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Abstract

A simple mechanical model of the skateboard-skater system is constructed in which a PD controller with time delay is implemented as a model of the rider's ankle. Equations of

motion of this nonholonomic system are derived with the help of the Appell-Gibbs method and are linearised around the straight uniform motion. The linear stability analysis is

carried out analytically using the D-subdivision method. Stability charts and the critical time delay are presented for realistic system parameters. The e�ect of the longitudinal

speed on the stability of the uniform motion is also shown.

The model

We constructed the mechanical model (see Figure 1) based on [1, 2]. Here we considered
that the front and the rear suspensions are similar and we consider the balancing e�ort
of the skater as a PD control loop which models the ankle of the rider.
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Figure 1: Mechanical model

The skateboard is modelled by
a massless rod (between the
front axle at F and the rear one
at R) while the skater is repre-
sented by another massless rod
(between the points S and C)
with a mass point at C. The free
rotation between the skater and
the board around the longitudi-
nal axes of the board is antag-
onized by the torque from the
PD controller (MPD = Pϕ(t −
τ )+Dϕ̇(t−τ )), where the re�ex
time of the skater is considered
with the delay τ .
The model consists one geo-

metric constraint, namely the
skateboard always move in a
parallel plane to the ground and
there is a relation between the
lurch of the board β and the
steering angle δS, such that sin β(t) tanκ = tan δS(t), where κ is the complement of
the rake angle in the skateboard wheel suspension system. The motion of the skate-

board is blocked by three kinematic constraints, i.e. the direction of the velocity at
point F and R is determined by the lurch of the board (see Figure 1). We consider that
the longitudinal speed of the board is V at any time. Thus, the three constraints are:

(− sinψ + cosψ sin β tanκ)Ẋ + (cosψ + sinψ sin β tanκ)Ẏ + (l − a)ψ̇ = 0 , (1a)

(sinψ + cosψ sin β tanκ)Ẋ + (− cosψ + sinψ sin β tanκ)Ẏ + (l + a)ψ̇ = 0 , (1b)

cosψẊ + sinψẎ = V . (1c)

The geometric constraint reduces the degrees of freedom of the model by two, so �ve
generalised coordinates are needed (X , Y , ψ, β and ϕ, see Figure 1). One so-called
pseudo velocity σ is introduced along the Appell-Gibbs method, what is a powerful
method for nonholonomic mechanical systems. For the easier handling two dimension-
less parameters θa := a/l tanκ and θh := h/l tanκ, and three other parameters, like
natural angular frequencies square, are introduced as well: α2

g := g/h, α2
st
:= st/(mh

2)
and α2

V := V 2/h2. The lower case p and d are the relative control gains, compared to
the spring sti�ness of the skateboard suspension (p := P/st, d := D/st). With these,
we can write the equation of motion:

σ̇ =
1

2
α2
V θ

2
h sin(2ϕ) sin

2 (arcsinh (pϕ(t− τ ) + dσ(t− τ ))) + α2
g sinϕ− (2a)

−α2
st
(pϕ(t− τ ) + dσ(t− τ ))− α2

V θh cosϕ sin (arcsinh (pϕ(t− τ ) + dσ(t− τ )))−

−αV θa
pσ(t− τ ) + dσ̇(t− τ )√

1 + (pϕ(t− τ ) + dσ(t− τ ))2
cosϕ cos (arcsinh (pϕ(t− τ ) + dσ(t− τ ))) ,

ϕ̇ =σ , (2b)

Ẋ

h
=αV (cosψ + θa sinψ sin (arcsinh (pϕ(t− τ ) + dσ(t− τ )))) , (2c)

Ẏ

h
=αV (sinψ − θa cosψ sin (arcsinh (pϕ(t− τ ) + dσ(t− τ )))) , (2d)

ψ̇ =− αV θh sin (arcsinh (pϕ(t− τ ) + dσ(t− τ ))) . (2e)

The e�ect of the speed on the stability

We investigate the rectilinear motion of the skateboard-skater system. The delayed dif-
ferential equation system of neutral type (2) can be linearised, and it remains a naturally
delayed one. Because X , Y and ψ are cyclic coordinates, the �rst two equations of (2)
describe the system uniquely.

During the stability investigation we found saddle-node (SN) bifurcation as well as
Hopf bifurcation with the angular frequency ω (see Figure 4). Such bifurcations oc-
curs in case of the simplest human balancing models, e.g. see the controlled inverted
pendulum in [3]. Based on our model, the critical time delay is τc = 2/αg, which is√
2 times greater than for the PD controlled inverted pendulum in [3]. The rectilinear

motion can be stable if the re�ex delay is chosen from the shaded domains of Figure 2
and Figure 3. These two charts are constructed by means of realistic parameters. The
obtained tolerated time delay ranges are close to the average re�ex delays of humans
(see [4]).
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Figure 2: Re�ex delay in case of sti� skateboard suspension

In Figure 2, we consider a relatively high sti�ness of the skateboard's suspension. As
a result, we obtain that the acceptable delay increases �rst with the forward speed V
when the skater stands in front of the centre of the board (a > 0, right panel). For
a < 0 (left panel), the acceptable time delay decreases as the skateboard starts moving
forward.

If the sti�ness of the skateboard's suspension is small enough (see Figure 3) and a < 0
(left panel), the acceptable delay can reach the zero value at a certain speed range, where
PD controller can not stabilize. The behaviour of the system is even more strange for
a > 0 (right panel), namely, there is a speed range where small time delays can also
lead to unstable motions.
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Figure 3: Re�ex delay in case of soft skateboard suspension
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Figure 4: Stable control gains for di�erent velocities

The e�ect of the speed can
be investigated from another
point of view (see in Figure
4). The stable domains are
represented in the P-D plane
for a �xed delay and for di�er-
ent speeds. It can be observed
that the stable domain shrinks
and its location modi�es while
the speed increases. It means
that the skater has to tune the
control gains and has more dif-
�cult task at higher speed.

Acknowledgements
This research was partly supported by the János Bolyai Research Scholarship of the Hungarian
Academy of Sciences and by the Hungarian National Science Foundation under grant no. OTKA
PD105442

References
[1] Kremnev A. V., Kuleshov A. S. (2008) Dynamics and simulation of the simplest model of skate-

board, ENOC-2008, Saint Petersburg, Russia, 2008.

[2] Hubbard M. (1980) Human control of the skateboard. Journal of Biomechanics 13:745�754.

[3] Stepan G. (2009) Delay e�ects in the human sensory system during balancing. Phil. Trans. R.
Soc. A, 367(1891):1195�1212

[4] Insperger T., Milton J. (2014) Sensory uncertainty and stick balancing at the �ngertip. Biological
Cybernetics, 108(1):85�101

†Balázs Várszegi (varszegi@mm.bme.hu), †Gábor Stépán (stepan@mm.bme.hu)
Department of Applied Mechanics, Budapest University of Technology and Economics, Budapest, Hungary
‡Dénes Takács (takacs@mm.bme.hu), MTA-BME Research Group on Dynamics of Machines and Vehicles, Budapest, Hungary
∗S. John Hogan (s.j.hogan@bristol.ac.uk) Department of Engineering Mathematics, University of Bristol, Bristol,
United Kingdom


