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Abstract: A simple mechanical model of the skateboard-skater system is analyzed, in which
the skater tries to follow a straight line by the board. The human control is considered by
means of a linear delayed PD controller. The equations of motion of the non-holonomic system
are derived with the help of the Gibbs-Appell method. The linear stability of the system is
given analytically. The effect of the reflex delay of the skater on the stability is investigated.
It is shown that in case of zero reflex delay, the motion along a straight line is unstable while
non-zero reflex delay can provide stable motion for some specific speed ranges.
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1. INTRODUCTION

Skateboard has become a popular sport in the 60’s. After
a decade, the first mechanical model of the skateboard-
skater system was constructed by Hubbard (1980). Hub-
bard’s study showed that the mechanical model of the
skateboard is a very interesting example of non-holonomic
systems. Other researchers also investigated the linear
stability of the skateboard-skater system, Kremnev and
Kuleshov (2008). All of these studies have provided the
same results, the stabilization of the rectilinear motion is
easier as the longitudinal speed of the board is increased.
Such behavior can commonly be detected in different
nonholonomic systems, see, for example, the bicycle or
the three-dimensional biped walking machine Wisse and
Schwab (2005).

Many practical observations on skateboarding proved, that
unwanted loss of stability can also occur at high speed.
An explanation for this phenomenon can be originated
in the human control, which is always present in the
skateboard-skater system. The human control has reflex
delay, what can cause unexpected stability losses in case
of stick balancing Insperger and Milton (2014) or simple
human balancing Stepan (2009). With the extension of
Kremnev and Kuleshovs model, it was investigated in
Varszegi et al. (2014) how the balancing effort of the
skater influences the stability. A linear PD controller was
implemented, where the skater’s tilting angle was used as
the input of the controller. It was verified that the stable
parameter domain of the control gains is strongly modified
as the longitudinal speed of the board changes, see Figure
1, where the stable parameter domain is rotating around
the origin of the P − D plane as the speed increases.
Consequently, the skater has to tune the control gains with
respect to the speed.
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Fig. 1. Linear stability charts for different speeds 1

In the figure, it can also be observed that the parameter
pairs P = 0 and D = 0 are always at the stability
boundary. This means that if the skater switches off its
control, the rectilinear motion is just stable. Namely, by
means of this simple strategy, the skater could avoid the
instability of the board. But this strategy can work if
the direction of the rectilinear motion does not matter,
namely, the skater does not have to avoid an object on the
road and/or does not have to follow the desired path of
the road. To investigate the case when the skater has to
follow a predefined direction by its board, another control
law is needed. In this study, we consider this latter case.

2. NON-HOLONOMIC MECHANICAL MODEL

The mechanical model in question (see Figure 2) is based
on Kremnev and Kuleshov (2008) and Varszegi et al.

1 See in Varszegi et al. (2014)
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Fig. 2. The simplified mechanical model of the skateboard-
skater system

(2014). The skateboard is modeled by a massless rod
(between the front axle at F and the rear axle at R) while
the skater is represented by a massless rod (between the
points S and C) with a lumped mass at C. In this model,
the connection between the skater and the board (at S)
is assumed to be rigid. The so formed rigid body has zero
mass moment of inertia with respect to its center of gravity
at C, which makes the derivation of the equations of
motion simpler. Namely, the skateboard moves in the three
dimensional gravitational field but we have to describe the
motion of a lumped mass only.

In our study we do not consider the loss of contacts
between the wheels and the ground. Due to the fact that
the longitudinal axis of the skateboard is always parallel
to the ground, one can choose four generalized coordinates
to describe the motion: X and Y are the coordinates of
the skateboard center point S in the plane of the ground;
ψ describes the direction of the longitudinal axis of the
skateboard; and finally, ϕ is the inclination angle of the
skater’s body from the vertical direction. The geometrical
parameters are the following. The height of the skater
is denoted by 2h. The length of the board is 2l while
m represents the mass of the skater. The parameter g
stands for the gravitational acceleration. Here we model
the skater’s navigating effort as a linear PD controller,
which applies a torque to the skateboard (see Figure 2).
The rectilinear motion of the board is prescribed along the
Y = 0 line, and the control torque is calculated via

Mc (t) = −PY (t− τ)−DẎ (t− τ) (1)

where τ refers to the time delay, P and D represent
the proportional and the differential control gains, respec-
tively. The controller produces zero torque if the board
follows the prescribed stationary path.

Regarding to the rolling wheels of the skateboard, kine-
matic constraints can be formed. These constraining equa-
tions define the velocities vF and vR of the front point (F)
and the rear one (R), respectively. The directions of these
velocities depend on ϕ through δS, which is the so-called
steering angle (see Figure 2). This angle can be expressed
from the equation

sinβ (t) tanκ = tan δS (t) , (2)

where κ is the complementary angle of the so-called rake
angle in the skateboard wheel suspension (for the deriva-
tion of this relation please see Kremnev and Kuleshov

(2008) or Varszegi et al. (2014)). Here we also prescribe
the longitudinal speed of the board, which is kept on the
constant value V . The so-formed kinematic constraints can
be written as

A · q̇ = A0 , (3)
where

qT =
[
X Y ψ ϕ

]
, (4)

A =

[
sinψ − cosψ sinϕ tanκ − cosψ − sinψ sinϕ tanκ −l 0
sinψ + cosψ sinϕ tanκ − cosψ + sinψ sinϕ tanκ l 0

cosψ sinψ 0 0

]
,

(5)

A0
T =

[
0 0 V

]
, (6)

The equations of motion of non-holonomic systems can
be determined by means of several methods. For exam-
ple, the extended version of the Lagrange equation of
the second kind (also called as Routh-Voss equations in
Gantmacher (1975)) is applicable but the elimination of
the involved Lagrange-multipliers can lead to extensive
algebraic manipulation. Here we rather apply the Gibbs-
Appell method (see in Gantmacher (1975)), what is a more
efficient approach since it provides the equations of motion
in the form of first order differential equations. However,
the definition of the pseudo velocities have to be chosen
intuitively and the so-called energy of acceleration is also
an unusual physical quantity.

We have three kinematic constraints and four generalized
coordinates, which means that only one pseudo velocity
has to be chosen:

σ := ϕ̇ , (7)

which is the angular speed of the skater around the longi-
tudinal axis of the skateboard. The generalized velocities
can be expressed with the help of this pseudo velocity and
the generalized coordinates:

Ẋ

Ẏ

ψ̇
ϕ̇

 =


V cosψ
V sinψ

−V
l

tanκ sinϕ

σ

 . (8)

During the derivation of the equation of motion, the so-
called energy of acceleration A is needed. Since the model
consists of one mass point only it can easily be computed:

A =
1

2
maC · aC , (9)

where aC refers to the acceleration of the lumped mass. In
our model we obtain:

A =
1

2
mh

V 2

l2
tan(κ) sin(2ϕ)

(
l − h tan(κ) sin2 ϕ

)
σ̇+

+
1

2
mh2σ̇2 + . . . .

(10)

According to the Gibbs-Appell method, the parts of the
energy acceleration, which do not depend on the pseudo
acceleration σ̇, are not necessary to calculate and they are
not computed here. The Gibbs-Appell equation forms as

∂A
∂σ̇

= Γ , (11)

where the right hand side is the pseudo force Γ. It can be
determined from the virtual power of the active forces. In
our model, the gravitational force and the control torque
have non-zero virtual power, so they contribute to the
pseudo force.



The equation of the motion of the system can be written
as

σ̇ (t) =
g

h
sin(ϕ(t)) +

DV

mh2
sin(ψ(t− τ)) +

P

mh
Y (t− τ)−

−V
2

lh
tan(κ) sin(ϕ(t)) cos(ϕ(t))

(
1 +

h

l
tan(κ)sin2(ϕ(t))

)
,

Ẋ (t) = V cos(ψ(t)) ,

Ẏ (t) = V sin(ψ(t)) ,

ψ̇ (t) = −V
l

tan(κ) sin(ϕ(t)) ,

ϕ̇ (t) = σ(t) .
(12)

The first equation of (12) relates to the Gibbs-Appell
equation, the others are the formulas of the generalized
velocities as the function of the pseudo velocity and the
generalized coordinates. It is worth to mention that X
is a so-called cyclic coordinate, so the second equation is
unnecessary for further investigation. It means that the
system can be described in the four dimensional state
space.

3. STABILITY ANALYSIS OF THE RECTILINEAR
MOTION IN CASE OF ZERO TIME DELAY

In this section, the linear stability analysis of the recti-
linear motion is investigated in that special case, when
the time delay of the control-loop is zero (τ = 0). This
theoretical case can be used for better understanding of the
interaction of the skateboard and the skater. The linearized
equation of motion around the stationary solution: σ ≡ 0,
Y ≡ 0, ψ ≡ 0 and ϕ ≡ 0, can be written in the following
form:

σ̇ (t)

Ẏ (t)

ψ̇ (t)
ϕ̇ (t)

 =


0

P

mh

DV

mh2
g

h
− V 2

lh
tan(κ)

0 0 V 0

0 0 0 −V
l

tan(κ)

1 0 0 0

 ·
 σ (t)
Y (t)
ψ (t)
ϕ (t)


(13)

The stability analysis of this linear ordinary differential
equation system (13) can be carried out with the help
of the Routh-Hurwitz criterion. The so-called Hurwitz
matrix can be constructed from the coefficients of the
characteristic equation. The ith sub-determinant of this
Hurwitz matrix is denoted by ∆i and the investigated
equilibrium is asymptotically stable if and only if all of the
sub-determinants ∆i are greater than zero. Here ∆0 = 0,
which means that the rectilinear motion can be stable only
in Lyapunov sense but not exponentially stable. To achieve
this stability, the following three conditions have to also
be fulfilled:

−DV 2

mh2l
tan(κ) > 0, − D2V 4

h4l2m2
tan2(κ) > 0 ,

and
PV 2

mh2l
tan(κ) > 0 .

(14)

The second condition cannot be satisfied for any real
parameters. This means that the rectilinear motion is
unstable, or it can be stable in Lyapunov sense only if
P and D are zeros. This result was examined by means
of numerical simulations only. The analytical proof can be
the subject of future work.

4. STABILITY ANALYSIS OF THE RECTILINEAR
MOTION FOR NON-ZERO TIME DELAY

Let us investigate the more realistic case, when the skater’s
reflex delay is considered. From mathematical view point,
this case is more complicated, because the system is
governed by delay differential equations (DDEs). The
linear stability analysis can be carried out based on the
results of Stepan (1989).

The small vibrations of the board around the rectilinear
motion can be described by the linearized equation:

Ẋ(t) = J ·X(t) + T ·X (t− τ) , (15)

where

J =


0 0 0

g

h
− V 2

hl
tanκ

0 0 V 0

0 0 0 −V
l

tanκ

1 0 0 0

 , X(t) =

 σ(t)
Y (t)
ψ(t)
ϕ(t)

 ,

and T =


0

P

mh

DV

mh2
0

0 0 0 0
0 0 0 0
0 0 0 0

 .

(16)

The characteristic function of this linear system can be
calculated after the substitution of the exponential trial
solution with characteristic exponent λ into (15):

Dc (λ) = λ4 + λ2
(
V 2

hl
tanκ− g

h

)
+

+ e−λτ (λD + P )
V 2

mh2l
tanκ .

(17)

The rectilinear motion is asymptotically stable if all of
the infinitely many characteristic roots are situated on
the left half of the complex plane. The limit of stability
corresponds to the case when characteristic roots are
located on the imaginary axis. If both the real and the
imaginary parts of the characteristic exponent are zeros
then saddle-node (SN) bifurcation can occur. In our case,
Dc (λ = 0) = 0 leads to

P

mh

V 2

hl
tanκ = 0 (18)

which gives a vertical line in the P −D parameter plane:

PSN = 0 . (19)

If only the real parts of the characteristic exponent are
zero, Hopf bifurcation (H) can occur, and the charac-
teristic exponent located on the imaginary axis can be
expressed as λ = ±iω, where i is the imaginary unit and
ω ∈ R+. The D-subdivision method can be used to deter-
mined the corresponding stability boundaries, namely, the
characteristic equation has to be separated into real and
imaginary parts:

0 = ω4 + ω2

(
g

h
− V 2

hl
tan(κ)

)
+

+

(
D

mh
ω sin(ωτ) +

P

mh
cos(ωτ)

)
V 2

hl
tan(κ) ,

0 =

(
D

mh
ω cos(ωτ)− P

mh
sin(ωτ)

)
V 2

hl
tan(κ) .

(20)
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Fig. 3. Structure of stability chart for an arbitrary chosen
longitudinal speed V and for the realistic parameters
given in Table 1.
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certain speeds for the realistic parameters of Table 1.

The critical P and D parameters can be expressed as:

PH = mh
−hl

V 2 tan (κ)

(
ω2 +

g

h
− V 2

hl
tan(κ)

)
ω2 cos(ωτ) ,

DH = mh
−hl

V 2 tan (κ)

(
ω2 +

g

h
− V 2

hl
tan(κ)

)
ω sin(ωτ) .

(21)

Using the stability boundaries (19) and (21), a stability
chart is constructed in the P−D parameter plane in Figure
3. The vertical line of the SN bifurcation and the curve of
the Hopf bifurcation terminate the linearly stable (shaded)
and unstable (white) domains.

The stability boundary given by (21) starts from the
origin, i.e. P=0 and D = 0 for ω = 0. It can be proved
that this curve can go through the origin for ω > 0 if

V ≥ V ∗ =

√
gl

tanκ
. (22)

For realistic system parameters (see Table 2) V ∗ =
1.403 m/s. Let us not here, the rectilinear motion is un-
stable if V < V ∗. The corresponding angular frequency
can be determined as well:

ω∗ =

√
V 2

hl
tanκ− g

h
. (23)

If the speed is higher than the critical value V ∗, the
stability boundary curve intersects itself and a closed loop
appears. It can be proved that only the inner part of this
loop can be stable.

To describe the behavior of this closed loop is important,
because this loop can cat of the stability region (see Fig-
ure 3.), for some parameters the stable region is vanished.
One can verify that the above described closed loop of
the stability boundary rotates counterclockwise around
the origin of the P−D parameter plane as the longitudinal

Table 1. Parameters of the skater-board system

h [m] m [kg] a [m] τ [s]

0.85 75 0.05 0.24

st [Nm/rad] l [m] κ [o] g [m/s2]

100 0.3937 63 9.81

speed V increases. Since the angular frequency ω∗ is also
known, four specific speeds can be determined analytically,
which relate to the special positions of the closed loop, i.e.
when the loop is tangential with the axes of the P − D
plane. These positions are illustrated in Figure 4 and the
corresponding critical speeds are:

V P,up =

√
(2k + 1)

2 π2

τ2
+
g

h

√
hl

tanκ
, (24)

V D,left =

√(
2k +

3

2

)2
π2

τ2
+
g

h

√
hl

tanκ
, (25)

V P,down =

√
(2k + 2)

2 π2

τ2
+
g

h

√
hl

tanκ
, (26)

V D,right =

√(
2k +

1

2

)2
π2

τ2
+
g

h

√
hl

tanκ
, (27)

where k ∈ N.

According to the SN stability boundary at P = 0, only the
right hand side of P − D parameter plane can be stable.
If the stability boundary given in (21) starts to the left
side of the P − D plane at ω = 0 then no stable domain
exists. It can also be proved that if this boundary starts
to the right then stable domain can be located in the first
quadrant.

Stable region exists if and only if the loop of the stability
boundary has an intersection with its initial segment (often
referred to D-curve, see for example, in Stepan (2009)).
If this condition is satisfied then the Hopf boundary
curve starts to the right side of the parameter plane, too.
Accordingly, speed ranges can be determined, where stable
domain exist:√

r2k
τ2

+
g

h
<

Vs,k√
hl

tanκ

<

√(
2k +

3

2

)2
π2

τ2
+
g

h
. (28)

Here, rk is the kth root of equation tan r = r for k ∈ N.
The time delay also has to satisfy the condition:

rk√
V 2

hl tanκ− g
h

< τs,k <
2πk + 3

2π√
V 2

hl tanκ− g
h

. (29)

The lower limit belongs to the geometric case on P − D
parameter plane, when the tangent of the Hopf boundary
curve at ω and at ω∗ are the same and the closed loop
touches from below. The higher one belongs to the case
when the closed loop just leaves the possibly stable domain
(which is bounded by the D-shaped initial segment and
the SN line), namely, the Hopf boundary curve touches
the vertical axes from right at ω∗.

Thus, there are speed (or reflex delay) ranges, where the
rectilinear motion is stable. Using the realistic parameters
of Table 1 and assuming that the reflex delay of the skater
is around 0.3 sec, the stable speed ranges can be calculated,
see Table 2.



Table 2. Stabilizable speed domains
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Fig. 5. Stabilizable domains in the space of the longitudinal
speed V and reflex delay τ

As Table 2 and Figure 5 show, there are speed domains
with low and higher values, where the control of the
skateboard is not feasible. Naturally it does not mean,
that the skater will fall, different control law can allow
the skater to balance itself and keep the vertical position
(see Varszegi et al. (2014), Kremnev and Kuleshov (2008)
or Hubbard (1980)). However, the skater cannot follow the
straight line by the skateboard. In Figure 5, the reflex delay
τ can be seen against the longitudinal speed V . Shaded
domains are stabilizable, which means that the rectilinear
motion can be stable for appropriately chosen control gains
P and D. This stability chart and the condition (28) do
not contradict to the fact that the investigated equilibrium
cannot be stable for V < V ∗. Namely, the left inequality
of (28) for k = 0 leads to the same condition. If τ = 0, the
system is at the edge of stability, the motion is unstable or
it can be stable in Lyapunov sense but not exponentially
stable.

If the control is switched off (the control gains are zeros)
then the rectilinear motion is at the edge of stability if
V > V ∗. For V < V ∗ the rectilinear motion is unstable (see
in Hubbard (1980) or Kremnev and Kuleshov (2008)). This
behavior can be observed in Figure 7, where the maximal
allowable control gains P (dashed-dotted line) and D
(dashed line) are plotted against the longitudinal speed.
Figure 6 provides a better overview about the shapes of the
stable domains in the space of the speed V and the control
gains P and D. These last two figures were constructed
with the parameters from Table 1. Without the variation
of the control gains, small P and D parameter pairs seem
to be the best choice from stability point of view, namely,
they can guarantee the stability of the rectilinear motion
in the largest speed domains.

5. CONCLUSION

A mechanical model of the skateboard-skater system was
constructed, in which the effect of the human control was
taken into account. The control law was demanded to
move the board along an appointed straight line. The
linear PD controller was considered with and without time
delay. It was shown that the delay in the control loop
is essential, namely, in case of non-zero time delay the
rectilinear motion of the skateboard can be asymptotically
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stable in some speed ranges. In case of zero time delay, the
rectilinear motion can be stable in Lyapunov sense only,
it is at the limit of stability.

The effect of the longitudinal speed was analyzed. The
presented stability charts can explain the loss of stability
even at low and high speeds. It was shown, that the
skater must vary the control gains as the speed of the
board changes. The stabilization of the board along an
appointed straight line is possible in specific speed ranges.
Out of these ranges, another control strategy is required,
for example, instead of following of the appointed line, the
balancing of the upper position is a successful strategy.
Switching off the control is another solution, by which the
motion can be kept at the limit of stability.
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