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Abstract: Contradictory demands are present in the dynamic modeling and analysis of legged
locomotion: on the one hand, the high degrees-of-freedom (DoF) descriptive models are geometrically
accurate, but the analysis of self-stability and motion pattern generation is extremely challenging;
on the other hand, low DoF models of locomotion are thoroughly analyzed in the literature; however,
these models do not describe the geometry accurately. We contribute by narrowing the gap between
the two modeling approaches. Our goal is to develop a dynamic analysis methodology for the study
of self-stable controlled multibody models of legged locomotion. An efficient way of modeling
multibody systems is to use geometric constraints among the rigid bodies. It is especially effective
when closed kinematic loops are present, such as in the case of walking models, when both legs
are in contact with the ground. The mathematical representation of such constrained systems
is the differential algebraic equation (DAE). We focus on the mathematical analysis methods of
piecewise-smooth dynamic systems and we present their application for constrained multibody
models of self-stable locomotion represented by DAE. Our numerical approach is demonstrated on a
linear model of hopping and compared with analytically obtained reference results.

Keywords: non-linear analysis; periodic motion; piecewise-smooth systems; biomechanics of
running; ground-foot impact

1. Introduction

1.1. Background

Many descriptive models of legged locomotion—such as walking, running, and hopping—can
be found in the literature. These descriptive models are mainly capable of interpreting measurement
results on walking, running, and hopping [1–7].

Alternative modeling approaches do not necessitate the experimental results, but develop
predictive models, which imitate the dynamics of locomotion. For instance, references [8,9] introduce
models for the investigation of foot impact intensity at forefoot, mid-foot and rear-foot ground
collision. In [10], the geometric non-linearity of a static segmented leg model is studied. The SLIP
model in [11] has been developed for the understanding of the essential dynamics of running and
hopping locomotion. The further detailed variation of the SLIP model is presented in [12]: the
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segmented leg provides a geometry very similar to the human leg; however, the inertia of leg segments
is neglected; consequently, the ground-foot collision and the impact-induced energy absorption are not
investigated. Reference [13] introduces a novel approach for humanoid gait generation. The control
of foot placement and human balancing problems are discussed in [14], where a predictive model
is applied.

Our research contributes to the development of mathematical models of legged locomotion.
Since the mathematical description of the above-mentioned and the similar predictive models
are quite challenging, these models develop slowly, and the integration of the features leads to
highly intricate mathematical description. The long-term goal of our research is to reach such
integrated models of hopping and running that can analyze (i) the dynamic stability issues, the neural
processes such as balancing [14–17], the motion control and the motion pattern generation [18];
(ii) geometric non-linearities [10,12,19,20]; (iii) ground-foot collision intensity and impact-induced
energy absorption [9,21,22]; (iv) distinct topology and actuation in the flight and ground phases [23].

In paper [24], we introduced a simple 2 DoF model of hopping that demonstrated how the active
control provides stable hopping with uniform hopping height despite of the impact-induced energy
absorption. The model consists of two mass blocks one above the other and connected to each other
by means of an active spring-damper. In [24], we demonstrated a general dynamic analysis method,
which is suitable for more complex models, such as the 6 DoF model in [20]. The analysis of the
three-segmented hopping model in [20] is based on the dynamic analysis method explained in [24]
and demonstrates the applicability for higher DoF systems.

The present paper introduces and overview a dynamic analysis methodology which is suitable
for higher complexity multibody models. The mathematical representation of the models in [20,24] are
based on the classical general coordinates of the minimum set. However, in the case of high number of
DoF or closed kinematic loops, the application of non-minimum set (also referred as redundant set) of
descriptor coordinates is more efficient. The application of non-minimum coordinates in multibody
dynamics is well known from [25–30]. In case on non-minimal coordinates, the dynamic equation
of motion is subjected to algebraic constraint equations that assure the geometric connection of the
redundant coordinates. The constrained representation of the equations of motion suits well the
possibly intricate combination of ground-foot contacts and makes possible to analyze models when
more than one leg can touch the ground. This technique leads to the situation, when the equation
of motion has DAE form. In the present work, we combine the stability analysis method of the
periodic solution of piecewise-smooth dynamic systems that are described by ordinary differential
equations (ODE) [21,31–33] with the efficient DAE formulation of multibody systems [25,27,34] and
legged locomotion systems [28,30]. The fundamental theories and ideas of the analysis of the legged
locomotion with similar approaches are detailed in [35]. The applied dynamic analysis technique is
specialization of the method in [36] for hopping and running multibody models.

1.2. Organization of the Paper

Our models of vertical hopping with coordinates of minimum set and redundant set are detailed
in Section 2. The models consist of the equation of motion of the mechanical system and the equations
of the control actions. Section 3 details the dynamic analysis method, which is specifically tailored
for non-linear hopping and running systems with redundant coordinates and two continuous phases.
The numerical results together with their analytical validation are presented in Section 4. The analytical
calculation exploits the fact that the model is linear; however, it is not a requirement for the presented
numerical dynamic analysis method. The conclusions are summarized in Section 5.

2. A Constrained Model of Vertical Hopping

The DAE-based dynamic analysis methodology of piecewise-smooth hopping and running
systems is presented by the case study of an excessively simplified model of hopping. Hence, we can
rather focus on the analysis methodology.
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For the sake of simplicity, a constrained linear model of hopping is introduced in this section.
However, non-linearities may emerge in locomotion models due to geometric non-linearities, such as
in case the model in [37]; spring characteristics due to the muscle-tendon dynamics [10]; or non-linear
behavior of the neural model [11]. Although these non-linearities do not appear in our basic hopping
model, the dynamic analysis method is not limited to linear systems.

2.1. Mechanical Model

Our simplest hopping models consist of two vertically moving particles connected by an active
spring-damper. The model is placed in gravitational field above smooth, rigid, and horizontal
ground. The constrained model, which is shown in the right panel of Figure 1, has been developed
based on the unconstrained hopping model that was published in [24] and is shown in Figure 1 left.
The unconstrained model in [24] and our new model match each other in terms of physical parameters
and DoF. The difference is the mathematical representation: the upper and lower body has been
split into two parts and constrained to each other in the new model. The constrained model on the
right panel of Figure 1 is used as a case example to illustrate our analysis methodology; however, the
presented methodology is suitable for multibody models with high complexity.

Figure 1. The unconstrained hopping model in the flight and the ground phases [24] (left panel);
the constrained model in the flight and the ground phases (right panel)

Similarly to the unconstrained model, the physical parameters are the total mass m and the ratio
µ ∈ [0, 1] of the upper and lower mass. The upper mU and lower masses mL are further separated by
means of parameters µU ∈ [0, 1] and µL ∈ [0, 1], with which

m1 = mU µU , (1)

m2 = mU(1−µU) , (2)

m3 = mL µL , (3)

m4 = mL(1−µL) , (4)

where

mU = m µ , (5)

mL = m(1−µ) (6)

are the mass of the upper and lower blocks in the unconstrained model. Further parameters of the
model are the stiffness k and the damping parameters dF and dG, which are valid in flight and ground
phases, respectively. For the better interpretation of the results (in Section 4) and in order to reduce the
number of parameters, we introduce α =

√
k/m, DF = dF/(2αm) and DG = dG/(2αm).
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The system is described by the non-minimum set of coordinates q = [z1(t), z2(t), z3(t), z4(t)]T

of the number of n = 4, and the following geometric constraints ensure the connection of the descriptor
coordinates:

γb =

[
z1−z2

z3−z4

]
. (7)

The rigid body constraints in γb are permanently valid in both the flight and the ground phases.
The number of permanent rigid body constraints is h = 2 in our case example. In the case of this
hopping model, γb is linear. However, it is not a requirement for the general formalism detailed in
Section 3.2.

In the specific case of our hopping model, the number of constraints that represent ground contact
is l = 1, and the corresponding constraint vector is

γg =
[

z4

]
. (8)

Again, in the case of our model, γg is linear too, which is not a requirement for the general
formalism detailed in Section 3.2.

To construct the equation of motion, we derive the mass matrix H and the vector C of spring,
damping and gravitational forces, which are

H = diag
([

m1, m2, m3, m4

])
, (9)

C =


0

k(z2−z3−L0)+d(ż2−ż3)

−k(z2−z3−L0)−d(ż2−ż3)

0

+ g


m1

m2

m3

m4

 , (10)

where L0 is the unstretched spring length. The general force vector C in (10) and the mass matrix in H
(9) are linear and constant, respectively. However, C and H can be non-linear functions of the state
variables in the general formalism (Section 3.2).

2.2. Active Spring-Damper for Ensuring Periodic Motion

The flight (airborne) phase and ground (support or stance) phases, which periodically follow each
other, are clearly separated in our models. In such systems, some segments of the limbs periodically
come into contact with the ground; therefore, the motion of these body segments are constrained
during the whole duration of the ground contact. The ground collision at the end of the flight phase
leads to the loss of a certain amount of kinetic energy [9,11,21,24]. This energy amount is referred
as constraint motion space kinetic energy (CMSKE) in [22]. As the muscles or actuators provide
mechanical power, the kinetic energy accumulates in the rest of the body during the ground phase. In
the case of periodic motion, the mechanical energy reaches its original level at the end of the ground
phase. The ground contact then terminates, and the flight phase begins again.

The unconstrained model, which is depicted in the left panel of Figure 1, is developed for the
illustration and dynamic analysis of the above explained sequence. The ground collision of mL

terminates the flight phase and the total amount of the kinetic energy of mL is absorbed, since the
collision is modeled to be fully inelastic. The active spring-damper plays the role of the muscles: it
accelerates mU in upward vertical direction and increases its kinetic energy. If the height of the new
hop is the same as it was in the previous one, then the motion is periodic.

We can conclude that hopping systems with collisions are non-conservative without active control.
This issue and the modeling of energy supply are thoroughly surveyed in [11]. A specific concept for
the energy refilling of impacting hopping systems is presented in the case of a general 1 DoF non-linear
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model of hopping presented in [38]. Since the damper and the spring is linear in our model, it is
more specific. Having linear dynamics allows us to carry out analytical calculations, with which the
numerically obtained results are validated (see Section 4.1). Besides, the presented numerical analysis
is not limited to linear systems.

The active spring-damper system imitates the behavior of limb muscles in the sense that muscles
supply energy lost to dissipation and foot impacts according to [11,38]. The spring-damper plays
different role in the flight and the ground phases. The damper d has a certain positive value dF in the
flight phase to suppress undesired oscillations. However, it has a properly chosen negative value dG in
ground phase to regenerate mechanical energy. The negative damping could be achieved by means
of an active actuator in a robotic realization of the model. The stiffness k is constant regardless the
variation of the flight and the ground phases. The operation of the active spring-damper system is the
same in the constrained model.

2.3. Switchings between the Flight and the Ground Phases

As we explained in Section 2.2, the flight phase terminates when the mass block in the lowest
position reaches the ground. The event of flight to ground (F2G) transition is mathematically expressed
by means of the indicator function hF2G ∈ R:

hF2G(x) = z4. (11)

The indicator function hF2G crosses zero from positive to negative direction at touchdown.
The F2G transition not only cause the switching of the governing equation of the continuous dynamics,
but involves an impact too. The impact is modeled as a mapping (i.e., resetting) of the state variables:
the velocity of the lower mass blocks becomes zero and other state variables remain the same.
The mapping is defined as

gF2G(x) = [q, ż1, ż2, 0, 0]T . (12)

The ground to flight (G2F) transition occurs, when the ground-foot force becomes a pulling force.
Mathematically, the G2F transition occurs, when indicator function

hG2F(x) = λg (13)

crosses zero from negative to positive direction. The Lagrange-multiplier λg in hG2F ∈ R is the ground
contact force acting on particle m4. Negative and positive sign of λg refers to pushing and pulling
force, respectively. The mapping after ground-foot release is identity, since the state variables does not
change. This type of transition characterizes the Filippov systems [31,39]. The mapping is defined by

gG2F(x) = [q, q̇]T . (14)

3. Dynamic Analysis

The analysis methods of the periodic solutions of hybrid systems, which are described by
minimum coordinates, are detailed in [21,31,32,39]. In particular, the analysis and control of the local
stability of periodic orbits of hybrid systems is detailed in [32]. A constrained formalism for the analysis
of legged locomotion systems is developed in [28,30]. The general analysis of piecewise constrained
systems is detailed in [36]. The formalism is particularly efficient when intricate combination of
ground-limb contact emerges. Our contribution is in the application of the stability analysis method
in multibody models of hopping and running systems in constrained mathematical representation.
Furthermore, the method is demonstrated on an illustrative case example of a simple hopping system.
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3.1. Assumptions and Limitations

We focus on hopping or running motion only, when the limb(s) that periodically touches the
ground has a larger than zero elevation in the flight phase. Accordingly, motion types with continuous
ground contact are out of scope in this work. We assume that (a) the flight phase and the ground
phase periodically switch each other. This assumption helps to avoid the consideration of intricate
combinations of the sequence of various dynamics, which may happen e.g., in the case of more than
one limb.

Furthermore, we assume that (b) the ground-foot collision is instantaneous, which leads to
infinitely large instantaneous forces over infinitesimal time duration so that the net impulse due to the
impact force is finite [8,9,22]. Additionally, (c) completely inelastic collision is assumed, hence there is
no rebound [8,22]. Assumption (d) is that there is no slip (more details in Section 3.2). Assumptions b,
c and d allows us to consider the ground-foot contact as an instantly arising geometric constraint such
as in [1,9,22,40–42].

3.2. Continuous Dynamics in the Flight and in the Ground Phases

The general form of the equation of motion is a DAE, since the dynamic Equations (15) are
augmented with the algebraic equations that represent geometric constraints (16):

H(q)q̈+C(q, q̇)+γT
q(q)λ = 0 , (15)

γ(q) = 0 , (16)

where the vector q contains the differential variables and the vector λ contains the algebraic variables.
The mass matrix of the unconstrained system is H ∈ Rn×n, the vector C ∈ Rn represents the velocity
dependent inertial forces, the forces exerted by springs and dampers, gravitational forces and any
active forces in general. The matrix

γq(q) =
∂γ(q)

∂q
(17)

is the gradient of the geometric constraint vector γ, and λ is the vector of the corresponding
Lagrange-multipliers.

The equation of motion (15) together with the geometric constraint Equation (16) are reorganized
by means of DAE index reduction, which leads to the following general form used in [25,27,28,30]:[

q̈
λ

]
=

[
H(q) γT

q(q)
γq(q) 0

]−1 [
−Q(q)
−γ̇q(q, q̇)q̇

]
. (18)

The form (18) makes possible to express the acceleration q̈ ∈ Rn as the function of the state
variables, which are collected in x = [q, q̇]T, where x ∈ R2n is the state vector. Finally, the continuous
dynamics is governed by

ẋ(t) = fF(x(t)) and (19)

ẋ(t) = fG(x(t)), (20)

where fF ∈ R2n and fG ∈ R2n are smooth vector fields corresponding to the flight and the ground phase
dynamics, respectively.

The vector field fF is obtained by using the permanent rigid body constraints γb ∈ Rh only (for
our case example, see (7)). Hence, the entire constraint vector γF ∈ Rh is the following in the flight
phase:

γF = γb . (21)
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The ground-foot contact is modeled by geometric constraints γg ∈ Rl . In our specific case
example (8) stands. In the ground phase, the overall constraint vector γG ∈ Rh+l , which is incorporated
in fG, reads:

γG =

[
γb
γg

]
. (22)

Considering a convenient running kinematics, assumption d in Section 3.1 is usually satisfied
in practice, since depending on the surface quality, normally there is no significant slip of the foot.
Although the slip-free condition is checked in such models, when not only vertical motion is considered,
e.g., [19,20]. The ground-foot constraint is separated into two parts: γt and γn respectively constrains
the motion in the tangential and in the normal direction relative to the ground surface. The ground-foot
constraint reads:

γg =

[
γt

γn

]
(23)

in the frame of the tangential and the normal directions. To satisfy the non-slip condition, the Coulomb
friction coefficient must be larger than the critical value [43]:

κc =

∣∣∣∣∣ γq,nH−1γT
q,t

γq,nH−1γT
q,n

∣∣∣∣∣ , (24)

where γq,t and γq,n are the Jacobians of constraints γt and γn respectively.

3.3. Piecewise-Smooth Periodic Orbits and Impacts in Hopping and Running

The combined solution φ(x0, t) of (19) and (20) go through the smooth vector fields fF and fG,
which are separated from each other by switching surfaces ΣF2G and ΣG2F as it is shown in Figure 2.
Flight to ground (F2G) transition occurs at t = tF2G, when the switching surface ΣF2G, which is defined
by the scalar indicator function hF2G(x), is reached from positive to negative direction. The indicator
function hF2G(x) expresses the relative position of the ground and the end of the limb. After the impact,
the solution remains on the ΣF2G switching surface itself in the entire ground phase. Ground to flight
(G2F) transition occurs at t = tG2F, when set ΣG2F, which is defined by hG2F(x) and intersects ΣF2G,
is crossed from negative to positive direction. Function hG2F(x) expresses the normal component of
the ground contact force. We remark, that the entire period ends at time instant tp := tG2F.
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Figure 2. The periodic orbit, the perturbed motion, the switching surfaces, and the discrete mapping at
F2G transition.

According to the PhD thesis by [31], piecewise-smooth systems can be classified according to
the degree of discontinuity. In the case of the G2F transition, the solution goes through the switching
surface ΣG2F without discontinuity (i.e., without mapping or reset of the state variables). Hence, the
mapping is an identity:

gG2F(x) = x , (25)

However, the vector field changes abruptly and therefore the solution is non-smooth continuous,
such as in the case of Filippov-type systems.

On the contrary, F2G transition involves an inelastic impact, which cause the discontinuity of
the solution: the velocity of the contact point(s) becomes zero abruptly when the solution reaches the
switching surface ΣF2G, i.e., when the limb reaches the ground. The jump function gF2G(x) maps the
state into a specified location in the state space (see [32]). In general, the positions do not change, and
the velocities are projected by Pa; therefore, the jump function yields

gF2G(x) =

[
q

Paq̇

]
, (26)

where Pa projects into the admissible direction of the set of constraints γG defined in (22).
References [25,30,34] give the formula for the calculation of the projection matrix

Pa = I−H−1γT
G,q(γG,qH−1γT

G,q)
−1γG,q , (27)

where γG,q is the Jacobian of γG. Piecewise-smooth systems with impacting discontinuities are referred
as hybrid systems in [21].

The projection is applied for the calculation of the constrained motion space kinetic energy (CMSKE)
too, which vanishes at each ground-foot impact. The admissible motion space kinetic energy Ta and
CMSKE denoted by Tc are calculated with the pre-impact general velocity vector q̇ as [43]

Ta =
1
2

q̇TPT
a HPaq̇ , (28)

Tc =
1
2

q̇TPT
c HPcq̇ (29)



Math. Comput. Appl. 2018, 23, 74 9 of 20

with Pc = I−Pa. Papers [22,43] showed that foot strike intensity can be characterized by the CMSKE,
which depends on the pre-impact configuration and velocity and the effective mass matrix He = PT

c HPc.
The effective mass concept for foot impact was introduced first by [44] for a one DoF model of legged
locomotion. According to references [22,43], CMSKE is directly proportional to the impulse of the
contact reaction force and to the peak reaction force; therefore, CMSKE is used as an indicator of the
foot impact intensity in our study.

3.4. Numerical Identification of the Periodic Orbits

The periodic orbits, sketched in Figure 2, are found by means of the shooting method: the initial
conditions x0 = x(0) at the beginning of the period are varied, until the solution at the end of the
period coincides with the initial values.

The starting time instant t = 0 of the period is chosen to be the beginning of the flight phase.
The advantage is that a subset of the state variables are known here, since we initiate the motion from
switching surface ΣG2F; i.e., the motion starts at the time instant when the ground-foot contact releases.
The variable subset of initial values x0 are collected in subvector u0(x0) ∈ Ru. The periodic orbit is
found by the shooting method as the root x∗0 of the problem

F(u0(x0)) = ue(u0(x0))−u0(x0), (30)

where ue is the corresponding subvector at the end point of the solution trajectory. We note
that subvector u0 has lower dimensions than x0; therefore, the number of unknowns is reduced,
which causes considerably decrement in the computation time. In the specific case of our hopping
model, the subvector of unknown state variables yields:

u0 = [z1, z2, z3, ż1, ż2, ż3]
T (31)

with u = 6, while z4 = 0 and ż4 = 0 are set as initial conditions at t = 0.

3.5. Stability Analysis

We use two alternative approaches for the determination of the stability of the periodic orbit.
A computationally cheap option is to gain information about the stability based on the approximation
of the Jacobian M(u0) ∈ Ru×u of the solution with respect to the initial values at the end of the period:

M(u0) =
∂ue(u0)

∂u0
. (32)

The computational efficiency of this approach is induced by the fact that the numerical
approximation of the Jacobian J(u0) = ∂F(u0)/∂u0 is necessarily calculated in the shooting method.
Based on (30) and (32), the approximation of M(u0) is gained as

M(u0) = J(u0)+I, (33)

where I is the identity. As a stability criterion we can say that the periodic orbit is stable, if a perturbed
initial condition u0 is mapped „closer” to the reference (periodic) path. Thus, ∀ |µi| < 1 is the criterion
of asymptotic stability, where µi are the eigenvalues of M.

The accuracy of M might not be satisfying in the case of more complex systems due to the
discontinuities. Instead, a computationally more demanding, but at the same time more accurate
computation approach of the Jacobian of the solution is suggested by [21,31,39,45]. The coupled
ODEs (34) and (35) of size 2n+(2n)2 is solved along continuous phases:

ẋ(t) = f(x(t)) ; x(tinit) = x0 , (34)

Φ̇(t) = fx(x(t))Φ(t) ; Φ(tinit) = I , (35)
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where I is 2n×2n identity matrix and fx is the gradient of the smooth vector field f. Equation (35)
is referred as first variational equation in the literature. Equations (34) and (35) are applied with
substitutions f = fF and f = fG in flight and ground phases, respectively. The Jacobians ΦF(t)
and ΦG(t) (referred as fundamental solution matrix in [31,39]) of the trajectories φF(x0, t) and
φG(φF(x0, tF2G), t) are obtained in the flight and ground phase, respectively.

The Jacobian Φ̃(t) of the composite trajectory φ(x0, t) along the entire period contains the
Jacobian S of the discontinuity mapping too, which is referred as saltation (or jump) matrix in [21,31].
The monodromy matrix, i.e., the composite flow Jacobian at the end of the period yields

Φ̃(tG2F) = SG2FΦG(tG2F)SF2GΦF(tF2G). (36)

The monodromy matrix Φ̃(tG2F) can be reliably applied for judging asymptotic stability of
periodic orbits, by using criterion ∀ |νi| < 1, where νi are the eigenvalues of Φ̃(tG2F) (referred as Floquet
multipliers in the literature). Accordingly to reference [45,46], there is always one eigenvalue, which
equals to 1, since f(x(0)) = f(x(tp)) is true for the vector field in (34).

We remark that Φ̃(t) can be used as a Jacobian of the trajectory

φ(x0, t)−φ(xref
0 , t) ≈ Φ̃(t)

(
x0−xref

0

)
, (37)

where φ(x0, t) is the perturbed discontinuous trajectory, φ(xref
0 , t) is the reference trajectory and Φ̃(t)

is the state flow Jacobian having discontinuities too.
The saltation matrices in (36) are calculated based on the literature. First let us consider the G2F

transition (ground-foot release), where there is no discontinuity mapping of the solution, as it yields
from (25). The saltation is given by the formula published in [31]:

SG2F = I +
(fF−fG) hG2F,x

hG2F,xfG
, (38)

where fF = fF(x(tG2F)), fG = fG(x(tG2F)) and hG2F,x = ∂hG2F/∂x is the gradient of the indicator
function evaluated at x(tG2F).

The discontinuity mapping gF2G from (26) is taken into account in the F2G transition (ground-foot
collision). The corresponding formula, which is a generalization of (38), is obtained from [21,32]:

SF2G = g−F2G,x +

(
f+G−g−F2G,xf−F )

)
h−F2G,x

h−F2G,xf−F
, (39)

where f+G = fG(x(t+F2G)), f−F = fF(x(t−F2G)), h−F2G,x = ∂hF2G/∂x and g−F2G,x = ∂gF2G/∂x are the gradients
of the indicator and jump functions respectively evaluated at x(t−F2G). Here, the time instants t−F2G and
t+F2G are right before and right after the foot impact.

4. Results and Validation by Means of Semi-Analytic Calculations

This section presents the results obtained for the models depicted in Figure 1. To obtain a
reference, with which the numerical results are compared, a semi-analytic calculation is carried out for
the unconstrained model. Then the results for the constrained model are presented: first, the periodic
orbit is shown at a certain parameter set; and secondly, the effect of physical parameters are studied.

4.1. Semi-Analytic Calculations

The dynamics of the unconstrained model (see left panel in Figure 1) is analyzed to validate the
numerical results. First, the closed form solution for the flight and ground phase is obtained and then
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the periodic orbits are generated by directly solving the non-linear algebraic equations that express the
boundary conditions.

For the sake of simplicity, L0 = 0 is applied in the analytical calculations. This simplification
causes the shifting only of the zU(t) trajectory.

4.1.1. Closed form Solution in the Flight Phase

The analytical solution for the linear equations of motion is obtained using the modal
transformation of the general coordinates according to [47,48]. The modal transformation requires the
following linear equation of motion for position coordinates z = [zU, zL]

T:

Hz̈+Dż+Kz+g = 0 (40)

with the constant mass matrix H, damping matrix D, stiffness matrix K and the constant vector g of
external forces. The system matrices are the following:

H =

[
mU 0
0 mL

]
, D =

[
dF −dF

−dF dF

]
, K =

[
k −k
−k k

]
, g =

[
g mU

g mL

]
. (41)

By solving the characteristic equation det(−ω2
nH+K) = 0 for the eigenfrequencies ωn,i and by

solving the linear equation (−ω2
n,iH+K)Ai = 0 for the modal shapes Ai, we obtain

ωn,1 = 0 ; A1 = [1, 1]T ,

ωn,2 =
√

k(mU+mL)
mUmL

; A2 = [mL, −mU]
T .

(42)

The modal transformation matrix T = [A1, A2] gives the vector of modal coordinates as ζ = T−1z.
The modal coordinates are

ζ1 =
(mU zU+mL zL)

(mU+mL)
, (43)

ζ2 =
(zU−zL)

(mU+mL)
. (44)

The modal coordinate ζ1 corresponds to the center of mass position of the entire model and ζ1

corresponds to the position difference of the mass blocks. The solution for these coordinates is a simple
parabolic function caused by falling and an exponentially decaying harmonic oscillation respectively,
which is shown by the transformed equations of motion for ζ. The transformed equation of motion
H̃ζ̈+D̃ζ̇+K̃ζ+g̃ = 0 with H̃ = TTHT, D̃ = TTDT, K̃ = TTKT and g̃ = TTg yields

ζ̈1 = −g , (45)

mUmL ζ̈2+dF(mU+mL)ζ̇2+k(mU+mL)ζ2 = 0 . (46)

The general solutions for the differential Equations (45) and (46) are

ζ1(t) = b1+b2t− g
2

t2 , (47)

ζ2(t) = e−ξωnt (b3 sin(ωdt)+b4 cos(ωdt)) (48)

with unknown constants b1 and b2, with undamped natural frequency ωn = ωn,2, damping ratio
ξ = dF(mU+mL)/(2mUmLωn) and damped natural frequency ωd =

√
1−ξ2ωn.
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After the inverse modal transformation z = Tζ, the closed form solution for the original position
coordinates zU = ζ1+mLζ2 and zL = ζ1−mUζ2 are:

zU(t) = b1+b2t− g
2

t2+mLe−ξωnt (b3 sin(ωdt)+b4 cos(ωdt)) , (49)

zL(t) = b1+b2t− g
2

t2−mUe−ξωnt (b3 sin(ωdt)+b4 cos(ωdt)) . (50)

To obtain simple form of the boundary conditions, the integration constants b1, b2, b3 and b4 in
(49) and (50) are expressed in terms of the initial conditions zU,0 = zU(0), zL,0 = zL(0), żU,0 = żU(0)
and żL,0 = żL(0).

4.1.2. Closed form Solution in the Ground Phase

The mass block mL is fixed to the ground during the entire grounded phase; therefore zL(t) = 0
stands. The governing equation of the 1 DoF ground phase dynamics and its closed form solution
reads

mUz̈U+dGżU+kzU+mUg = 0 , (51)

ẑU(τ) = e−ξ̂ω̂nt
(

b̂1 sin(ω̂dt)+b̂2 cos(ω̂dt)
)
−mUg

k
(52)

with undamped natural frequency ω̂n =
√

k/mU, damping ratio ξ̂ = dG/(2mUω̂n), damped natural

frequency ω̂d =
√

1−ξ̂2ω̂n and unknown integration constants b̂1 and b̂2.
For the sake of simple expression of the boundary conditions, the shifted time axis τ is

introduced as

τ = t−tF , (53)

where tF is the time duration of the flight phase. The ground phase time duration and the entire time
period are τG and tp = tF+τG respectively.

To obtain simple form of the boundary conditions, the integration constants b̂1 and b̂2 in (52) are
expressed in terms of the initial conditions ẑU,0 = ẑU(0) and ˙̂zU,0 = ˙̂zU(0).

4.1.3. Periodic Solutions

The closed form solutions for the continuous phase dynamics obtained in Sections 4.1.1 and 4.1.2
makes possible to get rid of the computational costs and inaccuracies of the numerical time integration.
The initial conditions that correspond to the periodic paths are obtained as the solution of the following
algebraic equation system:

zL(0) = 0 , (54)

żL(0) = 0 , (55)

zU(tF)−ẑU(0) = 0 , (56)

żU(tF)− ˙̂zU(0) = 0 , (57)

zL(tF) = 0 , (58)

ẑU(τG)−zU(0) = 0 , (59)
˙̂zU(τG)−żU(0) = 0 , (60)

λ(τG) = 0 , (61)

where (54) and (55) assures that the motion of the mass block mL in the beginning of the flight phase is
initiated from the ground with zero velocity at t = 0. Equations (54) and (55) gives the trivial solutions
zL,0 = 0 and żL,0 = 0; therefore, the number of equations is reduced from 8 to 6. Conditions (56)
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and (57) guarantees the continuity of the position and velocity of mass block mU in the F2G transition
(ground collision). The indicator function hF2G(x) , which is satisfied at the F2G transition, is expressed
in (58). The continuity of the position and velocity of the mass block mU is assured by (59) and (60).
The indicator function hG2F(x) is expressed by (61). The contact force λ(τ) is a simple expression of zU

and żU, since zL = żL = 0 in ground phase [24]:

λ =−g mL−k(L0−ẑU)+dG ˙̂zU . (62)

The non-linear algebraic Equations (56)–(61) are solved for the unknown variables

U =
[
τG , dG , zU,0 , żU,0 , ẑU,0 , ˙̂zU,0

]T . (63)

by means of an iterative solver (such as the Newton-Raphson method) at the different values of the
bifurcation parameter tF. The reason for choosing tF as bifurcation parameter is that every other
parameter and indicator are strictly monotonic function of tF; therefore, the numerical issues in
fold points are avoided. Since the non-linear Equations (56)–(61) solved numerically, the results are
semi-analytic.

4.1.4. Stability Analysis

In the present analytical approach, the stability is judged based on the Jacobian M of the solution
with respect to the proper initial conditions. The Jacobian is calculated directly. The initial conditions

z0 = [zU,0 , zL,0 , żU,0 , żL,0] , (64)

of the reference trajectory φ(z0, t), which corresponds to the periodic orbit, were perturbed by a small
number ∆ = 10−4. Then two trajectories φ(z0,∆1, t) and φ(z0,∆2, t) were obtained in the form of (49),
(50) and (52) with the perturbed initial conditions

z0,∆1 = [zU,0+∆ , zL,0 , żU,0 , żL,0] , (65)

z0,∆2 = [zU,0 , zL,0 , żU,0+∆ , żL,0] (66)

respectively. Note, that these initial conditions are off the G2F switching surface, from which the
reference trajectory starts.

As Figure 3 shows, the flight phase trajectories propagate separately from the reference trajectory.
The F2G transition occurs in different points of the ΣF2G switching surface and in different time instants
compared to the reference trajectory. Similarly, the G2F transition, which is the end of the entire period,
occurs in separate points of ΣG2F in separate time instants. The Jacobian M ∈ R2×2 is obtained as

M ≈
[

φU(z0,∆1, tp)−zU,0 , φU(z0,∆2, tp)−zU,0

φ̇U(z0,∆1, tp)−żU,0 , φ̇U(z0,∆2, tp)−żU,0

]
, (67)

where φU is the trajectory of the zU(t) state variable.

4.2. Illustration of Periodic Solutions

This section shows the periodic solution for a case example with a certain parameter set,
which is the following: g=9.81 [m/s], m=75 [kg], µ=0.8 [1], k=15000 [N/m], dF=150 [Ns/m], dG=

−80 [Ns/m] and L0=1 [m] which is the distance of the particles with unstretched spring. The following
parameters are obtained from the values above: α=

√
k/m=14.14 [1/s], DG=dG/(2 α m)=−0.0377 [1],

mU=60 [kg] and mL=15 [kg].
Figure 3 shows a typical periodic orbit φ(z0, t) in the z1, z2 and ż1 subspace. Also, the perturbed

trajectories φ(z0,∆1, t) and φ(z0,∆2, t) are illustrated. For the sake of better illustration of the idea
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of the stability analysis, the initial conditions are perturbed by a large number instead of the small
number ∆ (see Section 4.1.4). The perturbations of initial conditions (65) and (66) are therefore visible.
The quantities φ(z0,∆1, tp)−z0 and φ(z0,∆2, tp)−z0, from which the Jacobian matrix (67) is constructed,
are also visible here.

The stability is determined in two alternative ways, as we explained in Section 3.5.
The monodromy matrix Φ̃ (see 36) was calculated by means of the variational Equations (34) and (35).
Additionally, the approximation of the Floquet multipliers was calculated with the help of the Jacobian
M (see (32) and (67)). M and the fundamental solution matrix Φ̃ at the end of the period and their
eigenvalues are

M =

[
0.0175 0.0024

3.28 0.453

]
, (68)

Φ̃(tG2F) =


−0.729 −0.134 −0.248 −0.0634

0 0 0 0
11.41 4.19 3.18 0.803
−11.45 −2.27 −3.84 −0.980

 , (69)

µ =
[

0.4714, 0
]

, (70)

ν =
[

1, 0.4714, 0, 0
]

(71)

in the specified parameter set. The system is stable with the current parameter set, since the largest
relevant eigenvalue is µ1 = ν2 = 0.4714 < 1.

To illustrate the discontinuities in the system, the sections of the phase-space are shown in Figure 4
separately for the coordinates zU and zL. The jump defined by the function, which appears in (12) and
(26), is illustrated in the right panel. The switching surfaces ΣF2G defined by (11) and ΣG2F defined by
(13) are visible in the right and left panel of Figure 4 respectively.

Figure 3. The switching surfaces, the periodic orbit and the perturbed trajectories. The dots indicate the
intersection with switching surfaces ΣG2F and ΣF2G. Note: state variable ż2 has a jump after reaching
ΣF2G, which cannot be seen explicitly here.
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Figure 5 shows the time history of the mechanical energy. The constrained motion space kinetic
energy Tc and the admissible motion space kinetic energy Ta (CMSKE and AMSKE) can clearly be
seen here. The kinetic energy of the lower mass block is constant zero during the entire ground phase
because of the inelastic ground-foot collision. Although CMSKE is absorbed in each F2G transition,
the energy level at the end of the period reaches the value that corresponds to the beginning of the
period. The extra energy is pumped to the system by the negative damper during the ground phase.

The time histories for all state variables were in correspondence in the semi-analytical and in the
numerical calculation.

Figure 4. Phase portraits for particle mU (left panel) and mL (right panel). The switching surfaces are
indicated by black lines. Here, the jump of state variable żL can be seen. The trajectory of particle mL in
the ground phase is represented by point G2F.

Figure 5. Time history of kinetic and potential energy. The absorbed amount of kinetic energy (CMSKE)
and the remaining part are indicated by Tc and Ta respectively. The total mechanical energy Etotal

converges to the nominal level E0 in each jump.

4.3. Overview of Effect of Parameters

To gain an overview of the effect of physical and control parameters, the portion µ of the masses
and the negative damping value DG were varied by means of a numerical continuation. Parameter µ

was set to the discrete values 0.8 and 0.95. For each µ values, DG was continuously decreased from
zero until the periodic orbits disappear. Compared to [24], it is a new result about the hopping model
that the unstable periodic orbits were found, not only the stable ones.

Plotting the flight phase time period tF, the ground phase time period tG and the entire time
period tp in Figure 6 provides a general look of the dynamic behavior of the system. Above DG = 0
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values there is no periodic solution, since both dampers continuously absorb energy, which leads to
static equilibrium. In the DG = 0 case, the time period tG of the ground phase is exactly equal to the
time period tp0 = 2π

√
mu/k of the 1 DoF oscillatory system composed by spring k, damper dG = 0

and mass mu. For DG > 0 cases, the ground phase time period tG becomes infinity, since the lower
mass block never takes off from the ground. When increasing DG in the negative direction, one or
more stable periodic orbits can be found with different time periods. Finally, the flight phase time
period goes to infinity. This is the point, when the Floquet multipliers shown in Figure 7 would cross
the 1 value.

Figure 6. The flight phase time period, the ground phase time period and the entire time period.

Figure 7. Relevant eigenvalue with different parameters.

Figure 8 shows the apex height of the zU and zL trajectories. The hopping height is in close relation
with the flight phase time duration tF, which can be seen by comparing the graphs in Figures 6 and 8.
In the extreme values of the ground phase damping parameter DG, the hopping height is such small
or such large that are practically irrelevant. In the middle range, the hopping height is realistic for
humans, according to [6,7].
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Figure 8. Apex height of the trajectory with different parameters.

The ratio of the CMSKE and the AMSKE (absorbed and preserved amount of kinetic energy) to
the total kinetic energy T are plotted in Figure 9. One can notice that the AMSKE value denoted by Ta

converges to the µ value as DG decreases. We can conclude that it is possible to find optimal parameter
set when the ratio of CMSKE is the smallest. Since CMSKE in in relation to the impact intensity and is
indirectly in relation to the risk of injuries, this may be a cost function in running and walking systems.

Figure 9. Ratio of constrained and admissible motion space kinetic energy with different parameters.

The Floquet multiplier, which determines the stability of the periodic orbits, is plotted in Figure 7.
The results show that the stability highly depends on both physical (µ) and control (DG) parameters.
At DG = 0 the Floquet multiplier is exactly 1, since in that case a 1 DoF undamped oscillation occurs
with constant amplitude. By decreasing the numerical value of DG, the Floquet multiplier reaches 1
and the time period of the orbit becomes infinitely long (see Figure 6). Comparing Figures 7 and 8,
one can notice that stable periodic orbits are separated from each other by unstable periodic orbits.
The combination of apex height, stability and impact intensity may be applied as a combined cost
function in certain applications in the field of legged robotic systems.

Our dynamic analysis methodology presented in Section 3 makes possible to obtain similar
continuation result for complex multibody models with high DoF and geometric constraints.

5. Conclusions and Future Work

We further developed a minimally complex model of hopping resulting in a constrained model,
on which our dynamic analysis methodology was demonstrated. In general, the constrained models



Math. Comput. Appl. 2018, 23, 74 18 of 20

are described by a non-minimum set of coordinates and the equations of motion are augmented
with geometric constraint equations. This modeling approach, which is typical in multibody
dynamics, allows us to build high DoF models effectively. The dynamic analysis methodology
of piecewise-smooth systems was generalized for such constrained multibody systems in this study.

The presented dynamic analysis methodology focuses on the stability investigation of periodic
orbits of hopping and running models that consider control issues, geometric non-linearities, inelastic
ground-foot collision and energetic costs in relation to the collisions. The controller in our models
generates the motion pattern without any prescribed kinematics. Instead, such sets of the physical and
the control parameters are identified that assure stable periodic motion.

The limitation of the model and the presented dynamic analysis is that the motion is strictly
divided into two phases: flight and ground. Furthermore, we consider only single support in the
ground phase. The dynamic analysis methodology will be further developed to handle multiple
ground support.

We demonstrated our dynamic analysis method on a vertically hopping constrained model.
The results were compared with semi-analytically obtained reference results of the corresponding
unconstrained model: the periodic orbits, the parameter set that guarantees stable operation,
the Floquet multipliers and energy loss induced by the ground collision were in total correspondence.

In future work, we will apply the present dynamic analysis for higher DoF models of hopping
and running. We will particularly focus on ground-foot collision, since foot collision is the main source
of injuries when walking and running. Furthermore, a considerable amount of energy- demand of
locomotion is related to ground-foot collision.
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