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The aim of this work is to gather information about humans’ motion planning and experimentally find the
artificial redundancy resolution algorithm adopted from the literatures [1, 2] which is the closest. The purpose is
to get a little bit closer to understand the behavior of humans regarding the motion planning of the arm. Recently,
redundancy resolution algorithms inspired by natural motion of humans or animals have captured the attention
of many researchers. Such naturalistic motion is worth being designed in case of human-friendly robots, service
and entertaining robots and humanoids. Experiences and measurement data may help to diagnostics of some
musculoskeletal and/or nervous system’s diseases, by comparing the motion of healthy control group and the
diagnosed person. Knowledge about humans’ natural motion planning may be also applied in physiotherapy.

We study the planar motion of the human arm augmented by a grasped bar, (see Fig. 1 left). The simplified
mechanical model of the resulting three-link system and the interpretation of general coordinates q = [ϕ1, ϕ2, ϕ3]

T

are depicted in the middle panel of Fig. 1. The coordinates of the endpoint can be uniquely determined by (1) as
function of the joint angles qi, which is called direct kinematics:

r(q) =
n

∑
i=1

[Li cos(qi),Li sin(qi)]
T , (1)

where n = 3 is the number of links. In case of kinematic redundancy there are more degrees of freedom (DoF)
than it would be minimally needed to carry out the prescribed task of a manipulator [1, 2]. The task is to follow a
desired trajectory defined by the vector rd(t)=

[
xd(t), yd(t)

]T thus the system is said to be kinematically redundant,
because the dimensions of rd ∈R2 is smaller than the number of DoF = 3. In other words, the number of equations
is fewer than the number of independent variables.
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Fig. 1: Human arm augmented by a grasbed bar (left); Mechanical model of a 3DoF robotic arm (middle); Measurement setup (right)

We tested various solution methods for the inverse kinematic (IK) problem, when the unknown joint angles in
q are to be calculated based on the inverse kinematics equation

r(q)− rd(t) = 0. (2)

The kinematic redundancy can be resolved by the augmentation of the IK equations (2). Virtual torsional springs
are placed in the intermediary joints and their potential energy

U =
1
2

n−1

∑
i=1

si (qi+1−qi− q̃i+1)
2 (3)



is minimized, where si is the stiffness and q̃i+1 is the preferred angle of link i+ 1 relative to link i. Equations
∂U/∂qi = 0; i = 2 . . .n− 1 augment the original set of IK equations (2). In this case, virtual springs are placed
in the elbow (P2) and the wrist (P3). In method a) the resulting non-linear algebraic equation system is solved in
closed form for uniform spring stiffnesses and zero preferred relative angles that leads to equal relative angles at
the elbow and the wrist. In method b) each preferred relative angle was set to the middle of the joint limits of the
shoulder, the elbow and the wrist (note: q̃1 does not appear in (3)), which are q1 ∈ [−130◦,80◦], q2 ∈ [−10◦,150◦]
and q3 ∈ [−30◦,30◦] respectively [3]. The resulting algebraic equations are solved by Newton-Raphson method
(NRM). As an alternative, the IK is resolved without the augmentation of equations (2) in c). Instead, the pseudo-
inverse (Moore-penrose generalized inverse) is used in the NRM to solve the non-unique problem in the form:

J† = A−1JT (JA−1JT)−1
, (4)

where J = ∂r/∂q is the Jacobian of (2) and A is an arbitrary weight-matrix, chosen to be an identity (A = I)
in this approach. Approaches a), b) and c) provide IK solution in geometric level, while the following methods
utilize velocity level equations originated from (2) by time differentiation and from which the joint velocities can
be expressed by using the pseudo-inverse again:

Jq̇− ṙd = 0 , (5)

q̇ = J†ṙd +
(
I−J†J

)
ż , (6)

where the arbitrarily chosen vector ż is projected into the null-space of J, so that it does not affect the endpoint’s
position but it can be used for optimizing the joint velocities q̇. After time integration of q̇, function f = q̇TAq̇
will be minimized along the trajectory, if (4) is applied. Method d) uses ż = 0 and A = I substitutions and it pro-
vides the same trajectories as approach c). In approach e), the kinetic energy of the system is minimized, thus the
pseudo-inverse is weighted by the mass matrix: A = M, and ż = 0 is still used. The following methods minimize
the scalar cost function g by using ż = k ∂g(q)/∂q. Method f) ensures that the joint angles remain as close to the
middle of the joint limits as it is possible by using the cost function: g(q) = ∑

n
i=1
(
(qi−qmid

i )/(qmid
i −qmax

i )
)2.

Here qmax
i and qmin

i are the maximum and minimum limiting values of the ith joint range while the middle value is
qmid

i = (qmax
i +qmin

i )/2. Approach g) maximizes manipulability ωm =
√

det(JJT) if the cost function is g =−ωm.
Practically it means that the manipulator avoids singular values, when ωm would be zero. The dynamic manipula-
bility ωd =

√
det(J(HTH)−1JT) is maximized in method h) by choosing g = −ωd . H = WM includes a weight

matrix W= diag(1/τ̂i), where τ̂i = min(|τ−i −gi|, |τ+
i −gi|). The torque limits are τ

−
i and τ

+
i , while gi is the torque

of each link that compensates gravity. Method h) optimizes the ability to exert control force on the endpoint.
The simulation results obtained by the redundancy resolution algorithms a)-h) are compared with the measure-

ment data obtained by video-capturing the motion of a large group of people. The inertial data and the estimation
for the center of gravity position were provided by reference [4]. Each person had to follow a prescribed path
with a pointer in their hands, while the joint angles were being recorded, as Fig. 1 shows. Three different tracking
speeds and two different pointers with different mass were used in case of each person. In simulations, the robotic
arm’s endpoint E followed the previously measured path that was generated by the people. The deviation of each
redundancy resolution method from the human motion was evaluated by using RMS error and statistical methods.
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