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ABSTRACT
This paper aims to generalize the computed torque control
method for underactuated systems which are modeled by a non-
minimum set of generalized coordinates subjected to geometric
constraints. The control task of the underactuated robot is de-
fined in the form of servo constraint equations that have the same
number as the number of independent control inputs. A PD con-
troller is synthesized based on projecting the equations of mo-
tion into the nullspace of the distribution matrix of the actuator
forces/torques. The results are demonstrated by numerical sim-
ulation and experiments conducted on a two degrees-of-freedom
device.

INTRODUCTION
Computed torque control of robotic systems is a control method
that is often applied in various applications which require high
accuracy [1]. By employing the concept of underactuation it is
also possible to build agile and energy efficient devices by ex-
ploiting the natural dynamics of these systems. Their control
design is, however, challenging due to the fact that the inverse
dynamics problem cannot be solved directly, since the number
of actuators is less than the number of degrees-of-freedom of the
system. In addition, when the nonlinear dynamics of the con-
trolled mechanical system has to be considered, modeling and/or
computational difficulties may arise.

∗Address all correspondence to this author.

In case of constrained dynamical systems, such as closed-
loop manipulators or robots contacting their environments, the
kinematic constraint conditions have to be considered explicitly
during dynamics modeling and analysis. These systems are often
described by a non-minimum set of generalized coordinates sub-
jected to constraints that provide an efficient formalism to gen-
erate the equations of motion. These equations, however, form a
system of differential-algebraic equations (DAE).

Control techniques, e.g., partial feedback linearization
(PFL) [2] and the computed desired computed torque control
method (CDCTCM) [3], are available only for underactuated
systems that are modeled by a minimum set of generalized co-
ordinates. These models can either directly be derived by us-
ing a minimum set of generalized coordinates or they can be
obtained from models having non-minimum set of generalized
coordinates. The transformation between these two representa-
tions is always possible but it requires the use of a mixed set of
generalized coordinates and the corresponding calculations can
be time consuming.

In some cases the advantage of using the non-minimum set
of descriptor coordinates is to have a model which can effec-
tively be simulated. For example, using natural coordinates [4]
the mass matrix of the modeled dynamical system is constant and
the constraint Jacobian is often linear function of these coordi-
nates that enable the real time solution of the equation of motion
of complex mechanical systems.
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This work presents a possible generalization of the com-
puted torque control method applied for underactuated systems
which are modeled by using a non-minimum set of generalized
coordinates. An important element of the presented approach is
the use of the concept of servo-constraints specifying the mo-
tion of the constrained system as function of the generalized co-
ordinates and time [5]. The proposed strategy is based on the
projection of the equations of motion into the nullspace of the
distribution matrix of the actuator forces/torques, and on stabi-
lizing the servo constraints by a PD controller. The applicability
of the investigated computed torque strategy is demonstrated by
simulations and by experiments conducted on a two degrees-of-
freedom (DoF) robot with one actuator.

GENERALIZED COMPUTED TORQUE CONTROL
The control methods of PFL and CDCTCM are especially de-
voted to control underactuated systems described by minimum
sets of generalized coordinates [2, 3]. The PFL can be used
to feedback linearize the dynamics corresponding to the active
DoFs (collocated case), and in case of strong inertial coupling,
the dynamics corresponding to the passive DoFs of a system
(non-collocated case), respectively. Within the categories of pas-
sive and active DoFs, reference [3] introduces controlled and un-
controlled DoFs. The trajectories of the uncontrolled coordinates
are calculated on-line which makes the error feedback for all the
DoFs possible. The online calculation of these coordinates re-
quires the solution of the equation of motion projected into the
space of uncontrolled motion. This projection is possible by us-
ing the nullspace of the distribution (coefficient) matrix of the
input force/torque vector.

Following the same idea reference [6] presents a computed
torque based solution for the position control of a suspended ser-
vice robot modeled by a non-minimum set of generalized coor-
dinates. In this paper, the desired values of the uncontrolled co-
ordinates and the computed forces/torques were determined via
the direct solution of the differential algebraic equations of mo-
tion by applying backward Euler discretization and the Newton-
Raphson method to solve the resulting nonlinear set of algebraic
equations. By introducing the concept of servo constraints [5],
here, a computationally more effective computed torque control
strategy is proposed.

It is assumed that the dynamics of the underactuated system
is modeled by using a non-minimum set of generalized coordi-
nates. Then the equation of motion of the system has the general
from

M(q)q̈+ c(q, q̇)+ΦΦΦT
q(q)λλλ = Qg(q)+ H(q)u (1)

φφφ(q) = 0 (2)

where M(q) ∈ R
nxn is the mass matrix of the system,

C(q, q̇) ∈ R
n is the vector that contains the Coriolis, centrifu-

gal and damping terms and ΦΦΦq(q) = ∂φφφ(q)/∂q ∈ R
mxn is the

Jacobian associated with the geometric constraints φφφ(q) ∈ R
m.

The matrix H ∈ R
nxl is the distribution matrix of the actuator

forces/torques collected in the input vector u ∈ R
l . In addition

Qg(q) denotes the generalized force vector associated with grav-
ity. It is assumed that the dimension of the control input l is less
than the degrees of freedom n−m of the mechanical system.

For the sake of simplicity, for the recent derivation we as-
sume that the geometric constraints have no components with ex-
plicit time dependence. Then these constraints can be expressed
at the acceleration level as

φ̈φφ = ΦΦΦq(q)q̈ +Φ̇ΦΦq(q, q̇)q̇ . (3)

The servo constraint equations are formulated similar to the
geometric constraint equations, but they involve control speci-
fication terms that may depend on time explicitly. These con-
straints are represented by

φφφs(q, t) = 0 , (4)

which can also be defined at the acceleration level in the form

φ̈φφs = Gq(q)q̈+γγγ(q, q̇,t) with

γγγ(q, q̇, t) = Ġqq̇+
d
dt

∂φφφs

∂ t
, Gq =

∂φφφs

∂q
.

(5)

In addition, the equation of motion (1) can be projected into the
nullspace of the actuator forces by applying the transformation
V = Null(HT)T, which result in n− l equations that describe the
uncontrolled dynamics of system

V(q)M(q)q̈ + V(q)ΦΦΦT
q(q) = V(q)(Qg(q)− c(q, q̇)) . (6)

Combining the projected equation (6) with the constraint
equations (3) and (5) the internal dynamics of the closed loop
system is described by the (n− l)+m+ l = n+m equations

⎡
⎢⎢⎣

VM VΦΦΦT
q

ΦΦΦq 0

Gq 0

⎤
⎥⎥⎦

[
q̈

λλλ

]
=

⎡
⎢⎣

V(Qg − c)

−Φ̇ΦΦqq̇

−γγγ −KD φ̇̇φ̇φs −KPφφφs

⎤
⎥⎦ , (7)

where λλλ is the vector of Lagrangian multipliers, while KP and
KD are the proportional and derivative gain matrices. These gain
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matrices have exactly the same role as the Baumgarte stabiliza-
tion parameters during the solution of differential algebraic equa-
tions of motion. The PD control mechanism stabilizes the servo
constraints and therefore it provides the desired motion of the
system.

Then, assuming that the augmented mass matrix is invert-
ible, equation (7) can be solved for the generalized accelerations
q̈ and for the Lagragian multipliers λλλ. The transformation HT

projects equation (1) into the image of H forming l independent
equations for the control inputs in the form

u = H†(Mq̈+ c+ΦΦΦT
qλλλ−Qg) (8)

where H† = (HTH)−1HT is the generalized inverse of the actua-
tor force/torque distribution matrix H.

EXPERIMENTAL SETUP AND MECHANICAL MODEL
The validating experiments of the proposed control algo-

rithm were carried out by using the Quanser 2DoF haptic device
shown in Figure 1. This robot has two special cable driven ac-
tuators that drive the joints which have a common fixed rotation
axis. The centers of masses of the driven (proximal) links are
close to this axis, while the distal links have low inertia.

In order to use the device as an underactuated robot one of
the actuators must be switched off, but the corresponding en-
coder signal is still necessary to determine the position of the
end-effector. For this reason, it is not possible to dismount the
unused actuator. In addition, it has to be noted that due to the
gear ratio (Kg = 19.3) of the special cable actuated system the
effective dry friction at the driven joints is significant. This fact,
considering also the relatively low inertial coupling between the
links, may prevent the motion of the link with the inactive motor.

To overcome this problem, a partial friction compensation
was applied for the joint corresponding to the uncontrolled ac-
tuator. In addition, the weak inertial coupling between the links
was strengthened by connecting the proximal links of the device
through a virtual spring as shown in Figure 2. The realization of
these solutions, however, requires the use of both actuators. Uti-
lizing that the robot is a haptic device both actuators were used
for the realistic rendering of the combined physical-virtual sys-
tem, while the desired computed torque was superimposed to the
torque output of one of these actuators only.

The mechanical model and the joint angles used for the kine-
matic description of the 2DoF pantograph are shown in Figure 2.
Each link is modeled as a planar rigid body and the points
CMi, i = 1 . . .4 in Figure 2 denote the centers of masses of the
corresponding links. The locations of these points are defined by
the local (or body frame) coordinates ξCMi and ηCMi. The origin
of the local frames are attached to the input joints of the links
such that coordinate ξ points toward the output joint and axis η

FIGURE 1. QUANSER 2DOF PANTOGRAPH

FIGURE 2. MECHANICAL MODEL

is implicitly defined by aligning the local ζ axis with the z axis
of the fixed frame {x,y,z;A}.

The mechanical parameters were identified by a series of
experiments and they are collected in Table 1. These parameters
also include the lengths, masses and mass moment of inertia pa-
rameters of the links that are obtained from the CAD model of
the device. The main sources of the viscous damping and dry
friction are the electrical motors and the special cable based ac-
tuation mechanism. These parameters were also measured and
tuned based on comparison of simulation and experimental re-
sults.
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TABLE 1. MECHANICAL PARAMETERS

Description Parameter Value

Mass of Link 1 m1 0.2820 kg
Mass of Link 2 m2 0.0543 kg
Mass of Link 3 m3 0.2820 kg
Mass of Link 4 m4 0.0543 kg

Length of Link 1 L1 0.147 m
Length of Link 2 L2 0.199 m
Length of Link 3 L3 0.147 m
Length of Link 4 L4 0.199 m

CM location of Link 1 ξCM1 -0.0456 m
ηCM1 0.0001 m

CM location of Link 2 ξCM2 0.0902 m
ηCM2 0.0075 m

CM location of Link 3 ξCM3 -0.0456 m
ηCM3 -0.0001 m

CM location of Link 4 ξCM4 0.0902 m
ηCM4 -0.0075 m

Inertia of Link 1 wrt. Joint 1 I1 3 ·10−3 kgm2

Inertia of Link 2 wrt. CM2 ICM2 0.341 ·10−3 kgm2

Inertia of Link 3 wrt. Joint 3 I3 3 ·10−3 kgm2

Inertia of Link 4 wrt. CM4 ICM4 0.341 ·10−3 kgm2

Damping at Joint 1 d1 0.0045 Nms
Damping at Joint 3 d3 0.0045 Nms
Friction torque at Joint 1 τ f 1 0.025 Nm
Friction torque at Joint 3 τ f 3 0.025 Nm

The equation of motion of the model presented in Figure 2
can be composed of the equations of motion of two planar elbow
manipulators the free ends of which are constrained to move to-
gether by forming the tip of the depicted five-bar mechanism.

Thus, choosing the non-minimum set of generalized coordi-
nates q = [q1 q2 q3 q4]T and using the notations cos(qi) = ci and
sin(qi) = si , i = 1 . . .4, the mass matrix in (1) can be written in
the block diagonal form M(q) = diag(M1 , M2) with

M1 =

⎡
⎢⎢⎢⎢⎢⎣

I1 + ICM2+
m2(L2

1 + ξ 2
CM2 + η2

CM2)+
2L1m2(c2ξCM2 − s2ηCM2)

ICM2+
m2(ξ 2

CM2 + η2
CM2)+

L1m2(c2ξCM2 − s2ηCM2)

ICM2 +m2(ξ 2
CM2 + η2

CM2)+
L1m2(c2ξCM2 − s2ηCM2)

ICM2 +m2(ξ 2
CM2 +η2

CM2)

⎤
⎥⎥⎥⎥⎥⎦ , (9)

M2 =

⎡
⎢⎢⎢⎢⎢⎣

I1 + ICM4+
m4(L2

3 + ξ 2
CM4 + η2

CM4)+
2L3m4(c4ξCM4 − s4ηCM4)

ICM4+
m4(ξ 2

CM4 + η2
CM4)+

L3m4(c4ξCM4 − s4ηCM4)

ICM4 +m4(ξ 2
CM4 + η2

CM4)+
L3m4(c4ξCM4 − s4ηCM4)

ICM4 +m4(ξ 2
CM4 +η2

CM4)

⎤
⎥⎥⎥⎥⎥⎦ . (10)

The generalized force vector c(q, q̇), which includes the centrifu-
gal, Coriolis and damping terms as well as the generalized forces
associated with the idealized virtual spring, becomes

c =

⎡
⎢⎢⎣
−L1m2(ηCM2c2 + ξCM2s2)(q̇2

2 +2q̇1q̇2)
L1m2(ηCM2c2 + ξCM2s2)q̇2

1
−L3m4(ηCM4c4 + ξCM4s4)(q̇2

4 +2q̇3q̇4)
−L3m4(ηCM4c4 + ξCM4s4)q̇2

3

⎤
⎥⎥⎦+

⎡
⎢⎢⎣

d1q̇1

0
d3q̇3

0

⎤
⎥⎥⎦+

⎡
⎢⎢⎣

τ f 1sgn(q1)
0

τ f 3sgn(q3)
0

⎤
⎥⎥⎦+

⎡
⎢⎢⎣

k(q1 −q3−q10 +q30)
0

−k(q1 −q3−q10 +q30)
0

⎤
⎥⎥⎦ (11)

where q10 and q30 refer to the initial values of the corresponding
coordinates. The damping coefficients d1, d3 and the magnitudes
τ f 1 and τ f 3 of the dry friction torques at the joints 1 and 3 are
given in Table 1 .

The constraint equation (2) can easily be determined by
equating the xE and yE coordinates of the originally free ends
of the two planar elbow manipulators

φφφ =
[

L1c1 +L2c2 −L3c3 −L4c4

L1s1 +L2s2 −L3s3 −L4s4

]
. (12)

The corresponding constraint constraint Jacobian is

ΦΦΦq =
[−L1s1 −L2s2 L3s3 L4s4

L1c1 L2c2 −L3c3 −L4c4

]
. (13)

Due to the selection of the relative joint coordinates as gener-
alized coordinates the distribution matrix of the input torques
u = [τ1 τ3]T has the simple form

H =

⎡
⎢⎢⎣

1 0
0 0
0 1
0 0

⎤
⎥⎥⎦ . (14)

Once the control objective is defined through the servo constraint
equations (4) the derived generalized forces and coefficient ma-
trices can be used to calculate the desired actuator torques ac-
cording to equation (8) .

For the simulation of the controlled motion of the sys-
tem we transform the dynamic model into the minimum
form corresponding to the set of generalized coordinates
p = [q1 q3]T . Using the assumption of scleronomic constraint,
according to [7], this is possible by applying the transfor-
mation q̇ = B(q)ṗ which leads to the differential equation
BTMBp̈ + BT(MḂṗ+ c) = BT(Qg + H(q)u) .
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SIMULATION AND EXPERIMENTAL RESULTS
During simulation and experiments the robot was com-

manded to move along a circle shown in Figure 3 . For the sake of
simplicity, a fixed circle with radius R = 0.075 m was considered
having its center at x0 = 0 m and y0 = 0.25 m . The corresponding
scalar servo constraint equation is

φs = (x(q)− x0)2 +(y(q)− y0)2 −R2 = 0 (15)

where x(q) and y(q) are the task-space coordinates of the end
effector.

FIGURE 3. SIMULATION AND EXPERIMENTAL RESULTS

For the digital realization of the computed torque controller,
the sampling time was selected to 2 ms. This corresponds to the
half of the maximum available sampling frequency of the hard-
ware. The lower value was selected to obtain more reliable joint
velocity data for the friction compensation during the experi-
ments (without filtering). During the experiments, the viscous
damping and the dry friction torques associated with joint 3 were
partially eliminated via feedback compensation.

Another constraint on the experiments was the relatively low
torque limit of the motor. The torque/current characteristic of
the built in Maxon motors (118774) become nonlinear above
the maximum continuous current limit which corresponds to the
maximum joint torque τmax = 0.6385 Nm. Thus, in order to avoid
nonlinear actuator force characteristics and saturation, the con-
trol gains were set to the relatively small values KP = 100 and
KD = 40 . These values and the selected virtual spring stiffness
k = 1 N/m provided linear current-torque characteristics during
the experiment.

The corresponding simulation results as well as the initial
configuration of the robot are presented in Figures 3 and 4. In
these figures the dashed blue lines correspond to the simulation
results and the solid black lines represent the experimental re-
sults. Despite of the applied friction and damping compensation
it can be seen that the experimental results are affected by con-
siderable damping and due to the limited value of the propor-
tional gain the steady state position error is relatively high. Us-
ing equation (4) the signed Euclidean error can be calculated as
R−

√
φs +R2 =−5.4 mm . Apart from this fact, the results show

a good qualitative agreement and the simulation results confirm
the applicability of the proposed computed torque controller.

FIGURE 4. SERVO-COSNTRAINT VIOLATION
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CONCLUSIONS
In this paper a generalization of the computed torque control

was presented for underactuated mechanical systems modeled by
a non-minimum set of generalized coordinates. The proposed
method relies on a formulation that can directly be applied to the
arising set of DAE equations of motions. The applicability of
the method was investigated by means of numerical simulation.
The obtained results were verified by experiments conducted on
the Quanser 2DoF pantograph. This haptic device has different
performance and dynamics characteristics than ordinary under-
actuated robotic systems, but its haptic rendering capability made
it possible to augment the physical system with a virtual spring
component to realize stronger coupling between the elements of
the device. The experimental results obtained by using the com-
bined physical-virtual system and the corresponding simulation
results show a good qualitative agreement.
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[7] Kövecses, J., Piedoboeuf, J.-C., and Lange, C., 2003. “Dy-
namic modeling and simulation of constrained robotic sys-
tems”. IEEE/ASME Transactions on mechatronics, 8(2),
pp. 165–177.

6 Copyright c© 2011 by ASME


