Author's personal copy

L. Bencsik, A. Zelei: Effects of human running cadence and experimental
validation of the bouncing ball model, Mech. Syst. Signal Process. (2016),
http://dx.doi.org/10.1016/j.ymssp.2016.08.001

Effects of human running cadence and experimental

validation of the bouncing ball model

Léaszlé Bencsik’ Ambrus Zeleif

June 21, 2016

Highlights:

e The bouncing ball model is applied for the analysis of dynamic effects of cadence.

Energy loss due to ground-foot collision and impact intensity are estimated.

e Based on the model, higher cadence imply lower energetic costs and lower risk

of injury.

Video-captured kinematic data of 121 amateur runners validated the model.

Statistics for step length, cadence, and walk-to-run transition speed are pro-
vided.

*MTA-BME Research Group on Dnyamics of Machines and Vehicles, Muegyetem rkp. 3, Bu-

dapest, H-1111, Hungary, bencsik@mm.bme.hu (Corresponding author)
TMTA-BME Research Group on Dnyamics of Machines and Vehicles, Muegyetem rkp. 3, Bu-

dapest, H-1111, Hungary, zelei@mm.bme.hu



Abstract

The biomechanical analysis of human running is a complex problem, because
of the large number of parameters and degrees of freedom. However, simplified
models can be constructed, which are usually characterized by some fundamental
parameters, like step length, foot strike pattern and cadence. The bouncing ball
model of human running is analysed theoretically and experimentally in this
work. It is a minimally complex dynamic model when the aim is to estimate
the energy cost of running and the tendency of ground-foot impact intensity
as a function of cadence. The model shows that cadence has a direct effect
on energy efficiency of running and ground-foot impact intensity. Furthermore,
it shows that higher cadence implies lower risk of injury and better energy
efficiency. An experimental data collection of 121 amateur runners is presented.
The experimental results validate the model and provides information about
the walk-to-run transition speed and the typical development of cadence and
grounded phase ratio in different running speed ranges.

Keywords: biomechanics of running, vertical displacement, energy efficiency, ground-

foot impact intensity, minimally complex dynamical model

1 Introduction

Professional runners’ training process involves the biomechanical analysis of their
body motion. In contrast, amateur runners usually do not focus on the development
of injury preventing and energy efficient running form. However, considerable im-
provement can be achieved by taking into consideration some basic biomechanical
rules. A lot of materials from the Internet and magazines discuss the improvement of
running style. However, these information are contradictory in many issues and they
are mostly based on personal experience and not on thorough scientific investigation.
Present work aims to contribute to the actual researches related to the understanding
of the biomechanics of human running.

Many works like [1, 2] contribute to the thorough understanding of bipedal loco-
motion, human walking and running. Several approaches and organizations [3, 4, 5]
have been developed which aim to gather and disseminate practical, science based
knowledge about healthy, injury preventing, energy efficient and natural way of run-
ning. Researchers apply different type of biomechanical models of a wide range of
complexity. A lot of complex high degree of freedom (DoF) mechanical models exist,
which are suitable for motion capturing, dynamic and kinematic analysis of the hu-
man body and running motion carefully. However these investigations are hard to use
for prediction regarding the effect of a parameter modification, due to the extremely
large number of variables. However, in the case, when a specific issue is investigated,
simplified dynamical models may be more predictive than a very complex, high DoF



model with large number of parameters. Starting from the most complex models,
e.g. [6] towards the simplest ones, we can mention some low DoF segmental models
[7, 8, 9, 10] and some spring legged models [11, 12], besides many other examples.

The most fundamental parameters, with which the running form can be character-
ized, are running speed, step length, step frequency and strike pattern besides many
other parameters. Many articles study the effect of step frequency also known as ca-
dence, which indicates the average number of steps within one-minute-long time dura-
tion. The effect of cadence c is in the focus of this work, which is considered to be one
of the most important parameters, when running form is analysed [13, 14, 15, 16, 17].
The bouncing ball model was introduced in [18], which is the simplest possible model
for the investigation of the dynamic effects of cadence. Present work details an ex-
tended theoretical and experimental study of the bouncing ball model.

One can chose from infinite number of alternatives of step length s and cadence ¢
value pairs at a certain running speed v, = sc. It is demonstrated by the experiments
explained in [13] that the optimal cadence, when the oxygen uptake (the indicator of
physical loading of the body) is minimal, and the freely chosen convenient cadence
are not the same for most of the people. Present work aims to find practical directives
that helps the choice of proper cadence value.

Present paper aims to show that cadence has a direct effect on energy efficiency
and ground-foot impact intensity by means of a simple dynamic model. The simple
but still useful estimations are based on the dynamics of a bouncing ball.

The bouncing ball model of running is validated by measurements in [18] involving
the measurement data of 41 people. Present work provides an extended experiment
with 121 people and thorough mechanical and statistical analysis of the collected
data. The effect of the ratio of the flight phase and the grounded phase is considered
in this work, in contrast to [18], where zero grounded phase was assumed. In the
present work we determined the flight phase value for which the bouncing ball model
and the reality are the closest to each other. The results of [18] are extended by the
model based estimation of the mechanical power which is absorbed by ground-foot
collision. Besides, present analysis of the measured data confirmed the typical speed
of walk-to-run transition that can be find in the literature.

2 Theoretical background

The bouncing ball model and its application for predicting energy efficiency and
ground-foot impact intensity are detailed in this section.



2.1 The bouncing ball model

The mass of the body is shrunken into a single point mass m located in the centre of
gravity (CoG) during flight phase. The model considers gravity and impulsive ground
reaction force, while other external forces, like aerodynamic forces are neglected. The
parabolic path of the CoG during flight phase is in the vertical (z-y) plane depicted
in Fig. 1 left. We assume that the parabolic path is identical in each step, for which
the necessary amount of energy is provided by the runner. The complete time period
T of each step is separated into grounded phase T, and flight phase T as the ¢-y plot
in Fig. 1 right shows. Each parabolic segment with time duration T} starts from the
same location where the previous one ends, but time T}, passes between.
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Figure 1: Idealized path of a runner’s CoG (left), time history of the CoG vertical
position.

The bouncing ball is a minimally complex model, which is suitable only for the
investigation of the effects of cadence on the ground-foot impact intensity and the
collision induced energy absorption. The model is limited to find approximate rela-
tion between cadence, vertical displacement amplitude of the CoG of the body and
mechanical power consumption of running. Many kinematic and dynamic parame-
ters are ignored, such as posture of the body during the gait cycle, strike pattern or
flexibility of muscles, tendons and footwear.

The motion of the CoG during flight phase is described by the following kinematic
equations:

x(t) = xo + Zot, (1)

. g
y(t) = yo + Yot — 5'52» (2)

where 2y and yo are the initial position coordinates while &y and ¢, are the initial
velocity components represented in a Cartesian system (see: Fig. 1). The vertical
velocity component is §(Tt) = —yo, right before point mass m collides with the
ground at the end of the flight phase t = T;. Therefore the vertical pre-impact
velocity can be expressed as the function of time duration T} of the flight phase after



time differentiating equation (2):

Yo = g1t /2. (3)

Besides, we can apply the principle of conservation of mechanical energy. From that it
is straightforward to determine the initial vertical velocity magnitude as the function
of the height h of the parabolic path, if yo = 0:

jo = \/2gh. (4)

Combining equations (3) and (4), we obtain the height h of the parabolic path as the
function of the flight phase time duration T%:

1
h = gng2' (5)

In order to make the bouncing ball model more accurate, we consider the ratio
r¢ = T¢/T of the flight phase time duration 7t and the total time duration T of a
step. Its typical value is in the range of r¢ = 0.22... 0.6 and higher values characterize
professional, elite runners [2]. We also consider that the total time period T'[s| of one
step is in direct relation with cadence ¢ which usually possesses [steps/min] unit in
the literature, thus we can write that T'= 60/c. Similarly, the time period Tt of the
flight phase and cadence has the relation: Ty = 607¢/c. Finally, the function which
gives the relation between cadence and the height of the parabolic path is written as:

B 450 gr?

h 2

(6)

The path of the CoG during flight phase is depicted in Fig. 2 in case of different ca-
dence values for flight phase ratio s = 0.67, which is originated from the experimental
results (to be explained in the subsequent sections). The height of the parabolic path
predicted by the bouncing ball model is visualized by thick solid lines in Fig. 3 for dif-
ferent flight phase ratios. The following subsection explains that the parabola height,
which is defined by (6), is directly proportional to the impact intensity Ir,. It will be
also explained later that h is in relation with the energy absorption due to ground-foot
impacts. The experimental data in Fig. 3 and its statistic analysis are also explained
in the subsequent sections.

2.2 Impact intensity and energy efficiency

Again, the relation between the parabola height h and the vertical velocity component
Jo right before the impact is given by (4). It is demonstrated by [8] and [19] that
the impact forces correlate with the kinetic energy content which is absorbed due to
the foot impact. It is called constrained motion space kinetic energy (CMSKE) in
the literature. CMSKE is directly proportional to the impulse of the contact reaction
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Figure 2: Parabolic path of CoG during flight phase for r¢ = T;/T = 0.67 (¢ =
140...190 [steps/min]).

force and also to the peak reaction force [8, 20]. The related effective mass concept for
foot impact is introduced in [21] for a one DoF model. The cited studies have shown
that foot strike intensity can be characterised by the CMSKE which depends on the
pre-impact configuration and velocity and the effective mass matrix. Summarizing,
lower vertical pre-impact velocity leads to smaller impact intensity in case of the
bouncing ball model.

Since, the motion of the bouncing ball in the vertical direction is constrained by
the ground, CMSKE is calculated from the vertical pre-impact velocity component:

B = gmif. (7)

We express ¢ from (4) and then we substitute into equation (7) which gives the
well known formula: E. = mgh. This formula shows that all of the potential energy
of level h is absorbed by ground-foot impact at the end of the flight phase. The main
message is that the impact intensity is in linear relation with the maximum vertical
displacement of the body. After that we express h from (6) as a function of cadence
and substitute into the (7) expression of E. and we gain:

~ 450m g2 r?

K
C 62

(8)

Equation (8) gives CMSKE, which is absorbed due to the impact in every foot
strike. This mechanical energy content must be provided by the muscles in each step.
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Figure 3: Theoretical and experimental results for vertical displacement h.

An average mechanical power P, is calculated that covers CMSKE in every foot strike
(see (9)). P. related to CMSKE is shown in Fig. 4 as a function of cadence ¢ for an
m = 80 kg bodyweight person in case of different flight phase ratios (r¢). The plotted
values are within the range of mechanical power which is presented in [22].
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Comparing the resulting formula (8) to CMSKE and equation (6), one can con-
clude that E. is directly proportional to h. Hence, the impact intensity Ir, is also
directly proportional to the vertical displacement h (Ipy o< h). Therefore, the mea-
sured values characterize the impact intensity in Fig. 3. The impact intensity is
interpreted by the impulse Ir, of the vertical component of the contact force F,
which is obtained by integrating it on the time duration of the impact:

Ip, :/Fydt' (10)

Finally, considering (6) and the direct proportionality of Ip, and h, we can con-
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Figure 4: Power P. related to CMSKE.

clude that the impact intensity is directly proportional to the reciprocal function of
the square of the cadence:

Ir, o i2 (11)

based on the bouncing ball model.
Equations (9) and (11) show that zero energy cost and zero impact intensity could
be achieved with infinitely high step frequency (lim. oo Pe = 0 and lim,_,oc Iy = 0).
These statements can be confirmed by extending the graphs in Fig. 3. Infinitely high
cadence is obviously not feasible in reality. The optimal stride frequency is limited by
the muscular activity which depends on the stretch-shortening cycle of the muscles,
which is not included in the model. Nevertheless, the model predicts that higher
cadence should be kept in order to achieve better energy efficiency and lower risk of

impact induced injury.

3 Experimental method

In order to prove the validity of the bouncing ball model an experiment was accom-
plished, in which the motion of 121 runners was video-captured. Every investigated
person was amateur runner at the age from 15 to 50 and from both sex. The measured
people were told to run a distance of 4km with a convenient speed on an open air
running track. Their motion was recorded on a 5m long distance by a high resolution
video camera before the end of the 4 km run. The speed of the camera was 50 frames/s
and its resolution was 1920 x 1080 pixels.

The foot landing position and the vertical elevation h (peak-to-peak) of the head
was registered based on the video frames. The vertical displacement h of the head



gives an acceptable estimation of the vertical displacement of the CoG of the body,
although reference [23] provides a comparison of methodologies and the results of
a large scale data experiment which aims to measure the vertical displacement of
runners. Besides, the time duration T between foot strikes, and flight phase time
duration Tt were determined. The measured parameters are listed in the Appendix
A in Table 2: running speed v,, step length s, cadence ¢, peak-to-peak vertical
displacement h and flight phase ratio r¢. The grounded phase ratio rg = 1 — r¢
was calculated for each runner. The mean values and standard deviation values are
collected in Table 1.

The speed v, of each person was determined by measuring the time duration
needed to take a specified distance. However an alternative possibility is to calculate
the speed based on the cadence and step length data. The difference between the
average v, and sc is 0.39% and the standard deviation is quite close to each other,
which shows the reliability of the velocity, step length and cadence measurement.

Table 1: Mean value, standard deviation and uncertainty interval (at the level of
confidence of 95%) of the measured data: running speed v, step length s, cadence c,
peak-to-peak vertical displacement of the head h, flight phase ratio r¢ and grounded
phase ratio rg.

Vg s c sc h Tt Tg

km/h m 1/min km/h mm - -
mean value 9.83 0993 1642 9.79 755 0.326 0.674
standard deviation 1.70 0.156 9.89 1.69 15.3 0.0801 0.0801
measurement uncertainty | £0.25 £0.02 +2 +0.23 £6 +£0.02 +£0.02

4 Experimental results and validation of the bounc-

ing ball model

In order to validate the bouncing ball model, the measured cadence and height data
are indicated by dots in Fig. 3 together with the theoretical curves. The measured
vertical displacement data are slightly under the measured values in [24]. The mean
value and the standard deviation of the cadence ¢ and peak-to-peak vertical displace-
ment h is plotted by solid and dashed thin lines respectively. The theoretical h(c)
curve described by equation (6) is plotted with four different flight phase ratio values
with solid thick lines. The r¢ = 1 case is quite far from the measured points, which
means that the bouncing model does not fit quantitatively to the reality without con-
sidering the grounded phase. However, qualitatively good coherence can be observed
between the measured data and the theoretical curve. A simply theoretical case is



r¢ = 0, when the flight phase and therefore the parabolic path disappears and the
bouncing ball model predicts zero vertical movement.

The mean value of the measured flight phase ratios is r¢ = 0.326 (see: Table 1) for
which the theoretical curve still does not fit very well, however it fits to the measure-
ments qualitatively. Still, the measured displacements are larger than the theoretically
predicted value. The bended leg enables vertical movement in the grounded phase.
This is the possible reason for the gap between the theoretical and experimental re-
sults. For the investigation of this phenomenon many scientific results are available,
e.g. [11, 12].

The theoretical curve and the measured results fit the best for r; = 0.674. The
root-mean-square deviation is RM Sy () = 14.2mm which is 18.8% if it is normalized
by the mean value of . The RMS deviation is represented by thick dashed lines. The
correction of the r¢ value enables us to rely on the bouncing ball model.

As a secondary result, the measurements confirmed that the investigated runners
tend to chose a larger stride length and they do not change the cadence, when they
are running in different speed as it is illustrated by Fig. 5 and Fig. 6. The measured
values are indicated by dots in both figures. The mean values of speed, cadence
and step length are shown by thin solid lines while the dashed thin lines represent the
standard deviation. Linear function was fit to the experimental results in both cadence
versus speed and step length versus speed cases. The best fit linear for cadence is
¢ =142.4 +2.215v, (c is given in [steps/min] and v, is given in [km/h] unit) and the
RMS deviation is RM S,y = 9.1469 steps/min (the RMS deviation normalized by the
mean value of ¢ is 5.57%). The best fit linear for step length is s = 0.153 + 0.0854v,,
(s is given in [m]) and the RMS deviation is RM S,(,) = 0.0571 m (the RMS deviation
normalized by the mean value of s is 5.75%). The best fit lines show that much higher
steepness characterizes step length than cadence. The correlation between measured
speed and cadence values is p. = 0.3810, but a much higher value, ps = 0.9307
characterizes the speed and step length pair. To sum up, the running speed is mainly
set by changing the step length and not by the cadence in case of the examined people.

Fig. 7 shows the relation of speed and the grounded phase ratio. The experi-
mental data represented by black dots show hyperbolic shape. The best fit hyper-
bolic function was find in the form: r, = 3.08/v, + 0.351. The RMS deviation
RM S,y = 0.0583 is quite small, which is 8.65% using normalization by the mean
value of 75. The best fit hyperbolic curve is plotted by solid thick curve, and the RMS
deviation is shown by the thick dashed lines. The mean values and the standard devi-
ations of the experimental data are shown by solid and dashed thin lines respectively.
The walk-to-run transition point (W-R) was defined using the extrapolation of the
best fit hyperbolic curve. The W-R point, where the grounded phase ratio becomes
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Figure 5: Cadence (c¢) versus running speed (v, ): measured data and the best fit line.
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re = 3.08/vy + 0.351 = 1 is marked by the middle larger square. Here the speed is
4.74km/h, while the smaller squared markers represent the RMS values at 4.35km/h
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and 5.21km/h speed, when ry & RM S, = 1. This result is close to the literature

results about walk-to-run transition speed [25].
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Figure 7: Grounded phase ratio (rg) versus running speed (v,): measured data and
the best fit hyperbole.

5 Conclusions

The bouncing ball model was proposed, which is a minimally complex dynamic model
when cadence and its effect on ground-foot impact intensity and energy efficiency of
running are studied. The model exploits that the centre of gravity of the body moves
on a parabolic path during the flight phase and the height of this parabolic path
is determined by the cadence. The otherwise very complex multibody model of the
human body was simplified to a single point mass, therefore the model has substantial
limitations, e.g. the posture of the body cannot be involved into the analysis and the
upper limit of physically feasible cadence value cannot be estimated.

According to the model, the elevation of the centre of gravity is directly propor-
tional to the impact intensity, characterized by the impulse of the ground-foot contact
force. The model indicates that the energy cost of running is a reciprocal function of
cadence and the ground-foot impact intensity is a reciprocal function of the square
of cadence. Summarizing, the higher the cadence is, the smaller the impact intensity
and the energy cost are.

12



A large scale experimental data was collected in order to confirm the validity of
the bouncing ball model. The kinematic data of 121 runners were collected by means
of video capturing during long distance running. The flight phase ratio ry = 0.674
was found when the theoretical curve for the vertical displacement as the function
of cadence fits the best to the measurement results. The normalized root-mean-
square deviation is 18.8% which shows a moderately good fit of the measured data
and theoretical curve. As a seccondary result, the measurements showed that the
correlation of step length and running speed is much larger than the correlation of
cadence and speed. It means that people tends to change their step length rather
than cadence when the running speed is varied. The experiments also showed that the
grounded phase ratio is a hyperbolic function of speed. Furthermore, the estimated
value of the walk-to-run transition speed matches with the available literature results.

The model verified that higher cadence is preferable, when the development of

energy efficient and injury preventing running form is in focus.
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Appendix A

Table 2: Measured data of 121 people: running speed v,, step length s, cadence c,

vertical displacement h.
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