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Flutter instability is a typical aerodynamic vibration phenomenon of slender elastic bridges.

The sensitivity for flutter can be predicted by determining the so-called flutter derivatives from

the small-scale model of the bridge. This work investigates an elastic supported two d.o.f.

bridge section model which can move vertically and rotate around a horizontal axis. These

movements correspond to the bending and torsional vibrations of the bridge. The linearised

equations of motion is assumed to be known, thus, the aerodynamic forces can be determined

from wind-tunnel experiments. These forces are assumed as linear functions of the generalised

coordinates and their time-derivatives. The coefficients of the linear terms called also as flutter

derivatives depend on the flow (wind) velocity. These coefficients are to be determined by the

Monte Carlo method using the measured acceleration data. The obtained results are compared

to the results determined by curve-fitting on the acceleration time-signal. The original (struc-

tural) damping and stiffness matrices can be modified by using the flutter derivatives since the

equations of motion form a homogeneous linear differential equation system. Thus, we get

effective damping and stiffness matrices. Flutter instability occurs when a harmonic solution

satisfies the equations. The critical flow velocity which the system loses its stability at is also

compared to the stability boundary of the analytical model based on Theodorsen’s approach.

1. Introduction

Slender, flexibly supported structures subjected by aerodynamic effects can lose their stability

through vibrations called flutter which is a self-excited vibration.1 The phenomenon can be inves-

tigated on a simplified model, a rigid section of it supported by springs which corresponds to the

elasticity of the whole structure. The aerodynamic forces depending on the position and the veloc-

ity of the body are quite complicated and there exists analytical expressions in closed forms only

for special cases such quasi-steady potential flow or unsteady potential flow with undamped vibra-

tion.2 Therefore, the so-called flutter derivatives are to be determined from experiments3 or numerical

simulations.4, 5

The experiments were carried out in Theodore von Kármán Wind Tunnel Laboratory at the

Department of Fluid Mechanics, BUTE. The experimental rig contained a flat rectangular bridge

section supported by 8 springs of stiffness k at its corners. Its width prependicular to the flow of

ICSV21, Beijing, China, July 13-17, 2014 1



21st International Congress on Sound and Vibration (ICSV21), Beijing, China, 13-17 July 2014

density ρ was l. The body was assumed to have only two degree-of-freedom (DoF) in the plane of its

cross-section parallel to the flow and the lateral motion was negligible.

Uh
α

B

Bk

m, J2k 2k

2k 2k

Figure 1: Mechanical model of the bridge section.

The two DoF mechanical model can be seen in Fig. 1. The body of the bridge section was

modelled as a rigid bar of length B, mass m with centre of gravity in the middle. The mass moment

of inertia w.r.t. the centre of gravity is denoted by J . The supporting springs are located symmetrically

in a distance Bk from each other. The values of the mentioned parameters are listed in Table 1.

Table 1: Parameter values of the bridge section model.

m = 30 kg ρ = 1.25 kg/m3

J = 1.31 kgm2 k = 908.7 N/m

B = 0.6 m Bk = 0.5 m

l = 1.62 m

2. Analytical studies

The generalised coordinates representing the two degrees of freedom are the vertical displace-

ment h of the C.o.G from the equilibrium and the angle α between the horizontal plane and the plane

of the bridge section. That is, q1 = h and q2 = α and the body is in equilibrium for h = α = 0.

The equations of motion has the following form:

Mq̈+Cmechq̇+Kmechq = Qflow, (1)

where

M =

[

m 0
0 J

]

, Cmech =

[

ch 0
0 cα

]

, Kmech =

[

8k 0
0 2B2

kk

]

,

and Qflow is the generalised force depending on the flow. The elements ch and cα of the damping

matrix Cmech were determined from measurement data obtained for the case U = 0.

It can be seen that the vertical and rotational vibrations are decoupled if there is no exciting

force. The undamped natural angular frequencies are

ω1 =

√

8k

m
and ω2 =

√

2B2

kk

J
≡

Bk

2ri
ω1 with ri =

√

J

m
. (2)

2.1 Quasi-steady potential flow

As it was shown in6 the generalised force has the form

Qflow =
ρ

2
lB · 2π

[

−Uḣ+ U2α

−B
4
Uḣ+ B

4
U2α

]

(3)

assuming quasi-steady potential flow of velocity U and small displacements.
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Introducing dimensionless quantities like η = 4h/B and τ = tω1 we can rewrite Eq. (1) as

follows:

q′′ +

[

2ζ1 0
0 2ζ2ε

]

q′ +

[

1 0
0 ε2

]

q = u

[

−4µ 0
−4ϑ 0

]

q′ + u2

[

0 16µ
0 16ϑ

]

q, (4)

where q = (η, α), the prime (′) denotes d/dτ , u is the dimensionless flow velocity and

ζ1 =
ch

2
√
8mk

, ζ2 =
cα

2
√

2JB2

kk
, ε =

ω2

ω1

≡
Bk

2ri
, u =

U

Bω1

,

µ =
ρlB2π

4m
, ϑ =

ρlB4π

64J
≡ µβ2, β =

B

4ri
.

Table 2 concludes the values of the introduced parameters for the investigated model.

Table 2: Derived parameter values.

ri ω1 ω2 ε µ ϑ β
[m] [rad/s] [rad/s] [-] [-] [-] [-]

0.209 15.6 18.6 1.20 0.0191 0.00983 0.718

Eq. (4) is a linear system and its stability can be investigated according to the Routh–Hurwitz

criterion. The characteristic equation contains a fourth order polynomial:

λ4 + a3λ
3 + a2λ

2 + a1λ+ a0 = 0 (5)

with the coefficients

a3 = 2(ζ2ε+ ζ1 + µu), (6)

a2 = 1 + ε2 − 16ϑu2 + 4(ζ1 + 2µu)ζ2ε, (7)

a1 = 2
(

ζ2ε+ (ζ1 + 2µu)ε2 − 16ϑu2ζ1
)

, (8)

a0 = ε2 − 16ϑu2. (9)

Finally, we obtain that the following two inequalities determine the stability:

a0 > 0 ∧ a3(a1a2 − a3a0)− a2
1
> 0.

The first condition yields a critical flow velocity ucr,0 which depends on the ratio of the natural fre-

quencies linearly:

u < ucr,0 =
ε

4β
√
µ
.

At this critical value λ = 0 which means static stability loss.

However, the other condition can be solved only numerically and one can show that the critical

flow velocity can be smaller than ucr,0 only if ε > 1. At this boundary λ = iω̃ that is the loss of

stability happens via vibrations called as flutter.

2.2 Unsteady potential flow

Though, the unsteady model is expected to be more accurate than the quasi-steady one, it cannot

be solved analytically for arbitrary case. However, the coefficients of the flow forces can be derived

assuming harmonic motions (i.e. critical case) according to Theodorsen’s approach:2

Qflow =
ρlBπ

4
U

[

H1
B
4
H2

B
4
A1

B2

16
A2

]

q̇+
ρlπ

4
U2

[

H4
B
4
H3

B
4
A4

B2

16
A3

]

q, (10)
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where

H1 = A1 = −4F (k), (11)

H2 − 8 = A2 = 4

(

−1 + F (k) +
2G(k)

k

)

, (12)

H4 − 4k2 = A4 = 8kG(k), (13)

A3 − 2k2 = H3 = −4A1 − A4. (14)

The approximation of the functions F (k) and G(k) was given by Starossek:7

F (k) ≈ 1−
0.165k2

k2 + 0.04552
−

0.335k2

k2 + 0.09
, (15)

G(k) ≈ −
0.165 · 0.0455k
k2 + 0.04552

−
0.335 · 0.3k
k2 + 0.09

, (16)

where k = Bω/2U , the dimensionless frequency of oscillation.

Thus, the dimensionless form of the equations of motion is as follows

q′′ +

[

2ζ1 0
0 2ζ2ε

]

q′ +

[

1 0
0 ε2

]

q = u

[

µH1 µH2

ϑA1 ϑA2

]

q′ + u2

[

µH4 µH3

ϑA4 ϑA3

]

q, (17)

however, this is true only for harmonic solutions. Similarly, only the pure imaginary roots (λ = iω̃)

of the corresponding characteristic polynomial can be accepted.1 This yields two equations — one

for the imaginary part and one for the real part:

−a3(ω̃, u)ω̃
2 + a1(ω̃, u) = 0, (18)

ω̃4 − a2(ω̃, u)ω̃
2 + a0(ω̃, u) = 0. (19)

Fixing all of the parameters but u, ε and ω̃ the stability boundary can be found numerically as a

parametric curve (ε(ω̃), ucr(ω̃)).

3. Experimental investigations

During the wind-tunnel experiments the acceleration signals were recorded at the four corners

of the bridge section for two typical initial conditions and five different flow velocities as listed in

Tables 3 and 4.

Table 3: Approximate initial conditions (IC).

h(0) α(0) ḣ(0) α̇(0)
disp: h0 0 0 0

rot: 0 α0 0 0

Table 4: Flow velocities.

i: 1 2 3 4 5

Ui [m/s]: 0 1.9 5 7.9 10.2

The values of ḧ(t) and α̈(t) were determined from the four acceleration signals. The values of

h(t) and α(t) were obtained by filtering and integrating the acceleration values. The time-plots of

these filtered data for U = 0 and U = 10.2 m/s can be seen in Figs. 2 and 3.

In the case U = 10.2, the displacement h(t) was still damped, however, the angular displace-

ment α(t) was not which showed near-critical state. That is ucr ≈ 10.2/.6/15.6 = 1.09 at ε ≈ 1.20.

1Here, ω̃ = ω/ω1 is another dimensionless form of the oscillation frequency in the dimensionless time-domain τ .
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(b) Initial condition: rot.

Figure 2: Time-plots for U = 0.
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Figure 3: Time-plots for U = 10.2 m/s (initial condition disp).

3.1 Least Square Method

Assuming small displacements the effects of the flow forces can be included into the damping

and stiffness matrices of the system resulting so-called effective damping and stiffness matrices:

Mq̈+Ceff (U)q̇+Keff (U)q = 0. (20)

Both the solution q(t) of such linear system and its acceleration q̈(t) have the form:

q̈(t) = DE(t) ≡
[

d11 d12 d21 d22

]











eβ1t cos γ1t
eβ1t sin γ1t
eβ2t cos γ2t
eβ2t sin γ2t











. (21)

The values of βi and γi can be approximated from the FFT analysis of the signals. These

approximations can be later improved using an iterative method. Now, we can determine the elements

of matrix D using the Least Square Method:

R =
∑

i

(DE(ti)− q̈(ti))
2 ≡ (DÊ− Q̂)(DÊ− Q̂)⊤ → min! (22)

where

Q̂ = [qi(tj)] and Ê = [E[i](tj)].
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Thus, the partial derivatives w.r.t. the elements of D yield

(DÊ− Q̂)Ê⊤ = 0 ⇒ D = Q̂Ê⊤(ÊÊ⊤)−1. (23)

At this point we can modify the values of the damped natural angular frequencies γ1 or γ2
(depending on whether it is a disp or a rot signal) and try to find another matrix D for an even smaller

residual vector R. Table 5 shows the values of the obtained γi and βi and the relative damping

calculated from them.

Table 5: Natural frequencies and relative dampings for U = 0.

i γi βi ωi =
√

γ2
i + β2

i ζi = −βi/ωi

1: 15.6 -0.0526 15.6 .00339

2: 18.6 -0.4170 18.6 ≈ 1.2ω1 .02240

One can easily show that the relation between the displacement, velocity and acceleration is the

following:

q̈(t) = DE(t), q̇(t) = DJ−1E(t), q(t) = DJ−2E(t), (24)

where

J =

[

J1 0

0 J2

]

and Ji =

[

βi −γi
γi βi

]

.

Substituting these formulas into Eq. (20) we get:

(MD+CeffDJ−1 +KeffDJ−2)E(t) = 0. (25)

Since the vector E(t) can be arbitrary depending on the time, the matrix expression in the

parenthesis must be zero. Expressing the system matrices to be found, we obtain:

[

Ceff Keff

]

= −MD

[

DJ−1

DJ−2

]−1

, (26)

and the matrices containing the flutter derivatives:

Cflow = Cmech −Ceff and Kflow = Kmech −Keff . (27)

3.2 The Monte Carlo Method

The coefficient matrices of the flow forces given in Eq. (27) can be determined directly from

the linear equation of motion if we know the values of q, q̇ and q̈ in four different time instants. The

matrices M, Cmech and Kmech are also assumed to be known. That is, Eq. (1) at t = ti has the form

Mq̈(ti) +Cmechq̇(ti) +Kmechq(ti) = Cflowq̇(ti) +Kflowq(ti). (28)

It can be rewritten in the form of a linear algebraic equation system for the time instants t1, t2,
t3 and t4:

L ≡
[

l(t1) l(t2) l(t3) l(t4)
]

=
[

Cflow Kflow

]

A, (29)

where

l(ti) = Mq̈(ti) +Cmechq̇(ti) +Kmechq(ti), A =

[

q̇(t1) q̇(t2) q̇(t3) q̇(t4)
q(t1) q(t2) q(t3) q(t4)

]

. (30)

If matrix A is regular then matrices Cflow and Kflow can be determined. Though, choosing the

time instants randomly it can happen that matrix A is not invertable or the elements of the matrices

determined again and again can be very different. However, doing this procedure a lot of time, one

can do statistics on the obtained results and take the average and standard deviation of the generated

data.

ICSV21, Beijing, China, July 13-17, 2014 6



21st International Congress on Sound and Vibration (ICSV21), Beijing, China, 13-17 July 2014

4. Results

The critical flow velocity which the system loses its stability at depending on the natural fre-

quency ratio is shown in Fig. 4. The stable domain in the plane of ε, u is larger for the unsteady model

than the domain for the quasi-steady case. The blue star belongs to the experimentally detected crit-

ical case which is close to the quasi-steady stability boundary. This seems to question the validity of

the unsteady model, however, more experiments are needed to be able to validate the critical points at

different natural frequency ratios.
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Figure 4: Stability charts of the quasi-steady and unsteady models.

5. Conclusions

In this paper the two DoF planar motions of a bridge section was investigated. Assuming a

quasi-steady potential flow the equations of motion can be derived for small vibrations and Routh –

Hurwitz criterion yields the implicit expressions of the stability boundaries both for the cases of static

and dynamic stability loss. Using the model of unsteady potential flow in the case of critical non-

decaying vibrations a modified boundary curve was obtained. Experiments were also done at various

wind speed and a critical value was detected which the vibrations do not decay above.

A modified experimental rig is needed that makes possible to set up other natural frequency ra-

tios (ε), e.g. by changing the distance Bk of the supporting springs. Using such modified experimental

setup the other points of the stability boundary can be checked, as well.
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