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Predictive Trajectory Tracking
Algorithm of Underactuated
Systems Based on the Calculus
of Variations
The tracking control of underactuated systems is a challenging problem due to the struc-
tural differences compared to fully actuated systems. Contrarily to fully actuated systems,
resolving the inverse kinematics problem of underactuated systems is not possible inde-
pendently from the dynamic equations. Instead, the inverse dynamics must be addressed.
It is common to extend the computed torque control (CTC) technique with servocon-
straints. Besides the CTC’s clearness, the stability of the system cannot be always guar-
anteed. A novel predictive controller (PC) is presented in this paper. Our PC applies the
variational principle to design the motion of the system in order to achieve a stable
motion with the lowest possible tracking error. To demonstrate the applicability and the
performance of the PC method, a numerical study is presented for a planar manipulator
resulting in about 20% RMS error compared to the CTC method from the literature.
[DOI: 10.1115/1.4051168]

1 Introduction

There are many definitions in the literature for underactuated
systems. The most classic is the following: the system which has
less independent control inputs than degrees-of-freedom (DoF) is
called underactuated [1]. Manipulators with passive joints or flex-
ible elements [1], cranes [2], and unmanned flying vehicles [3] all
satisfy the above definition. Although underactuated systems
necessitate intricate control, their typical benefit is energy effi-
ciency and agility [4]. Nature provides many examples where
these advantages are utilized, e.g., the elaborated balancing tech-
nique is the price of the gains achieved by bipedal walking, run-
ning, or hopping [5,6].
The trajectory tracking of underactuated systems is investigated

in this paper. Control strategies of these systems may be derived
with the generalizations of classic computed torque control meth-
ods [7–11] or the feedback linearization [12] which is called par-
tial feedback linearization in the case of underactuated systems
[13]. These techniques result in the required control inputs that
realize the desired motion. This required input is considered as a
feedforward term, and in practice, a feedback term is added too.
We focus on the computation of the feedforward term in this
paper.
The above-mentioned algorithms [7–13] can guarantee the sta-

bility of the so-called controlled dynamics only while the stabili-
zation of the internal dynamics is not addressed. The states which
are directly related to the desired task belong to the controlled
dynamics. In contrast to underactuated ones, for fully actuated
systems all of the states belong to the controlled dynamics nor-
mally. However, in the case of many underactuated systems, a
particular part of the system cannot be controlled directly and it is
called internal dynamics [14]. If the internal dynamics are unsta-
ble, then it leads to the stability loss of the whole system. Conse-
quently, the above control algorithms can guarantee stability for
systems possessing stable internal dynamics only.
One approach to stabilize a system with unstable internal

dynamics can be done through the slight modification of the
desired task (servoconstraints) [9]. Although stability can be
achieved, the task modification is an intuitive process and,

furthermore, the tracking accuracy is decreased. The authors pre-
sented a predictive approach in Ref. [15]; however, this also
requires the modification of the original desired task. Another
solution is to periodically switch between two desired tasks: (1) a
modified one that results in a stable motion but not guarantees tra-
jectory tracking; (2) and the original one that maintains the
desired task but is unstable alone [16]. As a drawback, the peri-
odic switching of the controller results in noncontinuous inputs
that are hard to realize. It is also possible to optimize the internal
dynamics of robots by connecting additional masses to the unactu-
ated parts of the robot [17], however, this solution modifies the
controlled system which may not always be possible.
Another approach is to formulate the task as an optimal control

problem. The most widely known controller of this type is the lin-
ear quadratic regulator which is applicable to stabilize an unstable
equilibrium state of a linear system. Linear quadratic tracking
problems are also investigated in the literature [18,19]. As the
objective of a continuous-time optimal control problem is func-
tional depending on the states and the inputs, these controllers are
closely related to the calculus of variations that is applied to
derive the solutions to these problems. This is an analytical
approach therefore these methods belong to the indirect optimal
control solutions. Both linear quadratic regulator and linear-
quadratic tracking controllers are designed for linear systems thus
the application of these techniques requires further generalization.
Although it is possible to achieve an accurate feedforward optimal
controller for the nonlinear system by solving the global optimiza-
tion problem numerically, the computational demand for solving
such problems, e.g., based on the direct multiple-shooting method
is very high [20].
The main difference compared to the earlier cited works is that

instead of solving a global optimization problem numerically,
consecutive linear optimization problems are tackled. The use of
local optimal controls is combined with the receding horizon con-
trol [21,22] approach which finally results in a stable controller
that can be computed online. This technique is applicable to
underactuated systems with general structures. The design is
briefly introduced in Refs. [23] and [24] where numerical tools
have been used to synthesize the control algorithm. Contrarily to
these, the work done in this paper presents a variational principle-
based predictive control approach. In our solution, the motion of
the system is examined on a finite time horizon and the goal is to
find the motion which provides minimum tracking error and
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stability for both the controlled and internal dynamics at the same
time. These problems are dealt with semi-analytic tools, which,
therefore, concludes in lower computational demand. This results
in the possibility of real-time execution contrarily to the previ-
ously mentioned approach [20].
Summing up, the novelties of the proposed control algorithm,

which utilizes the properties of mechanical systems, are: (1) the
internal dynamics of the system is stabilized; (2) there is no need
for the modification of either the task or the controlled system; (3)
due to the receding horizon approach the optimization problem is
rearranged in a linear form resulting in low computational
demand.
The paper is organized as follows: Sec. 2 presents the dynamic

modeling approach and the control algorithm. Section 3 demon-
strates the feasibility and the effectiveness of the proposed method
by means of numerical simulations carried out for the benchmark
problem in Ref. [9]. Additionally, a second benchmark problem is
presented with a higher degree-of-freedom and complexity to
prove the wide range of applicability. Section 3.5 summarizes the
results.

2 Problem Formulation and the Predictive Control
Algorithm

The basic idea of the approach presented in this paper is to cal-
culate a dynamically possible motion of the system (i.e., a motion
that satisfies the equation of motion) which renders an appropri-
ately defined cost function to a minimal value. First, we introduce
the equation of motion, then write about the chosen cost function.
Finally, we present the procedure of the optimization process.

2.1 Equation of Motion. We assume the equation of motion
written in the following form, which is applicable for any type of
underactuated rigid body system without the loss of generality

MðqÞ€q þ hðq; _qÞ ¼ HðqÞs (1)

The motion of the f DoF system is described by the set of inde-
pendent generalized coordinates qðtÞ 2 Rf . The mass matrix is
MðqÞ 2 Rf�f and the vector of the inertial and external forces is
hðq; _qÞ 2 Rf . We denote the vector of the independent control
forces/torques by s 2 Rm, hence that the system has m number of
independent inputs realized by the actuators. The distribution
matrix of the actuator forces is HðqÞ 2 Rf�m, with m< f. Note
that in the case of m¼ f, when the system is fully actuated, the
present algorithm may be simplified.
The equation of motion (1) is partitioned and transformed to

the form f ¼ 0 and g ¼ 0 [1,25,26] which leads to

fðq; _q; €qÞ ¼MaðqÞ€q þ haðq; _qÞ �HaðqÞs (2)

gðq; _q; €qÞ ¼MuðqÞ€q þ huðq; _qÞ (3)

with fðq; _q; €qÞ 2 Rm and gðq; _q; €qÞ 2 Rf�m. Furthermore, on
the right-hand side of the equation, we have MaðqÞ 2 Rm�f ;
MuðqÞ 2 Rðf�mÞ�f , haðq; _qÞ 2 Rm; huðq; _qÞ 2 Rf�m, and
HaðqÞ 2 Rm�m.
The first equation f ¼ 0 contains the generalized coordinates q

and their derivatives, and the actuator forces s. Since the control
inputs are independent, the distribution matrix H in Eq. (1) has
maximal column rank. Therefore it is possible to carry out the
above transformation by multiplying Eq. (1) from left by a proper
nonsingular transformation matrix T that satisfies

Ha

0

� �
¼ TH (4)

with Ha being invertible. This enables us to calculate the control
torques/forces knowing a realizable qðtÞ motion of the system.
Expressing s from Eq. (2), we obtain

s ¼ H�1a ðMa€q þ haÞ (5)

Equation (3) only depends on the q generalized coordinates and
their time derivatives. From the viewpoint of the present control
algorithm, g ¼ 0 is a constraint in the optimization problem intro-
duced in the upcoming Secs. 2.2–2.5. We look for a motion qðtÞ
that satisfies g ¼ 0, in which case the motion given by qðtÞ is real-
izable. After the optimization, we obtain the control inputs by
applying Eq. (5).

2.2 Task Definition. One and widely used approach to for-
mulate the task of a trajectory tracking problem is to use the so-
called servoconstraints [27,28]. The violation of the servocon-
straint is the tracking error formalized in the following form:

Erðq; tÞ ¼ rdðtÞ � rðqÞ (6)

where rðqÞ 2 Rl is an arbitrary function expressed with the coor-
dinates q, and the desired value of rdðtÞ 2 Rl defined as an
explicit function of the time t. The function rðqÞ may contain the
tool center point (TCP) which corresponds to the position and/or
the orientation of the end effector. The consequence of using the
form (6) is that @Er=@t is purely time-dependent, while @Er=@q
merely depends on the coordinates.
The output is defined by the equation Erðq; tÞ ¼ 0. Often, the

cause of the failure of the servoconstraint based methods is that
Erðq; tÞ ¼ 0 is not possible to be fulfilled without the violation of
dynamic Eq. (3) of the system. The problem here is that there is
no well-known algorithm with which we could find out whether
the desired motion is dynamically possible. Therefore it is not
possible to prescribe arbitrary trajectories to inverse dynamics-
based control algorithms as they may result in stability issues.
This fact leads us to an alternative way of the formulation of

the task. There are two cases: when it is possible to fulfill the ser-
voconstraint (that is Er ¼ 0 is possible to fulfill), the task is realiz-
able. However, there are cases when it is not possible to fulfill the
servoconstraint and the task is unrealizable, e.g., the desired tra-
jectory rdðtÞ in (6) is not continuous, or it is out of the workspace
of the robot, or (3) cannot be fulfilled. Our goal in this paper is to
minimize the norm of Er in a later specified sense. In other words,
instead of trying to solve the problem error-less, we look for a
possible motion of the system which is the closest in some sense
to the desired one.
For this, we define a cost function in Sec. 2.3 and look for the

dynamically possible q function which renders this cost function
to a minimal value. After the optimization problem is solved, the
inputs s can be calculated from the realizable motion without sta-
bility issues applying Eq. (5).

2.3 Definition of the Cost Function. We define a scalar cost
function as a measure of the distance between the realized motion
and the desired one. We do not want to examine the motion only
in a single time instant (as the servoconstraint based methods do
[9,16,28]). Contrarily we aim to examine the motion over a finite
time interval, which is called the receding horizon control
approach [21,22,29]. To fulfill these requirements, it looks
straightforward to use the integral of the quadratic error of the out-
put Er defined in Eq. (6)

Jrhqi ¼
ðte

ts

ETr Er dt (7)

The limits of the integral are defined by the time horizon of the
optimization problem: the starting time instant is ts, while the end-
ing time instant is te. The cost function (7) is mathematically func-
tional depending on the generalized coordinates q and the
integration limits ts and te. It is trivial that this cost function is
always non-negative, and it is nought if and only if the
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servoconstraint (6) is exactly fulfilled over the whole time horizon
(that is Er � 0).
The definition of the cost function Jr in Eq. (7) is not appropri-

ate to setup the optimization task. When the servoconstraint is
unrealizable (see Sec. 2.2), then it is possible that there is no
motion of the system that gives an extrema for Jr, e.g., the control
inputs would need to be infinity. To overcome this problem, we
include the input s defined in Eq. (5) in the cost function. The
appropriate choice of the error vector is as follows:

E ¼W
Er

H�1a ðMa€q þ haÞ

" #
(8)

with E 2 Rlþm. Here we use a weighing matrix W, since the
numerical values of the servoconstraints and the inputs may be in
different dimensions. Furthermore, it allows us to tune the balance
between accuracy and control action. Although other selections
may be justifiable, in this paper the weighing matrix is constructed
as the following diagonal matrix:

W ¼
wr Ir 0

0 ws Is

" #
(9)

Here Ir 2 Rl�l and Is 2 Rm�m denotes the identity matrices. The
scalar constants wr > 0 and ws > 0 are the weighing factors of
the error of the outputs Er and the inputs s, respectively. Then the
cost function is defined in a similar way as previously in Eq. (7)

Jhqi ¼
ðte

ts

ETE dt (10)

The goal of present the predictive optimization method is to find
the q time histories that minimize this functional.

2.4 Illustration of the Optimization Problem. To visualize
the variety of solutions, Fig. 1 is included. Figure 1 illustrates the
example of an underactuated planar manipulator of which the task
is the tracking of the trajectory of the TCP shown by the straight
black dashed line. Starting from the initial configuration, we have
infinitely many possible TCP trajectories (plotted with continuous
black lines) which are drawn in each branch with a stroboscopic
view. We only included three of these TCP trajectories in the fig-
ure. The pale gray arrows show the time propagation. Each TCP
trajectory can be reached by infinitely many configuration evolu-
tions since the inverse kinematic problem of the manipulator is

not unique [30–32]. These configurations are shown by the red,
blue, and black stroboscopic views of the manipulator. However,
not all of these kinematically possible configuration evolutions
are dynamically possible. Only the black one satisfies the equation
of motion (1), and therefore it is the only one, which is dynami-
cally possible. The red and the blue ones do not satisfy the equa-
tion of motion (1).
Out of the three branches yielding different TCP trajectories,

we choose the one in the second branch, since that one minimizes
the cost function (10).

2.5 The Nonlinear Optimization Problem. To obtain the
optimal motion of the system, we aim to find the extrema of the
functional in Eq. (10) applying the constraint g ¼ 0 defined in
Eq. (3). This constraint leads to a so-called isoperimetric problem
[33]. To obtain the solution, we define the following Lagrangian
with the vector of the multipliers lðtÞ 2 Rf�m:

L ¼ ETEþ lTg (11)

With this Lagrangian L, we setup the Euler–Lagrange equation
[33]. The system of ordinary differential equations (ODE) that
gives the optimal solution q is

@L
@q
� d

dt

@L
@ _q
þ d2

dt2
@L
@€q
¼ 0 (12)

g ¼ 0 (13)

In Eqs. (12) and (13), the unknown time-dependent functions are
the generalized coordinates q and the Lagrange multipliers l.
Additionally, boundary conditions belong to the optimization
problem

_qjts ¼ _qs (14)

qjts ¼ qs (15)

@L
@€q

� �����
te

¼ 0 (16)

@L
@ _q
� d

dt

@L
@€q

� �����
te

¼ 0 (17)

In the initial time instant ts the values qs and _qs, respectively, the
generalized coordinates and velocities are given, so we can pre-
scribe that in Eqs. (14) and (15). However, in the final time instant
te it is not possible to prescribe the configuration of the system. So
we let the coordinates and the velocities be arbitrary in the time
instant te. Therefore we specify the so-called transversality condi-
tions [33] in the final time instant te, which are Eqs. (16) and (17).
The linearization of the nonlinear boundary value problem
(12)–(17) is presented in Secs. 2.6–2.9.

2.6 Time Horizon Parameters of the Controller. The best
scenario would be to solve the nonlinear optimization problem on
the whole maneuver. However, in a general case, this results in a
nonlinear boundary value problem. For solving this, numerical
methods could be used but these require a huge computational
demand, which is not admissible as we would like to establish a
fast control algorithm. To overcome this problem, we apply a
receding horizon control technique [21,22] illustrated in Fig. 2.
Instead of solving the nonlinear optimization problem on the
whole time horizon, we generate a piecewise global solution by
joining the sequence of local solutions of time interval Dta. The
local solutions are possible to obtain with less computational
demand applying a linear approximation.Fig. 1 Selection of the dynamically consistent optimal motion
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Let us consider the time instant ts;i which is the initial time
instant of the ith local optimization problem, which is preceded by
the ði� 1Þth already solved local optimization problem. In the
time instant ts;i, we linearize the system around the current config-
uration and solve the ith optimization problem locally between ts;i
and te;i. The linearization is detailed in Secs. 2.7–2.9. After deter-
mining the input s, we apply it to control the system (1) on the
shorter time interval between ts;i and ta;i. Then a new, ðiþ 1Þth
optimization problem is solved by setting ts;iþ1 ¼ ta;i and the pro-
cess is continued again and again.
The local solutions are approximate therefore their accuracy is

limited. Hence, the Dta application time length has to be chosen
carefully. Furthermore, the selection of the optimization time
horizon length Dte is also critical to obtain stability. The tuning of
the time horizon intervals Dta < Dte is studied in Sec. 3.5. The
above-explained method belongs to the receding horizon control
approaches [21,22,29].

2.7 Linearization of the Optimization Problem. Now let us
derive the local linear optimization problem for the ith section,
which is introduced in Sec. 2.6 and Fig. 2. The notion of qi and li
is introduced for the solution of the ith linearized optimization
problem. This is needed to emphasize the difference between the
optimal motion qi calculated from the linear optimization problem
and the realized motion q, which is the solution of the nonlinear
equation of motion (1), accomplished by the inputs s calculated
from the linear solution qi.
Our starting point is that the Euler–Lagrange Eqs. (12) and (13)

and the boundary conditions (14)–(17) are linear, if the error vec-
tor E and the second-order nonholonomic constraint g defined in
Eq. (3) and (8), respectively, are both linear in the generalized
coordinates and their time derivatives. We define the following
vectors for the sake of short notation:

xT ¼ ½qT; _qT; €qT �T (18)

xTi ¼ ½qTi ; _qTi ; €q
T

i �
T

(19)

The linearization is carried out at the time instant ts;i ¼ ta;i�1 when
the current coordinates, velocities, and accelerations computed
from the preceding ði� 1Þth section are xs;i ¼ xs;i ¼ xjt¼ts;i . In the
numerical case study of this paper, these values are computed
from the solution of the nonlinear equation of motion. However,
in a real application, these values are measured and therefore a
closed-loop controller is obtained. With these values, we obtain
the Taylor-series approximations for gðxÞ and Eðx; tÞ defined,
respectively, in Eqs. (3) and (8)

Eðxi; tÞ � Eðxs;i; tÞ þ E0xðxs;iÞ ðxi � xs;iÞ (20)

gðxiÞ � gðxs;iÞ þ g0xðxs;iÞ ðxi � xs;iÞ (21)

In order to be able to derive a local analytical solution of the opti-
mization problem (12)–(17), we approximate the time-dependent
and constant terms applying the least squares approximation

Eðxs;i; tÞ � E0xðxs;iÞ xs;i � PE;i uðtÞ (22)

gðxs;iÞ � g0xðxs;iÞ xs;i � Pg;i uðtÞ (23)

with the vector uðtÞ 2 Rn of linearly independent functions of
time, e.g., polynomials or trigonometric functions and the constant
matrices PE;i 2 RðlþmÞ�n and Pg;i 2 Rðf�mÞ�n. The matrices PE;i
and Pg;i are numerically computed at this stage. The system of
functions u needs to satisfy the condition _u ¼ Du with a constant
D 2 Rn�n differential operator matrix. The above Taylor-series
approximation and least square approximation result in the form

Eðxi; tÞ � E0xðxs;iÞ xi þ PE;i uðtÞ (24)

gðxiÞ � g0xðxs;iÞ xi þ Pg;i uðtÞ (25)

Note that the derivative E0x does not depend on time explicitly,
since its form is defined in Eq. (6).
Substituting xi introduced in Eq. (19) and reordering the equa-

tion, we finally obtain the linearized form of Ei and gi shown
below:

Ei � aE;i €qi þ bE;i _qi þ cE;i qi þ PE;i u (26)

gi � ag;i €q i þ bg;i _qi þ cg;i qi þ Pg;i u (27)

Here aE;i; bE;i; cE;i and ag;i; bg;i; cg;i are constant matrices of

dimensions RðlþmÞ�f and Rðf�mÞ�f , respectively. These approxi-
mations are valid only if the generalized velocities and accelera-

tions are both at least C1 smooth. However, C1 continuity is not
possible to ensure in the initial time instant ts;i of each section,
since the boundary conditions in Eqs. (14)–(17) do not imply that,
i.e., the acceleration cannot be prescribed in the initial time
instant. However, with the appropriate selection of the time hori-
zon parameter Dta, negligible errors occur (see Sec. 3.5). Equa-
tions (26) and (27) enables us to calculate _Ei; €Ei; _gi and €g i in a
simple way

_E i � aE;i
:::
qi þ bE;i €q i þ cE;i _q i þ PE;i Du (28)

€Ei � aE;i
€€q iþ bE;i

:::
qi þ cE;i €qi þ PE;iD

2u (29)

_g i � ag;i
:::
qi þ bg;i €q i þ cg;i _qi þ Pg;i Du (30)

€g i � ag;i
€€q iþ bg;i

:::
qi þ cg;i €qi þ Pg;iD

2u (31)

2.8 Linearized Euler–Lagrange Equation. To derive the
ODEs of the linear optimization problem, we apply the approxi-
mations (26)–(31) in Eqs. (12) and (13). One can see that the high-
est order time derivatives are €€q and €l in Eq. (12), and €q in
Eq. (13). Later, the highest order derivatives €€q and €l are
expressed explicitly from Eqs. (12) and (13). Therefore we make
€€q appear in Eq. (13) too by time differentiating it twice. Then the
Lagrangian L defined in Eq. (11) is substituted into Eq. (12) and
the appropriate derivatives of E and g in @L=@q; @L=@ _q and
@L=@€q are evaluated applying Eqs. (26)–(31). As an intermediate
step, we obtain

ð2cTE;i Ei þ cTg;i liÞ � ð2bTE;i _E i þ bTg;i _liÞ þ ð2aTE;i €E i þ aTg;i €l iÞ ¼ 0

(32)

ag;i €qi þ bg;i
:::
qi þ cg;i €q i þ Pg;iD

2u ¼ 0 (33)

from Eqs. (12) and (13). We define the vector of the highest order
derivatives zho;i and the vector of the lower order terms zi

Fig. 2 Time intervals of the generated piecewise solution
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zho;i ¼ ½ €€qTi ; €l
T

i
�T (34)

zi ¼ ½ :::qTi ; _lTi ; €q
T

i
; lTi ; _q

T
i ; q

T
i �
T

(35)

After substituting the approximated form of Ei (see Eq. (26)) and
its derivatives in Eq. (32), Eqs. (32) and (33) are reordered in the
following compact form:

Az;ho;i zho;i þ Az;i zi ¼ Pi u (36)

Here Az;ho;i and Az;i are the coefficients of the higher and lower
order terms, respectively. The matrix Pi, which is an intricate
combination of PE;i; Pg;i, and D, is the coefficient of the function
system u, corresponding to the constant and time-dependent
terms. From Eq. (36), we express the vector zho;i of the highest
order derivatives

zho;i ¼ A�1z;ho;i ð�Az;i zi þ Pi uÞ (37)

Then the first-order form of the linear Eq. (37) is written as

_zi ¼ Afof;i zi þ Pfof;i u (38)

In order to obtain a compact form, we define the constant matrices
Afof;i 2 Rð6f�2mÞ�ð6f�2mÞ and Pfof;i 2 Rð6f�2mÞ�n as follows:

(39)

(40)

where Iq 2 Rf�f and Il 2 Rðf�mÞ�ðf�mÞ denote the identity
matrices.

2.9 Solution of the Linear Optimization Problem. Our goal
is to obtain a closed-form sectionwise (see Sec. 2.6) solution for
the linear ODE defined in Eq. (38). The solution for zi is gener-
ated in two steps. First, the homogenous part of the ODE is solved
using a matrix exponential

zh;i ¼ e tAfof;i ci (41)

Here, ci is a yet unknown vector that is determined below from
the boundary conditions. Next, the particular solution of the inho-
mogeneous equation is derived assuming the form zp;i ¼ Pp;i u.
Substituting this into Eq. (38), we obtain the algebraic equation
for Pp

Pp;iDu ¼ Afof;i Pp;i uþ Pfof;i u (42)

The elements of u are linearly independent as we explained in
Sec. 2.7, therefore the coefficients of u are the same on both sides.
We achieve the following linear equation:

�Afof;i Pp;i þ Pp;iD ¼ Pfof;i (43)

This is a Sylvester equation [34] that is solved and hence the Pp;i
matrix is numerically determined. Note that Eq. (42) does not

necessarily have a solution, which is the case of mathematical res-
onance. With the selection of another u function system this prob-
lem is possible to handle.
It is noted here that a particular solution zp;i of Eq. (38) is possi-

ble to obtain by numerically integrating this first-order ODE with
an arbitrary initial condition too. This way the least-squares
approximations in Eqs. (22) and (23) are unnecessary steps and
the accurate terms on the left-hand side of these equations could
be applied. Either of the two solutions is capable of calculating
the particular solution zp;i and has its own advantages. The least
squares approximations in Eqs. (22) and (23) are possible to cal-
culate except for the constant terms before starting the maneuver,
while the solution of the Sylvester Eq. (43) is possible to obtain
with a low computing effort which is beneficial during the control
of the system. On the other hand, numerically integrating Eq. (38)
to get the particular solution is simpler in terms of the required
algebraic manipulations.
Finally, the general solution of the linearized differential

Eq. (38) is the sum of the homogeneous and the particular solutions

zi ¼ zh;i þ zp;i ¼ e tAfof;i ci þ Pp;i u (44)

Now we determine the specific solution that satisfies the boundary
conditions as well, i.e., we calculate the numerical values in ci.
Since Eq. (13) was time differentiated twice to obtain Eq. (33),
the following conditions have to be satisfied in an arbitrary t� time
instant besides the boundary conditions defined in Eqs. (14)–(17)

gijt¼t� ¼ 0 (45)

_g ijt¼t� ¼ 0 (46)

The value of this arbitrary time instant is chosen as t� ¼ te;i shown
in Fig. 2. Then the derivatives in Eqs. (16) and (17) are evaluated
taking into account the form of Ei; _Ei;

__E__i; gi; _g i, and €gi defined
in Eqs. (26)–(31). The following system of equations is obtained
as an intermediate step from the boundary conditions (14)–(17),
(45), and (46):

_qijt¼ts;i
qijt¼ts;i

ð2aTE;i Ei þ aTg;i liÞjt¼te;i
ð2bTE;i Ei þ bTg;i li � 2aTE;i _E i � aTg;i _l iÞjt¼te;i
ðag;i €qi þ bg;i _q i þ cg;i qi þ Pg;i uÞjt¼te;i
ðag;i

:::
qi þ bg;i €qi þ cg;i _q i þ Pg;i uÞjt¼te;i

2

66666666666664

3

77777777777775

¼

_qjt¼ta;i�1
qjt¼ta;i�1

0

0

0

0

2

666666666664

3

777777777775

(47)

As a next step, Ei and its derivatives are substituted into Eq. (47).
Then the generalized coordinates qi, the multipliers li and their
time derivatives are substituted from the solution zi evaluated at
the appropriate time instant t ¼ ts;i or t ¼ te;i. This way terms
appear on the left side of Eq. (47) that linearly depend on the yet
unknown constant ci. Collecting the coefficients of the terms
depending on ci and those that are independent of it, the matrix
Abc;i and the vector bbc;i are formed. Finally, the boundary condi-
tions in Eq. (47) are written in the form

Abc;i ci ¼ bbc;i (48)

This linear equation is solved for the constant ci. This way, the
solution of the linear optimization problem is derived in Eq. (44).
The optimal motion of the system is determined by taking the

generalized coordinates qi from zi. The last step of the calcula-
tions is to determine the actuator forces s by substituting the cal-
culated €qi values into Eq. (5). It is also possible to add
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proportional and derivative feedback based on the computed opti-
mal motion to overcome issues due to uncertainties of the system.

3 Numerical Case Studies

Simulations were carried out to test the optimization-based pre-
dictive control algorithm detailed in Sec. 2. We took the same
3DoF planar manipulator with the same task as the authors of
Ref. [9], and another more practical passive joint manipulator
which is a simple model of a flexible serial RR robot consisting of
two flexible arms connected by two revolute joints.
In all of the simulations in this paper the numerical integrations

of the nonlinear equations of motion (1) were carried out with the
fourth-order Runge–Kutta method using a time-step of
DtRK4 ¼ 0:001 s. The reason for not using any automatic step-size
ODE solver is that in a real robotic application the clock of the
controller has a particular frequency, which is constant. The actu-
ator forces s are computed in each time-step according to Eq. (5)
with the corresponding optimal motion of qi.

3.1 The Control Problem of the 3DoF Manipulator. As it
can be seen in Fig. 3, the manipulator is modeled with three rigid
beams connected to each other with frictionless revolute joints
A1; A2, and A3. The length, the mass, and the second moment of
inertia of each beam is denoted by l , m , and J (i¼ 1, 2, 3),
respectively. These values are shown in Table 1. The end-effector
is modeled by an additional mass particle of m4 ¼ 10 kg in the
point A4. The task of the manipulator is to move along the point
A4 on the prescribed trajectory in the (x, y)-plane.
The system is equipped with two actuators whose torques are

collected in the vector s ¼ ½s1; s2�T acting in the joints A1 and A2.
The joint A3 is a passive joint where there is no actuator. Instead,
there is a torsional spring with stiffness k ¼ 10Nm=rad and a tor-
sional damping element with coefficient c ¼ 2Nms=rad.
To describe the motion, we use the independent generalized

coordinates q ¼ ½u1; u2; u3�
T
with ui denoting the angle of the

ith beam measured from the axis x. The end-effector coordinates
are rðqÞ ¼ ½xA4 ðqÞ; yA4ðqÞ�

T
. The prescribed trajectory rdðtÞ is

defined with the same ninth order polynomial functions as
in Ref. [9], generating a half circle shaped trajectory with radius
r ¼ 1:2m and center point k ¼ ½0:2; 0:4�m.

3.2 The Control Problem of the 4DoF Manipulator. This
manipulator shown in Fig. 4 is modeled similarly to the previous
3DoF one. This time four rigid beams are connected with the
joints A1 to A4. The values of the physical parameters are shown
in Table 2. This time the end-effector in the point A5 has a mass
m . The joints A2 and A4 are passive, the corresponding torsional
spring stiffness’s k , and the torsional damping coefficients c are
also listed in Table 2.
Again /i is defined as the angle of the ith beam measured

from the axis x, and the generalized coordinates are
q ¼ ½u1; u2; u3; u4�

T
. The system has two actuators s ¼ ½s1; s3�T

placed in the joints A1 and A3. The desired trajectory of the end-
effector is prescribed the same way as previously in the case of
the 3DoF robot.

3.3 Simulation Results. The following results are accom-
plished with the intuitively chosen controller parameter set shown
in Table 3. A study on the effect of these control parameters is
presented later in Sec. 3.5. For the approximations in Eqs. (22)
and (23), the following polynomial function system was used:

Fig. 3 Trajectory tracking task of a 3DoF planar manipulator

Table 1 Physical properties of the 3DoF planar manipulator

i 1 2 3 4

mi ðkgÞ 8 6 6 10
Ji ðkgm2Þ 0.45 0.2 0.2 —
li ðmÞ 0.8 0.6 0.6 —

Fig. 4 Trajectory tracking task of a 4DoF planar manipulator

Table 2 Physical properties of the 4DoF planar manipulator

i 1 2 3 4 5

mi ðkgÞ 2 2 1 1 2
Ji ðkgm2Þ 0.0417 0.0417 0.0208 0.0208 —
li ðmÞ 0.5 0.5 0.5 0.5 —
ki ðNm=radÞ — 16 — 8 —
ci ðNms=radÞ — 4 — 2 —

Table 3 Parameters of the controller

wr ð1=mÞ ws ð1=NmÞ Dta ðsÞ Dte ðsÞ

2000 1 0.005 0.4
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u ¼ ½ 1; t; t2 �T (49)

which was proven to be sufficient in our particular case study.
Including higher-order term does not provide more accurate tra-
jectory tracking.
The simulations resulted in the motion shown with a strobo-

scopic view in Figs. 5 and 6, where the desired path is depicted by
a dashed line and the realized path is shown by a continuous line.
Figures 7 and 8 show the trajectory tracking error along with the
time propagation. The actuator torques are shown in Figs. 9
and 10.

3.4 Discussion of the Results. This simulation result is com-
pared to the previous case study carried out by Blajer and
Kołodziejczyk [9]. In that paper, the authors reported that the ser-
voconstraint based controller makes the system unstable. To over-
come this problem they intuitively modified the servoconstraint
and controlled the G3 center of mass of the third arm (shown in
Fig. 3.) instead of its endpoint, which finally resulted in a stable

motion but a tradeoff appeared regarding the precision. In the
Figs. 7 and 9, the results of both solutions are benchmarked.
The trajectory tracking errors jErj (i.e., the Euclidean-norm of

Er in Eq. (6)) of both maneuvers are shown in Fig. 7. The related
performance measures are collected in Table 4. As it can be seen
from Table 4, our present predictive method achieved better accu-
racy compared to the modified servoconstraint based inverse
dynamics solution presented in Ref. [9]. The predictive method
achieved an RMS value of 17.36% and a maximum error value of
20.84% compared to the results of the modified inverse dynamics.
In our approach, the tracking error decays quickly after the final
position is reached.
The actuator torques s and s are plotted in Fig. 9. Both simu-

lations resulted in bounded torques. After the maneuver is

Fig. 5 Realized motion of the 3DoF robot applying the predic-
tive control method

Fig. 6 Realized motion of the 4DoF robot applying the predic-
tive control method

Fig. 7 Trajectory tracking errors of the 3DoF robot

Fig. 8 Trajectory tracking errors of the 4DoF robot

Fig. 9 Calculated actuator torques for the 3DoF robot during
the maneuver
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finished, the actuator torques are decaying and the final configura-
tion is stabilized. In the case of the predictive method, smaller tor-
que was enough, however, small high-frequency oscillations
appeared. Furthermore, slow torque oscillation is present in the
case of the controller in Ref. [9], while the torques settle down
immediately after arriving in the final position in our approach.
In the case of the 4DoF robot, Fig. 8 shows the trajectory track-

ing error while the actuator torques s and s are shown in Fig. 10.
The error has the values of RMSðjErjÞ ¼ 0:0031m and
maxðjErjÞ ¼ 0:0075m which is acceptable compared to the
dimensions of the manipulator.
In a real application, computational demand is a key property

that must be addressed therefore the required calculation times
have been measured and presented in Table 5 in the case of both
systems. We measured the time required to solve the linear opti-
mization problem topt and the time spent on the whole simulation
tsim which includes the solution of all optimization problems,
determination of the actuator torques, and the integration of the
equation of motion too. For each the maximum values from 10

simulation runs and the mean values �topt and �tsim of these simula-
tion runs are reported. All computations were made in MATLAB

environment on the predictive controller (PC) with an Intel Core
i5-8250U CPU. As it can be seen the simulation takes less time
than the length of the simulated time interval: tsim < Dtsim. The
condition topt < Dta holds, which is essential for real-time com-
puting. This means that the calculations required to control the
system take less time than the usage of the results. The values of
topt show that the controller is fast enough to achieve low time
delays too.

3.5 Numerical Study on the Effects of the Controller
Parameters. The predictive method presented in this paper has a
function system u and four arbitrarily chosen parameters
wr; ws; Dta, and Dte. In the simulation in Sec. 3.3, these were
selected via the trial and error method. Now we aim to give a brief
sensitivity analysis of these parameters via numerical experiments
done on the 3DoF robot.
It is possible to choose the elements of this function system u

either from polynomial or trigonometrical functions. It is impor-
tant to have a satisfactory number of elements in u. In case the
number of linearly independent functions is low, then the accu-
racy of the controller is limited. However, with too many interpo-
lating functions, the effect of numerical errors is raising, which
finally results in undesirable oscillations and an unstable
controller.
The examined parameters are collected in the second column of

Table 6. In each of the following three simulation sets I, II, and
III, only one of the examined parameters were swept and the other
parameters were fixed according to Table 3. The parameter ranges
of the simulation sets are shown in Table 6. Both edges of these
ranges shown in the third and seventh columns were determined
by the value where stability loss is experienced first (i.e., these
parameters yield an unstable controller).
Theoretically, out of the four parameters wr; ws; Dta, and Dte

only three are independent from each other. As the goal of the
method is to minimize the cost function J, it is trivial that only the
ratio of the weighing constants wr and ws effects the results. An

Fig. 10 Calculated actuator torques of the 4DoF robot during
the maneuver

Table 4 Trajectory tracking error results of the 3DoF robot

Solution RMS ðmÞ Maximum error ðmÞ

Predictive method 0.0191 0.0493
Modified inverse dynamics [9] 0.0916 0.2841

Table 5 Measured computational times of the simulations

Simulation �topt ðsÞ maxðtoptÞ ðsÞ Dta ðsÞ �tsim ðsÞ maxðtsimÞ ðsÞ Dtsim ðsÞ

3DoF manipulator 0.00091 0.00385 0.005 3.554 3.615 7
4DoF manipulator 0.00111 0.00340 0.005 4.937 4.981 7

Table 6 Modified parameters of the controller during the simulation sets

Set Examined parameter Unstable First stable simulation Increment Last stable simulation Unstable

I. wr ð1=mÞ 600 700 100 3600 3700
II. Dta ðsÞ — 0.01 0.01 0.15 0.16
III. Dte ðsÞ 0.31 0.32 0.01 0.45 0.46

Fig. 11 Trajectory tracking errors for different wr values (simu-
lation set I)
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optimization problem with the same ratio of wr=ws results in the
same q optimal motion (neglecting the effects of numerical
errors). Therefore, in this paper, the value of ws ¼ 1 ðNmÞ�1 was
chosen in every simulation, and only the sensitivity for wr is
examined.
Simulation Set I. Figure 11 shows the trajectory tracking error

for different wr values. Furthermore Figure 12 shows
maxðjErjÞ; RMSðjErjÞ; maxðjsjÞ, and RMSðjsjÞ. It is expected

that a higher value of wr results in a smaller trajectory tracking
error. The simulation set I. verifies this. The maximum torque is
minimal for the value about wr ¼ 2900m�1. Hence, there is an
optimal choice of wr.
Simulation Set II. Figures 13 and 14 show the effect of the

parameter Dte. Although the maximum of the error varies a bit,
the RMS stays almost constant on the whole stable parameter
interval. Similarly, the torques are not affected too much. The safe
choice is in the middle of the stable region.
Simulation Set III. The effect of the parameter Dta is shown in

Figs. 15–17. After an initial stagnant interval, RMSðjErjÞ is rising
slowly in Fig. 16. Therefore from the viewpoint of accuracy,
lower Dta values are better. This is due to the fact that the control-
ler algorithm uses the linearized model of the system around a cer-
tain configuration. This means that the results are acceptable only
in a small neighborhood of this configuration which is ensured by
choosing a small Dta value. The selection of Dta influences the
actuator torques s too, which is shown in Figs. 16 and 17. As it
was noted in Sec. 2.7 the validity of the linearization is not
ensured by the boundary condition equations. This results in dis-
continuous actuator forces. Figure 17 shows that higher values of
Dta results in greater jumps in the actuator forces. Therefore, small
Dta values are beneficial.
On the other hand, a lower Dta parameter value means that the

linear optimization problems are solved more frequently which
results in higher computational demand. This means that the
selection of the parameter Dta is a compromise between accuracy
and computational demand.

Fig. 13 Trajectory tracking errors for different Dte values (sim-
ulation set II)

Fig. 14 Trajectory tracking errors: maximal and RMS values
(simulation set II)

Fig. 15 Trajectory tracking errors for different Dta values (sim-
ulation set III)

Fig. 17 Actuator torques for different Dta values (simulation
set III)

Fig. 16 Trajectory tracking errors: maximal and RMS values
(simulation set III)

Fig. 12 Trajectory tracking errors: maximal and RMS values
(simulation set I)
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4 Conclusion

In this paper, we proposed a predictive approach that is spe-
cially devoted to the trajectory tracking control of underactuated
systems either with stable or unstable zero dynamics. First, we
presented the underlying idea of the method, which is rendering
an appropriately defined cost function to a minimal value. This
cost function, which incorporates the linear combination of the
trajectory tracking error and the actuator effort, is minimized
assuming a dynamically consistent motion of the underactuated
system. For determining the optimal motion, the calculus of varia-
tions is applied. We briefly introduced the equations arising from
this optimization problem and proposed an approach to obtain an
approximate solution. The algorithm is constructed in a sequence
of steps that is possible to implement in a controller of a physical
robot.
A benchmark problem of a planar manipulator from a previous

publication [9] was presented. In that paper, the authors showed
that the inverse dynamics control of that specific mechanism
results in an unstable motion. They solved the problem by modify-
ing the task of the manipulator intuitively. Regardless, whether
the prescribed task is feasible or not in the dynamical sense, the
proposed method provides a stable solution resulting in the mini-
mal cost function. Therefore it is possible to apply it to a wider
range of manipulators. Another advantage of the proposed predic-
tive approach is that it resulted in a more accurate trajectory track-
ing with lower control input in the case of the presented
benchmark problem. We note that there are approaches, e.g., Ref.
[20] capable of higher accuracy compared to our solution, but
these methods are not possible to apply in real-time.
The inverse dynamical simulations in Refs. [9] and [35–37]

assume that the number of actuators and outputs are the same. As
a benefit, this restriction does not apply to our predictive method.
This means that one is able to use the framework in the case of
more general systems. For example, it is possible to solve control
problems of manipulators that have redundant actuator set without
defining additional secondary tasks. Over-constrained tasks are
possible to solve with the same algorithm too. In case the system
has a prescribed task that is impossible to realize the algorithm
searches for the best solution according to the cost function. The
later one opens the possibility to apply this method in force recal-
culation problems like [38] and [39]. Also, the algorithm could be
generalized for inverse dynamics problems related to biome-
chanics when several muscles (actuators) are related to each DoF
[40,41].
Further problems are still under investigation as the approach

could be generalized to manage underactuated and fully actuated
systems by the same algorithm, or systems described by redundant
coordinates, such as natural coordinates [42].
Proper stability analysis should be done in future work to

ensure the stable behavior of the controller since currently the
parameters of the controller are chosen using a trial and error
method. This stability analysis is beneficial as other stable param-
eter regions could be discovered.
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