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ABSTRACT
The use of servo-constraints, or program definition in the task-space is quite common in trajectory
tracking control of manipulators. The task definition is straight forward in case of fully actuated
systems. Several algorithms providing the desired motion of the whole system can be found in the
related literature. An originally fully actuated system can be handled as underactuated when some
of the actuators reach their torque limits. In case of underactuated systems, the task is also given.
Based on the task the controlled and uncontrolled directions can be separated. The uncontrolled
motion, also referred as the internal dynamics of the system, has to be stable to ensure the stability
of the whole system. Thus, the stability of the internal dynamics depend on the output represented
by the servo-constraint. It means that in order to get a realizable task, the behaviour of the internal
dynamics should be considered, and in many cases the original task has to be slightly modified.
This paper presents a novel approach, when the servo-constraints are used for handling actuator
saturation and not simply modified, but also switched periodically in time. It will be shown that
the application of periodic servo-constraints is decreasing the trajectory tracking error in case of
actuator saturation.

1 INTRODUCTION
Working with the control of underactuated mechanical systems can be inspired by several practi-
cal and theoretical problems. Beyond the classical underactuated problems, like cranes, flexible
structures and aerial vehicles, the actuator saturation also can be mentioned as a characteristic un-
deractuation because the saturated actuator cannot produce the required force or torque so it can
be considered as a temporary underactuation [1].

Because of the wide variety of underactuated systems there is no general recipe for the control of
them, but some metrics can be found - like the relative degree or the flatness of the system - to
categorize them and find an appropriate control algorithm based on that categories. The mechan-
ical modelling of underactuated systems as special type of complex multibody systems are well
developed [2, 3]. Most of these rigid body dynamics based approaches use constraint equations in
the mathematical model. On one hand, geometric or kinematic constraints give the relation of the
dependent descriptor coordinates. Additional geometric constraints defined by the user are respon-
sible for the task definition and therefore they are called servo-constraints. While the geometric
or kinematic constraints are naturally satisfied, in some cases the servo-constrains are cannot be
fulfilled by different reasons. Several publications [3, 4] deal with the modification of the original
servo-constraints in order to get a realizable task. An other possible approach is the periodic vari-
ation of the servo-constraint. For underactuated robots the usefulness of the method was proven in
[5].

In case of industrial robotic applications, when the trajectory design was careful and operating con-
ditions are well defined in most cases the actuator saturation can be avoided, but always there will
be a trade-off between selecting saturation preventing operational conditions and productivity. The
most used practical technique to avoid the unwanted effect of actuator saturation is the so-called
anti-windup scheme [6], when the original controller is subjected to a compensator which takes
into account the difference between the saturated and ideal control inputs. In [1], the saturation of



actuator(s) are handled as a temporary reduction of the number of available independent control
inputs. In that work during the saturation the number of prescribed servo-constraints is reduced in
order to get a realizable task. In contrast, present paper introduces the further generalization of the
periodic variation of servo-constraints [5] in case of actuator saturation, so the servo-constraints are
systematically switched during actuator saturation to redistribute the load on the actuators. When
the actuators are not saturated, a general computed torque control scheme is applied to realize the
desired motion.

2 PROBLEM FORMULATION
Most of the controlled mechanical systems possess complex multibody structure of which the
mathematical modeling is convenient by using non-minimum set of descriptor coordinates. In
such case, the general form of the equation of motion is written as

Mq̈+ΦΦΦ
T
q λλλ = Q+Hu , (1)

φφφ g = 0 , (2)

where q ∈ Rk are dependent coordinates, M(q) ∈ Rk×k is the mass matrix, ΦΦΦq(q, t) ∈ Rm×k is
the Jacobian of geometric constraints φφφ g(q, t) ∈ Rm and λλλ ∈ Rm is the vector of the Lagrangian
multipliers which is related to the magnitude of the constraint forces and troques. Matrix H(q) ∈
Rk×l is the control input matrix and u ∈ Rl contains the actuating forces and torques. In addition,
Q(q, q̇, t) ∈ Rk denotes the remaining generalized forces.

The equation of motion (1) with the geometric constraints (2) forms a differential algebraic equa-
tion (DAE) with differentiation index 3. Using the method of Lagrange multipliers [7] the con-
straints are considered on the level of acceleration:

φ̈φφ g = ΦΦΦqq̈+ Φ̇ΦΦqq̇+ φ̇φφ g,t, (3)

where

ΦΦΦq =
∂φφφ g

∂q
, φφφ g,t =

∂φφφ g

∂ t
.

With the above index reduction technique the original DAE problem can be solved as an ordinary
differential equation (ODE).

2.1 Task definition by means of servo-constraints
In fully actuated case the l number of independent actuators is equal to the n = k−m degrees of
freedom. In case of actuator saturation the l number of independent actuators becomes less than
n. In such case the system is called underactuated.

The required motion is specified by the so-called servo-constraints [11, 2] φφφ s(q, t) ∈ Rl . The
additional constraint equations

φφφ s = 0 , (4)

have a mathematical form similar to the geometric constraints. With the loss of generality we
suppose that the relative degree for all outputs are r = 2 [13]. If this condition is not satisfied by
the servo-constraints, further generalization is possible to be carried out. The physical meaning
of r = 2 is that the input forces or torques have a direct effect on the system in the controlled
directions. Mathematically it means that the differentiation index is still 3 when the system (1)
and (2) are subjected to the servo-constraint equation (4). Thus using the method of Lagrange
multipliers the servo-constraints also can be considered on the level of acceleration as

φ̈φφ s = Gqq̈+ Ġqq̇+ ċ, (5)



where

Gq =
∂φφφ s

∂q
, c =

∂φφφ s

∂ t
,

similarly to the geometric ones. In case of the servo-constraints the control input u plays a similar
role like the Lagrangian multipliers of the geometric constraints.

2.2 Computed torque control method
During the control design of mechanical systems it is often expedient to calculate the inverse dy-
namics of a system with respect to the desired task. The solution of the inverse dynamics can be
seen as a feedforward control action that realizes the desired motion without considering any dis-
turbances and modelling errors. This approach is frequently referred in the literature as computed
torque control method. In case of underactuated systems the inverse dynamics is not well defined.
Some degrees-of-freedoms cannot directly be controlled, and the corresponding generalized co-
ordinates depend on the system dynamics only. Still, the input forces can be computed from the
following equation constructed by using equations (1), (3) and (5) [4]. M ΦΦΦ

T
q −H

ΦΦΦq 0 0
Gq 0 0

 q̈
λλλ

u

=

 Q
−Φ̇ΦΦqq̇− φ̇φφ g,t

−Ġqq̇− ċ−KDφ̇φφ s−KPφφφ s

 , (6)

were the control gains KP and KD are the proportional and derivative gains have similar role like
the parameters of the Baumgarte stabilization technique [12] which is quite common for stabilizing
geometric constraints in multibody simulations. We use (6) in the case of the original fully actuated
system and also in the underactuated case, when some of the actuators temporarily saturate.

2.3 The periodic servo-constraints
As it is presented in the previous section the task of the manipulator can be formulated as additional
constraints called servo-constraints. Many techniques can be found in the literature to solve the
resulting DAE problem. In reference [4] and in [2] the origianal task thus the servo-constraints
are slightly modified in order to stabilize the internal dynamics or get a feasible problem. This
modification makes the stable control possible. Obviuously, this modification has drawbacks and
it results larger, but still acceptable, tracking errors. Reference [5] introduces a different approach
when the servo-constraints are switched periodically in time. In one period the servo-constraints
are responsible for realizing the desired motion, while in the subsequent, typically shorter period
a different set of servo-constraints are formalized to stabilize the internal dynamics.

2.4 The issue of actuator saturation and frame algorithm
We focus on fully actuated manipulators with n degrees of freedom and l = n actuators performing
a strictly l = n dimensional task. If an actuator reaches its torque limit than it will not be able to
provide the required force. As a consequence, if m number of actuators saturate than the maximum
dimension of the independently feasible task is reduced to l = n−m.

The proposed method of periodic servo-constraints is divided into two main parts. In the case,
when the actuators are not saturated, a simple computed torque control scheme is applied. Dur-
ing saturation new set(s) of servo-constraints are introduced and they are switched in time. The
periodic servo-constraints requires a switching pattern introduced in the section 3. In order to de-
termine the new set(s) of servo-constraints the reduced control input matrix Ĥ should be derived.
For the partitioning of the servo-constraints the relative degree analysis [13] gives us a hand. The
relative degree ri j should be analysed between the ith saturated actuators (i = 1,2...m) and the jth

servo-constraints ( j = 1,2...n). If ri j > 2, then the ith saturated actuator has not effect on jth con-
straint on the acceleration level. These servo-constraints are involved in every new sets in their
original form. If ri j = 2, then the saturated actuator has direct effect on the jth servo-constraint. In
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Figure 1. Two-link manipulator model

this case we have to find an independent actuator among the g = 1,2...n−m unsaturated actuators
which has also affect on the jth servo-constraint, so that rg j = 2. Hereupon the servo-constraints
corresponding to gth actuator are switched in order to achieve that l = n−m number of servo-
constraints are used simultaneously. The proper selection of the switching pattern guarantee the
minimization of the servo-constraints’ violations. Section 3 will introduce the simplest example on
which the idea of periodic servo-constraint can be used to reduce the effect of actuator saturation.

3 SIMULATION CASE STUDY
In order to illustrate the applicability of the presented approach a simulation study was accom-
plished on a two-link manipulator shown in Fig. 1. The corresponding members of the equation of
motion (1) of the manipulator was derived from the Euler-Lagrange formula using the minimum
set of generalized coordinates q = [ϑ1,ϑ2]

T (see Fig 1). The mass matrix is

M =

[
J0 + JCM2 +

1
4 l2

2m2 + l1l2 cosϑ2 JCM2 +
1
2 l1l2m2 cosϑ2

JCM2 +
1
2 l1l2m2 cosϑ2 JCM2 +

1
4 m2l2

2

]
. (7)

The coefficient matrix of the actuator forces u = [τ1,τ2]
T can be derived from the virtual power of

the actuators

H =

[
1 0
0 1

]
, (8)

while the remaining forces are

Q =

[
l1l2m2 sinϑ2(ϑ̇1− 1

2 ϑ̇2)ϑ̇2
1
2 l1l2m2 sinϑ2ϑ̇ 2

1

]
. (9)

The links are supposed as homogeneous rigid bodies, and the physical parameters can be found
in Table 1. The manipulator was placed perpendicular to the gravity field, like a typical SCARA
robot application, thus the effect of gravity was not present.

The tool center point (TCP) of the manipulator was commanded to follow the desired trajectory.
Using the idea of servo-constraints the task was written as

φs =

[
φs1
φs2

]
=

[
l1 cos(ϑ1)+ l2 cos(ϑ1 +ϑ2)− xD

l1 sin(ϑ1)+ l2 sin(ϑ1 +ϑ2)− yD

]
, (10)

where xD, yD describe the desired TCP position on horizontal plane. In order to understand the
operation of the proposed controller only the shoulder actuator can saturate. During saturation the
input matrix is reducing as Ĥ = [0 1]T in the inverse dynamics calculation, and the saturated
actuator force is applied as a constant force appearing in Q.



Table 1. MECHANICAL PARAMETERS

Description Parameter Value
Mass of the first arm m1 0.2 [kg]

Mass of the second arm m2 0.2 [kg]
Length of the first arm l1 0.4 [m]

Length of the second arm l2 0.4 [m]
Inertia of the first arm JO 0.00107 [kgm2]

Inertia of the second arm JCM2 0.0027 [kgm2]

3.1 The tuning of the pattern of the periodic servo-constraints
The key question of the method is the switching pattern of the servo-constraints. This switching
rule can be derived in several ways. The following method fucuses on the previously introduced
2 degrees of freedom example. During the actuator saturation the unsaturated actuator has to
produce different accelerations in different directions, while the effect and necessity of the actuator
on the different servo-constraint directions is not equal. Thus, based on the ratio of necessity we
can determine a pattern for the switched servo-constraints. In order to approximate this ratio
the massmatrix M and Ĥ should be transformed into the space of servo-constraints. The time
differentiation of the servo-constraint equations gives the following formulae on the velocity level:

φ̇φφ s = Gqq̇+ c, (11)

where Gq playes the role of a Jacobian matrix, thus the massmatrix in the space of the servo-
constraints is

W = G−T
q MG−1

q . (12)

The virtual power of the available actuators can be written as,

δP = δ φ̇φφ
T
s G−T

q Ĥû , (13)

from where control input matrix in the space of the servo-constraints is

B = G−T
q Ĥ . (14)

If the TCP is controlled by servo-constraints, the above mentioned transformation has a same result
as the operational space control [10]. A possible approximation of the effect and necessity of the
remaining actuators can be estimated by dividing the desired inertial force w by each columns of
the operational space control input matrix B

zi = wi/B1,i ; i = 1,2...n . (15)

The elements in z will show the influence of the remaining independent actuators on the servo-
constraints. The desired inertial force w is calculated by the product of the effective (operational
space) mass matrix W and desired servo-constraint accelerations ċ as:

w = Wċ. (16)

The remaining centrifugal and Coriolis forces are neglected in this approximation. The periodic
pattern is constructed along the trajectory based on ratio z.

In case of the presented example only one actuator can saturate, so m = 1 and the remaining
actuator has effect on the both servo-constraints. Thus two servo-constraint are switched, while
the matrix B has only one column. The periodic pattern can be constructed before the simulation
based on the desired quantities.
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Figure 2. Switching pattern of servo-constraints

Figure 3. The desired value of the coordinates in time

In the present example z ∈ R2. Based on that we split the time periods into two parts when for
i time steps the first servo-constraints is valid and for k time steps the second servo-constraint is
valid. The ratio of i and k are directly proportional with the ratio of the elements of z:

i = int(|z1|
p

|z1|+ |z2|
), (17)

where p = i+ k is size of the time period. We calculate this ratio for each time period along the
desired trajectory, thus i and k can be different in every period. Function γ realizes the periodic
switching pattern, see Fig. 2. The periodic servo constraint is φ̂s = γ φs1 +(1− γ)φs2. In the case
of the two-link arm x position of TCP was controlled for i time steps and y position was controlled
for k time steps.

3.2 Numerical results
In the numerical simulations the manipulator had to follow an arc of a circle shown in Fig. 3. The
whole desired path in the plane, the initial configuration (marked with 0) and the end configuration
(marked with 1) are presented on Fig. 4. As it is mentioned, the actuator in the first joint can satu-
rate at the value of |τ1max|= 0.6[Nm] and the torque limit of the second actuator is not considered.
The proportional and the derivative gains in (6) was set to KP = 40 Kd = 20 respectively in every
simulation scenarios.

In the first simulation scenario the effect of actuator saturation is not handled by periodic switching
of the servo-constraints. The control torques was calculated based on equation (6) and Fig. 5
clearly shows that the first actuator is saturated. Fig. 6 presents that during the saturation the
servo-constraint violation was significantly increased.



Figure 4. The desired path and the initial and end configuration

Figure 5. Simulation results - actuator torques



Figure 6. Simulation results - servo-constraints

In the second simulation scenario the proposed control algorithm were implemented on test exam-
ple. In the initialization phase the whole path was divided into time periods. Each time period built
up by p samplings and function γ was constructed based on equation (17). The number of sam-
plings is p = 20. During the actuator saturation the periodic servo-constraints generate a control
force as it presented in Fig. 5. The corresponding violations of the servo-constraints are visible in
Fig. 6. Simulation results clearly show that the violation of the servo-constraints are significantly
smaller. Besides, the system gets out from the saturation a little bit faster, as Fig. 5 shows. As a
marginal drawback, the computed torques has a periodic-like oscillation, which can be provided
by an actuator with average dynamical properties.

In order to make a quantitative comparison, the norm of the servo-constraint violation was plotted
on the same chart on Fig. 7. The maximum error was |φs| ≈ 45[mm] when the actuator saturation
is not handled. When the periodic servo-constraints were used, the maximum error of the servo-
constraints was only |φs| ≈ 30[mm]. To get a comparable metric the Root-mean square (RMS)
value of the norm of the servo-constraints was computed as:

φ̄s =

√
1
n

n

∑
i=1
|φφφ s|2(ti). (18)

When the original servo-constraints was used the RMS value was φ̄s = 0.0174 however for periodic
servo-constraints the RMS value decreased to φ̄s = 0.0122. Consequently the proposed control
algorithm was able to reduce the effect of actuator saturation with approximately 30%.

4 CONCLUSIONS
In this paper the extension of periodically switched servo-constraint was proposed for the control
of saturated systems. The proposed controller was tested on a two-link manipulator case study
application. The results showed that with the application of the introduced method the viola-
tion of servo-constraints was much more acceptable during the actuator saturation. Thus we can
conclude that with the application of periodically switched servo-constraints the precision of tra-
jectory tracking can be enhanced during actuator saturation. An optimal swithcing pattern was
generated for the two link case study example. However the optimalization method for general
case is possible within a further research.



Figure 7. Norm of the servo-constraints
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