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Abstract:
A simple mechanical model of the skateboard-skater system is analysed, in which the effect of human control is
considered by means of a linear proportional-derivative (PD) controller with delay. The equations of motion of
this nonholonomic system are neutral delay-differential equations. A linear stability analysis of the rectilinear
motion is carried out analytically. It is shown how to vary the control gains with respect to the speed of the
skateboard to stabilize the uniform motion. The critical reflex delay of the skater is determined as the function
of the speed. Based on this analysis, we present an explanation for the linear instability of the skateboard-skater
system at high speed. Moreover, the advantages of standing ahead of the centre of the board is demonstrated
from the view point of reflex delay and control gain sensitivity.

1 Introduction

Skateboarding became a popular sport all over the word after the construction of the first commercial skateboard
in the 1950’s. Nowadays, the skateboards is considered both as a vehicle and as an item of sport equipment but
it is also represents a kind of lifestyle. Two decades after the skateboard was merchandised, the first mechanical
model was presented by Hubbard [1, 2]. He demonstrated that the dynamical behaviour of the skateboard
shows many interesting phenomena. Subsequent, the mechanics of skateboarding became a popular research
field among engineers and physicists studying nonholonomic systems. Hubbard’s model of skateboarding was
improved by Kremnev and Kuleshov [3], and has been further developed by many researchers.

All of these studies showed that the stabilization of the rectilinear motion (rolling along a straight line) gets
easier as the longitudinal speed increases. Similar observations were used by Wisse and Schwab [4] to explain
the stability properties of the bicycle and the three-dimensional biped walking machine. The corresponding
stability properties are also relevant in robotic locomotion (see [5] or [6]). However, research on the dynamics
of nonholonomic systems is far from being concluded. Recent publications on the lateral stability and the
longitudinal dynamics of bicycles present many new aspects of applied nonholonomic systems (see in [7, 8, 9]);
similarly, research on skateboard dynamics has uncovered many new phenomena.

For example, the loss of stability of steady-state rectilinear skateboarding is also observed in practice at
high speeds. This behaviour of the skateboard has not been explained by the traditional mechanical models.
The standard models did not consider the essential interaction between the nonholonomic skateboard and the
human control. Even if a complex model of human control is applied to skateboarding [10], the reflex time
of the operator is neglected. The human reflex time in the control loop plays an essential role in dynamical
systems, as has been shown in many studies on human balancing. These papers investigate the problem both
from the biological and engineering points of view (see, for example, Milton et al [11], Stepan [12] or Chagdes
et al [13]). Consequently, the interactions between mechanical systems and human operators offer interesting
research topics; while the mathematical modelling of the mechanical part is well developed and understood, the
complexity of the human control with its sensors and actuators still requires further analysis.

In this paper, a mechanical model of the skateboard is constructed in which the effect of human control is
taken into account. We consider the simplest possible linear proportional-derivative (PD) control with human
reflex delay in order to actuate a torque at the skater’s ankle. The most compact equations of motion of this
controlled nonholonomic system are derived using the Gibbs-Appell equations (see Gantmacher [14]). The
stability analysis of the rectilinear motion is investigated analytically, and a case study is shown to represent
the practical consequences of the results.
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Figure 1: The simplified mechanical model of the skateboard-skater system based on [3, 15]; panel (a) shows
the rear view of the system, panel (b) shows an isometric one, while panel (c) shows the top one.

2 Mechanical model

The mechanical model (see figure 1) is a simplified version of [3] and [15] with a control torque added to model
the balancing effort of the skater. The skateboard is modelled by a massless rod between the points F (front)
and R (rear) in figure 1 while the skater is represented by another massless rod between the points S (skateboard
actuation point) and C (mass centre of skater) with a lumped mass m at its free end C. These two rods are
connected by a hinge at the point S. Further parameters are as follows: 2h denotes the height of the skater, 2l
is the length of the board, a characterizes the location of the skater on the board (where a > 0 means that the
skater stands ahead of the centre of the board), m represents the mass of the skater and g is the acceleration of
gravity. Both the mass and the mass moment of inertia of the board are neglected.

We assume that the skateboard wheels are always in contact with the ground. Consequently, the longitudinal
axis of the skateboard is always parallel to the ground. The described geometry requires five generalised
coordinates to describe the motion; we choose x and y as the horizontal coordinates of the point S; ψ denotes
the longitudinal direction of the skateboard; ϕ is the deflection angle of the skater from the vertical; and finally,
β is the deflection angle of the board about the rod FR.

As shown in figure 1, the rotation of the skateboard about its longitudinal axis is counteracted by the
torsional spring of stiffness kt, which is installed in the special wheel suspension system of the skateboard. The
rotation of the skater around the longitudinal axis of the skateboard is opposed. by the PD controlled internal
torque generated by the skater. Since, rectilinear motion is considered as the desired motion, zero torque is
produced by the controller when the deflection angle of the skater is zero (i.e. ϕ = 0). Thus, the control torque
can be modelled by

MPD (t) = pϕ(t− τ) + dϕ̇(t− τ) (1)

where τ refers to the reflex time (time delay) of the human control, p and d represent the proportional and the
differential control gains, respectively.

Regarding the rolling wheels of the skateboard, kinematic constraints can be given for the velocities vF, vR

of points F and R. The directions of the velocities of these points depend on the deflection angle β of the board
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through the so-called steering angle δS (see figure 1). This connection can be described by the expression:

sinβ cotκ = tan δS (2)

where the constant κ is the so-called rake angle in the skateboard wheel suspension system (see figure 2, where
the steering mechanism of the skateboard is illustrated). Steering works as follows: as the skater deflects the
board by an angle β, the axes of the wheels turn through an angle δS given by (2) according to the geometric
constraints of the steering mechanism. Namely, the axles of the wheels are always parallel to the ground, and
are perpendicular to the king pin axis characterized by the unit vector eDK in figure 2, which rotates together
with the board. More details on the steering mechanism of skateboards can be found in [1, 10].

Figure 2: Skateboard wheel suspension system

Since the directions of the velocities of F and R are constrained (see Fig 1.b), two scalar kinematic constraints
can be constructed:

(cosψ sinβ cotκ− sinψ) ẋ+ (sinψ sinβ cotκ+ cosψ) ẏ + (l − a) ψ̇ = 0 , (3a)

(cosψ sinβ cotκ+ sinψ) ẋ+ (sinψ sinβ cotκ− cosψ) ẏ + (l + a) ψ̇ = 0 . (3b)

We also introduce a third kinematic constraint, namely, the longitudinal speed v of the board is assumed to be
constant:

ẋ cosψ + ẏ cosψ = v (4)

It can be shown that this constraint does not influence the linear stability of the rectilinear motion of the
skateboard. Nevertheless, it makes our equations simpler in spite of the fact that the system is not conservative
any more.

All of the kinematic constraints (Eq. (3) and (4)) are linear combinations of the generalised velocities, so
they can be written in the following matrix form:

 cosψ sinβ cotκ− sinψ sinψ sinβ cotκ+ cosψ −a+ l 0 0
cosψ sinβ cotκ+ sinψ sinψ sinβ cotκ− cosψ a+ l 0 0

cosψ sinψ 0 0 0



ẋ
ẏ

ψ̇
ϕ̇

β̇

 =

 0
0
v

 . (5)

The equations of motion of this nonholonomic system can be derived efficiently by means of the Gibbs-
Appell equations [14]. This approach is often used in vehicle dynamics [16] or even in case of skateboards [17]
since it leads to the most compact mathematical form having advantages in case of analytical studies. Several
other methods like Newton’s Second Law of motion with constraint forces, Lagrange-d’Alembert equations with
constraint forces [18] or Kane’s equations [19] lead to equivalent results. Reference [16] contains an electronic
supplement where the detailed derivation and application of the Gibbs-Appell equations are presented.

In order to use this approach, pseudo velocities have to be chosen, by which the kinematic constraints can
be taken into account with a minimum number of coordinates. In our case, two pseudo velocities σ1 and σ2
are needed since this is the difference between the 5 generalised coordinates and the 3 kinematic constraints.
We take σ1, σ2 to be the angular velocities of the skater and the skateboard around the longitudinal axis,
respectively:

σ1 := ϕ̇ and σ2 := β̇ . (6)

The generalised velocities can be expressed with the help of the two pseudo velocities and the five generalised
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coordinates: 
ẋ
ẏ

ψ̇
ϕ̇

β̇

 =


v
(
cosψ + a

l cotκ sinβ sinψ
)

v
(
sinψ − a

l cotκ sinβ cosψ
)

−vl cotκ sinβ
σ1
σ2

 . (7)

Taking the time derivatives of both sides, the generalised accelerations can be expressed by pseudo accelerations,
pseudo velocities and general coordinates.

During the derivation of the equation of motion, the so-called energy of acceleration (A) has to be determined.
For a lumped mass it can be computed as:

A =
1

2
maC · aC (8)

where aC is the acceleration of the lumped mass:

aC =


ẍ+ h sinψ

(
ϕ̈ cosϕ−

(
ϕ̇2 + ψ̇2

)
sinϕ

)
+ h cosψ

(
2ϕ̇ψ̇ cosϕ+ ψ̈ sinϕ

)
ÿ + h sinϕ

(
ψ̈ sinψ +

(
ϕ̇2 + ψ̇2

)
cosψ

)
+ h cosϕ

(
2ϕ̇ψ̇ sinψ + ψ̈ cosψ

)
−h
(
ϕ̇2 cosϕ+ ϕ̈ sinϕ

)
 (9)

We introduce dimensionless geometric parameters and frequency-like physical parameters:

ω1 =

√
g

h
, V =

v√
gh

=
v

hω1
, A =

a

L
=
a cotκ

l
, H =

h

L
=
h cotκ

l
, (10)

which simplifies the subsequent analysis. For example, ω1 is the natural angular frequency of a pendulum
originating in our system. Clearly, our system simplifies to a simple spring-supported inverted pendulum if the
longitudinal speed is zero (v = 0). Using these new parameters and the previously determined acceleration (9)
of point C, in which the generalised accelerations and velocities are replaced by the pseudo accelerations and
pseudo velocities from the time derivatives of exp. (7), we obtain:

1

mh2
A =

1

2
σ̇2
1 +

(
V cosϕ

(
HV sinβ +A

σ2
ω1

cosβ

)
− 1

2
V 2H2 sin(2ϕ)sin2β

)
ω2
1 σ̇1 + . . . , (11)

where the dots refer to the part of the expression, which does not contain pseudo accelerations and has no
relevance later.

The Gibbs-Appell equations assume the form

∂A
∂σ̇i

= Γi , i = 1, 2 , (12)

where Γi is the pseudo force related to the pseudo velocity σi. It can be determined from the virtual power of
the active forces:

δP = G · δvC + MPD · δωs + (−MPD) · δωb + Mkt · δωb = Γ1δσ1 + Γ2δσ2, , (13)

where
G =

[
0 0 −mg

]T
(14)

is the gravitational force, vC is the velocity of point C,

MPD =
[
−MPD cosψ −MPD sinψ 0

]T
(15)

is the torque vector produced by the controller, and

ωs =
[
ϕ̇ cosψ ϕ̇ sinψ ψ̇

]T
and ωb =

[
β̇ cosψ β̇ sinψ ψ̇

]T
(16)

are the angular velocities of the skater and the board, respectively. Finally

Mkt =
[
−ktϕ cosψ −ktϕ sinψ 0

]T
(17)

is the torque produced by the spring in the suspension of the board. The notation δ refers to virtual quantities.
After substitution, we obtain

δP = (mgh sinϕ−MPD) δϕ̇+ (MPD − ktβ) δβ̇ . (18)
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which leads to the two pseudo forces

Γ1 = mgh sinϕ−MPD and Γ2 = MPD − ktβ , (19)

Now, both sides of equation (12) can be calculated, and due to the fact, that the energy of acceleration does
not depend on the derivative of second pseudo velocity σ2 the Gibbs-Appell equations assume the simple form

σ̇1
ω2
1

+ V cosϕ

(
HV sinβ +A

σ2
ω1

cosβ

)
− 1

2
V 2H2 sin(2ϕ)sin2β = sinϕ− MPD

ω2
1mh

2
, (20a)

0 =
MPD

ω2
1mh

2
−Kβ , (20b)

where the dimensionless quantity K is given by

K =
ω2
2

ω2
1

=
kt
mgh

and ω2 =

√
kt
mh2

. (21)

Since the mass and the mass moment of inertia of the board are neglected, Eqn. (20b) corresponds to torque
balancing equation, from which the board deflection angle β can be expressed as a function of the control torque:

β = Pϕ(t− τ) +
D

ω1
ϕ̇(t− τ) , (22)

where the dimensionless control parameters are:

P =
p

kt
and D =

d

kt
ω1 . (23)

Consequently, β and σ2 = β̇ can be eliminated and the system can be described uniquely with four generalized
coordinates: x, y, ψ, ϕ and only one pseudo velocity σ1.

Considering the first equation of the Gibbs-Appell equations (20a) and the expression of β in (22) with
the expressions of the general velocities (7), we obtain the governing equation of the system (hereafter we set
σ = σ1). These equations can be rearranged to become:

σ̇

ω2
1

= HV 2

(
H

2
sin(2ϕ)sin2

(
Pϕ(t− τ) +

D

ω1
σ(t− τ)

)
− cosϕ sin

(
Pϕ(t− τ) +

D

ω1
σ(t− τ)

))
+ sinϕ+

(24a)

−
AV (Pσ(t− τ) + D

ω1
σ̇(t− τ))√

ω2
1 + (ω1Pϕ(t− τ) +Dσ(t− τ))

2
cosϕ cos

(
Pϕ(t− τ) +

D

ω1
σ(t− τ)

)
−K

(
Pϕ(t− τ) +

D

ω1
σ(t− τ)

)
,

ϕ̇ = σ , (24b)

ẋ

h
= V ω1

(
cosψ +A sinψ sin

(
Pϕ(t− τ) +

D

ω1
σ(t− τ)

))
, (24c)

ẏ

h
= V ω1

(
sinψ −A cosψ sin

(
Pϕ(t− τ) +

D

ω1
σ(t− τ)

))
, (24d)

ψ̇ = −HV ω1 sin

(
Pϕ(t− τ) +

D

ω1
σ(t− τ)

)
. (24e)

Note that x, y and ψ are cyclic coordinates, so only the first two equations ((24a) and (24b)) of the system
(24) of differential equations describe the essential motion. If these are solved then the hidden motion can be
directly integrated for the cyclic generalized coordinates.

3 Stability analysis

In this section we are going to investigate the linear stability of the steady-state rectilinear motion of the
skateboard-skater system. First, we take the linearised equation of motion around the trivial solution with
respect to small perturbations in σ and ϕ. This results in a linear neutral delay-differential equation (NDDE)

.

X (t) = JX (t) + T0X (t− τ) + T1

.

X (t− τ) , (25)
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where

J =

[
0 ω2

1

1 0

]
, T0 =

[
−ω1

(
APV +D

(
K +HV 2

))
−ω2

1P
(
K +HV 2

)
0 0

]
,

T1 =

[
−DAV 0

0 0

]
, X (t) =

[
σ(t)
ϕ(t)

]
. (26)

The stability investigation of a linear NDDE can be handled by means of Laplace transforms [20], which is
equivalent to the substitution of the exponential trial solution X (t) = Keλω1t, where K ∈ C2 and λ ∈ C is the
dimensionless characteristic exponent. With new rescaled parameters

τ̃ = τω1 , D̃ = D
(
K +HV 2

)
, P̃ = P

(
K +HV 2

)
, U =

AV

K +HV 2
, (27)

the corresponding characteristic function assumes the form:

Dc(λ) :=
(

1 + D̃Ue−λτ̃
)
λ2 +

(
P̃U + D̃

)
e−λτ̃λ+ P̃ e−λτ̃ − 1 = 0 . (28)

This equation has infinitely many complex roots. The steady-state rectilinear motion is asymptotically stable
if and only if all of the characteristic exponents are situated in the left-half of the complex plane. The limit of
stability is where characteristic roots are located at the imaginary axis for some particular system parameters.

Two different types of stability boundaries can be distinguished: a saddle-node (SN) bifurcation may occur
when the real and imaginary parts of a characteristic root are zero, and a Hopf bifurcation when a pair of
characteristic roots is pure complex. In our model, saddle-node bifurcations may occur if

Dc(λ = 0) = 0 ⇒ P̃ − 1 = 0 . (29)

The critical proportional gains are a subset of the gains

P̃SN = 1 . (30)

In case of a Hopf bifurcation, the critical characteristic exponent is a pure imaginary number λH = ±iω,
ω ∈ R+ where ω is the dimensionless angular frequency of the resultant self-excited vibration. After its
substitution, the characteristic equation

Dc(λ = iω) = 0

can be separated into real and imaginary parts according to the D-subdivision method:(
P̃ − D̃Uω2

)
cos(ωτ̃) +

(
D̃ + P̃U

)
ω sin(ωτ̃)− 1− ω2 = 0 , (31a)(

D̃ + P̃U
)
ω cos(ωτ̃)−

(
P̃ − D̃Uω2

)
sin(ωτ̃) = 0 . (31b)

Then from Eq. (31) the critical dimensionless gains can be calculated in closed form:

P̃H =
(
1 + ω2

) cos (ωτ̃) + Uω sin (ωτ̃)

1 + U2ω2
, (32a)

D̃H =
(
1 + ω2

) sin (ωτ̃)− Uω cos (ωτ̃)

ω (1 + U2ω2)
. (32b)

By means of Eq. (30) and Eq. (32) one can construct the stability chart in the plane of the rescaled
dimensionless control gains P̃ −D̃ (see figure 3). The saddle-node (SN) bifurcation boundary can be interpreted
as a vertical line at P̃ = P̃SN. When this stability boundary is crossed from right to left, the steady-state
rectilinear motion loses its stability without vibrations, that is, we have static instability for P̃ < P̃SN. The
stability boundary characterized by Eq. (32) has a starting point at ω = 0 on the SN bifurcation line. If this
D-curve is crossed, a pair of complex conjugate characteristic roots crosses the imaginary axis of the complex
plane. In figure 3, numbers show the numbers of the characteristic roots that have positive real parts [20]; only
the small shaded parameter domain is stable.

In case of the stability analysis of NDDEs, a stability boundary can also be detected where infinitely many
characteristic roots cross the imaginary axis of the complex plane [20]. Since, the eigenvalues of the coefficient
matrix T1 of the highest delayed derivative term in the equation of motion (25) are 0 and D̃U , these kinds of
”infinitely unstable” domains are found at ∣∣∣D̃∣∣∣ > 1

U
. (33)

It can be proved that the stable domain and the ”infinitely unstable” domain are adjacent if and only if U = 1.
All the above mathematical results can be observed in figure 3.
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Figure 3: Stability chart in the plane of the rescaled dimensionless proportional gain P̃ and the rescaled
dimensionless differential gain D̃ for fixed dimensionless delay τ̃ =1 and rescaled dimensionless speed U = 0.65.
The region of stability is shaded. The numbers refer to the numbers of the characteristic roots with positive
real parts in the corresponding domains of the parameter plane. The Hopf and SN labels refer to the types of
possible bifurcations along the stability boundary: Hopf and saddle-node, respectively.

4 Physical interpretation of stability chart

Let us investigate the effect of the skater’s reflex time on stability. By means of the stability chart in figure 3,
it can be shown that there is no stable domain if the D-curve (32) leaves the vertical SN bifurcation line to the
left. Since dP̃H/dω|ω=0 = 0, the necessary and sufficient condition for the existence of a stable domain can be
written as

d2P̃H

dω2

∣∣∣∣∣
ω=0

= 1− U2 + Uτ̃ − 1

2
τ̃2 > 0 . (34)

This means that
max (0; τ̃cr2) < τ̃ < τ̃cr1 , (35)

where
τ̃cr1,2 = U ±

√
2− U2 . (36)

It is easy to prove that the maximum of τ̃cr1 is τ̃c = 2. This means that there is no stable parameter domain
for any parameter combination if

τ > τc =
2

ω1
= 2

√
h

g
=
T

π
, (37)

where T is the time period of the pendulum representing the skater ”hanging downwards” for V = 0 and kt = 0.
This critical reflex delay is

√
2 times larger than the similarly interpreted critical reflex delay of a simple human

balance model in [12]. For zero longitudinal speed, we get back the critical delay τcr = T/(
√

2π) < τc for the
simple human balancing model without the skateboard. This implies that riding on a skateboard is easier in
certain speed ranges than standing on the ground; in other words, skateboarding can be managed with larger
reflex delay than standing. However, note that the vertical position of the skater is stabilizable below the critical
reflex delay in some speed ranges for certain system parameter combinations.

A dimensionless stability chart can be constructed without using fixed values for the system parameters
(see figure 4). The dependence of U on the dimensionless speed V is plotted in the upper panel of the figure,
parametrized by the dimensionless position of the skater A, the dimensionless height of the skater H and the
dimensionless stiffness parameter K. The shaded domain in the lower panel indicates where the necessary
and sufficient stability condition (35) is satisfied, that is, where the systems can be stabilized by appropriately
chosen P −D parameters. The right and the left sides of this stability chart mathematically belong to the cases
where AV is positive or negative, respectively. Due to the symmetry of the system in the standing position
of the skater and the direction of the motion (sign of the longitudinal speed v), we consider cases when the
dimensionless speed V is positive only while we assume that the parameter A can be either positive or negative
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Figure 4: Critical reflex delay.

referring to cases when the skater stands ahead (A > 0) or behind (A < 0) of the centre of the board. Thus,
the left side of figure 4 corresponds to behind standing while the right one belongs to the ahead standing.

For the fixed dimensionless time delay τ̃ =1.8 in the upper panel of figure 4, thick horizontal segments can
be swept along by means of the dimensionless speed V . The end points of these lines are characterized by
parameters A, H and K, while the exact position within these lines is determined by V . As a consequence,
different types of stability behaviour can occur as the speed increases. Consider the case illustrated in figure 4
for A > 0 (that is, the skater stands ahead) when the linear stability properties change four times as the speed
increases from zero to infinity. This is always true if the dimensionless time delay is

√
2 < τ̃ < 2 and the ratio

A2/HK is sufficiently large. This will explain the wavy shape of the upper stability boundary in figure 5 for a
case study. For this dimensionless time delay, the rectilinear motion is unstable independently from the control
gains if the skater stands behind the centre of the board (A < 0). Several other intricate stability properties can
be explored in the system which will be discussed in the subsequent section using realistic physical parameters
instead of the dimensionless ones.

5 A case study

In order to explain the physical interpretation of the results, especially the dependence of stability on the speed
v and on the reflex time τ , a case study is presented using realistic parameters. Consider the height and the
mass of the skater as 2h = 1.7 m and m = 75 kg, respectively; the length of the board is 2l = 0.787 m and the
rake angle in the skateboard wheel suspension system is 27 degree, i.e. κ = 0.47 rad. These parameters lead to
ω1 = 3.397 rad/s and corresponding time period of oscillation T = 1.85 sec.

Two different cases are assumed in this study; first, when the skater stands ahead of the centre of the board
(a > 0), second, when the skater stands behind (a < 0). The qualitative difference of these cases is especially
relevant because the position of the skater can be changed during riding. figure 5 shows the variation of the
critical time delay versus the longitudinal speed for torsional stiffness kt = 100 Nm/rad of the suspension
system. Panel (a) and (b) correspond to a = 0.1 m and a = −0.1 m, respectively. As it can be observed in
the figure, the maximal time delay, by which the system can be stabilized, is larger for any speed when the
skater stands ahead of the centre point of the board. However, in case of smaller reflex delay, the stabilization
of the rectilinear motion is still possible even when the skater stands behind the centre of the board. Earlier
mechanical models without control cannot explain such dynamic behaviour of the skateboard. For example, [3]
concluded that the rectilinear motion cannot be stable in case of a < 0 for any speed.

Another interesting part of figure 5 is that the maximal allowable reflex delay tends to
√

2/ω1 = 0.42 sec
as v increases. Namely, for very high speeds, the position of the skater on the board does not influence the
required reflex delay.

The stability properties are even more interesting when the torsional stiffness of the wheel suspension
system is small, which is the usual case in practice. For example, the reduced torsional stiffness can improve
the manoeuvrability of the skateboard since smaller control efforts are required by the skater to tilt the board
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Figure 5: Required time delay τ as a function of the longitudinal speed v, with large torsional spring stiffness
kt = 100Nmrad−1 in the suspension. Panel (a): skater stands behind (a < 0), panel (b): skater stands ahead
(a > 0) of the centre of the board.

and to turn the wheels. Figure 6 shows the variation of the allowable time delay versus the speed for different
stiffness values. For the realistic kt = 5 Nm/rad value, it can be observed that the minimum of the time delay
curve goes to zero when the skater stands behind the centre of the board (figure 6a). As a consequence, the
rectilinear motion cannot be stabilized in a specific speed range of speed even by zero time delay in the control
loop. If the skater stands ahead of the centre (see panel (b) in figure 6), a lower limit occurs for the reflex
time, which means that there is a speed range, where the skater cannot stabilize the rectilinear motion short
reflex time, but can stabilize with larger one. This specific counter-intuitive property of delayed oscillators was
recognised in several publications on time delay systems [21].

Figure 6: Required time delay τ as a function of the longitudinal speed v, with lower torsional spring stiffness
in the suspension. Panel (a): skater stands behind (a < 0), panel (b): skater stands ahead (a > 0) of the centre
of the board.

As was mentioned, having a properly chosen time delay is not sufficient to produce stable rectilinear motion;
the control gains have to be tuned. The effect of the longitudinal speed is investigated in figure 7, where
τ = 0.294 sec corresponding to τ̃ =1. The choice of this value is in good agreement with literature (see [22, 23]).
The D-curves are constructed in the p − d parameter plane for different longitudinal speeds, (see panel (a)
of figure 7). Dashed and solid lines correspond to the cases when the skater stands behind and ahead of the
centre of the board, respectively. So it can clearly be seen that the latter case is much more advantageous: the
corresponding stable domains are much larger.

Another interesting point in figure 7 is how the location of the stable parameter domain changes with respect
to the speed of the board. Namely, the stable domain tends to the origin (p = 0, d = 0) as the speed increases.
As a consequence, the skater has to tune the control parameters to catch a very narrow stable parameter domain
at high speeds. Due to the fact that the skater has to use very small control gains, the dead-zones in the human
control become relevant. The skater cannot apply close to zero control torque and cannot even sense very small
tilting angles of the board. This may lead to so-called micro-chaotic oscillations which can still be considered
as practically stable [23].

In figure 7, the frequency f = ω1ω/(2π) of the emerging self-excited vibration is plotted along the Hopf-
type (dynamic) stability boundaries. It is below 1 Hz (ω1ω < 2π rad/s), which is in good agreement with
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Figure 7: Stability charts for various longitudinal speeds: (a) stability charts for pd control gains, (b) frequencies
along the dynamic stability boundaries. The points Si indicate in (a) parameters sets for numerical simulations
in figure 8.

practical observations when skaters start oscillating after loss of stability. Numerical simulation results on the
time histories of deflection angles ϕ and β of the skater and the board, respectively, are presented in figure 8
for parameter sets denoted by S1, S2 and S3 in figure 7.a. The rectilinear motion is statically unstable for S1,
stable for S2, and dynamically unstable for S3 as shown by panels (a), (b) and (c) of figure 8, respectively. One
can observe that the board and the skater oscillate in phase. This is the same for other longitudinal speeds
since the time delay is 6-8 times smaller than the smallest time period of the emerging self-excited vibration
(see figure 7.b).

Figure 8: Numerical simulation results on the time histories of deflection angles ϕ and β of the skater and the
board, respectively; panel (a) shows static instability at parameter point S1 of figure 7.a., panel (b) shows a
stable case at S2, and panel (c) shows dynamical instability at S3.

The loss of stability also can be explained by parameter sensitivity, namely, the choosing of appropriate
control gains in a real application is much difficult as the stable domain is smaller. Figure 9 provides some
information about the dependency of stable areas on the longitudinal speed. The plotted curves show the areas
of the stable domains relative to the stable domain at zero speed (Ar). The larger the speed, the smaller the
stable parameter domain. Note the logarithmic scale on the vertical axis, so the possibility of choosing stable
control gains decreases significantly as the speed increases.

6 Conclusion

A mechanical model of the skateboard-skater system was introduced, in which the effect of the human balancing
was taken into account by means of a linear PD controller. As a relevant parameter of the model, the reflex
time of the skater was also considered as a time delay in the control loop. The stability of the rectilinear motion
of the skateboard was analysed and stability charts were composed with special attention to the reflex time,
longitudinal speed and control gains.

Critical time delays were calculated for realistic parameters. It was shown that skateboarding can be
performed in certain speed ranges with

√
2 times larger time delays than the balancing of quiescent standing

on the ground. This is caused by in the special steering mechanism of the wheel suspensions. The effect of
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Figure 9: The relative area of the stable domains with respect to the longitudinal speed for the cases when the
skater stands behind or ahead the centre of the board

the skater’s position on the board was also investigated and it was established that it is more advantageous if
the skater stands ahead of the centre of the board: large reflex delay is tolerated, and the control gains can be
chosen from larger parameter domains.

Our analysis also showed that low stiffness of the skateboard’s suspension system can lead to instability in
some speed ranges if the skater reacts with small delay. This surprising phenomenon confirms that there exist
delayed oscillators which can be stabilized with increasing the delay while they are unstable for small or even
for zero delay.

In human balancing or stick balancing models, it was shown by Insperger et al. in [24] and [23] respectively,
that a delayed acceleration feedback additional to the PD controller (a proportional-derivative-acceleration
(PDA) controller) improves stability. However, in case of the skateboard-skater system, PDA controller leads
to advanced delay-differential equations and consequently the rectilinear motion is unstable for any parameter
setup. Nevertheless, many other control strategies are developed for time delayed systems with different levels
of robustness (see, for example, [25]), which is to be studied in the future.

The constructed stability charts also explain the loss of stability of skateboarding at high speeds. The stable
parameter domain of the control gains reduces as the speed increases and the decreasing stable domain tends
towards the origin. As a consequence, the skater must decrease the control gains at large speeds, which can
amplify the effects of the dead-zones of the human control. In human balancing models, the existence of dead-
zones are also suspected as the reason of transient-chaotic vibration around linearly unstable equilibria with
large surviving times [23]. Similar phenomena are expected in case of skateboarding which are also possible
areas of future research.
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