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Abstract

A simple mechanical model for the lateral and yaw motion of a vehicle is presented while taking

into account rolling constraints. The governing equations are derived by utilizing the Appellian

framework. Analytical and numerical bifurcation analysis is performed while utilizing a PD con-

troller. The results provide insight into the local and global stability of forward and reverse motion

of automated passenger vehicles and harvesters.
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1. Introduction

Automated driving is one of the most significant step for road transportation since the con-

struction of the first motor vehicle. It promises significant steps in safety, driving comfort and

fuel economy. However, eliminating the human operator puts more stringent requirements for the

performance of the steering controllers so that the planned vehicle trajectories can be executed5

even in the presence of external disturbances. In this paper, we utilize state-of-the-art analytical

and numerical techniques in order to design controllers that may guarantee the performance of

automated vehicles at the nonlinear level.

In practice, automated steering is typically achieved in a hierarchical manner. A higher-level

controller is responsible for assigning the appropriate steering angle based on the information col-10

lected by sensors about the vehicle and its environment. This can be achieved via several different
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control approaches. For example, one may use simple PID control [1], model predictive control

[2, 3, 4], or other feedforward and feedback algorithms [5, 6]. In the mean time the lower level

controller aims to match the steering angle to that assigned at the higher level through the steering

mechanism. This latter problem is the focus of this study and we follow a model based approach.15

Our goal is to study automated steering problems using analytical tools which requires simpli-

fied mechanical models. These models are typically of nonholonomic type due to the kinematic

constraints describing rolling wheels; see [7, 2, 8] with tire models of different levels of complexity.

While nonholonomic mechanics goes back more than 100 years [9], it mainly gained popularity the

second half of the previous century [10, 11, 12]. These types of models can be used to describe a20

wide variety of vehicles including sleighs [13], skateboards [14, 15], and bicycles [16, 17]. In this pa-

per we develop nonholonomic models for automobiles and harvesters and investigate their nonlinear

dynamics.

Most studies in automotive steering control focus on linear investigations around a stationary

motion. However, studying the nonlinear dynamics of vehicles is necessary to understand a global25

picture. For example, the appearance of a wobbling motion after a large enough perturbation

may lead to accidents despite the fact that the stationary motion is linearly stable. The effects of

nonlinearities on wheel dynamics have been studied in [18, 19, 20, 21], while other studies focused

on the nonlinear analyses of more complex vehicle and driver models [22, 23, 24, 25, 26]. However,

none of these contributions contains information on the effect of the trail of the steered wheels nor30

presents bifurcation diagrams in terms of the essential vehicle parameters (e.g. inertial parameters,

longitudinal speed, trail, control gains).

Having such analysis is important to ensure the safety and reliability of automated vehicles.

Therefore, in this paper we use a simplified mechanical model with rigid wheels while taking into

account the trail of the steered wheels and we utilize a simple control law to adjust the steering35

angle. We draw bifurcation diagrams to analyze the effects of the speed and the trail on the

nonlinear behavior for different inertial and control parameter setups. With the help of this global

bifurcation analysis we characterize how the identified dynamical phenomena manifest themselves

on automated automobiles and harvesters. This allows us to draw conclusions about the steering

behavior in different forward and reverse speed ranges.40

The contents of the article are organized as follows. Section 2 introduces the mechanical model

and the detailed derivation of the equations of motion. In Section 3, the mathematical analysis
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of the equations is presented with special attention to the stability and bifurcations of equilibria

and singularities. In particular, pitchfork and Hopf bifurcations are characterized using analytical

tools. Section 4 presents the interpretation of the results to different types of vehicles. Section 545

concludes the results and lays out some future research directions.

2. Modelling the dynamics of automated vehicles

In this section we derive the mathematical model used to analyze the lateral and yaw dynamics

of the automated vehicle. We consider rigid wheels with point contacts which result in a low-

dimensional mathematical model with a small number of parameters.50

2.1. Mechanical model

We consider the so-called bicycle model or two-wheeled vehicle model (see in Fig. 1), which

assumes that the vehicle can only move in the horizontal plane (i.e., vertical dynamics is neglected).

The vehicle consists of two main parts: the chassis (including the rear wheel) and the steering system

(the front wheel with caster). For simplicity the masses of the wheels are omitted (see more details55

below) so the vehicle is represented as two rigid bodies. The inertial and geometrical parameters of

the chassis are the following: mch denotes the mass of the chassis, Jch represent its mass moment of

inertia about the center of mass C, l is the distance between points R and F, and bch is the distance

between points R and C. The parameters belonging to the steering system are: mst is the mass

of the steering system, Jst is its mass moment of inertia about the center of mass S, bst gives the60

distance between the points F and S, while e represents the caster length, i.e., the distance between

the center of the front wheel W and the steering hinge F. Note that, the wheelbase is given by l− e

which is the distance between the wheel center points R and W in case of an unsteered vehicle.

In order to unambiguously describe the configuration of two rigid bodies connected by a hinge

in the horizontal plane we need four configurational coordinates. Here we chose the position of65

the rear point R, that is, x ≡ XR and y ≡ YR, the yaw angle ψ, and the steering angle γ. We

assume point contacts between the rigid wheels and the ground and assume that the wheels are

rolling without slipping. This results in kinematic constrains: the directions of the velocities of the

centers of the wheels are aligned with the directions of the wheels, i.e., the slip angles are zero; see

vR and vW in Fig. 1. A third kinematic constraint is also considered here: we assume that the rear70

wheel rotates with a constant angular velocity which implies that the longitudinal speed v := |vR|
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Figure 1: The mechanical model used in this paper.

is constant. Note that below we will use the convention v > 0 when vR points toward F and v < 0

when it points to the opposite direction.

Fig. 2 highlights four different application of the mechanical model for vehicles. Panels (a) and

(b) corresponds to positive caster length e > 0 and they allow us to investigate the forward and75

reverse motion of automobiles. Moreover, the case v > 0 shown in panel (a) can also be used to

describe the forward motion of American shopping carts (with fixed rear wheels and swivelling front

wheels). On the other hand, panels (c) and (d) corresponds to negative caster length e < 0 and

these can be used to model the forward and reverse motion of harvesters, and the case v < 0 shown

in panel (c) also describes the reverse motion of the shopping carts.80

2.2. Mathematical model

In order to turn the constructed mechanical model into a set of differential equations we apply

some tools from analytical mechanics [27, 28, 10, 29]. Due to the kinematic constraints of rolling

the system is nonholonomic [13]. In this case the Lagrangian approach results in a set of algebraic

differential equations containing Lagrange multipliers corresponding to the kinematic constrains. To

obtain differential equations one must eliminate these multipliers which typically requires tedious

algebraic manipulations. Instead we use the Appellian approach that directly provides a set of

differential equations. Rather than simply using the derivatives of the configurational coordinates,

we use pseudo velocities σi. These are chosen intuitively, but must satisfy the kinematic constraints.
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Figure 2: The possible setups of the model and the corresponding practical examples; setup (a) with v > 0, e > 0

corresponds to the forward motion of automobiles and pushed shopping carts; setup (b) with v < 0, e > 0 corresponds

to the reverse motion of cars; setup (c) with v < 0, e < 0 corresponds to the forward motion of harvesters and pulled

shopping carts; setup (d) with v > 0, e < 0 corresponds to the reverse motion of harvesters.

Then, we construct the acceleration energy A to obtain Appell-Gibbs equations in the form

∂A
∂σ̇i

= Γi , (1)

where σ̇i is the pseudo acceleration and Γi denotes the pseudo force. These equations shall be

augmented by the kinematic constraints to form a closed system.

For the bicycle model described above the kinematic constraints describe that the directions of

the velocities of the wheel center points R and W are aligned with the directions of the corresponding

wheels:

ẋ sinψ − ẏ cosψ = 0 , (2)

ẋ sin(γ + ψ)− ẏ cos(γ + ψ) + (e− l cos γ)ψ̇ + eγ̇ = 0 , (3)
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while the prescribed longitudinal velocity is expressed by

ẋ cosψ + ẏ sinψ = v . (4)

As we have four generalized coordinates and three kinematic constraint, only one pseudo velocity

is required. Here, we choose the relative angular speed of the caster-wheel system, i.e.,

σ := γ̇ . (5)

Using the constraining equations (2), (3), (4) and definition of the pseudo velocity (5), the gener-

alized velocities can be expressed as
ẋ

ẏ

ψ̇

γ̇

 =


v cosψ

v sinψ

eσ+v sin γ
l cos γ−e

σ

 , (6)

while the corresponding accelerations can be obtained as
ẍ

ÿ

ψ̈

γ̈

 =


−v sinψ eσ+v sin γl cos γ−e

v cosψ eσ+v sin γl cos γ−e
eσ̇+σv cos γ
l cos γ−e + lσ sin γ(eσ+v sin γ)

(l cos γ−e)2

σ̇

 . (7)

Considering the two rigid bodies, representing the chassis and the steering system, the acceler-

ation energy can be constructed as

A =
1

2
ma2C +

1

2
Jchα

2
ch +

1

2
mst a

2
S +

1

2
Jstα

2
st + . . . , (8)

where the terms which do not contain σ̇ are not spelled out. To simplify the matter the mass of the

steering system is neglected, that is, mst ≈ 0. The acceleration of the center of mass of the chassis

is given by

aC =

 ẍ− bch
(
ψ̇2 cosψ + ψ̈ sinψ

)
ÿ + bch

(
ψ̈ cosψ − ψ̇2 sinψ

)
 , (9)

while

αch = ψ̈ and αst = ψ̈ + γ̈ (10)

are the angular acceleration of the chassis and the steering system, respectively.
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Using the generalized velocities (6) and accelerations (7), the acceleration energy can be written

as

1

Jst
A =

E2θ2 + cos2 γ

2(E − cos γ)2
σ̇2

−
(
E

(Eθ2 + cos γ) sin γ

(E − cos γ)3
σ2 − V E E2θ1 − θ2 + cos2 γ

(E − cos γ)3
σ (11)

− V
(
E2(θ2 − θ1)− 1

)
cos γ

(E − cos γ)3
σ − V 2 Eθ1 sin γ

(E − cos γ)2

)
σ̇ + . . . ,

where the rescaled speed V , the dimensionless caster length E, and the dimensionless mass θ1 and

mass moment of inertia θ2 are introduced:

V :=
v

l
, E :=

e

l
, θ1 :=

mlbch
Jst

, θ2 :=
mb2ch
Jst

+
Jch
Jst

. (12)

To obtain the pseudo force we calculate the virtual power of the steering torque

δP = Mst δωst −Mst δωch , (13)

where δ denotes the virtual quantities and the angular acceleration of the steering system and the

chassis are

ωst = ψ̇ + γ̇ and ωch = ψ̇ . (14)

Thus, using the definition (5) we obtain the pseudo force

δP = Mst δσ ⇒ Γ = Mst . (15)

When steering an automated vehicle the higher-level controller assigns a desired steering angle

γdes and the lower-level controller tries to achieve this by assigning a steering torque acting between

the chassis and the steered wheel. In this paper we consider γdes ≡ 0 that corresponds to the scenario

when the vehicle is moving straight and use the linear proportional-derivative (PD) controller

Mst = −kpγ − kdγ̇ (16)

where kp and kd are the proportional and differential gains, respectively. Note that for the shopping

carts these gains are indeed zero. Let us also define

ωn :=

√
kp
Jst

and ζ :=
kd
Jst

(17)
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that represent the natural angular frequency and the damping factor if the front wheel was lifted

form the ground while the chassis was kept fixed. Note that, the damping factor and the angular

frequency has the same dimension 1/s. Using (5) and (15) we obtain the pseudo force

1

Jst
Γ = −ω2

nγ − ζσ . (18)

Now, summarizing (1), (6) (11), and (18) the equation of motion becomes

σ̇ =
E(Eθ2 + cos γ) sin γ

(E − cos γ)(E2θ2 + cos2 γ)
σ2 +

V

E

(
E2 − 1

cos γ − E
+
E3(θ2 − θ1) + cos γ

E2θ2 + cos2 γ

)
σ

− V 2 Eθ1 sin γ

E2θ2 + cos2 γ
− ω2

n

(E − cos γ)2

E2θ2 + cos2 γ
γ − ζ (E − cos γ)2

E2θ2 + cos2 γ
σ , (19a)

γ̇ = σ , (19b)

ẋ = V l cosψ , (19c)

ẏ = V l sinψ , (19d)

ψ̇ =
Eσ + V sin γ

cos γ − E
. (19e)

Note that the last three equations can be decoupled from the first two, since these can be solved85

without the coordinates x, y and ψ. Thus, in the following part of the paper, our investigation

requires the analysis of the equations (19a) and (19b) only.

3. Stability and bifurcation analysis

The goal of the controller (16) is to make the steering angle zero (in order to make the vehicle

run straight). However, as will be shown below, the nonlinear system Eqs. (19a), (19b) may90

possess multiple stable and unstable equilibria and singularities. In this section, we investigate the

equilibria and singularities as the parameters are varied. We also study the linear stability of the

trivial equilibrium in detail and, in case of stability loss, we calculate the arising new equilibria and

limit cycle oscillations analytically.

3.1. Equilibria and singularities in phase space95

To find the equilibria we substitute σ ≡ 0, γ ≡ γ∗ into Eqs. (19a), (19b) that yields the nonlinear

algebraic equation

V 2Eθ1 sin γ∗ + ω2
n(E − cos γ∗)2γ∗ = 0 , (20)
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for γ∗. Although, no closed-form analytic solution exist, the number of equilibria can be determined

as a function of the dimensionless system parameters θ1V
2/ω2

n and E as shown in Fig. 3. Notice

that in the practically important parameter domain |E| < 1 infinitely many equilibria exist so

that different solutions corresponds to how many times the wheel is turned around. In the special

case with ωn = 0 (shopping cart), these equilibria are given by γ∗ = nπ, n ∈ Z. If the speed V100

or the caster length E is zero too, then arbitrary γ∗ gives an equilibrium except those that yield

singularities (see below). Finally, notice that the trivial equilibrium γ∗ = 0 exists for all system

parameters, but other equilibria may arise in its vicinity due to pitchfork bifurcation (see Sec. 3.3

for more details).

Figure 3: Number of equilibria for different system parameters. Encircled numbers refer to the number of equilibria

in the domain.

In nonholonomic systems, kinematic singularity may exist, where the constraints (2)–(4) become

linearly dependent. This phenomenon occurs generally for wheeled snake models independently of

the selection of the configuration coordinates and pseudo velocities, see in [30]. In our system,

singularities occur when the right hand side of (19a) approaches infinity. This happens for

γ = γ̃ = ± arccosE + 2nπ, n ∈ Z , (21)

when

σ 6= 0 and σ 6= ∓V
E

√
1− E2 , (22)
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see the phase plane sketch in Fig. 4.105

Figure 4: Phase plane sketch constructed for parameters θ2 = 4.5, θ1 = 4, ωn = 1 [rad/s], ζ = 0.5 [rad/s] and

V = 0.1 [1/s]. The black dot refers to the equilibrium, black continuous lines indicate singularities (21), while circles

denote non-singular points (22).

3.2. Linear stability of the rectilinear motion

As mentioned above, the trivial equilibrium γ ≡ 0 exist for any system parameter, cf. (20).

Linearizing the equation of motion (19a) (19b) about the trivial solution yields: σ̇

γ̇

 =

 −b −c

1 0

 σ

γ

 , (23)

where

b =
V (E2θ1 + Eθ2 + 1) + ζ(E − 1)2

E2θ2 + 1
, (24a)

c =
V 2Eθ1 + ω2

n(E − 1)2

E2θ2 + 1
. (24b)

By substituting an exponential trial solution into (23) we obtain the characteristic equation

λ2 + bλ+ c = 0 . (25)

According to the Routh-Hurwitz criteria the corresponding characteristic roots have negative real

parts if and only if

b > 0 and c > 0 , (26)
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that ensures the asymptotic stability of the trivial equilibrium.

Stability may be lost through a steady state bifurcation when c = 0 (corresponding to λ = 0 in

(25)), that occurs at the critical speed

V = VP := ±ωn(E − 1)√
−Eθ1

, (27)

(cf. (24b)); see dashed curve in Fig. 3. Notice that such stability loss can only happen for E < 0.

Moreover, c > 0 corresponds to V 2 < V 2
P , that is, stability loss occurs as the magnitude of V

is increased. By taking into account the nonlinear terms it will be shown below that a pitchfork110

bifurcation occurs at this point.

On the other hand, stability may also be lost through a Hopf bifurcation when b = 0 while c > 0

(corresponding to λ = ±iω = ±i
√
c in (25)), that happens at the critical speed

V = VH := − ζ(E − 1)2

E2θ1 + Eθ2 + 1
, (28)

when V 2Eθ1 + ω2
n(E − 1)2 > 0; cf. (24a) and (24b). Notice that (28) is singular at the negative

caster lengths

E = Edis
H := − θ2

2θ1
±

√(
θ2
2θ1

)2

− 1

θ1
, (29)

if θ22 > 4θ1.

3.3. Pitchfork bifurcation

An approximation can be given for the equilibria that arise from steady state bifurcation. The

third order Taylor series expansion of (20) around zero yields the equilibria

γ∗ ≈ ±

√
V 2Eθ1 + ω2

n(E − 1)2

V 2Eθ1/6− ω2
n(E − 1)

= ±

√
V 2 − V 2

P

V 2/6 + V 2
P/(E − 1)

, (30)

which is a good approximation when V 2 ≈ V 2
P . Notice that when −5 < E < 0, the expression under

the square root is positive for V 2 < V 2
P and the solutions (30) coexist with the stable trivial solution115

γ∗ = 0. That is, (30) correspond to unstable equilibria and a subcritical pitchfork bifurcation occurs

at V 2 = V 2
P . Similar, argument can be used to conclude that the bifurcation is supercritical when

E < −5. The changes in criticality can also be observed in Fig. 3 by looking at the numbers of

equilibria on the two sides of the dashed curve (cf. (27)).
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3.4. Hopf bifurcation120

At V = VH the third degree Taylor expansion of (19a), (19b) yields σ̇

γ̇

 =

 0 −ω2

1 0

 σ

γ

+

 kH21σ
2γ + kH12σγ

2 + kH03γ
3

0

 , (31)

where ω =
√
c (cf. (24b)) and

kH21 =
1

E2θ2 + 1
+

1

E − 1
, (32a)

kH12 =
VH
2E

(
E + 1

E − 1
− E2 (2E(θ1 − θ2) + θ2)− 1

(E2θ2 + 1)
2

)
− ζ E(E − 1)(Eθ2 + 1)

(E2θ2 + 1)
2 , (32b)

kH03 = E
V 2
Hθ1

(
E2θ2 − 5

)
− 6ω2

n(E − 1)(Eθ2 + 1)

6 (E2θ2 + 1)
2 . (32c)

The eigenvalues and eigenvectors of the coefficient matrix of the linear part in (31) are

λ1,2 = ±iω and sT1,2 =
[
±iω 1

]
. (33)

To have Hopf bifurcation, the transversality condition

Reλ′(VH) = −E
2θ1 + Eθ2 + 1

2 (E2θ2 + 1)
6= 0 (34)

has to be satisfied. Correspondingly, instead of Hopf bifurcation, some other kind of bifurcation

exist when E = Edis
H ; see in (29).

Let us introduce the new variables: σ

γ

 = T

 ξ

η

 =

 ωη

ξ

 , (35)

where the transformation matrix is given by

T :=
[

Re s1 Im s1

]
=

 0 ω

1 0

 . (36)

Accordingly, the Jordan-normal form of (31) can be written as η̇

ξ̇

 =

 0 −ω

ω 0

 η

ξ

+

 kH21ωη
2ξ + kH12ηξ

2 + kH03ξ
3/ω

0

 . (37)
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Then the so-called Poincaré-Lyapunov coefficient

δH =
1

8
kH12 = −ζ (E − 1) (E (2 + 3θ2 + E(2θ1 + θ2)) + 2)

16(E2θ2 + 1) (E2θ1 + Eθ2 + 1)
(38)

can be determined via the Bautin formula [31]. If δH < 0, supercritical Hopf bifurcation occurs.

That is, when VH > 0 stable limit cycle exists for V > VH > 0 (where the trivial equilibrium is

unstable). Similarly, when VH < 0 stable limit cycle exists for V < VH. On the contrary, if δH > 0125

then the Hopf bifurcation is subcritical. In this case, when VH > 0 unstable limit cycle arises for

V < VH (where the trivial equilibrium is stable). Similarly, VH < 0 unstable limit cycle exists for

V > VH.

According to (38), the sense of the Hopf bifurcation changes at

E = 1 , E = E±H , and E = Edis
H , (39)

where Edis
H is given by(29) and

E±H = − 2 + 3θ2
2(2θ1 + θ2)

±
√

(2 + 3θ2)2 − 8(θ2 + 2θ1)

2(2θ1 + θ2)
. (40)

It can be seen, that E±H < 0 when θ2 > 0 and θ1 > 0. Also notice that E±H cannot be interpreted if

θ1 >
1

4
and θ2 <

2

9

(
−1 + 2

√
9θ1 − 2

)
, (41)

so for these values the sense of the Hopf bifurcation does not change.

One can also give an approximation for the amplitude of the arising limit cycle:

γr =

√
−Reλ′(VH)

δH
(V − VH) =

√
− 8 (E2θ1 + Eθ2 + 1)

2

ζ(E − 1) (E (2 + 3θ2 + E(2θ1 + θ2)) + 2)
(V − VH) , (42)

since the linear transformation in (35) has no effect on γ (i.e., γ = ξ).130

4. Application to vehicles

In this section, we apply the mathematical results presented above to vehicles. First, we discuss

the simple case of the shopping cart in order the characterize the behavior when no control is

applied. Then we turn our attention to the steering control of automated vehicles.
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4.1. Shopping cart135

Let us consider kp = 0, kd = 0 in (16) that yields ωn = 0, ζ = 0 (cf. 17). The corresponding

stability chart is plotted in the (V,E)-plane in Fig. 5(a). In this case the stability condition (26)

yields V > 0 and E > 0 independent of θ1 and θ2; cf. (24a) and (24b). However, the arising

bifurcations are degenerate in nature as the trivial equilibrium is not isolated: an arbitrary γ∗

satisfies (20) when V = 0 or E = 0. The former one corresponds to the steady cart while in the140

later case the caster is missing and the rear point of the cart moves on a circle of constant radius

l/ tan γ∗ where γ∗ is given by the initial conditions. Along the line section V = 0, E > 0 we have

b = 0 and c = 0 yielding a double-zero stability loss instead of a Hopf bifurcation; see (25). Along

the line section E = 0, V > 0 we have b = V and c = 0 that corresponds to a degenerate pitchfork

bifurcation.145

To clarify what happens when crossing these boundaries in the (V,E)-plane, the typical phase

portraits in the vicinity of the trivial equilibrium are sketched in Fig. 5(b) corresponding to the

different domains of the stability chart in Fig. 5(a). The phase space plots in Fig. 5(c) are generated

by numerical simulation and they correspond to the points marked I-IV in Fig. 5(a). These display

the global dynamics by showing the vector field as gray and highlighting a particular trajectory as150

a black curve. To visualize the corresponding motion of the cart in physical space, traces made by

the front and rear wheels in the (X,Y )-plane are displayed in Fig. 5(d).

Point I is chosen from the linearly stable domain, that is, all trajectories starting in the vicinity

of the trivial equilibrium approach the equilibrium as shown in panel (b). The phase space plot in

panel (c) show that the trivial equilibrium is globally stable, that is, from any non-singular initial155

condition the cart approaches a forward rectilinear motion as visualized in panel (d). (Note that

there is a 2π periodicity in state space, that is, the states at γ = π and at γ = −π are equivalent.)

In case II the trivial equilibrium is of saddle type as shown in panel (b) and after moving away

from it the trajectory in panel (c) passes through a non-singular point before approaching the

stable equilibrium corresponding to flipped wheel that is globally stable. For point III the trivial160

equilibrium (corresponding to a reversing cart) is still of saddle type. After moving away from this

equilibrium the trajectory approaches a non-singular point with constant steering angle close to π/2.

This corresponds to a circular path in the (X,Y )-plane as depicted in panel (d). Finally, in case IV

the trivial equilibrium is an unstable node, that is, all trajectories move away from it as shown in

panel (b). Panel (c) shows a trajectory that goes through a non-singular point and then approaches165
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Figure 5: (a) Stability chart for the shopping cart with no damping (ωn = 0, ζ = 0). (b) The sketch of the flow

around the trivial equilibrium for the points marked I-IV in panel (a). (c) Simulation results in the phase plane. (d)

Corresponding trajectories in the (X,Y )-plane.

the ”flipped” equilibrium (that is of saddle type) before reaching another non-singular point with

constant steering angle. Thus, the cart again ends up on a circular path in the (X,Y )-plane.

We remark that the non-singular points introduce nondeterminism to the system. For example,

in case IV the trajectory existing the first non-singular point is on the left side of the stable manifold

of the saddle equilibrium. As a result it eventually ends up at the non-singular point around (π/2, 0).170

However, the trajectory may exit the non-singular point on the right side of the stable manifold.

In this case, after ”swinging by” the saddle equilibrium it ends up at the non-singular point around

(−π/2, 0)
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To better understand the dynamics of the trolley example (and to link it to the steering control

of automated vehicles) consider the case ωn = 0, ζ 6= 0 where the nonzero damping coefficient is175

resulted by the torsional damping at the hinge. The corresponding stability charts are plotted in

the (V,E)-plane in Fig. 6(a) for ζ = 1 and different values of θ1 and θ2. In this case the stability

condition (26) results in E > 0 and V > VH (cf. (28)). Similar to the ζ = 0 case, having V = 0

or E = 0 still result in a degenerate system with arbitrary γ∗ satisfying (20). For E = 0 this still

leads to a degenerate pitchfork bifurcation while for V = 0, E > 0 no stability change occurs (but180

one of the roots moves to the origin and back as V changes sign). The stability boundary on the

left is given by the Hopf curve (28) that emanates from the point (V,E) = (−ζ, 0), tangent to

the point (V,E) = (0, 1), and at both points corresponds to a degenerate case with a double zero

eigenvalue, cf. (24a), (24b), and (25). The sense of the Hopf bifurcation is determined by (38).

Subcritical bifurcations (that occur for 0 < E < 1) are indicated by black curves while supercritical185

bifurcations (that happen for E > 1)) are indicated by gray curves.

Fig. 6(b) depicts bifurcation diagrams where the bifurcation parameter V is varied for different

fixed values of E. These correspond to horizontal lines in the stability charts as indicated by the

framed numbers. The analytical approximation (42) for the limit cycles are plotted as black-dashed

curves. The accurate branches (without approximation) are shown by the colored curves. These190

are obtained by numerical continuation, in particular using the software DDE-Biftool [32, 33, 34].

Green and red colors refer to stable and unstable motions, respectively. Thick horizontal lines

indicate the rectilinear motion, while thin solid curves belong limit cycle oscillations. As mentioned

above, for E > 1 the Hopf bifurcation is supercritical (cf. (38)) and stable limit cycle appears when

the equilibrium is unstable. As moving away form the Hopf point H the limit cycle eventually loses195

stability through a fold bifurcation denoted by Fo. For 0 < E < 1 the Hopf bifurcation is subcritical

(cf. (38)) and an unstable limit cycle appears when the equilibrium is stable. The oscillatory branch

eventually terminates at the singularity when V = 0.

The phase portraits in the vicinity of the trivial equilibrium are sketched in Fig. 6(c) corre-

sponding to the different domains of the stability chart in Fig. 6(a). For the points marked I-V the200

phase portraits generated by numerical simulations are shown in Fig. 6(d), while the traces made

by the front and rear wheels in the (X,Y )-plane are depicted in Fig. 6(e). In case I the trajectory

in the damped model in Fig. 6 is qualitatively similar to the trajectory of the undamped model in

Fig. 5), that is, the forward motion of the shopping cart is asymptotically stable independent from
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Figure 6: (a) Stability charts for the shopping cart with non-zero damping (ωn = 0, ζ 6= 0). (b) Bifurcation

diagrams corresponding to the horizontal cross sections of panel (a). (c) (b) The sketch of the flow around the trivial

equilibrium for the points marked I-V in panel (a). (d) Simulation results in the phase plane. (e) Corresponding

trajectories in the (X,Y )-plane.

the damping. Also, in cases II and III, the motions corresponding to the points II and III for the205

damped model are similar to those for the undamped model. Qualitative differences between the

undamped and damped cases can be observed when comparing the results for points IV and V in
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Fig. 6 to those for point IV in Fig. 5. When the swiveling wheel is damped the stability of the

rectilinear motion is lost via Hopf bifurcation. Thus, in the unstable case IV oscillations develop

before the trajectory passes through a non-singular point. Then, similar to the undamped case, the210

system ”swings by” a saddle state before approaching another non-singular state corresponding to

circular motion of the cart. However, for smaller reversing speed the rectilinear motion can remain

stable. Case V B shows a scenario when small disturbances (corresponding to initial condition

within the red unstable limit cycle) die out while case V A demonstrates that larger disturbances

still grow leading to as similar global behavior as in case IV.215

4.2. Automated vehicles

When designing the steering control of vehicles our goal is to select the control gains kp and kd

in (16) such that the rectilinear motion is asymptotically stable (at least at the linear level). Thus,

in this sections we study the cases when both gains are positive corresponding to positive ωn and

ζ parameters (cf. 17). In this case the stability boundaries are described by V = VP (see (27)) and220

V = VH (see (28)), corresponding to pitchfork and Hopf bifurcations, respectively.

The stability charts are plotted in Fig. 7(a) in the (V/ωn, E)-plane for different values of ζ/ωn, θ1

and θ2 so that all topologically different cases are represented. Indeed, the dashed pitchfork curves

correspond to the dashed curve in Fig. 3 and recall that for −5 < E < 0 the pitchfork bifurcation is

always subcritical; see (30). Notice that the Hopf curves may have discontinuities corresponding to225

the singularities at E = Edis
H ; cf. (29). Again, the criticality of the Hopf bifurcation is determined

by (38) and sub- and supercritical bifurcations are distinguished by black and gray curves.

In Fig. 7(b), the bifurcation diagrams are plotted with respect to the dimensionless speed V/ωn as

bifurcation parameter for fixed values of the dimensionless caster length E as highlighted by framed

numbers in the stability charts. Dashed black curves correspond to the analytical approximations230

(30) and (42) while the colored curves are generated by numerical continuation and the same

notation is used as in Fig. 6. Apart from Hopf (H), pitchfork (P), and fold (Fo) bifurcations we

also found heteroclinic (He) bifurcation when a limit cycle collides with a nontrivial equilibrium.

Recall that for road vehicles and harvesters we have |E| << 1 as the caster length is much smaller

than the wheelbase, cf. (12). Thus, here we only describe the bifurcation diagrams 2, 3, 4, 5, 6 in235

Fig. 7(b) in detail.

Bifurcation diagram 2 (valid for 0 < E < 1) belongs to the car model according to Fig. 2. The
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Figure 7: Stability charts and bifurcation diagrams for different parameters ζ/ωn, θ1 and θ2 as indicated. (a) Linear

stability charts, where the sense of the Hopf bifurcation is distinguished by black (subcritical) and gray (supercritical).

The angular frequency of the arising periodic solution along the Hopf bifurcation curve is also plotted on the left

sides of the stability charts. (b) Bifurcation diagrams, where H and P refer to Hopf and pitchfork bifurcation of the

trivial solution, Fo denotes the fold bifurcation of periodic orbits and He represents heteroclinic bifurcation.

stability of the forward rectilinear motion of an automated vehicle is ensured by the steering system

but when reversing motion becomes linearly unstable for large enough reverse speed. Moreover,

an unstable limit cycle arises even when the reverse motion is linearly stable, that is, large enough240

perturbations still give rise to oscillations. In order to illustrate this behavior the stability chart

and the bifurcation diagram are reproduced while varying the vehicle speed v and the caster length
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e in Fig. 8 for some realistic vehicle parameters listed in the caption. We also show the results

of numerical simulations for the points marked I-III on the stability chart. Case I shows that the

forward rectilinear motion is stable while case III shows that reverse motion is unstable if the speed245

is high enough. Case II corresponds to the reverse motion with lower speed. In this case choosing

initial condition B the oscillations decay and the vehicle approaches a stable rectilinear motion. On

the other hand for initial condition A oscillations with growing amplitude appear.

Figure 8: Stability chart, bifurcation diagrams, and numerical simulations for m = 1 600 kg, Jch = 2 800 kgm2,

l =2.85 m, bch =1.5 m, Jst = 10 kgm2, e =0.1 m, kp =400 Nm and kd =100 Nms.

Based on the bifurcations diagrams 3, 4, 5, 6 in Fig. 7(b) (for E < 0), neither the forward nor the

reverse motion of harvesters are stable for large speed justifying the strict speed limit regulations250

for these vehicles. In the bifurcation diagrams 3 and 4, there are limit cycles at negative speed

(forward motion here) corresponding to wheel shimmy. In bifurcation diagram 3, a subcritical Hopf

bifurcation occurs: although the straight running motion is linearly stable, the wheel may start to

oscillate when sufficiently large perturbations are applied. Moreover, if the speed of the harvester

is only slightly higher then the linear stability limit, large amplitude oscillations appear. On the255

contrary, the bifurcation diagram 4 predicts small amplitude vibrations for larger caster lengths

due to the existence of a supercritical Hopf bifurcation.

In Fig. 9 the stability chart is reproduced for some realistic vehicle parameters (see caption)

while varying the vehicle speed v and the caster length e and the simulation results are presented

for the points marked I-V. Note that in cases I and II the transient are not shown. Cases I and II260

demonstrate a stability loss via subcritical Hopf bifurcation. In case I, even though the rectilinear
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Figure 9: Stability chart, bifurcation diagram, and numerical simulations for m = 17 400 kg, Jch = 24 500 kgm2,

l =5 m, bch =1.8 m, Jst = 2 000 kgm2, kp = 2 000 Nm and kd = 1 000 Nms.

motion is linearly stable, oscillations still develop for certain initial conditions. Moreover, when

the rectilinear motion becomes unstable, as in case II, large amplitude oscillations also arise. Case

III demonstrates that without the presence of large amplitude oscillations the cart reaches circular

motion. Cases IV and V demonstrate a stability loss via supercritical Hopf bifurcation. In case IV265

the rectilinear motion is asymptotically stable while in case V it is unstable and small amplitude

vibrations develop. Finally, case VI demonstrates a stability loss via pitchfork bifurcation leading

to a turning motion with constant steering angle.

5. Conclusion

In this article we presented a low degree-of-freedom vehicle model that allowed us to study the270

lateral and yaw dynamics of shopping cars, automobiles, harvesters. We investigated the nonlinear
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dynamics using analytical and numerical bifurcation analysis while applying a PD controller that

intented to stabilize the rectilinear motion. By analyzing the linear stability of equilibria we found

that the vehicle may lose stability in oscillatory and non-oscillatory ways corresponding to Hopf and

pitchfork bifurcations, respectively. These led to a large variety of qualitatively different behaviors275

that were visualized using stability charts, bifurcation diagrams, phase plane plots and wheel traces.

We applied the theoretical results for different vehicle classes.

For the (American) shopping cart we proved that without damping the forward rectilinear

motion is globally stable while the reverse rectilinear motion is unstable. We also showed that

adding damping can stabilize the reverse motion for low speed. However, only local stability can be280

achieved and large perturbations still drive the system away from the equilibrium. We illustrated

that the dynamics of automobiles is qualitatively similar to those of the damped shopping carts.

When moving forward stability can be easily maintained even in the presence of large perturbations,

but stability of the reverse motion can only be ensured up to about 2 meters per seconds and only

small disturbances can be tolerated. In contrarily, harvesters can maintain stability while moving285

forward or backward up about 20 meters per second but dangerous oscillations appear for higher

speed. Our results imply that the front wheel steering is has the advantage in terms of stability

(when moving forward) while rear wheel steering provides better maneuverability.

Indeed, our results only hold for the (linear) PD controller applied in the paper and they do

not exclude the possibility of having nonlinear controllers of increased performance. One may290

use Lyapunov based techniques in order to design such controllers while barrier functions may

be applied in order to guarantee safety. Combining such lower-level controllers with higher-level

motion planning is another interesting future research direction.
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