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Abstract The recent work presents the motion control of a pendu-
lum like under—actuated service robot ACROBOTER. This robot
is designed to be applied in indoor environments, where it can per-
form pick and place tasks autonomously and/or with close coop-
eration with humans. It can also serve as a platform that carries
other service robots with lower mobility. The cable suspended robot
has a complex structure and its dynamics is difficult to model us-
ing conventional robotic approaches. Instead, in this paper natural
(Cartesian) coordinates are used to describe the configuration of
the robot, while its dynamics is modeled as a set of differential al-
gebraic equations. The method of computed torque control with a
PD controller is applied to the investigated under—actuated system.
The inverse dynamics solution is obtained via direct discretization
of the DAE system. Results for a real parameter case study are
presented by numerical simulations.

1 Introduction

Obstacle avoidance is an important problem in service and mobile robotics,
especially when the robots are operating in an everyday indoor environ-
ment. Static obstacles on the floor of a room include various objects such
as stairs, doorsteps, chairs, tables and even the edges of carpets. Hence,
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floor based domestic robots need to have strategies to overcome randomly
placed objects.

A new direction in the development of indoor service robots is the use
of robotic structures that can move on the, almost obstacle free, ceiling
of a room. An application which addresses the need for a robot to climb
on the walls and crawl on the ceiling inside a building is the MATS robot
(Balaguer et al., 2006). Another examples include actuator mechanisms
showing similarities with gantry cranes, e.g., the mobile robot platform
described in (Sato et al., 2004) and the FLORA walking assisting system
developed by FATEC Corporation (FATEC Co., 2004). These platform
concepts solve the problem of avoiding obstacles on the floor, while they are
able to roam over almost the whole inner space of a room, and compared
to gantry cranes, they enable the use of co-operating multiple units.

The present paper describes a new indoor service robot platform de-
veloped within the ACROBOTER IST-2006-045530 project (Stépan and
et al, 2009). The ceiling suspended robot (see Figure 1a) is equipped with
windable cables and ducted fan actuators. Compared to (Sato et al., 2004;
FATEC Co., 2004) the use of complementary actuators makes it possible
to control and utilize the pendulum-like motion of the system, and provide
larger workspace and better maneuverability. The ACROBOTER robot is
able to move along a prescribed spatial trajectory while it performs various
tasks like pick and place of objects and manipulating other service robots.
Despite of the large number of actuators, the ACROBOTER robot is still
under—actuated. The application of the method of computed torque control
for this system leads to a set of differential algebraic equations adjoining
to the geometric constraints which also appear as algebraic equations. The
generalized coordinates that describe the configuration of the system are
coupled and cannot be partitioned into passive and active coordinates in
general. Instead, in this paper the direct solution of the DAE problem is
presented for ACROBOTER system using the Backward-Euler discretiza-
tion method as it is also proposed in (Blajer and Kolodziejczyk, 2008). The
algorithm is formulated semi-analitically. Its applicability is demonstrated
by numerical experiments.

2 Mechanical Model and Problem Formulation

The ACROBOTER system shown in Figure 1la consists of Anchor Points
(AP) placed on the ceiling, a Climer Unit (CU) that can swap between
these APs and a Swinging Unit (SU) which has a mechanical interface for
connecting the payload. The CU is an RRT robot that moves parallel to
the ceiling and provides the horizontal motion of the system. The windable
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Figure 1. ACROBOTER (a), planar model (b), free body diagrams (c)

Main Cable (MC) connects the CU and the SU through the Cable Connector
(CC) to which the secondary orienting cables are also attached. By using the
mechanical interface the Swinging Unit (SU) can be equipped with grippers
and various tools. In this concept the three secondary cables orient the SU,
while the three pairs of ducted fans are used for performing and stabilizing
the motion of the SU along its desired trajectory. The thrust forces provided
by the ducted fans make it possible to move the payload even when the CU
does not move at all.

For developing the control algorithm of this device we consider the pla-
nar model of the ACROBOTER (see Figure 1b). The free-body-diagrams
corresponding to this model are shown in Figure 1c. We treat the robot as
a multibody system described by natural (Cartesian) coordinates (de Jalon
and Bayo, 1994). This formalism provides the equation of motion for both
the planar and spatial cases in the same form. Modeling of the spatial AC-
ROBOTER system does not require further complexity, only the number of
descriptor coordinates and geometric constraints will be higher.

In Figure 1b the SU is modeled as a rod with length L34 and mass mgy,
which includes the mass of the payload as well. The CC is considered as a



point mass mcc . The length of the MC is denoted by L; and the corre-
sponding cable force is F;. The actuator forces acting upon the secondary
cables are Fo and F3, respectively. The configuration of the system is de-
scribed by the coordinates (z;, z;) of the points P, . In addition, the center
of mass of the SU is given by the vector p, in the body frame, and the
loading point of the resultant thrust force is represented by the vector pp .
By considering that the CU moves exactly on a prescribed trajectory
and using the set of descriptor coordinates q = [xa, 22, T3, 23, 74, 24] T, the
equation of motion of the ACROBOTER system can be written as

Mg + @4 ()X = Q, + H(q)u,, (1)
¢(Q> =0 ) (2)
¢s(q,p(t)) =0. (3)

Equation (1) is a Lagrangian equation of motion of the first kind, where M
is the n x n sized constant mass matrix (de Jalon and Bayo, 1994) which
may also depend on the payload. Symbol Qg is the generalized gravity
force. The m geometric constraints are represented by the vector ¢(q) in
(2) and @4 is the Jacobian matrix of the constraints. The corresponding
Lagrange multipliers are denoted by A. The [ dimension input vector is u
and H is the generalized input matrix.

The number of control inputs, [, is less than the n — m DoFs of the
system, thus it is under-actuated. The task of the robot can be formulated
by the servo-constraints ¢,(q, p(t)) (Blajer and Kolodziejczyk, 2008) given
in equation (3). The dimension of the ¢4(q,p(t)) vector is also | which
means that the [ dimensional control input can be determined uniquely.

The servo constraints depend on the function p(¢) that can be handled
as the desired system output and it may describe the desired trajectory of
a certain point and/or the desired orientation of the SU. For example, if
the position of the center of mass of the SU and its horizontal orientation is
prescribed together with the elevation of the CC, the servo constraints can
be expressed in the form

¢s(a,p(t)) =h(q) —p(t) with (4)
h(q) = [1/2(333 + x4) 1/2(ys + ya), y3 — ya, yo (5)
p(t) = [z (t L0, i) (6)

where h(q) gives the prescribed system outputs as the function of the de-
scriptor coordinates by assuming that po = [L34/2, 0]T

We assume that the servo-constraints and a well chosen subset of geomet-
ric constraints can be solved for the controlled coordinates q. in closed form.



Then the task can be defined by q. = q?, where the superscript d refers
to the desired trajectory. In the case of the planar ACROBOTER model
the vector of these desired coordinates is q¢ = [y$(t), z3(t), v§(t), y4(t)]T.
For the partitioning of the descriptor coordinates we introduce the vector
of controlled and uncontrolled coordinates with q. = STq and q,, = Slq,
respectively, where S. and S,, are task dependent selector matrices.

3 Computed Torque Control

The computed torque method was generalized in (Lammerts, 1993) for the
case of under-actuated systems. The generalized method is called Computed
Desired Computed Torque Control method (CDCTC), where the expression
“computed desired” refers to the fact that the uncontrolled coordinates can-
not be prescribed arbitrarily, since they depend on the internal dynamics
of the system. In case of the CDCTC method the equations of motion are
ordinary differential equations (ODE) and the null space of the coefficient
matrix of the input vector is used to project these equations into the space
of uncontrolled motions. The projected set of differential equations can
then be solved for the desired values of the uncontrolled coordinates and
the control inputs can then be expressed.

To apply the CDCTC method to the ACROBOTER model described
by equations (1-3) an additional projection is required. Since the equations
of motion are given as a DAE system, first, the DAE system has to be re-
duced to an ODE. This can be accomplished by projecting the equations of
motion to the subspace of admissible motions by the constraints (Kévecses
et al., 2003). However, the repeated projections and the stabilization (con-
figuration correction) of the numerical solution make the application of the
method rather complex and computationally expensive.

Instead, we apply the Backward Euler discretization for the DAE system
and the resulting set of implicit equations are solved by the Newton-Raphson
method for the desired actuator forces. Considering a PD controller with
gain matrices Kp and Kp the control law can be formulated as

Mg’ + @ (q)A = Q, + H(q")u —Kp(q® —q) —Kp(¢* — &), (7)
$(q”) =0, ®

where q and q? are the measured and the desired descriptor coordinates,
respectively. Introducing y? =% equations (7) and (8) can be rewritten as

q'=y’, 9)
y' = M(Q, + H(a")u - @] (a’)A~ Kp(a’~ a) - Kp(a'- a)), (10)
0=p(q?). (11)



The set of equations (9-11) can be partitioned into the prescribed con-
trolled coordinates and the uncontrolled coordinates yielding the vector of
unknowns

z=[al.yl w Al (12)
Using the Backward Euler method, the set of difference equations F(z) = 0
has to be solved for the (n+1)th value of z, where

d d d
q’u,7L+1 - qu,n - hy'u,7L+1
y - yd n hf'rH—l .
u,n+1 . with (13)
n+1

¢n+1

F7L+1 =

.01 = STM1(Q, + H(g)u
— & (q)A —Kp(q’—q) —Kp(g'—q)) ., (14)

n+1 = _yg + SEMil (Qg + H(qd)u
- @2 (q)X -Kp(q’—q) —Kp(g'—q)) . (15)

The solution of the above system can be obtained for the consecutive time
steps with sampling time h, by iterating to z,1 via the repeated solution
of the equation

J'rH—l(Z'rH-l - Zn) - _F7L+1 5 (16)

where J is the Jacobian matrix
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with
OB OHu

(BeN)qe = a;j and  (Hu)ge = 9q (18)

4 Real parameter case study and simulation

The planar ACROBOTER model was simulated with realistic mechani-
cal and control parameters. The mass of the swinging unit was set to
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Figure 2. Simulation results

mgy = 5kg, while the mass moc = 0.1kg was set relatively small compared
to it. In addition, the geometry of the SU was given by the length of the
rod L34 = 0.5m. As an important control parameter the sampling time of
the system was h = 10ms during the simulation.

In the simulation the actuator forces were determined according to Sec-
tion 3, while the equations of motion (1) and (2) were solved by using the
method of Lagrange multipliers with Baumgarte stabilization (de Jalén and
Bayo, 1994). This co-simulation made it possible to feed back the state of
the system for the calculation of the actuator forces.

Figure 2 presents two sets of simulation results. In both cases the geo-
metric center of the swinging unit was commanded to move along a straight
line between the points (0, -1.5) and (0.6, -1) . The trajectory had a trape-
zoidal velocity profile, characterized by the maximum acceleration and ve-
locity amaz = hn/s2 and Ve, = 0.25m/s, respectively. In the simulation
presented in the top panels in Figure 2 the mass and inertia properties were
considered as exactly known parameters of the system, i.e., the center of
gravity and the geometric center were the same and the rod was considered
to have homogeneous mass distribution. In contrast, the bottom panels
show the simulation result when the effect of the payload were also con-
sidered. In this case, the mass of the SU was increased with a payload of
1kg. The payload was considered as a point mass causing the change of the
common center of gravity expressed by pc = [0.3m, —0.05m]T.



5 Conclusion

The computed torque control of an under-actuated service robot was pre-
sented. The calculation of the desired control inputs led to a DAE problem,
which was solved via the Backward Euler discretization of the system and
by using the Newton-Raphson method. The Jacobian matrix of the itera-
tion algorithm was determined semi-analytically. The method is applicable
for broad class of systems that can be modeled by natural coordinates.

The presented numerical results clearly show the applicability of the
proposed control method. On the other hand, compensation is needed for
modeling errors caused by unknown payloads. The tracking error can be
decreased by increasing the values of the proportional gain matrix, while
the stationary pose error at the final time may be eliminated by a PID con-
troller. The limitations of the applied model based control may be improved
by introducing an adaptation law for the control gains. Possible large distur-
bances are to be handled by the high level controller of the ACROBOTER,
which may couple the separate controllers of the CU and SU.
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