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Kivonat

Az idGkésleltetés szerepe a gordeszka egyensiilyozasidban

MSc Diplomatery, készits: Varszegi Balazs

Sokszor a legegyszeriibb kozlekedési eszkozeink is érdekes, nem vart instabilitasokat mu-
tatnak. Példaul a jarmtidinamikdban mindmaig kutatott a kerékpéarok és gérdeszkak lineé-
ris stabilitdsa. Dolgozatom célja a gordeszka mozgasanak leirdsa, illetve az egyenes vonald
egyenletes mozgés linearis stabilitasvizsgélata.

A vizsgalatok elvégzéséhez elkészitettem a gordeszka legegyszertibb mechanikai modell-
jét, amely csupan egy tomegpontot tartalmaz és két darab tomeg nélkiili rudat, valamint
egy torzids rugot, amely a gordeszka kormanyzasaért felelés gumibakot modellezi. A gor-
deszka legalapvet6bb mechanikai modelljében is figyelembe kell venniink a goérdeszka iranyi-
tasat meghatarozo kinematikai kényszereket. Azaz, még a legegyszeriibb modell is anholo-
nom rendszert alkot, mely rendszerek mozgasegyenleteit nem lehet a méasodfaju Lagrange-
egyenletekkel segitségével meghatarozni. Igy azok elGallitasara elsGdlegesen az Appell-
Gibbs-egyenleteket hasznaltam.

A megalkotott mechanikai modell segitségével a gordeszka egyenes vonali egyenletes
mozgasanak linearis stabilitasat vizsgéltam, valamint adtam egy attekinté képet a modell
nemlinedaris viselkedésérsl. Stabilitasi térképeket készitettem a stabil és instabil sebesség-
tartomanyok megjelenitéséhez. A modell hasonléan viselkedik, mint egy torzids rugoval
megtamasztott inverz inga, a stabilitasi feltételek is hasonléra adédnak, azzal a kiilonbség-
gel, hogy a stabil egyenes vonali egyenletes mozgashoz sziikséges rugdémerevség nagysaga a
gordeszka sebességétdl fligg.

Ezek alapjan megallapithato, hogy amennyiben az egyenes vonalt mozgas kis sebesség
esetén instabil, akkor is lehet a gordeszka egyenes vonali mozgéasa stabil nagyobb sebes-
ségek esetén. Hasonld megallapitasok talalhatok egy egyszertsitett biciklimodellt vizsgalo
tanulmanyban, amelyben a szamitasok helyességét kisérletekkel is igazoltak.

Mivel a vizsgalt modellel nem lehet magyarazni a gérdeszka nagyobb sebességnél fellépd
stabilitasvesztését — amely jol ismert probléma a gyakorlott gordeszkasok koérében — ezért
a modellt kiegészitettem egy szabalyozéasi korrel, amely a gordeszkizé személy gérdeszkara
valé hatasat hivatott modellezni. A szabalyozasi kérben figyelembe vettem a gordeszkas
reakcididejébdl fakado idGkésést. A gordeszka stabilitasat kiillonb6z6 sebességek és szaba-
lyozasi paraméterek mellett vizsgaltam.
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Abstract

The effect of time delay in skateboard balancing
MSc Thesis by Balazs Vérszegi

The simplest vehicles sometimes show interesting unwanted instabilities. For example,
even nowadays the linear stability of bicycles and skateboards is investigated even nowadays
in several studies of vehicle dynamics. The goals of this study are the investigation of the
motion of the skateboard and the stability analysis of its straight stationary motion.

We have constructed possibly the simplest model of the skateboard, which consists of a
mass point, two massless rods and one torsion spring that models the rubber element in the
wheel suspension system. Kinematic constraints play a key role in the motion of skateboard,
thus, the simplest model has to consider them. Hence, the simplest model of the skateboard
is nonholonomic, thus, the equations of motion of the system can not be derived with the
help of the Lagrange equations of the second kind. Therefore, we derived the equations of
motion by means of the Appell-Gibbs equations.

By means of the composed mechanical model, the linear stability of the straight station-
ary rolling is analyzed and we briefly consider the nonlinear behaviour.The system behaves
like an inverted pendulum supported by a torsion spring; the stability criteria are also simi-
lar except that in the case of the skateboard the stability also depends on the speed. Based
on our results, it can be established that the straight stationary rolling of the skateboard
can be stable at great speed even if it is unstable at smaller speeds. Similar results are
published about a simplified mechanical model of the bicycle, where experiments are also
carried out in order to validate the theoretical analysis.

Since, the composed model is unable to show the well-known instability problem of
skateboard at large speeds, the control loop of the rider was also considered in the mechanical
model. The reaction time was implemented into the model by means of the time delay in
the control. The stability of the skateboard was studied for different speeds and control
parameters.
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Chapter 1
Introduction

The simplest vehicles, even those which have been invented many yeas ago, sometimes
show interesting instabilities. For example, the stability of bicycles (Koolijman et al., 2011)
(Wisse and Schwab, 2005) and skateboards (Kremnev and Kuleshov, 2008) is investigated
even nowadays in several studies of vehicle dynamics. Lots of interesting videos can be
found on the internet on video sharing sites (YouTube, 2013b,c,d,a). These show that it is
difficult to hold the straight motion of a skateboard over a certain speed.

The first skateboard was made by the Americans in the sixties, when young Californian
people installed wheels on their surfboard. Thus getting down to the seaside was became
easier and faster (Szabadban.hu, 2013). In the seventies, the first skateboard production
companies were founded and as far back as 1979 the first mechanical model was constructed
by M. Hubbard (Hubbard, 1979, 1980). His motivation to write his study was the riders’
serious injuries. This is surprising to people, who live in the Middle of Europe, for example
to Hungarian people, because there the skateboard was only introduced in the late eighties.
It became more popular in the new millennium.

Nowadays the skateboard is used as means of transport and doing tricks. If the speed is
enough high, as the videos are shown, the riding can be dangerous, it depends on the board,
the rider and the speed.

The aim of this study is to construct a useful and simple mechanical model, which helps

to understand this instability in linear and nonlinear cases.



Chapter 2
The self-balancing skateboard

In this chapter two mechanical models are used to investigate the behaviour of the skate-
board’s motion. The first model consists of two kinematic constraints, the second one three.
Both models consist of one mass point and two massless rods, together with one torsion
spring. The equations of motion are derived with the help of the Appell-Gibbs equations
(Gantmacher, 1975). After the construction of the equations’ the models’ linear stability
is investigated. The nonlinear behaviour of the system is also analysed. These two models

will be compared in this chapter.

2.1 Self-balancing skateboard

In this section the self-balancing skateboard model is derived, in the absence of human

control.

2.1.1 Mechanical model

This mechanical model consists of one mass point (C) and two massless rods (RF and CS),
see in Figure 2.1. The model has 6 degrees of freedom. The board must always be in
contact with the ground. This reduces the number of degrees of freedom by 2. Therefore
4 generalised coordinates are required: X and Y are the coordinates of the point S, v
is the direction of the skateboard longitudinal axis and ¢ is the tilt of the board. The
model parameters are: h, the half height of the skater, [ the half length of the board, a
the eccentricity of the skater on the board, m, the mass point representing the mass of

the skater and s; represents the strength of the rubber element of the suspension. The

2



2.1. SELF-BALANCING SKATEBOARD 3

(a) The mechanical model

(b) Explanation from top view (c) Explanation from front
view

Figure 2.1: Mechanical model of the self-balancing skateboard

generalised coordinates and other parameters are shown in Figure 2.1. We write

X(t) X(t) X(#)
Yo | L _da) | Y and a( = £al _ Y ()

q(t) = 50 | at)=—, = ) dq(t) =~ = i) (2.1.1)
p(t) (1) ¢(t)

The two kinematic constraints correspond to the fact that velocity direction at F (front)

MSc Thesis, B. VARSZEGI



4 CHAPTER 2. THE SELF-BALANCING SKATEBOARD

and R (rear) depend on ¢ through the suspension geometry, as shown in Figure 2.2. This

connection is going to be determined in the coordinate system (z,y, z) relative to the board.

e, \

D», \

\

T

\
X X
\ €pk

Figure 2.2: Suspension geometry

i

¢ €pk

(a) Straight rolling (b) Turning with the board

Figure 2.3: Turning mechanism of skateboard

When the board is tilted through an angle ¢ around the axis x the unit vector epk is

turned through the same angle (see in Figure 2.3(b)):

éDK = R.eDK, (212)
where R is a rotation matrix
1 0 0 COS K
R=|0 cos¢p —sing | and epk = 0 . (2.1.3)
0 singp cose —sink

B. VARSZEGI, MSc Thesis



2.1. SELF-BALANCING SKATEBOARD 5)

The wheel shaft and the shaft DK are connected rigidly, this is one element of the
suspension. So they must be perpendicular for an ¢ values, thus the wheel shaft vector
Ishatt (see in Figure 2.1(b)), which connects the two wheels, must be perpendicular with
épk. Moreover it is parallel with the ground, so the wheel shaft and axes z (the unit vector

in this direction is e,) are perpendicular. On this basis:

Tshaft = éDK X €. (214)

The angle between the velocity of the wheels’ centre and the x axis is the same as the
angle between the shaft and axes y. This is the steering angle ds. The cosine of the steering

angle is determined by the scalar product:
Tshaft - €y = |rshaft| COSs (53. (215)
The connection between angle ¢ and angle ¢§ is obtained from equation (2.1.5):

sin p tan k = tan dg. (2.1.6)

2.1.2 Skater’s state of motion

In this subsection the velocity and the acceleration of the point C will be defined. The
calculations are performed in the coordinate system (X,Y,Z7) fixed to the ground. The
velocity of point S is

vg = [ X Y 0 }T (2.1.7)

and the angular velocity of the rigid body is
. 1T
w = [ pcostp psing o ] . (2.1.8)
The velocity of point C, v¢ is determined with the help of rigid body kinematics:
Vg = Vg + W X rgg, (219)
where rgc is the vector from S to C given by

T
rsc = [ hsinpsiny —hsinpcosy hcose ] . (2.1.10)

MSc Thesis, B. VARSZEGI



6 CHAPTER 2. THE SELF-BALANCING SKATEBOARD

From the (2.1.9) and (2.1.10) we find that

X + hy cos psiny + h@ﬁsingpcosw
ve=| Y — h¢cospcost + hisin g sin ¢ (2.1.11)
—hsin

and the same velocity in a local coordinate system is given by:

cos ¢X + sin 1/)3'/ + hsin gp@/')
Veens = | —cosgsin X + cospcosyY —hg | . (2.1.12)
sin g sin Y X — sin ¢ cos Y

The acceleration of the point C, ac is computed in the same way:

ac =ag+ € X rgc +w x (w X rygc), (2.1.13)
where .
—pYsiny + @ cosy
ag=vVs, e=w=| ¢hcost+ Gsiny | . (2.1.14)
Y

Evaluating we find that:

X—i—hsini/}(gbcosgp—<¢2+¢2)Sincp +hcos¢<2gb1/.)cos<p+i}sincp
ac = Y—i—hsingp(ﬂsinw—l—(¢2+¢2)cosw —i—hcosgp(&bz/}sinzb—i—lﬁcosd)

—h (P% cos p + Psin )
(2.1.15)

2.1.3 Kinematic constraints

The velocities vp, vg of points F, R are determined by vg and w, as well as the directions

of the velocity of these points (see Figure 2.1).

Hence

VF = Vg + W X IsF, (2.1.16)

where rgp is the vector from S to F, and the velocity vg is known from the kinematic

constraint (see Figure 2.1):

Vi = [ vpcos (1 —0) wvpsin (¢ —3J) 0 ]T, (2.1.17)

B. VARSZEGI, MSc Thesis



2.1. SELF-BALANCING SKATEBOARD 7

where vp = vp.

The two equations for v (2.1.16) and (2.1.17) must be equal. This system consist three
scalar equations, one in the direction of X, one in Y and on in Z. The third equation, it
is trivial. The magnitude of vp is irrelevant, so it can be eliminated from the equations.
Thus the connection between the generalised coordinates and velocities is found. This is

the equation of the first kinematic constraint:
(—sint) + coshsin g tan k) X + (cos) + sintpsinptan k)Y + (—a + 1)) = 0. (2.1.18)

The kinematic constraint about the velocity vr of the point R is derived in the same

way to obtain:
(sint) + cos ihsin ptan k) X + (—cost) + sinpsinptan k)Y + (a+ 1)) = 0. (2.1.19)
The kinematic constraints (2.1.18) and (2.1.19) can be written in matrix form:
Aq+ Ag =0, (2.1.20)

where

A —siny + cosysinptank  cosy +sinysinptank —a+1 0 (2.1.21)
siny + cosysinptank —cosy +sinysinptank a+10 0 o

and .
Ao=[0 0] (2.1.22)

2.1.4 Equation of motion

The equations of motion of this non-holonomic system can be derived with the help of
Appell-Gibbs equations (Gantmacher, 1975). In this method, pseudo velocities must be
chosen. The pseudo velocities are produced as the linear combination of generalised ve-
locities, like the kinematic constraints in (2.1.20). The pseudo velocities can be chosen
intuitively, but they must describe the system uniquely. In our case two pseudo velocities
are required, the first one can be taken to be the longitudinal velocity of the point S, and

the second one could be the angular velocity of the skater according to the board:

p:=X costp+ Y sine, (2.1.23a)
= (2.1.23b)

MSc Thesis, B. VARSZEGI



8 CHAPTER 2. THE SELF-BALANCING SKATEBOARD

The kinematic constraints and the definitions of the pseudo velocities can be written in

A ]qz [ —o ] , (2.1.24)

matrix form:

B o

where the vector of the pseudo velocities is denoted by o and the B matrix represents the
definition of the pseudo velocities (2.1.23):

azlp]. and B:[COW sing 0 0] (2.1.25)
o 0 0 01

The solution of equation (2.1.24) gives the generalised velocities in terms of the generalised

coordinates and the pseudo velocities:

X (COSL/J + ¢ sin psiny tan /{) p

}:/ _ (sin¢) — 4sin @ cosy tank) p (2.1.26)
W —sin iy ’ -

¢

g

The generalised accelerations are determined by deriving both sides of equation (2.1.26)

with respect to time

tan Kk (sincpY—l—acosgpsingpa) ,o—i—Xf;

B s g
tan Kk (sm X + acosgoCOS?/JU) p+ Yp (2.1.27)

6 S X ><::

— tan k (cos ppo + sin @p)

g

A denotes the energy of acceleration used in the construction of the Appell-Gibbs equa-

tions:
0A
— =0 2.1.2
5 -0 (21.28)
0A
R =TI, (2.1.28Db)

where €2 and I' the so-called pseudo forces. The pseudo forces can be derived from the
virtual power of the active forces generated by the spring and gravity. The virtual power is
given by

0P =G -dve+ M, - dw = Qép + Ldo, (2.1.29)

B. VARSZEGI, MSc Thesis



2.1. SELF-BALANCING SKATEBOARD 9

where

T T
G = [ 0 0 —mg ] and M, = [ —sysinhpcosy —sysinhpsiny 0 ] (2.1.30)

and 0 denotes virtual quantities. The pseudo forces €2 and I' are found from equation
(2.1.29):
Q=0 and I'=mghsiny — s;sinhe. (2.1.31)

With the known pseudo forces, only the energy of acceleration is missing for the Appell-
Gibbs equations. The energy of acceleration is computed easily when the model consists of

only one mass point:

1
A= gmac - ac. (2.1.32)

In this case the energy of acceleration is given by:

A= —(pcos (tank (—2a* + 3h? cos(2¢) — 3h?) + 6hl) + 2ahlo sin @) -
o tan ko sin pp + $hm tan K sin ¢ cos ppo + mTthQ—i— (2.1.33)
+ ’?—than/ipcosgp (alacosw + psing (l — htan xsin® <p)) o+

2 (tan ksin® o (tank (a? + h?sin® @) — 2hl) + 12) p* + . ...

The energy of acceleration and the pseudo forces can be written in the form

= (L (367 sin® p — 36), + 62) psin(2p) — 0,0 sin” @) op+
+ (30 (1 — 0y sin® @) psin(2¢) + 0, (1 — sin® ¢) o) po+ (2.1.34a)
+ 10, sin(2¢)po + <(9hsm w— ) +Qgsin2g0> %,524—%62—%...,
Q r 2 . 9 .
pcn T 0 and = Osing —a, sinh ¢, (2.1.34b)

where the new parameters are given by:

~ . _ P _a _h 2._ 9 2 _ St
pi= 0, = Ttan/i, ), = Ttanfi, ag = and o, := ey (2.1.35)

From now on p is used as a pseudo velocity instead of p. This p can be called the relative

longitudinal velocity.

Then the equations of motion can be calculated with the help of Appell-Gibbs equations:

MSc Thesis, B. VARSZEGI
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AP (()07 g, :5)
B(y)

o =C(p,0,p) +

-
|

AU (§07 g, 15)
B(e) -

where

(2.1.36a)

(2.1.36b)

1 1
A, (p,0,p) =§9a sin(2¢) (o2, sinh ¢ — o sin ) — ZHQH;L (01, sin® ¢ — 1) p* sin®(2¢)+

1
+5 (36, (1 — Oy, sin ) — 62 sin® ) posin(2¢) + 0,0° sin® o,

B (p) =62sin* ¢ + (0 sin® p — 1)2 :

1
C(p,0,p) =§9h sin(2¢) (O sin® p — 1) p° + 6, (sin® ¢ — 1) po+

2 2
+ag sinp — o, sinh ¢

N 1. . N
Ao (907 g, p) = 50(1 Sll’l2 @Ap (SO, g, p)

(2.1.37a)
(2.1.37h)

(2.1.37¢)

(2.1.37d)

are functions of the two pseudo velocities p and ¢ and the generalised coordinate . Note

that these expressions are independent of the other three generalised coordinates X, Y and

b

The skateboard’s equations of the motion are obtained from the Appell-Gibbs equations

(2.1.36) and from the formula of the general velocities (2.1.26):

5= Ae(90:0)
B(p)
' . As(p,0,p)
o=C Q0,0',p"‘—’
(.0 D)+ =57
¢ =0,
X
- = (cos ) + 0, sinpsin) p,
Yy : _
& = (siny — 0, sin g cos ) p,
¢:_9h81n¢ﬁ7

(2.1.384)

(2.1.38D)
(2.1.38¢)

(2.1.38d)

(2.1.38¢)

(2.1.38f)

The first three equations of (2.1.38) are independent of X, Y and 1, so they can be
decoupled from the last three. This means that X, Y and v are cyclic coordinates and the
first three equations (2.1.38a), (2.1.38b) and (2.1.38¢c) describe the system uniquely in the

three dimensional phase space of the relative longitudinal velocity p, the angular velocity of

B. VARSZEGI, MSc Thesis
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the skater o and the tilt of the skater ¢.

From now on, the straight stationary motion of the skateboard with V' longitudinal

velocity is investigated. The values of the state variables during this motion are the following:

p=V/h=ay, (p=V), 0=0, ¢=0, X=Vt, Y=0 and ¢ =0. (2.1.39)

2.1.5 Linear stability analysis of the straight line motion

To investigate the stability of straight line motion, only the first three equations from the
equation of motion (2.1.38) are used, as was mentioned before. The linear equations of
motion around the stationary solution with the respect to small perturbations p, o and ¢

are shown in the form:

X =J(X-X,), (2.1.40)
where
F ay 0 0 0
X=|o |, Xo=| 0 [andJ=| 0 —avb, ol—a? —ajb, |. (2.141)
2 0 1 0

It can be seen, that the motion is independent of the relative longitudinal velocity p.

For the stability analysis of linear ordinary differential equations, the Routh-Hurwitz

stability criteria can be used (Gantmacher, 1975).

The characteristic equation of this differential equation system is
det (\I—-J) =0, (2.1.42)
which can be written as

At ay X + (—al + a2, + ajb,) A = 0. (2.1.43)

The Hurwitz determinant H; can be derived from the coefficients of the characteristic

MSc Thesis, B. VARSZEGI
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polynomial:
Hy, =ayb,, (2.1.44a)
0, 0
Hy=| " : (2.1.44b)
1 —al+a2 +apby
Oévea 0 0
Hy=| 1 —al+al+ajb, 0. (2.1.44c)
0 Oévea 0

As known from the Routh-Hurwitz condition: for all roots of the characteristic equation to
have negative real part, it is necessary and sufficient that all H; are positive. The conditions

in our case are

ayf, >0, (2.1.45a)
—a? + o, + aj b, >0, (2.1.45b)
0 >0. (2.1.45c¢)

Parameter m, h, [ and tanx can be assumed to be positive. The three criteria with the

original parameters are as follows:

aV >0 2.1.46a
: ( )

s —mgh + mVQ% tan k >0, (2.1.46b)
0 >0. (2.1.46¢)

From (2.1.46¢) it can be seen easily, that this equilibrium can not be stable at any
parameter values. This is obvious, because the characteristic equation (2.1.43) has got one
zero root, thus the third Hurwitz determinant (Hj) is zero. The lack of connection between
p and the another variables in the linear case causes the zero root. In the linear case p is
also a cyclic coordinate. If we dispense with p, the equilibrium is asymptotic stable, else it

is stable only in Lyapunov case.

In the following a few explanations are given for the physical understanding of criteria
(2.1.46). The first means the skater has to stand in front of the centre of the skateboard.
This is not unusual, the skiers do the same, they lean forward. The second one means the
torsion spring has to be stiff enough. It is also seen, that the longitudinal velocity (V') helps
to stabilize the motion. The same happens with the bicycles (Koolijman et al., 2011).

Based on the stability criteria (2.1.46), a stability chart can be created, see in Figure 2.4.

B. VARSZEGI, MSc Thesis
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In this figure the required spring stiffness (s;) is plotted as function of longitudinal velocity
(V). The stable domain is coloured by grey, the unstable one is coloured by white. To draw

Figure 2.4, we have used realistic parameter values, as given in Table 2.1.

800
600

400

s;[Nm/rad]

200

I L L L L L L I 1 L I L h n n n n n
0.0 0.5 1.0 1.5 2.0
V [mys]

Figure 2.4: Stability chart of the totally self-balancing skateboard

Table 2.1: Parameters of the skater and the board

h m g l K
[m] | [kg| || [ms™] || [m[ | [°]
0.85 | 75 9.81 || 0.3937 | 63

From the (2.1.46b) stability criterion, the critical spring stiffness (s;.) and longitudinal
velocity (V.) are given by:

h
St =mgh — mVQT tan K, o =l — i by, (2.1.47a)
St ! 2 a?] — Oégt
V. =4 g — =L , 29 Tt 2.1.47b
g mh \ tan k We 0, ( )

We can get the same stability chart for negative V.

2.1.6 Nonlinear Analysis

The aim of this section is to discover the behaviour of the motion in the nonlinear domain,
creating a bifurcation diagram. First other equilibria will be found, then the existence of
limit cycles will be studied.

To investigate equilibria the first three equations (2.1.38a), (2.1.38b) and (2.1.38c) are

MSc Thesis, B. VARSZEGI
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used. The derivatives must be zero to be an equilibrium, so from the third equation
o =0, (2.1.48)

this is put to use in the first two ones, we find:

6, sin(2
0= Sm(z ?) Elp.p), (2.1.49a)
(0 sin® ¢ —1)" 4 02sin*
0, sin? g0—12—|—8§sin2g0 _
( )2 — E(e,p), (2.1.49b)
(Hh sin? p — 1) + 62 sin”
where
1
E(p,p) = a2, sinhp — a2 sing + 5911 sin(2¢) (6, sin® ¢ — 1) §°. (2.1.50)

Hence to investigate equilibria, it is sufficient to examine the zeros of E(y, p) is sufficient
hereafter.
Henceforward the oy variable is used instead of p since V /h = oy denotes the investigated

equilibrium of p. With this change equations (2.1.49) are given in the new form:

2 2

1
ag, sinh @ = agsinp + 5(1%/(% sin(2¢) (6, sin® ¢ — 1) . (2.1.51)

We can get the same condition while analysing Nearly self-balancing skateboard model, thus

any further analysis of equilibria is in Section 2.2.5.
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2.2 Nearly self-balancing skateboard

In this section the nearly self-balancing skateboard model is considered. This is very similar
with the previous one, the only difference between the two models is an additional kinematic

constraint. We assume that the skater keeps the longitudinal velocity of the board constant.

2.2.1 Mechanical model

The new kinematic constraints can be seen in Figure 2.5 at point S.

(a) The mechanical model

(b) Explanation from top view (c¢) Explanation from front
view

Figure 2.5: Mechanical model of the nearly self-balancing skateboard
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The magnitude of longitudinal velocity of point S must be V. Hence:
X cost)+ Y sing = V. (2.2.1)

Since the other two kinematic constraints exist also, we just add another row to the matrix
A and vector Ay:

—sinYy + cosyYsingptank cosy +sinYsinptank —a+1 0

A= siny 4+ cosysinptank —cosy +sinysinptank a+1 0 (2.2.2)
cos Y sin 0 0
and
T
Ao=|00 v | (2.2.3)

Then the kinematic constraints can be obtained in the same way:

Aq+ Ay =0. (2.2.4)

2.2.2 Equation of motion

The equation of motion can be constructed with the help of Appell-Gibbs equation. There
is one more kinematic constraint so only one pseudo velocity is requiredWe take it to be the

relative angular velocity of the body:
o= . (2.2.5)

In this case the generalised velocities in terms of the generalised coordinates and the

pseudo velocity are giveb by:

\% (cosz/J + ¢ sinpsin ¢ tan /@)

V (Sin Y — 7 singcos 1 tan /{)
= o n . (2.2.6)

—V sin QOT

6. 2L =<

g

The energy of acceleration can be computed the same way as (2.1.32) (the independent

parts of & are niggling here too), and the result is

A 1 . . . Yy
i (ga‘z/eh (1 — ), sin” ) sin(2¢) + ayb, (1 — sin® ¢) O') o+ 502 +.... (227

The pseudo force is derived similarly and the virtual power is the same, since there is
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only one pseudo velocity, only one pseudo force exists, which is:

3 = aZsinp — a2, sinh . (2.2.8)

Thus the equations of the motion are:

2 2

1
5 sinp —ag sinh o + 50(%/9;1 (61, sin® p — 1) sin(2¢p) — ay b, (1 —sin’ ) o, (2.2.9a)

o=

$ =0, (2.2.9b)
- =av (cost) + 0, sinpsin) , (2.2.9¢)
Y . .

& = (sinty — 6, sin p cos ) , (2.2.9d)
Y = — oy Oy sin . (2.2.9¢)

The X, Y and v generalised coordinates are cyclic coordinates here too, just the same
as in the previous model. The investigated equilibrium is the static straight line motion,
given by:

c=0, =0, X=Vt, Y=0 and o =0. (2.2.10)

2.2.3 Conservative quantity

To check the conservative nature of the system, the Appell-Gibbs equation (2.2.9a) is used.
First this equation is multiplied by o, and the resulting equation is integrated with respect

by time.

1
JO dt = fo*d dt — fag sin po dt — f o sinh o dt + i&aﬁh (1 — ), sin” ) sin(2¢p)o dt+

+ favea cos® po? dt. (2.2.11)
We find
1 1 1
Cy = 502 + ozg cos ¢ + O‘i cosh p — Za%,@i sin? p + 50@% sin? ¢ + Ja‘/Qa cos? po? dt,
(2.2.12)

where ¢y is a constant.

The total energy can be determined from the kinetic and potential energies:

E,=E,+E, + L, (2.2.13)
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where
B, =ai + ;0 + Hhav sin® p — a0, sin® ¢ + ;ave (o b, sin® ¢ + osin(2p)), (2.2.14)
Ey =a? (cosp — 1), (2.2.15)
E,, =a cosh (2.2.16)
we find

1. 1 . :
E; =ai — 043 + 5 sin® ¢ + 043 cos p + agt cosh ¢ + 59204‘2/ sin® p — a2 0, sin® o+ (2.2.17)
1

+§avé’a (onQa sin?p + o sin(2cp)) )

If the result (2.2.12) is compared with the total energy (2.2.17) then it can be seen that
the difference between the two results is not only in the constant term. If the last term of
the total energy is differentiated with respect to time, it does not give the same expression
as the last term of the expression (2.2.12). Moreover the independent parts of 6, are not

the same in the two expressions, so the total energy is not constant in time.

If 8, = 0 then a conservative quantity does exist, given by

1 1 1
Cy = 502 + o cos ¢ + o2, cosh ¢ — Zaveh sin o + onHh sin? ¢, (2.2.18)

which is not the total energy. This is obvious, because the force, which keeps the velocity
of the centre of the board at a constant magnitude, has a power. This force has a potential
in case when a is zero, given by the difference between the computed total energy and the

conservative quantity.

2.2.4 Linear stability analysis of the straight line motion

The linear stability analysis is carried out the same way as in the previous case. The linear

system can be written in the same form as the equation (2.1.40), where

0 —avl, o — a2 — a2
X=|71], X,= and 3= | V0 ag s —ovl | (2.2.19)
¢ 0 1 0

The characteristic equation is almost the same as equation (2.1.43) just expect that the
zero root is missing:
N+ ayl, A+ —al + o, + aj 0, =0, (2.2.20)
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which means the stability criteria are the same without the last one (2.1.46¢):

aif, >0, (2.2.21a)
—a? + o + aj 0, >0. (2.2.21b)

As a conclusion it can be said, that the two models give the same results in linear case.

Thus the stability boundaries and the stability chart are the same.

2.2.5 Nonlinear analysis

The aim of this subsection is to show the non-linear behaviour of the model.

To investigate the equilibria the first two equations (2.2.9a) (2.2.9b) are used, as was
mentioned before. We find
o =0, (2.2.22)

and
1
o sinhg = a2singp + 504%(% sin(2¢) (O sin®p — 1) (2.2.23)
This equation is the same as (2.1.51), so the same result can be given on the same way (see
Section 2.1.6).
For the further qualitative investigation of the equilibria we will use a specific value for

0y, this value is 4 (the exact value is 4.23728 with Table 2.1 data). We did this, because we

can obtain a simpler analytical form. Equation 2.2.23 becomes, with this simplification:
sinh ¢ = (,sin p + 2¢y (sin(2¢) — sin(4yp)) , (2.2.24)

where (, is the ratio of the gravitational potential energy and the potential energy in the
spring and (y is the ratio of the kinetic energy and the potential energy:
Oé?, mgh ﬁ mV?

Gg=— = , v=—= : (2.2.25)

2
St O{St St

Q

t

In this paper we are going to investigate the ¢ € [—7/2,7/2] domain only, because outside
of it the skater will fall. The aim of this examination is to understand the structure of the
phase-space diagrams in the case where a = 0 (where the system is Hamiltonian and so it
is conservative).

Equation (2.2.24) is solvable graphically: where the graph of the right side

g(p) = (gsing + 2¢y (sin(2¢) — sin(4yp)) (2.2.26)
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crosses that of the left side
f(¢) = sinh ¢ (2.2.27)

One possible case can be seen in Figure 2.6, where the red curve is function f(y) and the
blue one is g(¢). ¢ = 0 always satisfies equation (2.2.24) and this is a stable equilibrium if
and only if

1> (g —4Cy, (2.2.28)

which is the same stability criterion as criterion (2.2.21b) with the new parameters. Graph-
ically this means that the tangent of the function f at ¢ = 0 is greater than the tangent of

function g at the same ¢.

(), gle)

Figure 2.6: Graphical solution for equilibria

An other interesting point is when these two functions touches each other. It can be
when the value of these functions is the same and the tangent of these functions is also the

Same:

df(p)  dg(p)
T e (2.2.29)

The ratios of the energies are expressible from (2.2.29):

cosh(¢p) (sin(4p) — sin(2¢)) + 2 (cos(2¢) — 2 cos(4yp)) sinh ¢
b = sin® ¢ (6 + 12 cos(2¢)) 7
_ coshp —cotpsinhp

" " 2sin ¢ (6 + 12 cos(2¢))”

(2.2.30a)

(2.2.30b)

And finally the structure of phase-space changes when a new equilibrium appears at the

edge of the investigated domain (¢ = 7/2). This happens when

™

¢, = sinh <§> . (2.2.31)

This three conditions (the stability of the origin (2.2.28), the condition for the connection
(2.2.30) and the appearance of the equilibrium (2.2.31)) divide the space of energy ratios

into five parts (see in Figure 2.7).
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4
11T
3 |AY
— sinh(%)
5 I1
{ Vv
I
0
0 02 04 06 0.8 1

Iy (1]

Figure 2.7: Different phase-space structures in the space of energy ratios

Information about the phase-space for each domain is given in Table 2.2. In the second
row, there is information about the stability of the origin, stab. means the upper equilibrium
is stable in Lyapunov case, because a = 0, unstab. means it is unstable, the third row of
the table indicates the number of the equilibria. There is one example of every different

structure in Figure 2.8.

Table 2.2: Structure of phase-space

[ Domain || T | II [ I [ IV ][ V |
Stability || stab. | unstab. | unstab. | stab. | stab.
No. EP 1 3 1 3 )

As far as stability is concerned domain I is the best possibility, because there is only
one stable equilibrium , which is a centre, and nothing else. Hence the stable motion of the
skater remains in the case of any perturbation. Increasing the velocity (kinetic energy) we
can get into domain V, where four other equilibria appear. Two saddles and two centres.
The straight line motion is still stable, but this case is not as good as the previous one,
because in the case of a big enough perturbation the skater is moved to the other side of
the saddle, so the skater goes to a outer equilibria. This means the skater will move in a
circle, but equilibria is stable, so will may fall of. The phase-space looks similar in domain
IV, the difference between these two domains is that the outer equilibria move out the
investigated area. In this case, there can be a stability loss at high speed if the system gets
a big perturbation (for example the skater must avoid something).

If ¢, is increasing it means the potential energy from gravity is getting bigger than the
potential energy of the spring, thus the spring is getting relatively weaker. If we start from

domain [ again, but we investigate the effect of increasing parameter (g4, then we can reach
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Figure 2.8: Structure of phase-space in specific domains
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domain II or III (the difference between II and III is the same as it is between V and IV).
The stability of the straight line motion will change if we reach domain II or III, it is not
a centre any more, it is a saddle. This type of bifurcation is called saddle-node bifurcation.
Domain IT and IIT are not good cases from the skater’s view point, because he will tilt until
an outer equilibria, what can be too big, so the skater may fall.

If the origin is unstable (domain IT or IIT) and the velocity increase then the straight
line motion becomes stable, this effect of increasing velocity was known from Figure 2.4, as
well.

The phase-space diagrams for a is not zero can be found in Appendix B. The numerical
simulations for this model can be found in Appendix C. A solution with big perturbation

can be also seen (Figure C.4).

2.2.6 Limit cycle

To study the existance of limit cycles the Bendixson criterion can be applied. If the so called
Bendizon function (B) does not change sign, than there is no limit cycle. The definition of

this finction is

oo 0P
B =— 4+ —. 2.2.32
(p.0) = 5+ 5 (22.32)
In our case, this function is
B(p,0) = —ayl, cos® ¢ (2.2.33)

which is positive or zero for any ¢ and zero in only individual points not in a continuous

domains. Thus limit cycles can not exist for any parameter set.
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2.3 Comparing the models

The conservative approach models the unbacked skateboard better, whereas the non - con-
servative one assumes an active rider, who just keeps the longitudinal velocity on the same
level and does not try to balance.

It can be seen, that the two models give the same linear stability criterion. This means
both models can be used for investigations if the perturbations are small.

In addiction, the non-linear equilibria have the same structure with exactly the same
values. This can be seen in subsections 2.1.6 and 2.2.5.

Based on these, the behaviour of the skateboard can be analysed with the help of both
models and they give the same results. For further investigation the nearly self-balancing
skateboard model is going to be used, that is the model with the kinematic constraints
relating to the longitudinal velocity, because the describing equations can be handled more
easily.

So the Controlled skateboard model based on the nearly self-balancing skateboard model.
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Chapter 3

Controlled skateboard

In this chapter the effect of the skater is analysed, which makes the mechanical model more
complex than it was in Chapter 2. The skater is able to make torque between himself
and the board and necessarily the skater and the board have their own degree of freedom,
therefore the tilt of the skater and the board is not the same at any time. The two models
in Chapter 2 give the same result in the linear case, thus in this section only the simpler
model is investigated, which consists the uniform longitudinal velocity constraint.

After the construction of the equations of motion with the help of Appell-Gibbs method
for arbitrary human control, we verify the equations of motion with the previous equations.
If a rigid connection is supposed, then the equations of motion must be the same as in
Chapter 2. After this verification the skater control is going to be modelled as a PD control

loop. Finally the reflex time of the skater is going to be taken in the investigation.

3.1 Derivation of the equation of motion

In this section the equation of the motion is derived with the help of Appell-Gibbs equation.
The model is constructed with arbitrary control torque (M.) by the skater, therefore any

control loop can be applied in what follows.

3.1.1 Mechanical model

The mechanical model (see Figure 3.1) is almost the same as before. The model consists
the same elements: one mass point (C), two massless rods (RF and CS) and the torsional
spring (s;), which are the same as in Chapter 2. There are two differences between the two
models. First the two massless rods are not connected rigidly at point S and the second,
there is a control torque between the skater and the board. The model parameters are the

Same.
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26 CHAPTER 3. CONTROLLED SKATEBOARD

A new generalised coordinate is necessary because of the new degree of freedom, this is
the tilt of the board and it is donated with 3. This coordinate can be also seen in Figure

3.1. Therefore there are 5 generalised coordinates: X, Y, ¢, ¢ and .

(b) Explanation from top view (c) Explanation from front
view

Figure 3.1: Mechanical model of the controlled skateboard

The structure of the kinematic constraint is the same as it was in Chapter 2 (2.2.2),
but there the constraints were depended on ¢ and now they are dependent on 3, because 3
represents the tilt of the board. Technically ¢ has to be substituted by j:

—siny + cosysin ftank  costy +sinysinftank  —a+1 0
A= siny 4+ cosysin ftank  —costy +sinysinftank a+1 0 (3.1.1)
cos sin vy 0 0
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3.1. DERIVATION OF THE EQUATION OF MOTION 27

and Ay is the same: -
Aog=[0 0 -V |, (3.1.2)

Naturally the kinematic constrains can be obtainable in the same way:
Aq+Ay=0. (3.1.3)

Anything else (e.g. acceleration of point C and etc.) is the same as in Chapter 2.

3.1.2 Equation of motion

There are 2 pseudo velocities required even though there are 3 kinematic constraints, but
there is one more generalised coordinate too. The first pseudo velocity can be the relative

angular velocity of the skater and the second one can be the relative angular velocity of the
board:

o=, (3.1.4a)
v =0 (3.1.4b)

In this case the generalised velocities in terms of the generalised coordinates and the

pseudo velocities becomes:

[V (cosz/z + %sinﬁsinwtan/i) 1
V (Sin@/z — ¢ sin Jcos ¢ tan /{)
—V sin 120k : (3.1.5)

g

@6 S N
I

14

The energy of acceleration is created by the same method as in (2.1.32):

A

mh?

1 1
= (av cos ¢ (o by sin B + 0,1 cos ) — 504%/92 sin(2¢) sin® 6) o+ 5(52 +.... (3.1.6)

The derivation of pseudo forces is complicated because of the control torque. The virtual

power of the active forces is given by:
0P =G -dvg+ M. ws + (—M,) - wp + Mg, - dwy, (3.1.7)

where the expression of angular velocity of the skater w, is the same as the angular velocity
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28 CHAPTER 3. CONTROLLED SKATEBOARD

of the rigid body w in Chapter 2. The angular velocity vector of the board is

. i . qT
wp = [ fcosyy [Bsiny 1 ] (3.1.8)
and the vector of the control torque is
T
M, = | ~M,(t)cos —M(t)sinw 0 | . (3.1.9)
Evaluating expression (3.1.7) we find:

§P = mghsingdp — M(t)0p + M,(t)55 — sy sinh B63 = (3.1.10)
= (mghsinp — M(t)) 6 + (M,(t) — s, sinh 8) 653. o
The coefficient of 53 is 0; this can be easily seen with the help of the free-body diagram of

the system (see Figure 3.2). Therefore the board is massless and this is a static problem.

C
@
S o
(a) Skater (b) Board

Figure 3.2: Free-body diagram of the controlled skateboard model in z — y plane

The torque equilibrium in this plane static problem is really simple:
0 = M.(t) — s;sinh 3, (3.1.11)
which is the same as the coefficient of (53 in (3.1.10), so the virtual power is

P = (mghsin — M.(t)) 6¢. (3.1.12)
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From expression (3.1.12) the pseudo forces are given by

2 2
3 = Qg sing — a;me(t) and e i 0, (3.1.13)
where A is the pseudo force of v and
M. (t
me(t) := ( ) (3.1.14)
St

Since the energy of acceleration (3.1.6) is independent on v and A is zero the Appell-

Gibbs equation related to v is the trivial identity:
0=0, (3.1.15)

therefore there is one equation less than required. But from the torque equilibrium (3.1.11)

we find a connection between 5 and M,:

M. (t )
B = arcsinh ®) = arcsinh(m.(t)). (3.1.16)
St
The pseudo velocity v is given by:
. ne(t
ool (3.1.17)
1+ m2(t)

Thus the equations of the motion are:

0 =—Qycosy (avﬁh sin (arcsinh (m.(t))) + GG% cos (arcsinh (mc(t)))>
mc
—i—%a%/é’i sin(2¢) sin” (arcsinh (m.(t))) + o sin @ — o me(t), (3.1.18a)
$ =0, (3.1.18b)
% =ay (cos ) + 0, sin ¢ sin (arcsinh (m.(t)))), (3.1.18c¢)
% =ay (siny — 6, cos ¢ sin (arcsinh (m.(1)))), (3.1.18d)
¥ = — oy, sin (arcsinh (m.(t))) . (3.1.18e)

Here the X, Y and v coordinates are cyclic coordinates, and S is a function of M., so
this is a known variable. These variables are not necessary for the further investigation of

the system.
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30 CHAPTER 3. CONTROLLED SKATEBOARD

3.2 Rigid skater — board connection

In this section we are going to check the identity of the equations of motion (2.2.9) and
(3.1.18) when the connection between the skater and the board is rigid.
The rigid connection means that the tilt of the board is the same as the leaning of the

skater:
B=e (3.2.1)

From (3.1.16) and (3.2.1) the control torque is given by:
me(t) = sinh . (3.2.2)

Equations (3.2.3) can be obtained with this simple control torque, which are exactly the
same as equations (2.2.9). So the self-balancing skateboard model is a special case of the

controlled skateboard model.

1

o) =a§ sin g — a2 sinh ¢ + §a%/0h (0n sin? ¢ — 1) sin(2p) — b, (1 — sin? ¢)o, (3.2.3a)
p =0, (3.2.3b)
X
- =av (cost) + 0, sinpsin) , (3.2.3¢)
Y

5 = (sinty — 6, sin p cos ) , (3.2.3d)
U = — ayb,sin g. (3.2.3¢)
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3.3. SIMPLE SKATER BALANCING 31

3.3 Simple skater balancing
In this section we are going to model human balancing on a skateboard with a PD control

loop.

3.3.1 Equation of motion

The magnitude of the control torque is given by a PD controller:

M(t) = Po + D¢, (3.3.1)
hence
me(t) = pp + do, (3.3.2)
where P D
p=— and d=—. (3.3.3)
St St

With this control torque the first equation of (3.1.18a) becomes:

1
o =§a%/92 sin(2¢) sin? (arcsinh (py + do)) + 04; sinp — azt (pp + do) — (3.3.4)

po + do
\/1 + (pp + do)?

—ay cos p | ay b, sin (arcsinh (pp + do)) + 6 cos (arcsinh (pp + do))

It can be seen, that there is a & on both sides of the equation. Thus the (first order)

ordinary differential equations of the motion can be written as:

A (p,0)

0 =—F"", 3.3.5a
B(%.0) 55
$ =0, (3.3.5b)
5 = (cos ) + 0, sin ) sin (arcsinh (pp + do))) , (3.3.5¢)

Y
- =av (sin — 6, cos 1) sin (arcsinh (pp + do))) , (3.3.5d)
Y = — a0 sin (arcsinh (pp + do)) . (3.3.5€)

where
Oév(gad .

B(p,0) =1+ cos ¢ cos (arcsinh (pyp + do)) (3.3.6)

\/1 + (pp + do)?
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and
1
Ay (p,0) 25043,0,21 sin(2¢) sin? (arcsinh (pp + do)) — a0}, cos psin (arcsinh (pp + do))

(3.3.7)
po

\/1 + (pp + do)?

—avy cos b,

cos (arcsinh (pp + do)) — a2, (pp + do) + o sing
The trivial solution is the static straight line motion, given by the following pseudo
velocity and generalised coordinates:
c=0, =0, X=Vt, Y=0 and ¢ =0, (3.3.8)

these are the same as (2.2.10).

3.3.2 Linear stability analysis of the straight line motion

The linear system can be written in the same form as equation (2.1.40)
X = J (X —X,), (3.3.9)

where

1+ay6.d 1+ay0a.d

1 0

o av9ap+ (azt+a%/9h)d Ctgf(agt +a%/9h)p
J= (3.3.10)

and X and X, are the same as expression (2.2.19):

X:[U], and onlol. (3.3.11)
%) 0

The stability criteria can be derived with the help of Routh-Hurwitz theory, from the
Jacobian matrix (3.3.10).

avﬁap + (Oégt + Oé%/eh) d
1+ Oévead
(aVHap + (agt + a%@h) d) (ozg — (a?t + a%é’h) p)
(1 + Oévead)2

>0, (3.3.12a)

>0. (3.3.12b)

The stability criteria with the original parameters can be written in the form of (3.3.13), if

h and m are positive. The stability criteria (3.3.12) are equivalent to (3.3.13) if and only if
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3.3. SIMPLE SKATER BALANCING 33

all of the expressions in (3.3.13) have the same sign.

aPmhV tan k+D (mhV?tank + ls;) (3.3.13a)
aDV tan k+hls; (3.3.13b)
Is;(P — mgh)+hmPV?tan k (3.3.13¢)

Thus there are two cases; all of the (3.3.13) expressions are positive or negative.
If all of the (3.3.13) are less than zero, the equilibrium under consideration is stable if
the parameters are chosen from the grey domain in Figure 3.3. Tt means P is less than a

critical value: )
mgh oy

= y Pe= . 3.3.14
1+ %—ms‘f tan K ‘ a2, + a3, ( )

P

If all of the (3.3.13) are greater than zero, the equilibrium is stable if the P is chosen from
the grey domain of Figure 3.4. In this case the parameter is greater than the critical value
P..

P D

4+ ——

++—

a
+ ——
— 4 —
V
(a) V — P parameter plane (b) @ — D parameter plane

Figure 3.3: Explanation for stability charts of the PD controlled skateboard in case of all
the expressions (3.3.13) are less than zero

This critical proportional parameter can be seen in Figure 3.3(a) and Figure 3.4(a) with
different spring stiffnesses These are the black lines, the dotted-dashed black line is related
to the infinite spring stiffness. The line is related to the required spring stiffness
(stc) in the self-balancing skateboard model. In Figure 3.3(b) and Figure 3.4(b) the red line
means that expression (3.3.13a) is equal to zero and the + or - marks give the sign of this
expression in the particular domains. The blue curve denotes where expression (3.3.13b) is
zero and the + or - marks give the sign of the expression. The black marks denote the sign

of the (3.3.13c) expression. As was mentioned the investigated equilibrium is stable if all of
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34 CHAPTER 3. CONTROLLED SKATEBOARD

the (3.3.13) expressions have the same sign; all negative (see in Figure 3.3) or positive (see

in Figure 3.4).

P D

+—+

+++
——F
+—+

—++

——+
v

(a) V — P parameter plane (b) a — D parameter plane

Figure 3.4: Explanation for stability charts of the PD controlled skateboard in case of all
the expressions (3.3.13) are greater than zero

The effect of the torsion spring stiffness on the critical value of the proportional parameter
is already known, but the effect of the proportional parameter and the longitudinal velocity
on the a — D plane is unknown. Figure 3.5 can be used to understand these effects.

The gradient of the red line in Figure 3.3 and 3.4 decreases as the longitudinal velocity

(V) increases, then it begins to increase at

l
Vo=t (3.3.15)

mhtan k

until it reaches 0 at V = co. The equation of the blue curve is:

ho1
S (3.3.16)

" Vtanka’

D(a)

thus as V' increases this curve is asymptotes to the axes.

The changing of the proportional parameter has an effect of the red line’s gradient only,
if P increases then the gradient decreases and the connection between them is linear.

When the skateboard is not moving (V' = 0), the equilibrium can not be stable if the
proportional parameter is less than the critical value (P.), as can be seen from the first row
of Figure 3.5. It can be also seen that any a parameter can be chosen when V = 0, the
equilibrium will be stable if D greater than zero and the P parameter is enough big. This
is obvious, because if the board is not moving than there is no front part and rear part as

it was mentioned in the previous chapter, Chapter 2.
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If the longitudinal velocity would be infinite, the structure of the stability charts do not

depend on other parameters. The motion will be stable only with positive P, D and a

parameters.
400 - F =100 Nm 400 - P =200Nm - 400 400

_ V=10.mfs V=0.mfs
2 200 - 200 - 1 200 200
E‘ ] 0 0 0
z
o =200 -200 - 4 =200+ =200 -

—400 —-400 —-400 —400

=04 =02 00 0.2 0.4 -0.4 -0.2 0.0 0.2 0.4 —0.4 -0.2 0.0 0.2 0.4 —0.4 -0.2 0.0 0.2 0.4

D [Nmsjrad]

D [Nms/rad]

D [Nms/rad)

D [Nms/rad]

04 -02 00 02 04 04 -02 00 02 04 04 -02 00 02 04  —04 -02 0.0 02 04

a [m] a [m] a [m] a [m]

Figure 3.5: Stability charts of the PD controlled skateboard with the effect of changing
the proportional parameter and the longitudinal velocity

Compared with the self-balancing skateboard model, it can be said, that the PD controller
expands the stable domain, therefore this PD control loop is not able to cause the loss of
stability at higher speed.

Numerical simulations can be found in Appendix D for stable and unstable cases too.
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3.4 Riding on skateboard with reflex time

The consideration of human control can not be completed without the reflex time of the
skater, inasmuch as the time delay plays a significant role in the stability of mechanical
systems, for example in robotics and machine tool vibrations (Stépan, 1989). The time
delay in mechanical systems is able to change the stability behaviour, even stabilize an
unstable equilibrium or even contrariwise. In this section a PD controller is used to model

the interaction of the skater and the board, but there is also a delay in the control loop.

3.4.1 Equation of motion

In this case the magnitude of the control torque is similar to the control torque in equation
(3.3.1):
M. (t) = Pp(t— 1)+ Dp(t — 1), (3.4.1)

this means

me(t) = po(t — 1) + dp(t — 7). (3.4.2)

The equations of the motion with this control are

1
o 2504%/0% sin(2¢) sin” (arcsinh (pp(t — 7) + do(t — 7)) — a2, (po(t — 7) + do(t — 7)) +

+a? sin g — ay,6), cos psin (arcsinh (pp(t — 7) + do(t — 7)) — (3.4.3a)
po(t —7) +do(t—1)

YL+ (olt =) + dof(t — 7))

—ayb, cos  cos (arcsinh (pp(t — 7) + do(t — 7)))

=0, (3.4.3b)
% =ay (cost) + 0, siny sin (arcsinh (pp(t — 7) + do(t — 7)))) , (3.4.3¢)
% =ay (siny — 0, cos ¢ sin (arcsinh (pp(t — 7) + do(t — 7)))) , (3.4.3d)
Y = — ay O, sin (aresinh (po(t — 7) + do(t — 7))). (3.4.3¢)

This system is a neutral delay differential equation system, if neither 6, nor ay is zero.
The first two equations can be decoupled from the last three ones, namely the generalised
coordinates X, Y and ¢ are cyclic coordinates here too. Also the trivial equilibrium is not

changed, this is the same as in expression (3.3.8).
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3.4.2 Linear stability analysis of the straight line motion

The linear delayed differential equation system can be written in the
X () =IX )+ ToX(t—7)+T1X (t—7), (3.4.4)

form, where

5o 0 ol T, = —avlep — (a2, + a3 0y)d — (o2 +alby)p (3.45)
1 0 0 0
and
—avﬁad 0
T, = . 3.4.6
1 0 0 ] (346)
The substitution of the trivial solution of the linear equation (3.4.4)

t

X (t) = [ UEt; ] —KeM, KeC?, MeC (3.4.7)
¥

leads to the characteristic function

D) = (avlade™ +1) N + (a2 d + avbup + o} 0ud) ™A+ (o2, + atb,) pe™ — a2

g?
(3.4.8)
and the characteristic equation can be written in the form
D(\) = 0. (3.4.9)

Usually, there are infinitely many complex roots of the characteristic equation (3.4.9), but
not all of the roots are situated in the right-half complex plane generally. The investigated
equilibrium, in this case the stationary straight motion, is asymptotically stable if and only
if all of the characteristic exponents are situated in the right-half complex plane (Stépén,
1989). The limit of stability is where the characteristic roots are located at the imaginary
axis for some particular system parameters (e.g.: ag, ay,...).

If not only the real part of the characteristic exponent is zero, but also the imaginary
part of it is zero (so A = 0), then the bifurcation is called saddle-node (SN) bifurcation. In
our case:

DA =0) = (a2 + a3 bh)p—a.. (3.4.10)

9

This type of bifurcation is also called static loss of stability, the critical dimensionless pro-

portional parameter can be calculated from the characteristic equation (D(A = 0) = 0):
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2
CYg

_— pan = 1. 3.4.11
a? + oz O’ PsN ( )

PSN =

This critical proportional parameter value decreases, while ay increases, it goes to zero,

while oy goes to infinity.

If the real part of the characteristic exponent is zero and the imaginary part is not zero
then a Hopf bifurcation may occur. In this case the characteristic exponent can be written

an imaginary numbers:
Ao = tiw, weR". (3.4.12)

A complex equation is obtained at the boundary of stability from equation (3.4.12);

separating this into real and imaginary parts, we arrive at:

0=((a? + ayh) p — avb,dw?) cos(wr) + ((aZ, + aibh) d + ayb,p) wsin(wr)— (3.4.13a)
2 _ 9
—ay — w?,
0=((a? + aybh) d+ ayb,p) wcos(wr) — ((a2, + i bh) p — ayb,dw?) sin(wr), (3.4.13b)

The following dimensionless parameters are introduced:

2 2
ag, +ai 0

2 4 2 9 B -
T =Ty ©= i, D= p%—fvh, d=dayf, and r=—2°L— (3.4.14)
Qg CYg Oévea
Equations (3.4.13) lead to
0= (15 — Jaﬂ) cos (0F) + (cm+ 73) @ sin (OF) — &% — 1, (3.4.15a)
T
0= (rd + 2) & cos (WF) — ( . b?) sin (&7) (3.4.15h)
T

with the new parameters.

The @7 product can be eliminated from the equations (3.4.15), leading to an equation

for the dimensionless frequency (@):

(5- Jaﬂ)z + <rci+ ﬁ)zaﬂ — (@ +1)’ (3.4.16)

r
This is a quadratic equation for @?, which can be written in the following form:

03 (%) + 0102 + 09 = 0, (3.4.17)
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where .
o=d—1, o= 4@ -2 and oy = 1. (3.4.18)
r
Hence
~92 —01 0% - 40002

w =
+
- 202

(3.4.19)

There can be either zero, one (repeated) or two real positive roots, depending on the
parameters; these results can be seen in Table 3.1. The sign of the coefficients of powers of &2
is in the first three columns, the sign of the expression under the root sign is in column four,
the fifth column contains the number of solutions and the sixth column gives information
about which combinations of signs are possible with the system parameters. When the sign
in column four is + it means that the expression under the root sign can be also positive
and negative, going a further condition.

The number of positive solutions for @? equals to the number of positive solutions for @
and here we only investigate the case where @ is positive (the same real and imaginary part
of the characteristic equation is obtained with positive or negative characteristic exponent

so only positive @ needs to be investigated).

Table 3.1: Number of positive solutions for &?

’ 09 \ 00 \ 01 \ 02 — 40009 \ Nb. of sol. \ Existence \ Domain nb. ‘

+ |+ |+ + 0 — —
+ | +]- + 2 (+) A —
+ |- | £ + 1(+) 3 I
-+ | % + 1(-) 1 IT
S ¥ 2 (£) g 111
_ _ _ i 0 _ _

This is easy to show, that the case in the second row is not possible; the first two

conditions (09 and oy are greater than zero) leads to the
d*>1 and p*>1. (3.4.20)

The condition that 0; < 0 can be written as

]52
2

+r2d? < 2. (3.4.21)
T

If the smallest p, d parameters are substituted in this inequality then a contradiction is
given:
(r—1)* <0, (3.4.22)
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It means that the left side of the inequality (3.4.21) can not be satisfied for any possible p
and d parameters; this is the reason why there is a # mark in Table 3.1.

The three domains, from the Table 3.1, can be seen in Figure 3.6, where the horizontal
axes is p? and the vertical axes is d?. The continuous line correspondent to 12 = 0.25, the
dashed line to 72 = 0.1 and the dashed dotted line to r> = 5. It is easy to see that the curve

2.0

1.5

0.5

0.0 0.5 1.0 1.5 2.0
Figure 3.6: Number of positive solutions for @ (and also &?)
of the Hopf stability boundary can cross itself only if both |p| < 1 and ‘CZ‘ < 1.
We can get an explicit expression for the time delay (7) from the equations system

(3.4.13) in terms of W.:

1 L yrd
F= (arctan S lm) . keN (3.4.23)
_l’_

Not only are @ and 7 obtainable from equations (3.4.15); p and d can also been found:

r (1 + &%) (rcos (OF) + wsin (OF))

- 4.24

bu ,r.2 + (1)2 ’ (3 a)

~ o2 — oT I T

Gy = (LH &%) (=@ cos (@7) + rsin (0F)) (3.4.24b)
@ (r? + @?)

The saddle-node bifurcation can be interpreted as a vertical line at p = pgy in the p - d
parameter plane. The left half-plane from this vertical line is naturally unstable, because of

the so called static stability criteria. Of course this vertical line consists the starting point
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of the dynamical stability boundary:

N N N ~ ~ r7—1
Pro = PHlg_g = Psy = 1, duo = du I (3.4.25)
w=0 T
A —
1.0 e q — 1.004
{1008 1.00015
0.5
1.000 ——— I 1.0001

1. | —
g 0-998 \ = 1.00005

0.996
1

- 0.994
0.992 0.99995
] () — — \

0.990
-10 =5 0 5 10 096 098 1.00 1.02  1.04 0.981 0.983 0.985

pl Pl Pl

d[l]

Figure 3.7: Structure of the stability chart of the PD controlled skateboard with the
skater’s reflex time

The structure of the stability chart of the static straight line motion can be seen in

Figure 3.7. We can show, that

P = lim py = @sin (@F)  and  dye = lim dy = — cos (&7) (3.4.26)
w—00 w—00
so the curve of the stability boundary goes to an ellipse whose centre is the origin, major

axis is infinitely large and minor axis is 1, the equation of this ellipse is

Phoy di _

1. 3.4.27
2 T (3.4.27)

If 7 less than /2 then the minor axis is approached from larger values, otherwise it is
approached from lower values; the major axis is approached from lower values regardless of
the inequality.

In the next few paragraphs the effect of the skater’s reflex time is investigated. If the
PH — JH curve gives to the left side of the vertical line from the ppo — JH@ point on the
D - d parameter plane then there will not be any stable domain. Thus the necessary and
sufficient condition for the existence of a stable domain is

d?py 2 2T

T =2 gt T >0 (3.4.28)

In Figure 3.8 , the grey domain indicates where the expression (3.4.28) is satisfied, so there

is a stable domain in the p - d parameter plane.
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2.5

ay [1/s]

0.5

1.5

.

—

Figure 3.8: Critical time delay

There is a critical time delay (7., 7.); if 7 is more than 2, then the investigated equilibrium

will not be stable (the numerical value computed by the data of Table 2.1):

2 T
f.=2, T,=—=—=-2=0.583715 [s], (3.4.29)

ag g T
where o is the natural circular frequency of the uncontrolled skateboard and T} is the
period of time of the uncontrolled skateboard. This numerical value is close to the human
reflex time, so we can say people with better reflexes can ride on a skateboard, while others

not.

The effect of the velocity (ay) on parameter r is shown in Figure 3.8. The parameter
values are: a;, = 0.2 [1/s], oy = 3 [1/s], 8, = £0.5 [1] and 6, = 3 [1]. This example

also illustrates well, that the equilibrium is stable at low velocity, then it becomes unstable,
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finally it becomes stable again as the velocity (V') increases. It does not appear that the

minimum of parameter r (ry,) is grater than 1, namely

s, VO St 1

Tmin = 2— =2 ———>1. 3.4.30
ag O, mga /g tank ( )
It means s; must be greater than a critical value:
. 1 a
St > §1. = —mga— tank, (3.4.31)

4 [

this critical value is small in reality, it can be shown in Figure 3.9. The maximum value of
this spring stiffness is 142.125 [Nm] if @ = [, but the parameter a is much smaller usually.

Thus this not caves problems in the real world.

§1c [Nm]
140
120
100

80
60
40
20

a [m]
0.1 0.2 0.3 0.4

Figure 3.9: Ciritical spring stiffness for stable domain

In the following we investigate the effect of the velocity on another aspect of skateboard-

ing. Parameter r decreases while the velocity (V' and «ay) increases until it reaches V* (or

* \.
ad):
O, « St 1

\/%7 mhq/%tan/i’

then this relation changes, parameter r will increase while the velocity continues to grow.

al = (3.4.32)

Furthermore, if r decreases then the existing stable domain will decrease as well. This means,
while the velocity is increasing then the stable domain increases too until the velocity reaches
V*, then it will decrease; this can be followed in Figure 3.10. In the dimensionless case the
vertical line represents the saddle-node bifurcation and the other curves represent the Hopf-
bifurcations; all of the D-shaped domains are stable even though only one is greyed out for
the better visibility.

As shown in Figure 3.8 or 3.10, two velocities is related to each r (except at ry;,). The
parameters from Table 2.1 and 3.2 are used for stability chart 3.10 and 3.11.
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d[1
V=0.561 [m/s] ig‘]ﬁm [1]
V=1 [m/s], ¥=0.315 [m/s] T
........................ 0;3“57:7 [1]

\

~
~
~
N

V=2 [mis], 1=0157 msl g 5 "

-0.1

Figure 3.10: Dimensionless stability charts of the PD controlled skateboard with the
skater’s reflex time

Table 3.2: Parameters for the stability charts

St a T
[m] || [Nm] | [s]
100 || 0.05 | 0.294

The connection between the size of the stable domain and the velocity in the dimensional
case is not the same as it was in the dimensionless case (see Figure 3.11). By increasing the
velocity the size of the stable domain decreases and it also moves to the left and down. The
latter one can be seen from the starting point of the Hopf-stability boundary (see expressions
(3.4.25)). All of the D-shaped domains are stable in Figure 3.11 too, not only the greyed
out one.

This behaviour of the stable domain is capable of illuminating the loss of stability at
high speed. If we take into account a more complex connection between the skater and the
board than a rigid one and we take into consideration the reflex time of the rider we could
model the loss of stability at high speed.

The static straight motion can be stable for negative velocities too (this is equivalent
to the negative value for parameter a), but in this case the stable domains are smaller on
the P—D plane, and the required time delay is less than the other case (see the left side of
Figure 3.8). But the impact of speed changes is the same, so if velocity goes to zero then
the stable domain will increase. Thus negative velocity (or a) makes worse conditions for
stability.
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D [Nms] D [Nms]
400 i 100
80 ,
300 : V=3 [m/s]
60 ;
40
200
AN 20 ’ V=2 [mvs]
' L r=0315 [y * =3 [m/
100 L - el P [Nm]
o, L7 1=0.561 [m/s] -100 100 200 300
L =1 ms] -20
D V=2 [m/s]
i i P [Nm] —40
200 400 600 800 1000

Figure 3.11: Stability charts of the PD controlled skateboard with the skater’s reflex time

Numerical simulations can be found in Appendix E for stable and unstable cases too.
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Chapter 4
Sumimary

The aim of this thesis is to find a reason why skateboarding is dangerous, what causes the
instability at high speed. To understand this phenomenon we have created basically two
different models, the first is the self-balancing skateboard and the second one is the controlled
skateboard.

With the help of the self-balancing skateboard model we were not able to reach the goal
of this project, but it has become clear that the constant velocity constraint has no effect
on the linear stability of the static straight line motion or on the equilibria. Thus this
simpler model can be used in further investigation. There is a negative effect of the higher
velocity in the case of large perturbations, but to see it an unrealistically big perturbation
is required.

The second model was unable to explain the adverse effect on the speed, when the skater
was modelled with a simple PD controller. By accounting for the reflex time of the skater it
can be explained. This model is only describable with delayed differential equations of the
neutral type, which requires a more complicated mathematical method than the previous
ordinary differential equations.

From this model we got a good quantitative result too, this is the value of the critical
time delay (or reflex time t.), whose value is around 0.6 second. The human reaction time

also falls in this range.
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Appendix A

Numerical simulations for the totally

self-balancing skateboard

Numerical simulations for ordinary differential equation system (2.1.38) can be found in
Appendix A. The numerical simulations is computed by the ode/5 function of MATLAB
2012b software.

The values used for the parameters, which are not the same for all simulations, can be
found in the table before the result of numerical simulations. The other parameters are the
same for every numerical solution and they can be found in Table 2.1.

The so-called energy error (Eq.,) function is computed from

Ey(t) — Ei(0)

Eor(t) := F.(0)

(A.0.1)

The order of this energy error is small, depending on the step size of the numerical method.
If the step size decreases the energy error decreases as well.

The simulation is unrealistic if |p| > 7/2, but it shows well the stability.
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Table A.1: Values of parameters and initial conditions for totally self-balancing
skateboard in the stable case

se | a || p0) | a(0) |¢(0)] X(0) | Y(0) | (0)
[Nm| | [m] || [m/s] | [rad/s] | [rad] | [m] | [m] | [rad]
| 100 [0.05] 4 | o1 [ 0 | 0 | 0 [ 0 |
40036
40w
7 40025
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E 400 _
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40005
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(e) Total mechanical energy

Figure A.1: Numerical simulations for totally

(f) Energy error

self-balancing skateboard in the stable case
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Table A.2: Values of parameters and initial conditions for totally self-balancing

skateboard in dynamically unstable case

se | a || p(0) | o(0) | (0) | X(0)| ¥(0) | %(0)
[Nm] | [m] || [m/s] | [rad/s] | [rad] | [m] | [m] | [rad]
| 100 [0.05] 4 | 01 [ 0o ] 0 | 0 | 0 |

Longitudinal velocity [mis]

. . , . \
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Time [s]
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Figure A.2: Numerical simulations for totally self-balancing skateboard in dynamically

unstable case
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Table A.3: Values of parameters and initial conditions for totally self-balancing
skateboard in the statically unstable case

s | a || p(0) | a(0) | 9(0) | X(0) | ¥(0) | ¥(0)
[Nm] | m] || [m/s] | [rad/s] | [rad] | [m] | [m] | [rad]
| 100 [0.05] 05 | 01 [ 0 | 0 | 0 [ 0O |

Longitudinal velocity [mfs]
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Figure A.3: Numerical simulations for totally self-balancing skateboard in the statically

unstable case
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Table A.4: Values of parameters and initial conditions for the totally self-balancing

skateboard with large perturbation

Longitudinal velocity [m/z]

=50

-100

s | a | p0) | a(0) | ¢(0) | X(0) | Y(0) | ¥(0)
[Nm] | [m] || [m/s] | [rad/s| | [rad] | [m] | [m| | [rad]
| 100 [0.05] 05 | 0 [ 0 | 0 | O [ /3]
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Figure A.4: Numerical simulations for the totally self-balancing skateboard with large

perturbation
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Appendix B

Phase-space for the non-conservative

skateboard model

Phase-space is more complicated in case when the parameter a is not zero as shown in

Appendix B. They are computed numerically for negative and positive a with Wolfram

Mathematica software with the same parameters as Figure 2.8.
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Figure B.1: Structure of phase-space for specific domains with a skater, who stands before
the centre of the board
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The equilibria are independent of the parameter a, so they are not changed in comparison
with Figure 2.8. The centres become stable focus if a is greater than zero, and unstable

focus if a is less than zero.
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Figure B.2: Structure of phase-space for specific domains with a skater, who stands after
the centre of the board
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Appendix C

Numerical simulations for the nearly

self-balancing skateboard

Numerical simulations for ordinary differential equation system (2.2.9) can be found in
Appendix C. The numerical simulations is computed by the ode/5 function of MATLAB
2012b software.

The values used for the parameters, which are not the same for all simulations, can be
found in the table before each numerical simulation. The other parameters are the same for
every numerical solution and they can be found in Table 2.1. The energy error function can
be computed as the same way as in Appendix A, expression (A.0.1).

The simulation is unrealistic if |p| > 7/2, but it shows well the stability.
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Table C.1: Values of parameters and initial conditions for nearly self-balancing

skateboard in the stable case

s | a | V|l a(0) | 9(0) | X(0) | Y(0) | ¥(0)
[Nm] | m] | [m/s] || [rad/s] | [rad] | [m] | [m] | [rad]
| 100 [0.05] 4 | o1 [ 0 | 0 | 0 [ 0 |
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Figure C.1: Numerical simulations for nearly self-balancing skateboard in the stable case
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Table C.2: Values of parameters and initial conditions for nearly self-balancing
skateboard in the dynamically unstable case

s | oa | V| o(0) |90 ] X(0)] Y(0) | $(0)
[Nm] | [m] | [m/s] || [rad/s| | [rad] | [m] | [m] | [rad]
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Figure C.2: Numerical simulations for nearly self-balancing skateboard in the dynamically
unstable case
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Table C.3: Values of parameters and initial conditions for nearly self-balancing
skateboard in the statically unstable case

s | a | V|l a(0) | 9(0) | X(0) | Y(0) | ¥(0)
[Nm] | m] | [m/s] || [rad/s] | [rad] | [m] | [m] | [rad]
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Figure C.3: Numerical simulations for nearly self-balancing skateboard in the statically
unstable case
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Table C.4: Values of parameters and initial conditions for nearly self-balancing
skateboard with big perturbation

s | a | V|| a(0) | 9(0) | X(0) | ¥(0) | ¥(0)
[Nm] | m] | [m/s] || [rad/s] | [rad] | [m] | [m] | [rad]
| 100 [0o.05] 05 | o [ 0o | 0 | 0 [a/3]
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Figure C.4: Numerical simulations for nearly self-balancing skateboard with big pertur-
bation
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Appendix D

Numerical simulations for the PD

controlled skateboard

Numerical simulations for ordinary differential equation system (3.3.5) can be found in
Appendix D. The numerical simulations is computed by the ode/5 function of MATLAB
2012b software.

The values used for the parameters, which are not the same for all simulations, can be
found in the table before each numerical simulation. The other parameters are the same for
every numerical solution and they can be found in Table 2.1.

The simulation is unrealistic if |p| > 7/2, but it shows well the stability.
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Table D.1: Values of parameters and initial conditions for PD controlled skateboard in
the stable case with P less than P, and negative a

P 1 D | s | a| V || a0) |¢(0)] X(0)] Y(0)](0)
[Nm| | [Nms| | [Nm] | [m]| | [m/s] || [rad/s] | [rad] | [m] | [m] | [rad]
1200 [ 50 | 50 [-03] 05 || o1 [ o | 0 | 0 [ 0 |

%107

-0.002 -

-0.004

E E. -0.006 +
- =
-0.006 -
-0.01
- —— -
5 g 10 12 14 18 18 20 0 2 4 B g 10 12 14 16 18 20
Time [s] Tirme [s]
(a) Angle ¢ (b) Angle ¢
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s
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2 3t
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(c) Position of the centre of the skateboard (d) Control torque

Figure D.1: Numerical simulations for PD controlled skateboard in the stable case with
P less than P. and negative a
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Table D.2: Values of parameters and initial conditions for PD controlled skateboard in
the stable case with P less than P. and positive a

P D Sy a 1% a(0) | ¢(0) | X(0) | Y(0) | ¥(0)
[Nm| | [Nms| | [Nm] | [m] | [m/s] || [rad/s] | [rad] | [m] | [m] | [rad]
1 200 | -300 | 50 [o01] 05 | o1 [ 0 [ 0 | 0 [ O |

¢ [rad]

Tz 4 5§ 10 1z W 6 1% = B T T R N
Tirne [s] Time [s]
(a) Angle ¢ (b) Angle ¢
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T
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o} g
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£
= 150
AL kb
2t 1 o5l
. . ; ‘ ; ‘ o
1] 2 4 5 8 10 12 0 2 4 B g 10 12 14 16 18 20
X [m] Time [s]
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Figure D.2: Numerical simulations for PD controlled skateboard in the stable case with
P less than P, and positive a

MSc Thesis, B. VARSZEGI



64 APPENDIX D

Table D.3: Values of parameters and initial conditions for PD controlled skateboard in
the stable case with P more than P,

P 1 D | s | a | V || o0 |90 ]X(©0)]Y(0)]4(0)
[Nm| | [Nms| | [Nm]| | [m] | [m/s] || [rad/s] | [rad] | [m]| | [m] | [rad]
1200 [ 200 | 50 [005] 3 [ o1 [ 0 [ 0 | 0 [ O |

%107

002

-0.04 F

-0.06 F

i [rad]

-0.08
01+

012 L

. n . . L . 014 | I ! L ! L L L L
g 10 12 14 16 18 20 ] 2 4 B g 10 12 14 16 15 20

Time [s] Time [s]
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16+
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10r P [
1} 10 20 30 40 50 B0 70 a0 0 2 4 B g 10 12 14 16 18 20
% [m] Time [s]
(c) Position of the centre of the skateboard (d) Control torque

Figure D.3: Numerical simulations for PD controlled skateboard in the stable case with
P more than P,
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Table D.4: Values of parameters and initial conditions for PD controlled skateboard in
the unstable case with P less than P,

P D 5¢ a V a(0) | »(0) | X(0) | Y(0) | ¥(0)
[Nm] | [Nms| | [Nm] | [m] | [m/s] || [rad/s] | [rad] | [m]| | [m] | [rad]
1200 [ 200 | 50 [0.05] 05 [ 01 [ 0 [ 0 | 0 [ O |

25 T T T T T T T T T 0
2k
2F
Ak
i st
E B
- =
1+ |
S0
05t
12F
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Tirne [s] Time [s]
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Figure D.4: Numerical simulations for PD controlled skateboard in the unstable case with
P less than P,
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Table D.5: Values of parameters and initial conditions for PD controlled skateboard in
the unstable case with P more than P,

P D ss | a |V c(0) | ¢(0) | X(0) | Y(0) | ©(0)
[Nm| | [Nms| | [Nm] | [m]| | [m/s] || [rad/s] | [rad] | [m] [m] | [rad]

1200 ] 200 | 50 [-01] 3 [ o1 [ o | 0 | O [ 0 |
DD DIS 1I 1|5 2‘ TME;S[S] é 3.‘5 :Ii 4.‘5 5 '250 D.‘S 1‘ 1.‘5 2I T|r§;5[s] é 3|5 :1 AIS 5
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Pasition of the board

700

600 -

500 -

B
o
=]

w
a
=]

¥ m]
L8]
Caontrol torgue [Mm]

[}
s}
=]

o
=]

@ L I L ! I I I I L I L L L L
-1 0 1 2 3 4 5 1] 0s 1 15 2 25 3 35 4 45 ]

% [m] Time [s]
(c) Position of the centre of the skateboard (d) Control torque

Figure D.5: Numerical simulations for PD controlled skateboard in the unstable case with
P more than P,
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Appendix E

Numerical simulations for the delayed
PD controlled skateboard

Numerical simulations for ordinary differential equation system (3.4.3) can be found in Ap-
pendix E. The numerical simulations is computed by the NDSolve function of Mathematica
software.

The values used for the parameters, which are not the same for all simulations, can be
found in the table before each numerical simulation. The other parameters are the same for
every numerical solution and they can be found in Table 2.1. The initial conditions are zero

for all variables except X:; when t is less than zero, the initial data for X is
X(t<0)=Vt. (E.0.1)

The simulation is unrealistic if |p| > 7/2, but it shows well the stability.
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Table E.1: Values of parameters and initial conditions for delayed PD controlled
skateboard fot the stable case

P D T St a %4 a(0) | (0) | X(0) | Y(0) | ¥(0)
[Nm] | [Nms| | [s] | [Nm] | [m] | [m/s] || [rad/s] | [rad] | [m] | [m] | [rad]

| 50 [ 20 ]0294] 100 [005] 2 [ 01 | 0 [ 0 | O [ O |
0.05 ~i2
0.04 -03
T 0.03 =
$0.02 5t
0.01 -05
0.00
0 2 4 6 8 10 0 2 4 6 8 10
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£ 0
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(c) Position of the centre of the skateboard (d) Control torque

Figure E.1: Numerical simulations for delayed PD controlled skateboard for the stable
case
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Table E.2: Values of parameters and initial conditions for delayed PD controlled
skateboard for the statically unstable case

P D T 5 a Vv a(0) | ¢(0) | X(0) | Y(0) | ¥(0)

[Nm] | [Nms| | [s] | [Nm] | [m] | [m/s] || [rad/s] | [rad] | [m] | [m] | [rad]
| 46 [ 20 [0294] 100 [005] 2 [ 01 | 0 [ 0 | O [ O |
5 0
4 =50
g3 g 100
S. I:l
2 =150
; ~200
0
0 10 20 30 40 50 60 70 0 10 20 30 40 50 o0 70
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__400
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£ 300
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8 200
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(c) Position of the centre of the skateboard (d) Control torque

Figure E.2: Numerical simulations for delayed PD controlled skateboard for the statically
unstable case
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Table E.3: Values of parameters and initial conditions for delayed PD controlled
skateboard for the statically unstable case at low speed

P D T 5¢ a 4 a(0) | ¢(0) | X(0) | Y(0) | ¥(0)
[Nm] | [Nms] | [s] | [Nm] | m] | [m/s] || [rad/s] | [rad] | [m] | [m] | [rad]
| 600 [ 220 [0.294 ] 100 [0.05]0.105] 01 | 0 [ 0 | 0 [ 0O |

0.56 0
0.55 -5
o =3
£054 E_10
SN =
0.53 -15
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E 0.2 g
=325
~03 g
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3 320
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315
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(c) Position of the centre of the skateboard (d) Control torque

Figure E.3: Numerical simulations for delayed PD controlled skateboard for the statically
unstable case at low speed
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Table E.4: Values of parameters and initial conditions for delayed PD controlled
skateboard for the dynamically unstable case

P D T St a V a(0) | ¢(0) | X(0) | Y(0) | ¥(0)
[Nm] | [Nms| | [s] | [Nm] | [m] | [m/s] || [rad/s] | [rad] | [m] | [m] | [rad]

| 60 [ 20 ]0294] 100 [005] 2 [ 01 | 0 [ 0 | O [ O |
0.15 0.2
0.10 {\ I
0.0
. 005 /\ _
) -
£ 0.00 £ -0.2
- =
—0.05 v Y
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0
-2 E 10
4 2 s
g =
> -8 g !
-10 £ =5
[=
1B S _10
-14
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X [m] Time [s]
(c) Position of the centre of the skateboard (d) Control torque

Figure E.4: Numerical simulations for delayed PD controlled skateboard for the dynami-
cally unstable case
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