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Alternative inverse kinematic calculation methods
in velocity and acceleration level

Dóra Patkó, Ambrus Zelei

Abstract: Inverse kinematics calculation of manipulators is a common build-
ing block in most of the robotic control processes. However, the numerical
implementation of the inverse kinematics calculation has several alternatives
yielding certain advantages and disadvantages.

This paper compares two approaches. In the classical one, the joint position in-
crement is stepwise calculated based on the local velocity vector of the desired
trajectory. In contrast, the joint position increment is obtained from the error
between the desired and the realized trajectory in some alternative methods.
The two approaches are also distinguished on the acceleration level. Our ana-
lytical and numerical studies show the benefits and drawbacks of these inverse
kinematics methods.

1. Introduction

Kinematic calculation of robotic manipulators is a fundamental task in robot control, involv-

ing many issues such as numerical efficiency [8, 10]. In case of direct kinematics, the position

and orientation of the end-effector is determined based on the joint coordinates. If the joint

space and the task space (or workspace), where the end-effector is moving, have different

dimensions, there is no kinematic redundancy [6, 7, 5] (joint space is higher dimension than

the task space for redundant manipulators). In other words, degrees of freedom (DoFs) of

the manipulator exactly equals the necessary DoFs for performing the task. We consider

non-redundant cases only.

In practice, the desired position of the end-effector (tool-center-point) is prescribed and

we try to find the corresponding joint coordinate values. This mapping from the task space

to the joint space is called inverse kinematics. Many methods exist in the literature to solve

the inverse kinematic problem with different approaches. These methods can be categorized

as geometric level approaches, velocity level approaches and acceleration level approaches.

Acceleration level resolution methods of the inverse kinematic problem may improve the

performance of redundant robots [4, 9] comparing to velocity level methods. There are

alternatives for the position error compensation too [2, 1]. In this paper, our focus is on the

accuracy and efficiency of different combination of approaches used for inverse kinematics.
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1.1. The idea of auxiliary input in motion control

For the sake of easy formalization of the inverse kinematic alternatives, we apply the idea

of the auxiliary input that is used in inverse dynamics control of robots [10, 11]. The idea

is summarized briefly in this subsection based on the literature. To this end, let us consider

the general form of the equation of motion of a robot given as

M(q)q̈ + C(q, q̇) = H(q)u . (1)

By chosing the control input according to

u = H−1(q) [M(q)ṽ + C(q, q̇)] , (2)

the closed loop system assumes the following linear form: q̈ = ṽ. The term ṽ in (2) is an

auxiliary input, which is typically chosen as ṽ = q̈d − D̃(q̇− q̇d)− P̃ (q− qd). This choice

makes the error dynamics stable, when a desired trajectory qd(t) is tracked. This can be

proven by substituting (2) into (1):

Mq̈ + C = HH−1
[
M
(
q̈d − D̃(q̇− q̇d)− P̃ (q− qd)

)
+ C

]
, (3)

which leads to the stable error dynamics

q̈− q̈d + D̃(q̇− q̇d) + P̃ (q− qd) = 0 . (4)

All in all, we can say that the auxiliary input ṽ can be chosen arbitrarily depending on

the control goal. The idea of the auxiliary input will be used in the subsequent sections.

2. Inverse kinematics calculation alternatives

Inverse kinematics is a fundamental process, when the task of the robot is transferred to the

joint space from the workspace [6, 5, 10]. In case of a simple position trajectory tracking,

the desired time history rd(t) ∈ Rn of the tool-center-point (TCP) position (or end-effector

position) is given in the workspace. The goal of the inverse kinematics calculation is to find

the joint variables in q ∈ Rn which satisfy the geometric equation for the position error e

e(q, t) = 0 with (5)

e(q, t) = r(q)− rd(t). (6)

The term r(q) in (6), which expresses the actual TCP position, depends on the joint co-

ordinates and the geometry of the manipulator. The desired position rd(t) is purely time

dependent. In the geometric level approach, (5) is solved directly with a proper non-linear

root searching algorithm. Geometric solution is not typical in practice; the inverse kinematics

is solved in velocity [12] or acceleration level [4, 9] as it is detailed in the followings.



2.1. The application of the idea of the auxiliary input on velocity level

By the time differentiation of (5), we obtain that the equation

ė(q, q̇, t) = 0 with (7)

ė(q, q̇, t) = ṙ− ṙd (8)

must be satisfied in the velocity level approaches. Based on the system geometry, we know

that the linear connection of the TCP position and the joint speed is

ṙ = Jq̇ , (9)

where the Jacobian is J(q) = ∂r(q)/∂q. Consequently, we can write that the commanded

joint speed is

q̇ = J−1vv, (10)

where vv is considered as an auxiliary input of the inverse kinematic control (such as ṽv

in (2)). Based on (8), vv = ṙd is an obvious choice; however it does not guarantee the

elimination of position error e. Therefore there are many alternative possibilities.

In the followings, two alternatives are explained for the choice of vv with the possibility

of the elimination of position errors.

2.1.1. Classical velocity level approach

By chosing the auxiliary input vv in (10) in such way that the TCP position error is main-

tained [12] (vv := ṙd − κ(r− rd)), we obtain the commanded joint velocity in the form:

q̇ = J−1
(
ṙd − κ(r− rd)

)
. (11)

Neglecting the digital effects, and by substituting (11) into (9), the TCP velocity can

be expressed as:

ṙ = ṙd − κ(r− rd) , (12)

which leads to a stable error (see (6)) dynamics governed by the following first order differ-

ential equation with the solution e(t) = Be−κt:

ė + κe = 0 , (13)

if κ > 0. The stability analysis in the presence of digital effect is detailed in Section 3.



2.1.2. An alternative velocity level approach

Again, the question is that how we choose the auxiliary input vv appearing in (10). As it is

explained in papers [2, 1], the main idea in this approach is to define the auxiliary input in

such way that the position error is eliminated immediately if it is possible.

For the sake of precise explanation, we introduce the actual value of variables in the

specific time instances: qi := q(ti), ri := r(q(ti)) and rdi := rd(ti). We also introduce the

timestep h := ti+1 − ti.
We consider the error δi = rdi+1 − ri between the actual TCP position in the current

timestep ti and the desired TCP position in the upcoming timestep ti+1. The goal is to

eliminate δi. We assume constant TCP velocity ṙi, with which the desired TCP position of

the upcoming timestep rdi+1 can be approximately reached (see Fig. 1 left panel):

rdi+1 = ri + hṙi . (14)

By solving (14) for ṙi, one can see that the error δi is approximately eliminated if the

auxiliary input in the time instant ti is chosen as vv,i = (rdi+1 − ri)/h. With this, the

commanded joint speed (see (10)) reads:

q̇i = J−1
i

rdi+1 − ri
h

. (15)

After a single explicit Euler [3] time integration step (qi+1 = qi + hq̇i) we obtain the

commanded joint position in the upcoming time instant as:

qi+1 = qi + J−1
i (rdi+1 − ri) . (16)

The resulting error of the TCP position is depicted in Fig. 1 right panel. The commanded

joint coordinates would give the exact TCP positioning of the end-effector in case of linear

relation of the joint coordinates and the TCP position. However, if r(q) is nonlinear, a

certain error ei+1 occures. This error is small in case of small timeteps h. The thorough

convergence analysis is presented in Section 3.

Figure 1. Left panel: sketch of the TCP velocity estimation. Right panel: sketch of the

joint coordinate values and the TCP position after a single integration step.



2.2. The application of the idea of the auxiliary input on acceleration level

By the double time differentiation of (5), we obtain that the equation [4, 9]:

ë(q, q̇, q̈, t) = 0 with (17)

ë(q, q̇, q̈, t) = r̈− r̈d (18)

has to be satisfied in the acceleration level approaches. Similarly to (9), we know that the

TCP acceleration can be expressed as

r̈ = Jq̈ + J̇q̇ . (19)

From (19), we express the commanded joint acceleration as

q̈ = J−1(va − J̇q̇), (20)

where va is again an auxiliary input of the inverse kinematic control. Based on (18), va = r̈d

is an obvious choice. Since this choice does not guarantee the decaying of the position error

e, there are several alternatives. Two alternatives, which are capable of eliminating the

position errors, are explained for the choice of va in the followings.

2.2.1. Classical acceleration level approach

By chosing the auxiliary input va in (20) in such way that the TCP position error is elimi-

nated [4] (va := r̈d − κD(ṙ− ṙd)− κP (r− rd)), we obtain the commanded joint acceleration

q̈ = J−1
(
r̈d − κD(ṙ− ṙd)− κP (r− rd)− J̇q̇

)
. (21)

Neglecting the digital effects, and by substituting (21) into (19), the TCP acceleration

in the workspace can be expressed as:

r̈ = r̈d − κD(ṙ− ṙd)− κP (r− rd) , (22)

which leads to a stable error (see (6)) dynamics with κP > 0 and κD > 0 governed by the

following second order differential equation with the stable solution:

ë + κDė + κP e = 0 . (23)

The error dynamics is assymptotically stable, if κP > 0 and κD > 0. The detailed stability

analysis, in the presence of digital effect, is detailed in Section 3.



2.2.2. An alternative acceleration level approach

The goal is the elimination of the position error by chosing the auxiliary input appearing in

(20) properly. Similarly, as in Section 2.1.2, we consider the error δi = rdi+1−ri between the

actual and the desired TCP position. We assume constant TCP acceleration r̈i, with which

the desired TCP position of the upcoming timestep rdi+1 can be reached (see Fig. 2):

rdi+1 = ri + hṙi +
1

2
h2r̈i . (24)

By solving (24) for r̈i, one can see that the error δi is approximately eliminated if the

auxiliary input is chosen as va,i = 2(rdi+1 − ri)/h
2 − 2ṙi/h. Knowing that ṙi = Jiq̇i, and

using the joint speed estimation q̇i ≈ J−1(rdi+1 − ri)/h, the commanded joint acceleration

(see (20)) reads:

q̈i =
2J−1

i (rdi+1 − ri)

h2
− 2q̇i

h
− J−1

i J̇iq̇i =

=
2J−1

i (rdi+1 − ri)

h2
− 2q̇i

h
− J−1

i J̇iJ
−1(rdi+1 − ri) . (25)

The time integration is performed in the following two steps (see Adams-Moulton family of

numerical integrators in [3]):

q̇i+1 = q̇i + hq̈i , (26)

qi+1 = qi + h(q̇i+1 + q̇i)/2 . (27)

After time integration, we obtain the commanded joint position in the upcoming time instant.

Again, the nonlinearity of r(q) causes small errors in the TCP position. The smaller the

timestep, the smaller the position error. The convergence analysis is detailed in Section 3.

Figure 2. Sketch of the TCP acceleration estimation.

3. Case study examples with convergence analysis

The case study examples are shown in Fig. 3. For all case examples, the mapping of the

commanded joint coordinates from the time instant ti to ti+1 arises in the form:

qi+1 = Aqi + b (28)



after linearizaton around an arbitrarily chosen point of the desired trajectory. Depending

on the integration scheme and the formula for the auxiliary input vv or va, the coefficient

matrix A and the vector b might change. The eigen-values of A defines the convergence of

the inverse kinematic method, which are summarized in Section 3.4.

Figure 3. Case study examples: single DoF problem (in the left panel), Cartesian PP

robotic arm (in the middle panel), RR robotic arm (in the right panel).

3.1. Case example: single DoF nonlinear system

The simplest (kinematically non-redundant) case example for testing the inverse kinematic

methods is depicted in Fig. 3 left. A nonlinear connection of the single joint coordinate q

and the TCP position r is given by r = f(q).

3.1.1. Analytical study of the linearized mapping (single DoF example)

For the single DoF example, the mapping matrix A appearing in (28) is obtained for all four

inverse kinematic approaches.

In the classical velocity level approach (abbreviated as cv), the numerical integration

scheme was the second order Adams-Bashforth scheme [3]:

qi+1 = qi + (3q̇i+1 − q̇i)h/2 . (29)

This integration scheme is applied on the commanded joint velocity defined in (11) with

which, the mapping matrix is obtained in the form

Acv =

(2− 3κh)/2 −h/2
−κ 0

 . (30)

In the alternative velocity level approach (abbreviated as av), the numerical inte-

gration is already incorporated in (16), for which the mapping matrix is:

Aav =
[
0
]
. (31)



In the classical acceleration level approach (abbreviated as ca), the numerical inte-

gration scheme was the second order Adams-Bashforth scheme combined with the second

order Adams-Moulton scheme [3]:

q̇i+1 = q̇i + (3q̈i+1 − q̈i)h/2 , (32)

qi+1 = qi + (q̇i+1 + q̇i)h/2 . (33)

This integration scheme is applied on the commanded joint acceleration defined in (21) with

which, the mapping matrix reads

Aca =


(4− 3κPh

2)/4 (4h− 3κDh
2)/4 −h2/4

−3/2κPh (2− 3κDh)/2 −h/2
−κP −κD 0

 . (34)

In the alternative acceleration level approach (abbreviated as aa), the commanded

acceleration is defined by (25), and the numerical integration scheme is defined in (26) and

(27), with which the mapping matrix is:

Aaa =

 0 0

−2/h −1

 . (35)

3.1.2. Simulations (single DoF example)

In the test simulations (see Fig. 4) and also in the above analytical calculations, the desired

trajectory rd(t) and the joint space 7→ workspace mapping function f(q) were:

rd(t) = a0 + a1 sinωt , (36)

f(q) = c+
√
q (37)

with the parameter values a0 = 1.2 m, a1 = 0.6 m, ω = 0.28 rad/s and c = 0.2 m. The

simulation was performed with an initial error as it is shown in Fig 4. The control parameters

and the timestep were κ = 5.5 1/s, κP = 110 1/s2, κD = 6.5 1/s and h = 0.12 s respectively.

3.2. Case example: two DoF linear system

A two dimensional problem is introduced for test purposes. The example PP manipulator,

which is illustrated in Fig. 3 middle, consists of two perpendicular prismatic drive. The TCP

position r = [x, y]T is given by the mapping r(q) = f(q1, q2):

r(q) =

 l + q1

l + q2

 , (38)

where l is a geometric parameter.



Figure 4. Position error for the 1 DoF case study example with stable parameters. Each

inverse kinematics approach is reported here.

3.2.1. Analytical study of the linearized mapping (two DoF linear example)

The mapping matrices were obtained as it was explained in case of the single DoF example.

Although, the size of the matrices are double because of the two DoFs:

Acv =


(2− 3κh)/2 0 −h/2 0

0 (2− 3κh)/2 0 −h/2
−κ 0 0 0

0 −κ 0 0

 , (39)

Aav =

0 0

0 0

 , (40)

Aca =



4−3κP h
2

4
0 4h−3κDh

2

4
0 −h

2

4
0

0 4−3κP h
2

4
0 4h−3κDh

2

4
0 −h

2

4

− 3
2
κPh 0 2−3κDh

2
0 −h

2
0

0 − 3
2
κPh 0 2−3κDh

2
0 −h

2

−κP 0 −κD 0 0 0

0 −κP 0 −κD 0 0


, (41)

Aaa =


0 0 0 0

0 0 0 0

−2/h 0 −1 0

0 −2/h 0 −1

 . (42)



The eigen-values of the matrices of the two DoF linear example are the same as the single

DoF example, but there are twice as many of them because of the eigen-value multiplicity.

3.2.2. Simulations (two DoF linear example)

Firstly, we performed simulation (see Fig. 5 and Fig. 6 left) with parameters which are

intentionally out of the stable range; i.e. the norm of the corresponding eigenvalues of A

are larger than 1. The control parameters and the timestep were κ = 17 1/s, κP = 400 1/s2,

κD = 6 1/s and h = 0.0628 s respectively.

Figure 5. Left: Tracking of a test trajectory with badly tuned unstable parameters. Right:

Tracking of a test trajectory with nearly optimal and stable parameters.

Figure 6. Left: Tracking error with badly tuned unstable parameters. Right: Tracking

error with nearly optimal and stable parameters.



Secondly, the simulations were performed with stable parameters (see Fig. 5 and Fig. 6

right), with which the norm of the eigenvalues are smaller (or equal in alternative acceleration

method) than 1. The timestep h was the same. The control parameters were κ = 11.5 1/s,

κP = 365 1/s2, κD = 12.5 1/s respectively.

3.3. Case example: two DoF nonlinear system

A two dimensional non-redundant problem with geometric nonlinearity is shown in Fig. 3

right. The example system is a planar RR manipulator, consists of two rigid bars and the

driven joints. The TCP position r = [x, y]T is given by r(q) = f(q1, q2):

r(q) =

 l cos(q1) + l cos(q2)

l sin(q1) + l sin(q2)

 , (43)

where l is a the length of the bars.

After defining a statical point in the workspace, the analytical calculations were per-

formed similarly as in the previous case examples, and the resulting mapping matrices were

obtained in exactly the same form (see (39), (40), (41) and (42)). Consequently the eigen-

values and the stable parameter regions are the same too.

Firstly, we performed simulation (see Fig. 7 and Fig. 8) with unstable parameters. The

control parameters and the timestep were κ = 5 1/s, κP = 61 1/s2, κD = 3.8 1/s and h = 0.2 s

respectively.

Secondly, the simulations were performed with stable parameters. The timestep h was

the same. The control parameters were κ = 3.25 1/s, κP = 40 1/s2, κD = 4 1/s respectively.

Figure 7. Left: Tracking of a test trajectory with badly tuned parameters. Right: Tracking

of a test trajectory with nearly optimal and stable parameters.



Figure 8. Left: Tracking error with badly tuned parameters. Right: Tracking error with

nearly optimal and stable parameters.

3.4. Summary of the case examples

For all case examples, the same stability chart is obtained for the classical velocity and

acceleration level approaches. These are reported in Fig. 9. The grey region is stable in the

left panel for the classical velocity level approach. On the right panel, for different h values,

different regions are plotted in the 2D space of the control parameters κP and κD.

Figure 9. Left panel: stable region of the parameters h[s] and κ[1/s] in case of the classical

velocity level methods. Right panel: stable region of the parameters h[s], κD[1/s] and κP [1/s2]

in case of the classical acceleration level methods.

For all case examples, the eigenvalue(s) for the alternative velocity level approach is/are

always 0 regardless any parameter. The set of eigenvalues for the alternative acceleration

method always consists of 0 and -1 values.



In simulations, the alternative acceleration level invers kinematic methods behaved more

favorably than expected based on the analytical calculations. The linear stability was

marginal; however, the trajectory tracking error decayed because of the nonlinear effects.

4. Conclusion

In the literature, the classical velocity and acceleration level approaches are analysed. The

alternative velocity level method is available in the literature too. As a novelty, the acceler-

ation level alternative method was tested.

Based on the simulations, we observed that the trajectory tracking error in the velocity

level is smaller for the alternative method comparing to the classical one. However, in

acceleration level, the classical method performs better, since the alternative method is

marginally stable only.

The stable control parameter ranges were defined by the linearization of the numerical

inverse kinematics formulae. The simulations showed stable operation when the control

parameters and the time step were chosen from the theoretically stable domain.
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