
The pole cart model is examined with the present computed torque method. The 

mechanical model can be seen in Fig.2. left and middle. This system is the most reduced 
model of any crane system and the ACROBOTER robot. The system is described by the 
redundant set of descriptor coordinates T

221 ][ zxx=q . The geometric constraint vector is 
]-)x-[(5.0)( 22

2
2

12 Lzx +=qφ , which means that the pole has a constant length L . The 
equation of motion is written in the form of (5) and (6): 
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1 =+ Lzx . (23) 
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According to equation (8) the servo constraint vector is composed by the functions ][)( 2x=qh  
and ][)( 2

dxt =p , so the servo constraint reads the form:  
 022 =− dxx , (24) 
from which we can see that the servo constraint can be solved for the controlled coordinate 

dxx 22 =  and can be substituted into the control law (9). 
The desired uncontrolled coordinate values 1x  and 2z , the Lagrangian multiplicator 1λ  

and the desired force 1F  are calculated by the backward Euler algorithm. The parallel 
simulation of the controlled dynamical system must be done at the same time because the 
linear compensator calculates a position and a velocity error qq −d  and qq && −d . The 
simulation was accomplished with the Baumgarte stabilization of the equation of motion [1], 
which can be written as follows if the geometric constraints not depend on time explicitly: 

 
.2 2

T

⎥
⎦

⎤
⎢
⎣

⎡
−−−

=⎥
⎦

⎤
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⎣

⎡
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⎤

⎢
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⎣

⎡
φqΦqΦ
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q

0Φ
ΦM

βα &&&
&&

qqq

q  (25) 

In order to verify the simulations the inverse dynamical calculation was accomplished 
by semi-analytical way. In this calculation the minimum set of descriptor coordinates was 
used: T

1 ]x[ ψ=q , see Fig.2. The equations of motion derived from the Lagrange equation 
of the second kind.  
 1

2
22121 )sin()cos()( FLmLmxmm =−++ ψψψψ &&&&& , (26) 

 0)sin()cos( 1 =++ ψψψ gLx &&&& . (27) 
The task is defined by the servo constraint with the functions ])sin([)( 1 ψLx +=qh  and 

][)( 2
dxt =p . The servo constraint can be written as follows: 

 0)sin( 21 =−+ dxLx ψ . (28) 
The servo constraint equation can be solved for the angle ψ  and can be substituted into 

equations of motion (26) and (27). Equation (27) gives a second order differential equation 
for 1x  and its solution gives the desired position 1x  of the cart. After that the desired control 
force control can be determined by equation (26).  

We mention that the differential equation (27) is singular at the vertical position of the 
pole, when 021 =− dxx . In this configuration the coefficient ),,,( 21211

dd xxxxc &&  of 1x&&  is zero. But 
the equation still can be solved if we choose a small number ε  and introduce the modified 
coefficient of 1x&&  as )),(absmax()1)((2~

111 εccHc −= , where )( 1cH  is the unit step function and 
0)( 1 =cH  if 01 <c  and 1)( 1 =cH  if 01 ≥c . The 1

~c  coefficient is shown in Fig.2. right. This 
modification of the differential equation (27) causes small amplitude high frequency 
oscillation in the 1x  solution. This oscillation is amplified in the control force 1F , but this 
oscillation can be filtered from the signal. The semi-analytically calculated desired value of 1x  
can be seen in Fig.3./a and Fig.4./a denoted by x1an . The corresponding desired control 
input 1F  and its the filtered version is shown in Fig.3./h and Fig.4./h denoted by F1an  and 
F1an.s respectively. 

   
Fig.2. Left: pole cart model with redundant set of descriptor coordinates, middle: minimum 

set of descriptor coordinates. Right: coefficient of 1x&& . 

The desired trajectory must be at least four times continuously differentiable because 
the analytical investigations shows that the control force 1F  depends on the fourth time 
derivative of the desired coordinate dx2 . In other words the relative degree is 4 [2]. Because of 
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this, the desired trajectory is based on the )arctan(t  function as it has infinite number of time 
derivative. The simulation results can be seen in Fig.3. and Fig.4. The simulation that is 
shown in Fig.4. considered the saturation of the control force 1F .  

The physical parameters of the simulation was ][m/s81.9 2=g , [kg]11 =m , [kg]12 =m  
[m]1=L . The gain matrices of the linear compensator was set to be 0.8][N/m]0.8,[8,diagP =K  

and 4][Ns/m]4,[20,diagD =K . The parameters of the Baumgarte stabilization method was 
5=α  and 5=β , which provided the stability of the constraint equation during the simulation 

of the investigated dynamical system. 
The semi-analytically calculated uncontrolled desired coordinate dx1  and its desired 

value given by the computed torque control algorithm are shown in Fig.3./a and Fig.4./a and 
denoted by x1an  and x1d  respectively. If the control force 1F  is not bounded than the two 
results is very close to each other. In the case of saturated control force the deviation between 
the analytical and the simulated result is significant, but the simulated dx1  converges to the 
analytical after a few oscillations. Fig.3./b and Fig.4./b show the desired value of 1x  and 2x  
given by the controller and they are denoted by x1d  and x2d  respectively. The simulation of 
the pole-cart system gives x1sim  and x2sim . The error between the desired and the 
simulated values is shown in Fig.3./e and Fig.4./e and denoted by x1err  and x2err . The 
maximum value of the error of the controlled coordinate 2x  is 5mm if the control force is not 
bounded and 100mm if 1F  saturates. The maximal error strongly depends on the gain matrices 

PK  and DK , however the gains cannot be set above a definite value because of stability 
problems. The desired and simulated value of 2z  can be seen in Fig.3./c and Fig.4./c, and the 
error is shown in Fig.3./e and Fig.4./e, the notation is z2d , z2sim  and z2err .  

 
Fig.3. Simulation results 
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Fig.4. Simulation results in the case of saturated control input 

In order to have a better imagination of the motion the angle of the pole is plotted in Fig.3./d 
and Fig.4./d. The analytically calculated desired value of ψ  is denoted by ψan , the desired 
value generated by the controller is denoted by ψd  and the simulated motion is ψsim . The 
differences between of the three functions are significant only in the case of saturated 1F . The 
error between the desired and the simulated ψ  angle is shown in Fig.3./f and Fig.4./f. The 
desired Lagrange multiplicator is shown in Fig.3./g and Fig.4./g. Fig.3./h and Fig.4./h. show 
the control force 1F . F1an  denotes the result of the semi-analytical calculation and F1an.s is 
the same signal after processed by a digital filter algorithm. We can see that the oscillation of 
the unfiltered signal has a very definite frequency and can be filtered out very efficiently. In 
the case of unbounded 1F  the desired control force calculated by the controller oscillates in 
the appearance of fast desired motions around [s]6=t , but the oscillations are suppressed and 
the force signal converges to the semi-analytically calculated curve. In the case of the 
saturated control force the deviation from the semi-analytical signal is much larger and has 
some delay, but after a short time it converges to the semi-analytical curve. 

Summarizing, the diagrams in both Fig.3. and Fig.4. shows that the results given by the 
computed torque control with backward Euler discretization gives feasible control inputs, 
suppresses the error of the controlled coordinate, and the results are in strong connection with 
the semi-analytical results. 
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5. CONCLUSION 
A formalism was proposed for the computed torque control of under-actuated and 

natural coordinate based dynamical systems. The numerical simulations showed the 
applicability of the algorithm. The simulation also showed that the method gives the same 
results as the analytical solution of the inverse dynamic problem. 

Our studies indicated that in case of more complex and larger systems the Jacobian 
matrix may be ill conditioned. The examination of this problem is a future work.  

The feasibility of the present control approach is planned to be tested in the framework 
of the ACROBOTER project.  
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