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Abstract:

A simple mechanical model of the skateboard-skater system is analyzed, in which a linear proportional-derivative
(PD) controller with delay is included to mimic the effect of human control. The equations of motion of the
nonholonomic system are derived with the help of the Gibbs-Appell method. The linear stability analysis of
the rectilinear motion is carried out analytically in closed form. It is shown how the control gains have to be
varied with respect to the speed of the skateboard in order to stabilize the uniform motion. The critical reflex
delay of the skater is determined as functions of the speed, position of the skater on the board, and damping
of the skateboard suspension system. Based on these, an explanation is given for the experimentally observed
dynamic behavior of the skateboard-skater system at high speed.

1 Introduction

The first skateboard was invented a century ago to carry surfboards to the ocean easier, namely simple metal
wheels were installed to wooden boards. The present configuration of the wheel suspension became common
later only, by which, the wheel-pairs turn around their steering axes if the skateboard is tilted around its
longitudinal axis. Due to this mechanism that provides specific kinematic constraints, the understanding of the
motion of the skateboard is a challenging task. The equations of motion of the resulted nonholonomic system
can be derived by means of Kane’s method [1], which was applied in the first scientific publication in this area
[2]. Hubbard investigated the linear stability of the skateboard, and he realized the positive effect of the speed,
e.g. the higher the speed is, the more stable the skateboard is.

The speed dependent stability of nonholonomic systems still has unexplored dynamic phenomena although
they have been investigated for more than 100 years. This is clearly shown by recent publications, where the
lateral stability of the bicycle and the three-dimensional biped walking machines was studied (see, for example,
[3, 4]). For nonholonomic systems, the investigation of the stability of skateboards was made in the 1990’s and
in the new millennium. Nonlinear analysis was carried out [5] and controlled motions were also investigated [6].

The other interesting challenge in connection with the skateboard-skater system is to explain the balancing
effort of the skater on the skateboard. There are publications where the human control was taken into account
[7, 8] but the reflex delay of the skater was considered in [9] and [10] only. Nevertheless, the importance of the
reflex delay has been shown by many papers for human balancing models from both biological and engineering
points of view [11, 12, 13, 14, 15].

In this paper, a mechanical model of the skateboard is constructed in which human control is taken into
account. A typical modeling approach is used to present the human control efforts, namely, the skater’s control
adjusts the mass center of his body by a torque at his ankle. A linear proportional-derivative (PD) controller
is applied to the control loop, in which we also consider the reflex delay. Similar models were used in [12, 15]
although some other control models can present more realistic higher-frequency behavior (for example, see
McRuer’s approach in [16]).

In order to obtain the equations of motion in the most compact form that supports the analytical investigation
the best, the Appellian approach [17] is used instead of the classical Lagrangian one [8]. The stability analysis of
the rectilinear motion is investigated via closed form calculations. Criterion is given for the time delay, meanwhile
the effects of the skater’s longitudinal position and the stiffness/damping parameters of the suspension system
are also in focus.

2 Mechanical model

The mechanical model in Fig. 1 is based on [9] but here the suspension of the board also contains an additional
torsional damper. The model consists two massless rods connected by a hinge at point S. One of the rods
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Figure 1: Mechanical model of the skateboard-skater system [9]; panel (a) shows the back view of the mechanical
model, panel (b) shows the top one and panel (c) shows the skateboard suspension system

represents the board between the points F (front) and R (rear) while the other rod stands for the skater
between the points S and C (center of gravity). The lumped mass m represents the mass of the skater at the
free end of the vertical rod.

Although the board is assumed massless, the mass moment of inertia of the board is kept and represented
by Jb with respect to the center of the board. Due to the symmetry of the board, the inertia around its
longitudinal, lateral and vertical axes are denoted by J1, J2 and J3, respectively.

The remaining parameters of the model are the following: 2h denotes the height of the skater, 2l is the
length of the board, a indicates the longitudinal location of the skater on the board (a > 0 means that the
skater stands ahead of the center of the board) and g stands for the gravitational acceleration.

The loss of contact between the ground and the wheels is not considered, so the longitudinal axis of the
board is always parallel to the ground. Therefore, five generalized coordinates can describe the motion uniquely:
x and y are the coordinates of point S; ψ describes the longitudinal direction of the board and ϕ and β are the
deflection angles of the skater and the board relative to the vertical direction, respectively (see Fig. 1).

In order to investigate the skater-board interaction analytically, the control effort of the skater is taken into
account in the simplest possible way. Accordingly, most of the balancing movements (like bending the spine,
swinging the arms) are neglected except the ankle torque [2, 7, 6, 5, 8, 10]. This model is widely used for
stability analysis, since the small body angles in human balancing are corrected via ankle torque, while the hip
or arm motions are used at large body angles only.

Consequently, the resulting model is analogues to the simplest human balancing models, which include active
(controlled) and passive (uncontrolled) torques at the ankle [18, 19, 20, 13, 14]. Here, only the active one is
investigated, while the muscle stiffness and damping originated in the muscle stretching related to the ankle
rotation are neglected. The active torque arises from muscle activation due to delayed neuromuscular sensory
feedback from the proprioceptive, vestibular and visual systems. We take into account only the last two sensory
systems. The vestibular and visual ones provide information about the absolute body angle (ϕ) with respect
to the vertical direction and the angular velocity (ϕ̇), the corrective torque according to them is determined in
our model by a linear time-delayed PD controller [12]:

MPD = pϕ(t− τ) + dϕ̇(t− τ), (1)

where τ refers to the time delay, p and d represent the proportional and the derivative control gains, respectively.
As one can see in Fig. 1, the free rotation of the board about its longitudinal axis is obstructed by a torsional

spring of stiffness kt and by a torsional damper of damping coefficient kd beside of the control torque produced
by the skater. These dynamical elements of the system are originated in the special wheel suspension system of
the skateboard.

We consider that the wheels of the skateboard roll perfectly for small steering angles. By means of the
geometry of the suspension system the direction of the velocities vF and vR of the points F and R can be
expressed in terms of the generalized coordinates (see [2, 7]). Namely, a nonlinear connection arises between the
steering angle δS and deflection angle of the board β (see [21, 22] and further details in [2] on the functioning
of the skateboards suspension system):

sinβ tanκ = tan δS, (2)

where κ is the constant angle in the suspension system between the pivot axis and the board as it is shown in
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Fig. 1.c. Based on these, two scalar kinematic constraining equations can be constructed:

(cosψ sinβ tanκ− sinψ) ẋ+

+ (sinψ sinβ tanκ+ cosψ) ẏ + (l − a) ψ̇ = 0 ,
(3)

(cosψ sinβ tanκ+ sinψ) ẋ+

+ (sinψ sinβ tanκ− cosψ) ẏ + (l + a) ψ̇ = 0 .
(4)

A third kinematic constraint is also introduced in the model: the prescribed longitudinal speed v of the board
is constant in time:

ẋ cosψ + ẏ sinψ = v . (5)

It can be proved, that the presence of this third kinematic constraint does not modify the linear stability of the
rectilinear motion.

3 Mathematical model

The derivation of the equations of motion can be carried out by means of the Gibbs-Appell method [17]. This
method is efficient in the sense that it provides the equations in a first order compact form. This method
requires linear kinematic constraints in terms of generalized velocities. Since this criterion is satisfied by (3),
(4) and (5), the Gibbs-Appell equations can be obtained in the form of:

∂A
∂σ̇i

= Γi , i = 1, 2 , (6)

where A is the so-called energy of acceleration what is differentiated with respect to the so-called pseudo
acceleration σ̇i. The right hand side is the so-called pseudo force Γi.

The pseudo velocities σi can be chosen intuitively, by which the kinematic constraint forces can be eliminated.
In our case, two pseudo velocities are needed since the difference between the numbers of the generalized
coordinates and the kinematic constraints is two. An appropriate choice can be the angular velocity components
σ1 and σ2 of the skater and the skateboard around the longitudinal axis, respectively:

σ1(t) := ϕ̇(t) and σ2(t) := β̇(t) . (7)

This choice is appropriate since the system of equations, which consists of the kinematic constraining equations
(3), (4), (5) and the definitions (7) of the pseudo velocities, can be solved uniquely for the generalized velocities:

ẋ
ẏ

ψ̇
ϕ̇

β̇

 =


v
(
cosψ + a

l tanκ sinβ sinψ
)

v
(
sinψ − a

l tanκ sinβ cosψ
)

−vl tanκ sinβ
σ1
σ2

 . (8)

The derivation of both sides of this expression with respect to time leads to the generalized accelerations as
functions of the pseudo accelerations, pseudo velocities and generalized coordinates.

In case of our model, the acceleration energy A reads:

A =
1

2
maC · aC +

1

2
αTJbα+αT (ω × (Jbω)) +

1

2
ωT (Jbω)ω2 . (9)

The first term in this formula refers to the skater modeled with a lumped mass, while the other terms refer to
the board that has negligible mass but it has finite mass moment of inertia. In Eq. (9), we have

aC · aC = 2
v tanκ

l2
(
v sinβ(l − h tanκ sinβ sinϕ)

+ alσ2 cosβ
)
hσ̇1 cosϕ+ h2σ̇2

1 + . . .
(10)

which are necessary parts of the square of the lumped mass’ acceleration;

ω
(xb,yb,zb)

=

 σ2
−vl tanκ sin2 β
−vl tanκ cosβ sinβ

 ,
(11)

α
(xb,yb,zb)

=

 σ̇2
−vl tanκ sin (2β)σ2
− vl tanκ cos (2β)σ2
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are the angular velocity and acceleration of the board given in the board fixed (xb, yb, zb) coordinate system,
respectively, and the mass moment of inertia matrix of the board is

Jb
(xb,yb,zb)

=

 J1 0 0
0 J2 0
0 0 J3

 . (12)

With these, the energy of acceleration can be expressed as

A = hv
l2
m tanκ cosϕ(alσ2 cosβ + v sinβ(l − h tanκ sinβ sinϕ))σ̇1

+ v2

l2
tan2 κ(J3 − J2) sin3 β cosβσ̇2 +

1
2
mh2σ̇2

1 + 1
2
J1σ̇

2
2 + . . . ,

(13)

where the terms that do not depend on the pseudo accelerations are not computed here since they will disappear
after derivation in the Gibbs-Appell equation (6).

The pseudo force can be determined from the virtual power of the active forces, which here relates to
the torques produced by the controller and the spring and the damper in the suspension system and to the
gravitational force:

δP = mgh sinϕδσ1 +MPD (δσ2 − δσ1)− (ktβ + kdσ2) δσ2 , (14)

where notation δ refers to virtual quantities.
Thus, based on Eq. (6), the equations of motion assume the forms:

σ̇1 =
g

h
sinϕ− av

hl
tanκσ2 cosβ cosϕ− v2

hl
tanκ sinβ cosϕ

+
v2

l2
tan2 κ sin2 β sinϕ cosϕ− 1

h2m
(dσ1(t− τ) + pϕ(t− τ)) ,

σ̇2 =
pϕ(t− τ) + dσ1(t− τ)

J1
− ktβ + kdσ2

J1

+
J2 − J3
J1

v2

l2
tan2 κ sin3 β cosβ ,

ϕ̇ = σ1 , (15)

β̇ = σ2 ,

ẋ = v cosψ − av tanκ sinβ sinψ

l
,

ẏ = v sinψ − av tanκ sinβ cosψ

l
,

ψ̇ = −v tanκ sinβ

l
.

Note, that x, y and ψ are cyclic coordinates, so only the first four equations of Eq. (15) describe the so-called
essential motion; these are needed for the stability analysis.

4 Stability of the rectilinear motion

In this section, the linear stability of the rectilinear motion is investigated. First, we take the linearized equations
of motion around this stationary solution with respect to small perturbations in σ1, σ2, ϕ and β. This leads to

Ẋ(t) = A ·X(t) + B ·X (t− τ) , (16)

where

A =


0 −avhl tanκ g

h −v
2

hl tanκ

0 −kdJ1 0 − kt
J1

1 0 0 0
0 1 0 0

 , X(t) =


σ1(t)
σ2(t)
ϕ(t)
ψ(t)

 ,

and B =


− 1
mh2 d 0 − 1

mh2 p 0
1
J1
d 0 1

J1
p 0

0 0 0 0
0 0 0 0

 .

(17)

Note, that the two principle mass moments of inertia J2 and J3 of the board have no effect on the dynamics
close to the rectilinear motion.
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The stability of this linear system can be determined by the real part of the roots of the corresponding
characteristic equation (

λ2 +
kd
J1
λ+

kt
J1

)(
λ2 − g

h
+

(
d

mh2
λ+

p

mh2

)
e−λτ

)
+
v

l

(a
h
λ+

v

h

)
tanκ

(
d

J1
λ+

p

J1

)
e−λτ = 0 (18)

with characteristic exponent λ. Although, a characteristic equation of a delayed system has infinitely many
complex roots [23], the investigated equilibrium is asymptotically stable if and only if all of the real parts of
these roots are negative. The limit of stability corresponds to the case when the characteristic roots are located
on the imaginary axis for a set of specific values of system parameters.

One can distinguish basically two different types of stability boundaries. The first relates to the saddle-node
(SN) bifurcation, which occurs when both the real and the imaginary parts of the characteristic root are zeros;
the second refers to Hopf bifurcation, when the characteristic roots are pure imaginary.

SN bifurcation occurs if λSN = 0 satisfies the characteristic equation (18), namely, if

kt
J1

(
− g
h

+
p

h2m

)
+

p

J1

v2

hl
tanκ = 0 (19)

equation leads to the possibly critical proportional gain pSN:

pSN =
g

h

kt
v2

hl tanκ+ kt
mh2

. (20)

The critical proportional and differential gains in case of Hopf bifurcation can be determined by the D-
subdivision method. In this case, the critical characteristic exponent is a pure imaginary number (λH = ±iω,
ω ∈ R+) which can be substituted back into the characteristic equation. Taking the real and imaginary parts
of this complex equation, the critical control gains can be expressed as:

pH = p1
(p2 + p3) cos(τω)− p4 sin(τω)

p5 + l (2p2 + p3)
, (21)

dH = p1
(p2 + p3) sin(τω) + p4 cos(τω)

ω (p5 + l (2p2 + p3))
, (22)

where

p1 = mlh
(
g + hω2

)
,

p2 = mhv tanκ
(
ω2(akd − J1v) + ktv

)
,

p3 = l
((
kt − J1ω2

)2
+ k2dω

2
)
, (23)

p4 = mhv tanκ
(
aJ1ω

2 − akt + kdv
)
ω ,

p5 = (mhv tanκ)
2 (
a2ω2 + v2

)
.

Based on the stability boundaries given in Eq. (20)-(22), a linear stability chart of the rectilinear motion
can be constructed. The SN bifurcation is represented with a vertical line in the p − d parameter plane (see
any panel of Fig. 2). Only control gains from the right hand side of this SN bifurcation line can correspond to
stable rectilinear motion.

The Hopf bifurcation curve, also called dynamical stability boundary is more complicated. It starts like
the stability boundary in case of the PD controlled inverted pendulum (see in [12, 15]), but before it spirals
outwards uniformly it forms an enclosed loop, which contains the origin (p = 0, d = 0). In a special case, when
the damping of the skateboard (kd) is zero, this stability boundary goes throw the origin (see details in [9]).
The loop of the dynamic stability boundary has a major effect on the structure of the stable domain in the
p− d plane, namely, it can be proved that only the inner part of this loop can be stable.

One can observe in Fig. 2, that the possibly stable closed loop rotates counterclockwise around the origin
as the time delay increases, which implies that the stable domain can vanish and reappear as the delay varies.
The panels of Fig. 2 also show the effect of the damping coefficient kd in the suspension system, which increases
from top to bottom. One can observe that the higher the damping coefficient is, the larger the closed loop is.
In cases when the closed loop bounds the actual stable regime, the rectilinear motion can loose its stability
with higher frequencies, corresponding to the board’s natural frequency. This vibration frequency is high at low
damping coefficients due to the relatively small mass moment of inertia of the board J1.
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Figure 2: Qualitative structure of the stability charts in the p−d plane, where the shaded domains indicate the
stable regimes. The time delay τ increases from left to right, the damping coefficient kd increases from top to
bottom.
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Figure 3: Effect of the longitudinal speed on the ultimate time delay; continuous line refers to the fore standing
(a = 0.1 m), while the dashed line refers to the back standing (a = −0.1 m).

Table 1: Parameters of the skater-board system

h [m] m [kg] a [m] τ [s]
0.85 75 ± 0.1 0.24

kt [Nm/rad] l [m] κ [o] J1 [kgm2]
100 0.3937 63 6.642·10−3

5 Critical reflex delay

The effect of the time delay τ is intricate. It can only be investigated numerically, but before the presentation of
this, we are going to give a sufficient condition for the delay. This condition can be developed by the examination
of the starting point of the Hopf stability boundary curve. This always starts on the SN line, but if it goes to
the left hand side first, then the stable domain cannot exist. This leads to the ultimate critical time delay τcr,u,
practically, if the reflex delay of the skater is larger than this value, the investigated equilibrium is unstable.
The sufficient condition can be determined as

d2pH
dω2

∣∣∣∣
ω=0

> 0 , (24)

since the first derivative at ω = 0 is still zero. The condition can be formed as a second order inequality in
terms of the delay:

− t2
t1
τ2 +

t3
t21
τ +

t4
t31
> 0 , (25)

where

t1 = hmv2l tanκ+ kt ,

t2 = ghktlm ,

t3 = 2gh2lm2v tanκ(akt − kdv) , (26)

t4 = 2h2lm
(
gmv2 tanκ

(
hmv tanκ(akd − J1v) + k2dl

)
+mv tanκ

(
hmv tanκ

(
hv2 − a2g

)
− gl(akd + J1v)

)
kt

+2hlmv2 tanκk2t + l2k3t
)
.

Without further mathematical investigations, we plot the ultimate critical delay (see Fig. 3) using the realistic
numerical values of Table 1. In Fig. 3, the continuous and dashed lines refer to the cases when the skater stands
ahead (a = 0.1 m) and behind (a = −0.1 m) the center of the board, respectively.

Although the ultimate critical time delay can be expressed analytically from Eq. (25), the arising expressions
are complex. At zero and infinite longitudinal speeds, the critical time delay is independent from the standing
position a:

τv→0
cr,u =

√
2

ωs
, (27)

τv→∞cr,u = −2ζb
ωb

+

√(
2ζb
ωb

)2

+ 2

(
1

ω2
b

+
1

ω2
s

)
,
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Figure 4: Effect of the longitudinal speed and the damping ratio on the critical time delay; continuous lines
stand for stability boundaries, dashed lines do for ultimate critical time delay and the shaded domain indicates
p−d stabilizable domains while the white domains are unstable. The upper row belongs to the standing behind
and the row below belongs to the standing ahead.

where ζb, ωb are the damping ratio and the natural angular frequency of the skateboard, respectively. The
notation ωs refers to the natural angular frequency of the pendulum of length h. These parameters can be
formulated as:

ζb =
1

2ωb

kd
J1
, ωb =

√
kt
J1

and ωs =

√
g

h
. (28)

Note, that the ultimate reflex time at zero speed τv→0
cr,u is identical with the critical time delay for simple

human balancing [12]. The ultimate time delay at infinitely high speed is slightly greater than the standing
one. The difference is small if the relative damping ratio (ζb) is small, and the natural angular frequency of the
board is much higher than the skater’s one (ωb >> ωs).

Besides these analytical results, the critical time delay can be determined numerically. The existence of
the stable regime in Fig. 4 was determined in the plane of the longitudinal speed and the time delay with the
help of the semi-discretization method [24]. In the shaded domains, there exist sufficient p, d control gains, for
which the rectilinear motion is stable. The continuous lines refer to the real stabilizability boundaries, while
the dashed lines stand for the analytically determined ultimate critical time delay. As the boundary of the
ultimate critical time delay depend on the position of the skater, the stability boundaries also do. Thus, in the
upper panels, stabilizability charts belong to the case where the skater stands behind the center of the board
(a = −0.1 m), while in the lower panels one can find the standing ahead case (a = 0.1 m).

One can observe in Fig. 4, that the ultimate critical time delay does not give a necessary and sufficient
condition for the existence of stable rectilinear motion. The shaded domains are always below the ultimate
value. Moreover, at low damping ratio ζb, there are time delay ranges for what the rectilinear motion is unstable.
At high damping ratio, these unstable ranges disappear and the critical time delay can be approximated by the
analytically determined ultimate time delay well.

6 Required control gains

The existence of stable control gains does not ensure stability automatically; appropriate selection of the gains
is necessary. In Fig. 5, stable control gain domains are plotted for several longitudinal speeds v and damping
ratios ζb using the parameters of Table 1. The stable domains are shaded for the damping ratio ζb = 0.36.
The arising closed loop cuts off some domains, at sufficiently small damping ratios, from the possibly stable
regular D-shaped stability boundary. The higher the damping ratio is, the larger the stable domain is, as it was
expected from the structure of the Hopf stability boundary curves. However, extremely large damping ratio
cannot increase the stable domain further while it may provide more difficult handling of the skateboard, i.e. it
requires larger control effort to tilt the board and make cornering maneuvers.
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Figure 5: Effect of the speed and the damping ratio on the required control gains

Figure 6: Effect of the speed and the damping ratio on the area of stable domain in p − d plane; panel (a)
belongs to the standing ahead case (a = 0.1 m), while panel (b) refers to the standing behind one (a = −0.1 m)

The speed has basically two different effects on the stable domain in the p, d parameter plane; as the speed
changes, the location and the size of the stable regimes also change. Thus, the skater’s proportional and
differential gains must be tuned as the longitudinal speed varies; this effect makes skateboarding even more
challenging.

The reduction of the stable parameter domain can explain the loss of stability at high speeds although one
can observe more stabilizable domains (v, τ) in Fig. 4 at higher speeds. Namely, the higher the speed is, the
smaller the domain of the appropriate p, d control gains is. This makes the sensitivity for the control gains
greater. The area of the stable domain is illustrated in Fig. 6 relative to the area of the stable domain at
zero speed. If the area of the stable domain is zero, the rectilinear motion cannot be stabilized by linear PD
controller with the time delay τ = 0.24 s. These domains belong to an unstable regime of the corresponding
panel in Fig. 4.

7 Conclusion

A mechanical model of the skateboard-skater system was constructed, in which the effect of the human balancing
was taken into account by a linear delayed PD controller. The linear stability of the rectilinear motion of the
skateboard was analyzed and stability charts were composed with special attention to the effects of the reflex
time and the longitudinal speed apart of the effect of the damping coefficient of the skateboard suspension
system.

An upper limit was given for the critical time delay, which approximate the necessary and sufficient stability
condition for the time delay well at relatively high damping ratio. The sensitivity of the system with respect
to the longitudinal position of the skater was also shown. The advantages of the fore standing is clear at high
damping ratios and especially at low speeds. But, at low damping ratios, the skater also has opportunity to
make the system stabilizable by means of the variation of the longitudinal position on the board. For example,
the variation of the time delay due to the modified concentration level of the skater can be balanced by the
appropriately chosen position of the skater.

The presented model can also explain the loss of stability at high speeds. Although, appropriate control
gains exist at high speeds by which the rectilinear motion is stable, stability is not guaranteed because the
chance of choosing satisfactory control gains is smaller for higher speeds. The sensitivity with respect to the
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control gains is large: small error in the chosen control gains can lead to loss of stability. There is another issue
that makes skateboarding at high speed difficult. Namely, small control gains can be applied only, which results
close to zero torque, and this enlarges the effect of the dead-zones of the human control system. In case of
human stick balancing, these effects are identified in [15] as the sources of micro-chaotic and transient-chaotic
vibrations around linearly unstable equilibrium with large surviving times.
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