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KOMPOZIT PRÓBATESTEK RÉTEGKÖZI TÖRÉSE

Összefoglaló

A rétegközi törés problémája egyaránt vizsgálható analitikusan, végeselem módszerrel
és kísérletek segítségével. Az analitikus modellek rúd- és lemezelméleteken alapulnak. A
lineárisan rugalmas törésmechanika legfontosabb mennyiségei a rendszer rugóállandója és a
repedésfeszítő erő (repedésterjesztő erő, fajlagos energia-felszabadulási ráta). A
repedésfeszítő erő, valamint vegyes (I/II-es) mód esetén I-es és II-es módú komponenseinek
és a módok arányának meghatározása fontos gyakorlati feladat.

Az értekezés célja új analitikus és kísérleti eredmények bemutatása kompozit
törésmechanikai próbatestek felhasználásával.

A dolgozat első fejezetében ismertetem a kutatási célokat. A második fejezet a
kutatómunka során feldolgozott és felhasznált szakirodalom áttekintésével foglalkozik

A harmadik fejezetben az elsődleges kutatási cél megvalósítása történik. Ebben egy
javított analitikus modell kifejlesztését mutatom be lineáris rúdelméletek felhasználásával. Az
Euler-Bernoulli rúdelmélet mellett a Winkler-Pasternak-féle rugalmas ágyazás, a Timoshenko
rúdelmélet, az ún. Saint-Venant féle hatás és a repedéscsúcs nyírási deformációjának elvét
használom fel egy középsíkban repedéssel ellátott általános terhelésű kompozit rúd
rúgóállandójának kiszámításához. A repedésfeszítő erő komponenseit az ún. globális módszer
segítségével határozom meg.

A negyedik fejezetben a kifejlesztett modell eredményeitt publikált analitikus és
numerikus modellek eredményeivel hasonlítom össze. Az eredmények szemléltetése
szakirodalomban jól ismert és napjainkban is alkalmazott próbatest típusok felhasználásával
történik.

A dolgozat ötödik fejezetében a kifejlesztett modell alkalmazhatóságát kísérletek
segítségével igazolom. A kísérleti munkát saját gyártású, egyirányú, üvegszál erősítésű
poliészter próbatestek segítségével végzem el. A kísérleti munka során II-es és vegyes I/II-es
terhelésű próbatesteket használok fel. A felhasznált vegyes módú próbatestek azonban nem
alkalmasak a repedésterjedés vizsgálatára. Az ötödik fejezet végén bemutatom egy meglévő
próbatest típus módosított változatát, mely az említett nehézséget kiküszöböli. Az új típusra a
kifejlesztett analitikus modell alapján a rugóállandó és a repedésfeszítő erő képleteit is
megadom.

A hatodik fejezet az ún. száláthidalási jelenség analitikus-kísérleti vizsgálatát mutatja
be, amely során egy olyan módszert ismertetek, amely alkalmas az áthidaló szálak számának
és a szálakban ébredő erőnek a becslésére I-es módú próbatest esetén.

Az analitikus és kísérleti eredményeket a hetedik fejezetben foglalom össze, illetve
egészítem ki olyan megállapításokkal, amelyek segítik a bemutatott eredmények értelmezését
és hasznosítását.

A dolgozat végén hat tézis fogalmazok meg, melyeket az analitikus és kísérleti
eredmények alapján állítok össze, az eredmények alkalmazásának lehetőségeit szintén
megadom.
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DELAMINATION OF COMPOSITE SPECIMENS

András Szekrényes

ABSTRACT

The primary objective of the present thesis is to develop an improved delamination
model incorporating linear beam theories. The application of the Euler-Bernoulli beam theory
is essential. Apart from that the Winkler-Pasternak (two-parameter) elastic foundation,
Timoshenko beam theory, Saint-Venant effect and the concept of crack tip shear deformation
are adopted in this work. All these theories are used to calculate the total strain energy release
rate when a general mixed-mode I/II condition is involved. The mode-mixity analysis is
performed by means of WILLIAMS’ global method. The beam theory-based solution is
compared to existing analytical and numerical solutions. On the other hand existing mode-II
and mixed-mode I/II test configurations are used to confirm the applicability of the present
solution.

A novel mixed-mode I/II configuration is developed, to which the present analytical
solution is applied and experimental results are presented.

Finally, a beam theory-based combined analytical-experimental method is developed
to study the fiber-bridging effect in unidirectional double-cantilever beam specimens. The
new technique is suitable to estimate the number of bridgings and the bridging force.

The results are completed with comparison of the experimental results with published
data and also the fracture envelope of the used material is constructed.

Keywords: damage, fiber-reinforced composite, delamination, fracture mechanics,
experiment, linear beam theory
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NOMENCLATURE IV

Nomenclature

NOMENCLATURE

4ENF - 4-point bend end-notched flexure
a - Crack length
a0 - Initial crack length
a* - Measured crack length
a# - Characteristic length
∆a - Virtual crack extension
a55 - Transverse shear compliance
ADCB - Asymmetric double-cantilever beam
b - Specimen width
c - Length of the uncracked region
c* - Lever length of the MMB specimen
C - Compliance
CC - Compliance calibration
CBT - Corrected beam theory
CLS - Cracked-lap shear
DBT - Direct beam theory
DCB - Double-cantilever beam
DENF - Double end-notched flexure
d11 - Bending compliance
δ - Displacement at the load application
δC - Critical displacement
δ* - Displacement at the initial crack tip
E11 - Flexural modulus
E33 - Transverse elastic modulus
ELS - End-loaded split
ENF - End-notched flexure
FE - Finite element
FEM - Finite element method
fSH1, fSH2 - Correction from crack tip deformation
fSV - Correction from Saint-Venant effect
fT - Correction from transverse shear
fW1, fW2 - Correction from Winkler-Pasternak

   foundation
G13 - Shear modulus
GC - Critical strain energy release rate
GIC - Mode-I critical strain energy release

  rate
GIIC - Mode-II critical strain energy release

   rate
GI/IIC - Mixed-mode I/II critical strain energy

   release rate
h - Half of the specimen thickness
Iu

y1 - Second order moment of inertia,
   upper  arm, cracked region

Il
y1 - Second order moment of inertia, lower

   arm, cracked region
Iu

y2 - Second order moment of inertia, upper
   beam element, uncracked region

Il
y2 - Second order moment of inertia, lower

   beam element, uncracked region
J - J-integral
k - Shear correction factor
K1 - Shear compliance, upper beam element,

   uncracked region
K2 - Shear compliance, lower beam element,

   uncracked region
ke - Winkler-type foundation stiffness
kG - Pasternak-type foundation stiffness
L, 2L - Length of the specimen
LEFM - Linear elastic fracture mechanics
MMB - Mixed-mode bending
MMF - Mixed-mode flexure
ν13 - Poisson ratio
OLB - Over-leg bending
ONF - Over-notched flexure
P - Applied load
PC - Critical load
Π - Potential energy
s - Position of the applied load
SCB - Single-cantilever beam
SENF - Stabilized end-notched flexure
SERR - Strain energy release rate
SLB - Single-leg bending
SLFPB - Single leg four point bend
TDCB - Tapered double-cantilever beam
TENF - Tapered end-notched flexure
U - Strain energy
VCCT - Virtual crack-closure technique
VMM - Variable mixed-mode
wu1(x) - Deflection of the upper arm
wl1(x) - Deflection of the lower arm
wu2(x) - Deflection of the upper beam element,

   uncracked region
wl2(x) - Deflection of the lower beam element,

   uncracked region
w2(x) - Deflection of the uncracked region
WIF - Wedge insert fracture
WTDCB- Width tapered double-cantilever beam
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CHAPTER 1 – INTRODUCTION 1

1.1 Background

1 INTRODUCTION

1.1 Background

The composite materials exhibit extremely good strength to weight ratio. Therefore,
the composites are being used more and more in the construction of:

- vehicles (helicopters, trucks, racing cars) and equipment for the military
- sport equipments (crash-helmets, pole vault, bicycle frameworks and wheels)
- buildings, roof structures and bridges
- air- and spacecrafts
- fuel tanks and pressure vessels, etc.

The composites are heterogeneous materials, which is an important feature compared for
instance to the metals and homogeneous plastics. There are many kinds of failure and damage
modes in the composite structures (PHILLIPS, 1989; TSAI, 1992). One of them is the
interlaminar fracture (or known as the delamination), which is, at the same time one of the
most important failure mode.

The interlaminar fracture of composite materials has been very intensively
investigated since the late 1970's. The delamination means degradation between adjacent plies
of the material. The composite materials exhibit superior properties only in the fiber direction,
hence the delamination of composite structures results in a significant loss of the stiffness and
strength. Thus, it is apparent that this failure mode should be identified. There are fracture
criterions, which are based on different considerations in order to identify the damage in the
material. On the one hand the stress-based criterions may be mentioned, which determine a
failure index, of which critical value is equal to unity. At the first stage these types of
criterions predicted a general failure index (Tsai-Wu, Tsai-Hill, (TSAI, 1992)), but the type of
the failure mode was not possible to be determined. Later, this void was addressed and several
criterions were proposed, which were able to separate certain failure modes (maximal stress
criterion (WANG et al., 1999), Hashin-Rotem criterion (WANG et al., 1999), Chang-Chang
criterion (HOU et al., 2001; SZEKRÉNYES, 2002b)). In general, the application of these
criterions is not apparent in the neighborhood of crack tips where a singular stress field exists.
On the other hand the energy-based criterions may be referred to. Griffith was the first to
make a quantitative connection between strength and crack size (BROEK, 1982; KANNINEN

and POPELAR, 1985). Later, Irwin and Rice (KANNINEN and POPELAR, 1985) made remarkable
efforts to contribute to the fracture mechanics. According to the Griffith-Irwin linear elastic
fracture mechanics (LEFM) approach the cracked body is essentially linear elastic. The crack
initiation and propagation is governed by the critical strain energy release rate (SERR) or the
stress intensity factor, however there is competing names in the literature to identify this
quantity, such as: fracture energy, fracture work, fracture toughness, work of fracture, etc. A
remarkable feature is that Griffith’s criterion is suitable to handle the singularity nature of the
problem. According to Griffith’s formulation (BROEK, 1982; KANNINEN and POPELAR, 1985)
the energy release rate is the change in the potential energy Π of the linear elastic system with
respect to the crack length a:
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da
d

b
GC

Π1
−= . (1.1)

Crack initiation or propagation may be expected if the energy release rate reaches the critical
value, i.e: G=GC. For the determination of GC some experimentally recorded quantities, such
as critical displacement and load is necessary. Eq. (1.1) may be transformed as (BROEK,
1982):

da
dC

b
PGC 2

2

= , (1.2)

where P is the external force, b is the width of the delamination, C is the compliance and a is
the crack length. Eq. (1.2) is known as the Irwin-Kies expression.

1.2 Research objectives

The objective of this thesis is to develop improved solution for delamination modeling
of composite beams. The following features are included:

- Calculation of the compliance and strain energy release rate of delaminated
composite beams under a general loading condition by using linear beam theories.

- Mode-mixity analysis incorporating the global mode decomposition method.
- Validation of the model by existing numerical and analytical solutions.
- Application of the developed model to few delamination specimens and

verification of the developed model by experiments.
- Development of a novel mixed-mode I/II interlaminar fracture test and derivation

of the compliance and strain energy release rate incorporating the developed
model.

- Development of a combined analytical-experimental method for fiber-bridging
modeling.

- Construction of the fracture envelopes for glass/polyester composite

To solve the above-mentioned problems the theory of elasticity, linear beam theories,
variational methods, the concepts of linear elastic fracture mechanics and the concepts of
differential equations are applied.

The derivation of the formulae is performed by using the code MAPLE. The
COSMOS/M 2.0 package is applied to construct finite element models, which were used to
validate the analytical expressions.

One of the most important validation techniques is the experimental method, which is
essential in the case of composite materials.
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2 LITERATURE REVIEW

The increasing application of composite materials in the practice encouraged the
researchers to determine the energy release rate with higher and higher accuracy. The problem
may be equally investigated analytically, numerically and experimentally. In fact, the
delamination problems may be related to crack problems. In the literature three basic forms of
the failure in cracks are known (see Fig. 2.1): the mode-I (opening mode), mode-II (in-plane
shearing mode) and mode-III (anti-plane shearing or tearing mode) fracture (KANNINEN and
POPELAR, 1985). In the practice any combination of these may occur. In the present work our
attention is equally focused on mode-I, mode-II and mixed-mode I/II fracture problems, but
the investigation of the third mode is outside the scope of this thesis.

2.1 Delamination specimens

For the characterization of the interlaminar fracture the principles of the LEFM have
been extended also for composite materials (PHILLIPS, 1989). Similarly to the metals and
plastics the failure process in composites is investigated by using different type of specimens.
The main feature is that they exhibit an artificial defect, which is called the crack. Some of the
fracture specimens were standardized by the American Society for Testing and Materials
(ASTM), the International Standards Organization (ISO), the European Structural Integrity
Society (ESIS) and the Japanese Industrial Standards Group (JIS).

2.1.1 Mode-I fracture specimens

For mode-I delamination the double-cantilever beam (DCB) specimen (Fig. 2.2) is a
useful and well-understood tool (ASTM D5528, ISO/DIS 15024) to measure the mode-I
fracture properties of composite materials. Both arms of the coupon are loaded by edge force,
causing pure mode-I fracture (see Fig. 2.2a). The DCB specimen is the subject of numerous
works. Consequently, a very large amount of theoretical and experimental results are
available in the literature (e.g.: HASHEMI, 1990a and 1990b; SCHÖN et al., 2000; MORAIS et
al., 2002) as regarding to the DCB specimen. The DCB coupon was modified by some
authors, see for example the wedge-insert fracture (WIF) specimen (KUSAKA et al., 1998), the
width tapered DCB (WTDCB) test (LEE, 1986) or the (height) tapered DCB (TDCB)
specimen (QIAO et al., 2003a).

2.1.2 Mode-II fracture specimens

For mode-II testing six specimens are available for fracture testing, four of them are
shown in Fig. 2.3. First, the end-notched flexure (ENF, Fig. 2.3a) specimen (RUSSEL and
STREET, 1985; CARLSSON et al., 1986) was developed, however it has a major drawback,
namely the crack propagation can not be investigated due to the crack stability problem.
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Three basic types of fracture modes.
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Later, to overcome the problem of instability the stabilized end-notched flexure (SENF) test
was proposed on a control system of the crack opening displacement (DAVIES et al., 1996).
The mode-II end-loaded split (ELS) specimen (Fig. 2.3b) was utilized by other researchers
(WANG and WILLIAMS, 1992; WANG et al., 1996). Although it is suitable for crack
propagation investigation, the problem of crack stability still remained and apart from that
large displacements often occur during testing, which is another disadvantage of this setup.
This motivated those researchers, who developed the four-point bend end-notched flexure
(4ENF, Fig. 2.3c) configuration (see for example SCHUECKER and DAVIDSON, 2000; DAVIES

et al., 2004). The crack propagation is possible to be examined and the large displacements
are eliminated. The ENF setup was slightly modified by others and the over-notched flexure
(ONF, Fig. 2.3d) test was introduced (TANAKA et al., 1998; WANG et al., 2003). The main
advantage of the latter was, in contrast with the 4ENF test, that it may be performed using a
simple three-point bending setup. The tapered ENF (TENF) specimen was developed by QIAO

et al. (2003b), which is an efficcient way for mode-II toughness measurements. The main
advantage of this configuration is that in the case of a proper specimen design the compliance
rate change (dC/da) is independent of the crack length, and the strain energy release rate is
constant during crack propagation. This is important when the crack length is difficult to be
measured, for example in carbon-fiber reinforced composites.
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2.1.3 Mixed-mode I/II fracture specimens

The mixed-mode I/II fracture in composite materials has a major role in the
development of delamination models. The reason for that is the mixed-mode I/II loading
relates to practical conditions. Thus, it is straightforward that many mixed-mode setups were
developed in the last three decades. Certain configurations were reviewed by REEDER and
CREWS (1990), SUO (1990), TRACY and FERABOLI (2003) and SZEKRÉNYES (2002a). The most
popular ones are compiled in Figs. 2.4 and 2.5. The single-cantilever beam (SCB, Fig. 2.4a)
specimen allows the investigation of the crack propagation, however large displacements are
possible during testing (HASHEMI et al., 1990a and 1990b). The single-leg bending (SLB,
Fig. 2.4b) (YOON and HONG, 1990; DAVIDSON et al., 1996) and its twin brother, the mixed-
mode flexure (MMF, Fig. 2.4c) (ALBERTSEN et al., 1995; ALLIX et al., 1998; KORJAKIN et al.,
1998) setup may be performed in a three-point bending apparatus. Both setup produce linear
elastic response, but the mode ratio can be varied only within a limited range. The cracked-lap
shear (CLS, Fig. 2.4d) specimen was also an attempt to develop a many-sided configuration
(LAI et al., 1996; ALLIX et al., 1998), however it is not too popular nowadays. Also, the
double-end notched flexure (DENF, Fig. 2.5a) coupon may be referred to (REYES and
CANTWELL, 2000). None of the mentioned configurations became an optimal solution. Thus,
many efforts have been made to develop a mixed-mode I/II tool, which enables the variation
of the mode-ratio. BRADLEY and COHEN (1985) proposed the asymmetric double-cantilever
beam (ADCB, Fig. 2.5b) specimen. This involved loading the arms of the specimen with two
different loads, which was possible only by using a complex loading system. HASHEMI and
coworkers (1987) developed the variable mixed-mode (VMM) test. Due to the complications
and certain disadvantages neither this one became a widely applied test. Then REEDER and
CREWS (1990) introduced the mixed-mode bending (MMB, ASTM D6671-01, Fig. 2.5c)
specimen, which became the most universal configuration (KENANE et al., 1997; CHEN et al.,
1999). The reason for that is it allows the variation of the mode ratio, consequently a complete
fracture envelope may be determined. Naturally, this setup has also relative drawbacks, as it is
highlighted in Fig. 2.5c. Apart from that only a complex beam theory-based reduction
technique can be applied, in contrast with the former setups (SCB, SLB, MMF), where the
experimental data may be simply reduced. This leads to some complications in the case of
multidirectional laminates due to the discrepancies between the predicted and manufactured
bending and shear stiffnesses. Thus, the MMB specimen is mainly accepted for the testing of
unidirectional composites. Due to his fact the development of different mixed-mode I/II
setups is still in progress nowadays. SUNDARARAMAN and DAVIDSON (1997, 1998) developed
the unsymmetric DCB and ENF configurations, both are mixed-mode I/II setups and some
improved solutions were presented for these coupons. The single leg four point bend (SLFPB,
Fig. 2.5d) test was introduced by TRACY and FERABOLI (2003), while SZEKRÉNYES and UJ

(2004f) proposed the over-leg bending (OLB) specimen. A remarkable feature is that these
are suitable for crack propagation investigation and the experimental data may be easily
reduced.
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Fig. 2.4.
Mixed-mode I/II test configurations - I.
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Fig. 2.5.
Mixed-mode I/II test configurations - II.
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As a final word, we may establish that at present there is not an optimal mixed-mode
I/II test. As a result of the many configurations developed by the researchers very large
amount of experimental, analytical and numerical investigations were published in the
literature.

2.2 Beam models for fracture specimens

Within the scope of the LEFM the interlaminar fracture specimens are treated as
slender beams. To characterize the interlaminar fracture two major quantities may be
determined: the compliance (C) and the strain energy release rate (GC). In the early stages the
Euler-Bernoulli beam theory was applied to derive closed-form solutions for the composite
fracture specimens. Later, it was recognized that the result of simple beam theory may be
improved in every cases.

2.2.1 The mode-I DCB specimen

The Winkler-type elastic foundation (see Fig. 2.2b) was applied first by KANNINEN

(1973) to capture the crack tip deformation and rotation in the DCB specimen. The solution
was extended by WILLIAMS (1989) for orthotropic materials. The compliance of the DCB
specimen has the following form in accordance with WILLIAMS:
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We may observe that the result of the simple beam theory (refer to the compliance expression
in Fig. 2.2a) can be recovered from Eq. (2.1) by considering only the first term in the
brackets. The combination of Eqs. (1.2) and (2.1) yields:
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Later, the solution became an international standard and numerous authors referred to it
(OLSSON, 1992; LI, 1996; SZEKRÉNYES, 2003b). In fact the development of advanced beam
and plate models for the DCB specimen did not reach to the end. OLSSON (1992) has made
remarkable efforts to develop an improved beam model, namely the solution by WILLIAMS

(1989) was completed with transverse shear (Timoshenko beam theory) and Saint-Venant
effects. The compliance expression was obtained by the principle of superposition and it was
compared with other analytical and numerical models. The solution by WILLIAMS was
extended for angle-ply laminate DCB specimens by OZDIL and CARLSSON (1999a).

2.2.2 Solutions for mode-II specimens

To compose an improved solution for mode-II specimens the first attempt was made
by CARLSSON et al. (1986), who applied the Timoshenko beam theory to capture shear effects
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in the ENF specimen. Based on a singularity approach WHITNEY (1987) introduced another
correction. These solutions were not satisfactory and only a small improvement was made.
The elegant solution of WILLIAMS for the mode-I DCB specimen encouraged the researchers
to develop similar closed-form expressions also in the case of mode-II specimens. CHATTERJE

(1991) was the first who considered shear tractions at the crack tip of the ENF coupon.
Several solutions were compared in his work. CORLETO and HOGAN (1995) assumed a similar
solution to that developed by WILLIAMS in the case of the ENF coupon. Apart from that the
work by DING and KORTSCHOT (1999) should be mentioned, in which they applied tangential
springs along the uncracked region of the ENF specimen. Their solution resulted in a very
complicated expression and, in particular it could not be applied directly. In 2004 WANG and
QIAO (2004a) published a novel formulation of the problem of the ENF specimen. They have
found that under mode-II condition the problem can not be captured by the same way as it
may be in the case of mode-I problems. The reason for that is under mode-II condition there is
no relative tangential displacement at the crack tip, consequently a displacement-based
variational formulation can not be applied. Therefore, they determined the interlaminar shear
stress field and based on beam and strength of materials analysis they obtained a reasonable
correction for the ENF coupon. The accuracy of the correction was demonstrated by using
models including wide range of composite material properties and was compared with finite
element results. The agreement was found to be excellent and, apart from the elegant form,
the solution may be easily extended for mixed-mode I/II specimens.
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2.2.3 Solutions for mixed-mode I/II specimens

While in the case of mode-I and mode-II specimens large amount of theoretical
analyses were performed to develop improved solutions, for mixed-mode I/II coupons
significantly less attempts were made to derive similar models. The reason for that is for
mixed-mode I/II coupons, in general the principle of superposition is applied. This means that
the solution is obtained as the sum of the mode-I and mode-II solutions, for example the
mixed-mode SCB specimen is treated as the combination of the mode-I DCB and the mode-II
ELS specimens (Fig. 2.6). REEDER and CREWS (1990) adopted the solution of WILLIAMS

(1989, DCB specimen) and CARLSSON et al. (1986, ENF specimen) and an improved beam
theory-based solution for the MMB specimen has been created. A quite similar analysis was
carried out by OZDIL and CARLSSON (1999b) for the MMB specimen. Although the solutions
were verified by experiments the extension of these solutions requires further work. This will
be one of the major objectives of the current research work.

The application of the classical plate theory (CPT) results in similar equations to those
based on Euler-Bernoulli beam theory. WHITNEY's (1985) plate solution for the DCB
specimen is noteworthy. The plate theory is useful in the case of angle-ply laminate
specimens, see for instance the works by DAVIDSON et al. (1995) for the SLB specimen and
YANG and SUN (2000) for the ENF specimen.

2.3 Mode partitioning

Under mixed-mode I/II condition the separation of the total SERR (GI/II) into the
individual mode-I (GI) and mode-II (GII) components is an important issue. In the literature
this problem is known as mode partitioning, mode separation, mode decomposition or mode-
mixity analysis. Since this problem can not be solved experimentally the researchers are
interested in developing analytical and numerical methods.

2.3.1 Analytical methods

The global method was developed by WILLIAMS (1988) based on simple beam theory.
Although, this method is very simple and can be applied easily, later several authors showed
that the global method is valid only in very particular circumstances (HUTCHINSON and SUO,
1992; BRUNO and GRECO, 2001a), namely when the delamination is symmetrically located in
the beam thickness and the upper and lower layers have the same mechanical properties. SUO

and HUTCHINSON (1990) proposed the local approach, which is based on a continuum model.
The local method is more accurate than the global approach if the delamination is
unsymmetrically located in the beam thickness. The local method was generalized for
optional stacking sequence by SHEINMAN and KARDOMATEAS (1997). DAVIDSON and
coworkers (1995b) proposed the crack tip element (CTE) analysis, but in fact it is equivalent
to the local approach. The problem of mode-mixity was also addressed by BRUNO and GRECO
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(2001a, 2001b), who applied Reissner-Mindlin plates bonded with linear elastic interface.
Notable contribution from bending-shear interaction was found and it was shown that this
effect (in midplane delaminations) improves only the mode-I component. In their work the
mode components were calculated by the J-integral (RICE, 1968) by using the interlaminar
stresses and displacements. The J-integral is equivalent to the strain energy release rate
undergoing small strains and quasi-static conditions. The J-integral (Fig. 2.7) is defined as:

∫ ∂
∂

−=
Γ

)( ds
x
uTUdzJ , (2.3)

where U is the strain energy, T is the traction vector, u is the displacement vector, Γ is an
arbitrary contour starting from the lower crack face extending counterclockwise around the
crack tip to a point on the upper crack face and ds is the differential element of arc Γ. The
SERR expressions in Figs. 2.2-2.5 may also be determined by the help of the J-integral. Later,
on the base of the works of BRUNO and GRECO (2001a, 2001b) the local method was
improved with the effect of bending-shear interaction by WANG and QIAO (2004b) and the
method was generalized for 3D problems too
(WANG and QIAO, 2004c). Also, WANG and
QIAO presented generalized solutions for
bimaterial interfaces using the theory of
elastic foundation and crack tip deformation
(QIAO and WANG, 2004).

As a final word the global method is
inaccurate in some cases, but the mode
components may be easily evaluated, thus it
is still popular in nowadays (DUCEPT et al.,
1999; SZEKRÉNYES and UJ, 2004a). In
contrast the local method is more
complicated, since more equations are
necessary for its application, but this method
is more reliable in unsymmetrical cases.

2.3.2 Numerical methods

The finite element method is also suitable for mode decomposition. The J-integral is
usually available in the commercial finite element packages (ABAQUS, ANSYS,
COSMOS/M, MARC, etc.). The J-integral may be applied equally using linear elastic and
inelastic material models. Another numerical method is the virtual crack-closure technique
(VCCT), which was proposed by RYBICKI and KANNINEN (1977). The energy release rate
components may be calculated by using the nodal forces and displacements at the crack tip.
For a 2D FE model (Fig. 2.8a) the energy release rate components are:

)(
2

1
321 wwF

ab
G zI −=

∆
, (2.4)

Fig. 2.7.
Parameters for the J-integral.
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)(
2

1
321 uuF

ab
G xII −=

∆
, (2.5)

where Fz and Fy are nodal forces at the crack tip, w1, w2, u1 and u2 are nodal displacements
from ∆a distance to the crack tip and b is the specimen width. In the case of the 3D problem
in Fig. 2.8b the energy release rate can be computed using the following equations (ZHAO and
WANG, 1998):

)(
2

1
321 wwF

yx
G zI −=

∆∆
, (2.6)

)(
2

1
321 vvF

yx
G yII −=

∆∆
, (2.7)

)(
2

1
321 uuF

yx
G xIII −=

∆∆
, (2.8)

where the relevant displacement, force and geometrical parameters are given in Fig. 2.8b.
This method has also relative merits and drawbacks. First of all, it is suitable to handle 3D

problems (KRUEGER, 1999; ZHAO and WANG, 1998). Another important feature is that it may
be applied for bimaterial interfaces. Although many works reported that the computation is
more or less accurate (e.g.: RAJU et al., 1988), others (e.g.: SHEINMANN and KARDOMATEAS,
1997) have shown that the convergence of the solution is not guaranteed, because the results
are sensitive to the number and size of the finite elements around the crack tip. Moreover, the
mesh refinement in the crack tip neighborhood involves the increase in the mode-II
component. Finally, there is not a general consensus considering the size of the virtual crack
extension, ∆a (refer to Fig. 2.8). Later, the VCCT was slightly modified, consequently other
names, such as modified crack-closure integral (MCCI - DUCEPT et al., 1999) and modified

Fig. 2.8.
FE mesh for the virtual crack-closure technique (VCCT). Two-dimensional model (a),

three-dimensional model (b).
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virtual crack-closure technique (MVCCT - YANG and SUN, 2000) are accepted in the
literature. Also, the VCCT is applicable in dynamic problems, but only in the case of a linear
elastic material model.

2.3.3 Agreement and disagreement

Considering the above-mentioned mode-partitioning methods another issue is the
agreement between them under different conditions. A comparative study was performed by
DUCEPT et al. (1999) using the UDCB and the unsymmetric MMB specimens. For both
configurations the mode ratio was determined by the VCCT, the global method and the local
approach. They have found that the local aproach and the VCCT give results close to each
other, and the global approach is inaccurate in the case of unsymmetrically located crack.
However, this should be mentioned that the global approach may be derived by the help of
two conditions. The original approach of WILLIAMS (1988) supposes equal curvatures under
pure mode-II. This formulation was also applied by DUCEPT et al. (1999) and SZEKRÉNYES

and UJ (2004a). On the other hand under pure mode-I the condition of equal axial strains at
the crack tip may be considered. This formulation was utilized by BRUNO and GRECO (2001a)
and a good agreement was found between the local and the global approaches through
asymmetric models loaded by moments and concentrated forces. As regarding to the global
method the two different approches give the same result in the case of midplane delamination
and when the upper and lower arms have the same mechanical properties. Later, it has been
shown (ZOU et al., 2001, 2002; BRUNO et al., 2003) that when an appropriate kinematical
plate model is used for the delaminated laminate and the actual strain state is captured with a
good accuracy then, the global and local methods lead to the same results even in the case of
asymmetrically located crack along the beam thickness.

2.4 Direct data reduction

Aside from the analytical and numerical solutions (indirect methods) several schemes
were developed to reduce directly the experimental data.

2.4.1 Compliance calibration (CC) method

This is the most accurate method, and consequently the most popular one in the
literature (DAHLEN et al., 1994; OZDIL and CARLSSON, 1999a). The compliance values are
obtained directly from the measured load and displacement values (C=δ/P). The compliance
should be determined at each crack length and then it should be expressed as the function of
them. This may be achieved by using a curve fitting technique (e.g. least square method). The
form of the fitting function may be obtained based on the simple beam theory solution of the
specimen. For instance for the DCB specimen the compliance may be fit by a power function:

maC β= , (2.9)
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which is the generalized form of the solution in Fig. 2.2. The energy release rate may be
obtained by the Irwin-Kies expression (Eq. (1.2)). A relative drawback of this method is that
the accuracy depends on the number of points used for the curve fitting and the extension of
the considered crack length range. The method was modified by SHINDO et al. (2001) and the
modified compliance calibration (MCC) method was proposed, which is based on similar
considerations.

2.4.2 Direct beam theory (DBT)

This approach eliminates the flexural modulus from the beam theory-based solution
and only one expression determines the strain energy release rate using the recorded load and
displacement values (e.g.: HASHEMI et al., 1990a and b). For the mentioned fracture
specimens the relevant equations are compiled in Figs. 2.2, 2.3, 2.4 and 2.5.

2.4.3 Corrected beam theory (CBT)

Similarly to the direct beam theory it also incorporates the measured load and
displacement but apart from that it contains a correction for crack tip rotation and deflection
(see for example the work by MORAIS et al., 2002).

2.4.4 Area method

In this case the energy release rate is
calculated directly from the energy
consumed by the crack extension divided by
the area of the new crack surface (YANG and
SUN, 2000; SHINDO et al., 2001). The area
between the loading and unloading curves
(see Fig. 2.9) represents the decrease in the
stored strain energy caused by the
delamination crack extension, i.e.:
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where Wi is the increment in the work of the
external force, Ai is the new crack surface, Pi

is the load at δi displacement, Pi+1 and δi+1

are the load and diplacement after the load
drop, respectively.

It is recommended to apply more than one of the mentioned techniques for the
evaluation of the experimental data. Depending on the combination of the applied method and
the definitions of the crack initiation different values may be obtained for the SERR.

Fig. 2.9.
Schematic load/displacement curve for the

area method.
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2.5 Further application of the finite element method in fracture problems

The finite element method (FEM) is very intensively applied by the researchers to
analyze fracture problems in composite materials. In this points of view the possibilities are
quite extended. The FEM allows the macro- and micromechanical investigation of composite
structures related to crack problems.

2.5.1 Macromechanical formulation

In the macromechnical scale the composite structures are usually modeled as
anisotropic solids with homogenized material properties. It may be assumed that a small
plastic zone arises in the vicinity of the crack tip. However, it may be also assumed that due to
the small size of the plastic zone it can be neglected. This provides a simple and useful way
for the fracture investigation of the composite structures. In general, the FE models of the
delamination specimens are constructed by using plane FE elements (TODO and JAR, 1998;
YANG and SUN, 2000; SZEKRÉNYES and UJ, 2002). On the one hand these models are suitable
to determine the SERR via the VCCT or the J-integral approaches. Other authors used the 2D
models in order to investigate further effects. For example TODO et al. (1998, 2000) created
the 2D FE models of the DCB and ENF specimens. An experimental observation revealed
that in the microscopic scale the crack has an elliptic shape if there is no precrack and the
crack initiates directly from the insert. They have found that the crack does not grow along the
midplane of the specimen in every case, which may be explained by the former elliptic shape.

The macromechanical models of the fracture specimens may be used to confirm the
simple closed-from solutions based on beam theories (TRACY and FERABOLI 2003;
SZEKRÉNYES and UJ, 2004a). On the other hand several efforts have been made to obtain
improved solutions for composite delamination specimens by using 2D FE models. SUO et al.
(1991) provided a correction for the DCB specimen, the solution was combined with the
result of the simple beam theory. In comparison with the analytical solutions by OLSSON

(1992), SZEKRÉNYES and UJ (2004a, 2005a), the correction by SUO et al. (1991) is the most
accurate one. Later, BAO et al. (1992) provided similar solutions also for mode-II and mixed-
mode I/II specimens. Independently, WANG and WILLIAMS (1992) performed a similar work
for the mode-II ENF and ELS specimens. Although the FE solutions in general are more
accurate than the analytical ones, the latter is very important to understand better the different
mechanisms and effects at the crack tip. From other perspectives the form of the FE solution
is usually built by the result of simple beam theory multiplied by a numerically determined
correction.

The FE method is suitable to construct the fully three-dimensional models of the
fracture specimens. Very large amount of work was published by the rearchers on this subject.
Only few and the most important of them are mentioned here.

Considering the DCB specimen an experimental observation showed that the crack
front along the width of the DCB specimen is curved. DAVIDSON (1990) created a 3D FE
model, and it was shown that the SERR (calculated by the VCCT method) is not uniformly
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distributed along the delamination front or along the width of the specimen. Later, many
authors investigated the same problem in mode-I, mode-II (ZHENG and SUN, 1995; SUN and
ZHENG, 1996), mode-III (ZHAO and WANG, 1998) and mixed-mode I/II cases (DAVIDSON et
al., 1995). It is noteworthy that these models were very complicated and the number of
elements required to obtain accurate results was very high. In fact the 3D mesh is necessary
only in the neighborhood of the crack front. KRUEGER (1999) proposed a SHELL/3D
modeling technique to reduce the number of finite elements in those parts where the 3D

elements do not play important role. Around the crack tip a fully 3D model was constructed,
but far enough from the crack front the remained parts were modeled by SHELL elements.
This resulted in a significant saving in the computation time.  It was shown that if the size of
the 3D region is properly chosen the SHELL/3D model gives the same result as a fully 3D
structure. The concept of the SHELL/3D modeling technique is illustrated in Fig. 2.10. The
applicability of the technique was demonstrated by the help of DCB, ENF and SLB
specimens (KRUEGER, 1999).

2.5.2 Micromechanical formulation

The composites are heterogeneous materials. This fact involved the micromechanical
formulation of the crack problems. However, it is apparent that some connection should exist
between the macro and micromechanical models of the structure. In the case of the
micromechanical formulation the fiber-matrix structure is modeled and interactions between

(a) Global FE model

Upper arm, SHELL
elements

Lower arm, SHELL
elements

(b) Details of the FE
model around the
delamination front

Length of the 3D portion

Delamination front

SHELL-SOLID
transition
interface

Fig. 2.10.
SHELL/3D modeling technique for delamination in composite specimens.
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them may be captured. Many studies were performed to investigate the stress and strain field
in the small vicinity of the crack tip of interlaminar fracture specimens.

TODO and JAR (1998, 2000) performed two FE studies, in which they assumed a
hypothetic crack shape at the crack tip of the DCB and ENF specimens. Although in their
study the ’crack’ expression was used, in fact the crack was treated as a notch and an elliptic
shape of the ’crack’ front was assumed. The concept of the modeling technique by TODO and
JAR (1998, 2000) is schematically illustrated in Fig. 2.11. On the other hand they have
performed also 2D analysis (as mentioned before), but in the 3D models the displacement

fields were independent by those of the 2D models and were substantially simplified. The
main result of their work was that the crack was found to be susceptible to grow along the
fiber/matrix interface. In this case the measured fracture toughness values rather reflect the
properties of the fiber/matrix interface than the composite toughness. Later, similar results
were obtained by SZEKRÉNYES and UJ (2002c, 2003a) for mixed-mode I/II MMF and CLS
specimens. It is remarkable that only linear elastic material model was applied, which is
acceptable in the case of the reinforcing fibers, but may give inaccurate results in the case of
the matrix material.

DUBOIS and KEUNINGS (1997) performed a combined macro-micromechanical
analysis to investigate the effect of the inelastic matrix behavior on the fracture toughness. In

z

x

y

z

x

Macroscopic model

Microscopic models, fiber-matrix structure

Fig. 2.11.
Macro- and micromechanical FE models for interlaminar fracture investigation.
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that study the well-known displacement coupling technique (see also SZEKRÉNYES, 2002b)
was applied to establish the relation between the macro and micromechanical models. The
analysis resulted in a conclusion, whereas the inelasticity of the matrix material decreases the
SERR compared to the result of a fully elastic analysis. Nowadays, a quite similar work was
carried out by SPEARING and GREGORY (2005) leading to the same conclusions and results as
found by DUBOIS and KEUNINGS (1997).

Considering the macro- and micromechanical formulations, it should be mentioned
that there also exists the so-called mesomechanical and the multiscale analysis of composites.
These are not related strictly to the present work, so they are discussed elsewhere (FEYEL and
CHABOCHE, 2000; XIA et al., 2000; MISHNAEVSKY et al., 2001).

2.6 The fiber-bridging phenomenon

The fiber-bridging means that during the delamination process some of the fibers
make a ’bridge’ between the arms of, for example the DCB specimen (Fig. 2.12). This is an
essential feature in unidirectional DCB specimens, as highlighted in many works (KAUTE et
al., 1995; TAMUZS et al., 2001). Furthermore, it is observable also in angle-ply laminate DCB

and mixed-mode I/II coupons (OZDIL and CARLSSON, 1999a, 1999b). The beam theory-based
(closed-from) solutions do not consider this phenomenon, and in the case of extensive fiber-

Fig. 2.11.
Fiber-bridging in glass/polyester DCB specimen.

Bridging fibers

Crack tip

Crack tip zone
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bridging these solutions are not suitable to evaluate the experimental data. The bridging fibers
enhance the resistance to delamination and usually the energy release rate increases with the
crack length. This feature is known as the R-curve (Resistance) effect. To characterize the
R-curve behavior and fiber-bridging in composite specimens the bridging law is a useful tool.
The bridging law is based on the J-integral and it determines the bridging stress as a function
of the displacement at the initial crack tip. SUO et al. (1992) have shown that the R-curve can
not be considered as a material property, since it depends on the specimen size and geometry.

Different approximate methods were developed in the literature to handle the fiber-
bridging and understand more deeply the phenomenon. KAUTE et al. (1995) introduced a
semi-empirical model for fiber-bridging modeling. The bridging law was composed by the
product of two terms: the fiber force and the number of bridging fibers per unit area of crack
face. The functions of these two parameters were determined based on experiments.
Unfortunately, this model required too many parameters to be determined. Since these are, in
general not available in the literature and can only be approximately determined the
application of KAUTE’s model is difficult. The finite element method seemed to be a useful
tool to overcome this difficulty. YAN et al. (2001) introduced a numerical model based on an
elastic-plastic damage interface between the adjacent plies of the composite laminate. The
experiments by HASHEMI et al. (1990a) were utilized to validate their model. Later, TAMUZS

et al. (2001) applied also the finite element technique for fiber-bridging modeling in
carbon/epoxy DCB specimens. The bridgings were represented by nonlinear spring elements
along the bridged zone of the specimen. The behavior of the springs was controlled based on
the determined bridging law. Based on their model load/displacement and R-curves were
predicted. The results seemed to be very useful, however it should be noted that the
load/displacement and R-curves may be experimentally determined, so this model (similarly
to the one by YAN et al., 2001) does not provide additional information on the bridgings.
SOHN et al. (1997) investigated the fiber-bridging using the bridging stress function in the
case of polycrystalline alumina composites. The bridging tractions were estimated based on
the measured crack opening displacement. The phenomenon was also studied in short fiber-
reinforced composites. An extensive study was carried out by LINDHAGEN and BERGLUND

(2000), the fiber-bridging in several type of composite materials was investigated and the
bridging laws were determined using the DCB coupon loaded by pure bending moments.
Also, FERNBERG and BERGLUND (2001) determined the bridging law for certain short-fiber-
reinforced composites. A remarkable feature is that the bridging law was found to be a
material parameter in these studies.
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3 IMPROVED SOLUTION FOR DELAMINATION SPECIMENS

In this chapter we adopt linear beam theories to obtain refined solution for the
compliance and the SERR of midplane delaminated composite beams of which arms have the
same mechanical properties. The Winkler-Pasternak foundation analysis (ROSA, 1995;
SZEKRÉNYES and UJ, 2004c, 2004d, 2005a), Timoshenko beam theory (WASHIZU, 1968),
Saint-Venant effect (OLSSON, 1992) and the concept of crack tip deformation analysis (WANG

and QIAO, 2004a; SZEKRÉNYES and UJ, 2004b, 2005b) is utilized in our formulation. The total
solution is obtained by the principle of superposition. It should be mentioned that interaction
between the former effects is not accounted for. Also, mode-mixity is performed by means of
the global approach. Furthermore, we assume that only small displacements arise.

3.1 Winkler-Pasternak foundation analysis

Let us consider the problem
in Fig. 3.1, where a delaminated
beam is subjected to a general
loading condition. In the uncracked
region the two-parameter elastic
foundation model captures the
transverse elasticity. The arms of
the model are loaded by different
loads. A detailed view at the crack
tip is also shown at the bottom of
Fig. 3.1. The linear springs are
connected to the midplane of the
upper and lower beam elements.
The moment in the torsional springs
is proportional with the difference
in the angle of rotations of the upper
(wu2(x)) and lower (wl2(x)) beam
elements. The potential energy of
the system is:
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where Iu

y2, Il
y2, Iu

y1  and Il
y1 are the relevant second order moments of inertia (refer to Fig 3.1),

E11 is the flexural modulus, ke is the Winkler foundation parameter, kG is the Pasternak
foundation parameter and P1, P2 are the external loads. The potential energy in the torsional
springs is proportional with the square of the differences in the angle of rotations. Application
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Fig. 3.1.
Two-parameter elastic foundation model.
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of the minimum of the potential energy principle involves the following governing equations
for the uncracked region:
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Let us define the foundation parameter ke. The elastic strain (which is assumed not to be
disturbed by the torsional springs) in the transverse (z) direction according to Fig. 3.1 is
(SZEKRÉNYES and UJ, 2004a):
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z
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where h is the thickness of one arm. According to OZDIL and CARLSSON (1999a) the
definition of the Winkler foundation parameter is:
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where b is the width of the model. Using the one-dimensional Hooke’s law we obtain:
zz Ex εσ 33)( = . (3.5)

Combining Eqs. (3.3)-(3.5) yields:

h
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33= . (3.6)

The rotational foundation parameter can not be so definitely expressed. The relevant literature
investigates problems wherein the foundation parameters are varied within a wide range
(ROSA, 1995; ALEMDAR et al., 1997; COŞKUN, 2003), or suggestions based on assumptions
are given (OMURTAG et al., 1998; KHAZANOVICH, 2003). Some assumptions are required to
determine the second foundation stiffness. The rearranged form of the governing equations is:
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where η and χ  will be defined later. Eq. (3.7) has three distinct solutions depending on which
of the conditions χ4<21/2η2, χ4=21/2η2 or χ4>21/2η2, respectively holds (ALEMDAR et al., 1997).
It will be shown that in our case the last condition is involved. In this case the characteristic
roots of Eq. 3.7 are:

24
41 2ηχ −=m , 24

42 2ηχ +=m . (3.8)

Based on mechanical ground we assume that the effect of rotational springs is similar to the
linear springs related to the Winkler foundation. We assume the following:

22/14 2 ηωχ = , (3.9)

where ω>1 and will be determined based on FE calculations. The solution functions of the
uncracked part are given by:
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The deflection functions of the upper and lower specimen arms (Fig. 3.1) can be expressed in
the usual way (using Euler-Bernoulli beam theory):
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Using the theorem of parallel axes the second order moments of inertia of the cracked and
uncracked portions of the model in Fig. 3.1 are:
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where in the calculation of Iu
y2 and Il

y2 the reference plane coincides with the x-y plane of the
model depicted in Fig. 3.1. The same manner was applied by DAVIDSON and SUNDARARAMAN

(1996) and SUNDARARAMAN and DAVIDSON (1998). This condition assumes strain
compatibility along the interface, which is assumed not to be violated by elastic foundation.
The coefficients, η and χ may be expressed by using Eqs. (3.2), (3.6), (3.7), (3.9) and (3.13).
They have the following form:
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The constants (c1-c12) in Eqs. (3.10), (3.11) and (3.12) can be obtained by using the following
boundary and matching conditions considering Eq. (3.13):

0)(2 =cwu ,    0)(2 =cwl ,     0)(2 =′ cwu ,        0)(2 =′ cwl , (3.15)
)0()0( 21 uu ww = ,   )0()0( 21 ll ww = ,    )0()0( 21 uu ww ′=′ ,   )0()0( 21 ll ww ′=′ , (3.16)

)0(4)0( 21 uu ww ′′=′′ , )0(4)0( 21 ll ww ′′=′′ ,  )0(4)0( 21 uu ww ′′′=′′′ , )0(4)0( 21 ll ww ′′′=′′′ .
It is important to note that Eq. (3.13) should be considered when we match the second and
third derivative of the relevant deflection functions in Eq. (3.16). We are interested to find the
compliance of each arm, which can be obtained by taking the deflections wu1(x), wl1(x) at the
position of x=-a and dividing them by the external loads, P1 and P2, respectively. Meaningful
simplifications can be achieved by assuming that the length of the uncracked region c is much
larger than half of the specimen thickness h. The simplified compliance expressions are:
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3.2 Timoshenko beam theory
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where CEB,WP,1 and CEB,WP,2 are the compliances of the upper and lower arms, respectively,
while  L=a+c is the full length of the model in Fig. 3.1. Note that the constant parameters, c1-
c12 are extremely complicated, therefore they are not detailed here. Substituting Eq. (3.14)
into Eqs. (3.17) and (3.18) the compliances of the upper and lower arms become:
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where φ=1+ω. The first two terms in Eqs. (3.19) and (3.20) are the result of the Euler-
Bernoulli beam theory, while the third one is the correction based on the two-parameter
elastic foundation. The energy release rates for the upper and lower arms may be obtained by
using Eq. (1.2):
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Thus, we may obtain:
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The SERR of the problem in Fig. 3.1 including the two-parameter elastic foundation may be
obtained by summing Eqs. (3.23) and (3.24).

3.2 Timoshenko beam theory

In this section we capture the transverse shear effect using Timoshenko beam theory
(WASHIZU, 1968). Let us consider the loading scheme in Fig. 3.2. The beam is loaded by
different concentrated forces in both arms and has a clamped end. According to the
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3.2 Timoshenko beam theory

Timoshenko beam theory the displacement field in slender beams can be described by two
parameters:

)()()( 0 xzxuxu ψ⋅+= , (3.26)

)()( 0 xwxw = , (3.27)
where w0(x) and u0(x) are the displacement
components of the mid-surface. The
bending moment-curvature relationship is:

11

)(
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xM xx κ
= , (3.28)

where d11 is the corresponding component
of the bending compliance matrix (see
later) and b is the specimen width. The curvature is given by:
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x
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The shear strain γxz can be obtained by differentiating Eqs. (3.26) and (3.27):
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On the other hand the shear strain can also be expressed in the following way:

xxz Q
k

a55=γ , (3.31)

where a55 is the transverse shear compliance of the beam (see later), k=5/6 is the shear
correction factor and Qx is the shear force. Since Qy=My=Mxy=0, we use the following
equilibrium equation:

0=+ x
x Q
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where Mx is the bending moment. Combining Eqs. (3.30), (3.31) and (3.32) we obtain the
following differential equation:
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The combination of Eq. (3.28) and Eq. (3.29) yields:
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Substituting the former expression into Eq. (3.33) and recognizing that there are no normal
forces we can write the following governing equation:
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Considering the general loading scheme in Fig. 3.2 the bending moment functions can be
written as:

)(11 axPM u += , )(21 axPM l += , 0≤≤− xa , (3.36)
))(( 212 axPPM ++= , cx ≤≤0 . (3.37)

Substituting these into Eqs. (3.33), (3.34) and (3.35) the components of the displacement field
can be expressed. The model has three distinct regions (see Fig. 3.2), the upper (wu1, uu1) and

h

h

wl1(x)

wu1(x)

P2 a c

w2(x)

x

z
P1

Fig. 3.2.
A general loading scheme for Timoshenko

beam theory.
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3.3 Saint-Venant effect

lower (wl1, ul1) arms and the uncracked (w2, u2) region, respectively The displacement
functions for the three distinct parts of the model in Fig. 3.1 are:
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In order to determine the constant parameters (d1-d6) the following boundary and matching
conditions should be used:

0)(2 =cu ,  0)(2 =cw , (3.44)
)0()0( 21 wwu = , ),0(),0( 21 zuzuu = , )0()0( 21 wwl = , ),0(),0( 21 zuzul = . (3.45)

The bending and shear compliances for the cracked and uncracked portions are:
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The solution for the compliance of both specimen arms (Ci=δi/Pi) can be determined by
taking the deflections wu1(x), wl1(x) at the position of x=-a:
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The constants (d1-d6) are given in Appendix A. The SERR can be expressed by differentiating
the compliances with respect to crack length (Eq. 3.22). Therefore the SERRs are:
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where in Eqs. (3.49) and (3.50) the first two terms are the results of the classical beam theory,
the second one is the effect of transverse shear deformation.

3.3 Saint-Venant effect

OLSSON (1992) considered the problem of Saint-Venant effect in the compliance
analysis of the mode-I DCB specimen. In this section we adopt the same theory. The
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3.3 Saint-Venant effect

Saint-Venant effect represents a rotational angle at the crack tip or at the clamped end of the
model. In Fig. 3.3 three cases are compiled. Fig. 3.3a shows the deformation of the crack tip
under pure mode-I condition. In this case the strain compatibility condition is satisfied, hence
the Saint-Venant effect should be considered. In contrast, focusing our attention on Fig. 3.3b
we may observe that the Saint-Venant effect must vanish if the pure mode-II condition is
involved. In this case the rotational angles would induce opposite axial displacements at the

crack tip, which is physically not possible. Finally, Fig. 3.3c shows the clamped end of the
uncracked part of the model, where the Saint-Venant effect also arises. Therefore, in the
sequel we discuss only the pure mode-I condition and the case of the clamped end. We note
that in accordance with strength of materials analysis the axial displacements at the clamped
end is zero. The present formulation is an attempt to better capture the deformation at the
clamped end.

According to OLSSON’s analysis the strain energy derivative in the coordinate system
in Fig. 3.3 is bounded by the following inequality:
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where U is the strain energy, κ is the characteristic decay length in the material.

3.3.1 Saint-Venant effect at the crack tip

In the followings we investigate the mode-I part of the problem (Fig. 2.6b). In the case
of slender beams the derivative of the strain energy per unit length can be calculated as:
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Fig. 3.3.
Saint-Venant effect under pure mode-I (a) and pure mode-II (b). Saint-Venant effect at the

clamped end (c).
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3.3 Saint-Venant effect
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where Iu
y1 and Il

y1 are given by Eq. (3.13). The moments, M1 and M2 are (refer to Fig. 2.6b):
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For M3 and M4 in Fig. 3.3 refer to Fig. 2.6c. From Eqs. (3.51), (3.52) and (3.53) the strain
energies ahead of the crack tip are:
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Let us consider the lower sign in Eqs. (3.55) and (3.56). Using Castigliano’s second theorem
and adopting the lower sign we obtain the rotational angles at x=0:
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The rotational angles by using Eqs. (3.54),
(3.55), (3.56) and (3.57) are:
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The displacements at the end of the model
arms are (see Fig. 3.4):

11
3

2
21

11
)(6

Ebh
aPP

a
κ

θδ
−

== , (3.60)

11
3

2
12

22
)(6

Ebh
aPP

a
κ

θδ
−

== . (3.61)

Substituting κ (the second in Eq. 3.51) into Eqs. (3.60) and (3.61) we obtain the compliance
contributions from the Saint-Venant effect for a mixed-mode I/II problem in Fig. 2.6a:
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The application of Eq. (3.22) results in the SERRs of a mixed-mode I/II problem as:

SVSV f
Ehb

aPPP
G

11
32

2
211

1, 4
)( −

= , (3.64)

Fig. 3.4.
Deformation of the crack tip due to

Saint-Venant effect.
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3.4 Crack tip shear deformation analysis
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3.3.2 Saint-Venant effect at the clamped end

A similar analysis at the clamped end of the model (see Fig. 3.3c) results in the
following expression:
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where L=a+c is the full length of the model. Therefore, the compliance contribution from
Saint-Venant effect at the clamped end is independent of the crack length. As a consequence,
in this case there is no contribution to the strain energy release rate.

3.4 Crack tip shear deformation analysis

WANG and QIAO (2004a) performed an improved beam analysis for the mode-II ENF
coupon. Their solution can be easily extended for mixed-mode I/II specimens. Let us consider
the problem in Fig. 3.5. Based on strength of materials analysis the shear stresses in the upper
and lower arms of the model are:
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We consider the shear stresses in Eq. (3.68) as shear tractions and the effect of the
concentrated forces, P1 and P2 is not included in the analysis (they have already been
considered in Sections 3.1 and 3.2). In contrast with WANG and QIAO in the present analysis
we assume that the shear tractions act along the midplane of the upper and lower arms and do
not between crack faces. The relationship between the section forces and stresses of the

Fig. 3.5.
Loading scheme for the crack tip deformation analysis.
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3.4 Crack tip shear deformation analysis

uncracked region are:
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where N is the normal force and M is the bending moment. The following constitutive
equations are adopted:

112

2
2

2
2

EI
M

dx
wd

u
y

uu −
= , 

112

2
2

2
2

EI
M

dx
wd

l
y

ll −
= , (3.71)

where Iu
y2 and Il

y2 are given by Eq. (3.13). The longitudinal displacement at the neutral plane
of the uncracked region (0≤x≤c) can be written as:
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where K1 and K2 are the shear compliances and will be defined later. Along the interface of
the upper and lower beam elements of the uncracked region the axial displacements should be
identical, i.e. strain compatibility is required and the relative displacement is zero:
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Substituting Eqs. (3.72) and (3.73) into (3.74) and differentiating it twice we have:
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In accordance with WANG and QIAO (2004a) the shear compliances may be written as:
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Combining Eq. (3.69), (3.71) and (3.75) and recognizing that at the interface the shear stresses
are equal (τu2=τl2=τ), the following governing equation can be obtained:
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The solution of Eq. (3.77) is:
xx efefx ρρτ 21)( += − . (3.78)

In most cases of c>>h, the shear stress is small. On the other hand in the case of x>>1/ρ, f2

must be a very small constant. Therefore, the second term in Eq. (3.78) can be neglected. On
the other hand the longitudinal forces must vanish along the whole length of the model. This
condition allows for the determination of f1:
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Assuming that e-ρc≅0 if c>>h we obtain from Eqs. (3.68), (3.78) and (3.79) the following:
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3.4 Crack tip shear deformation analysis
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The bending moment functions may be obtained by integrating the shear stress along the
uncracked region (Eq. (3.70)):
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Using Eqs. (3.71), (3.81) and (3.82) the deflection functions of the uncracked part become:
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Since the shear stresses act along the neutral plane of the upper and lower specimen arms they
do not cause bending moment, consequently we may write:

651 )( gxgxwu += , (3.85)

871 )( gxgxwl += . (3.86)
The boundary and matching conditions for the determination of g1-g8 are (see Fig. 3.5):

0)(2 =cwu , 0)(2 =cwl , 0)(2 =′ cwu , 0)(2 =′ cwl , (3.87)
)0()0( 21 uu ww = , )0()0( 21 ll ww = , )0()0( 21 uu ww ′=′ , )0()0( 21 ll ww ′=′ .

The constants, g1-g8 are given in Appendix A. The compliance of each arm of the model after
simplifications (WANG and QIAO, 2004a) is improved by the following terms:
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where:
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The SERR for the upper and lower arms by using Eq. (3.22) are:
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where:















+














=

13

11
22

1

13

11
2 43.096.1

G
E

a
h

G
E

a
hf SH . (3.93)



CHAPTER 3 - IMPROVED SOLUTION 33

3.5 Mode-mixity analysis - global method

3.5 Mode-mixity analysis - global method

Here we adopt WILLIAMS’ global mode decomposition method (1988). Let us consider
the problem in Fig. 3.6a, in which we incorporate the elastic foundation, transverse shear,
Saint-Venant and crack tip shear deformation effects. The compliance of the upper arm of the
model (Fig. 3.6a) by adding Eqs. (3.19), the last term of (3.47), furthermore (3.62) and (3.88)
is:
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Similarly, the compliance of the lower arm by summing Eqs. (3.20), the last term of (3.48),
furthermore (3.63) and (3.89) is:
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where fW1 is the correction from two-parameter elastic foundation analysis, fSV is the
correction from Saint-Venant effect and fSH1 is from crack tip shear deformation analysis.
Note that the Saint-Venant effect is considered only at the crack tip. The energy release rates
for the upper arm by summing Eqs. (3.23), the last term of (3.49), furthermore (3.64), (3.91)
and for the lower arm by summing Eqs. (3.24), the last term of (3.50), furthermore (3.65) and
(3.92) are:
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where fT is defined as:
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According to Fig. 3.6 we reduce problem (a) into problem (b), where M1=P1a, M2=P2a, and
M3=M1+M2 are bending moments at the crack tip. The sum of Eqs. (3.96) and (3.97) (i.e. the
total SERR) can be transformed as:

.

4
)()()(6)(21

*
/

11
32

2
2

212
2

2121
2
2

2
1

IIIIII

SHSVTW
T

GGG

Ehb
fMMfffMMMMMM

G

++=

=
++++−+−+

=

(3.99)



CHAPTER 3 - IMPROVED SOLUTION 34

3.5 Mode-mixity analysis - global method

We assume that the equivalent bending moments can be decomposed as follows (WILLIAMS,
1988; DUCEPT et al., 1999):

III MMM +=1 , (3.100)

III MMM ϕα +=2 .
WILLIAMS (1988) supposes that in the case
of pure mode-II the upper and lower
specimen arms have the same curvature:
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From this beam kinematics assumption it
follows that ϕ=1. Substituting Eq. (3.100)
into Eq. (3.99) we can separate the term
containing the product of MI⋅MII :
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In order to cancel Eq. (3.102) we choose
α=-1. From Eqs. (3.99) and (3.100) the mode-I and mode-II components become:
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Rearranging Eq. (3.100) we may obtain the mode-I and mode-II bending moments as follows:
2/)( 21 MMM I −= , 2/)( 21 MMM II += . (3.105)

The functions in Eqs. (3.103) and (3.104) are:
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According to Eq. (3.103) the Winkler-Pasternak foundation, transverse shear and the
Saint-Venant effect contributes only to the mode-I component. The first is obvious, since the
two-parameter elastic foundation incorporates the differences between the lateral
displacements and the angle of rotations of the upper and lower beam elements. Under
mode-II these are equal to zero. As regarding to the transverse shear effect the conclusion

Fig. 3.6.
Reduction scheme for mixed-mode

partitioning.
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3.6 Compliance calculation

may be explained by the fact that under pure mode-II the cracked and uncracked regions
exhibit the same shear compliance. This was supported also by OZDIL and CARLSSON (1999a)
and WANG and QIAO (2004a). It has already been discussed why the Saint-Venant effect
contributes only to the mode-I component. On the other hand the crack tip deformation
improves only the mode-II component according to Eq. (3.104).

3.6 Compliance calculation

We give a general expression based on a superposition analysis, which can be used to
calculate the compliance for a delaminated beam under general loading condition. The
method is the generalization of that presented by OZDIL and CARLSSON (1999b). In a general
form the mode-I and mode-II bending moments in Eq. (3.100) may be written as:

#afPM II ⋅⋅= , #afPM IIII ⋅⋅= , (3.110)
where P is the external load, fI and fII are related to geometrical parameters of the system and
a# is the characteristic length (in each case may be related to the crack length). However, this
time it is helpful to use concentrated forces instead of the moments:

II fPP ⋅= , IIII fPP ⋅= , (3.111)
i.e.: MI=PIa# and MII=PIIa#. We note that Eqs. (3.94) and (3.95) is applicable only in particular
circumstances, namely when the external loads act at the end of the specimen arms. Although
the extension of the model (Eqs. (3.94) and (3.95)), for example to the ELS, SCB and DCB
specimens is relatively simple, the application, for instance to the SLB and MMB specimens
is not so trivial. Hence, we utilize the results obtained in Section 3.5. Based on the present
chapter the compliance of composite beams with midplane delamination may be written as:

SVSHSVWTIMEB CCCCCCC +++++= 111 , (3.112)
where CEB is the result of Euler-Bernoulli beam theory, CTIM is the contribution of transverse
shear deformation, CW1 is the effect of the Winkler-Pasternak foundation, CSV1 is from the
Saint-Venant effect at the crack tip, CSH1 accounts for the crack tip shear deformation and CSV

considers the Saint-Venant effect at the clamped end. The determination of the first two terms
requires a unique analysis. Usually, these two terms may be determined by following the way
in Section 3.2. On the other hand CSV (Eq. (3.67)) is a simple additive term. Considering the
other three terms it has been shown that the Winkler-Pasternak foundation and the Saint-
Venant effect at the crack tip contributes to the mode-I, while the crack tip deformation
improves the mode-II component. We assume that the deflection at the point of load
application is equal to the sum of the displacements related to the mode-I and mode-II effects:

IIIIII ff δδδ += , (3.113)
where fI and fII are the same as those mentioned in Eq. (3.110). The compliance corrections
related to the mode-I and mode-II effects may be expressed as:
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The combination of Eqs. (3.111) and (3.114) with Eq. (3.113) leads to the following:
PfCPfC IIIIII

22 +=δ . (3.115)
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3.7 Determination of the coefficient of the Pasternak foundation

The compliance of the system is defined as C=δ/P, hence we obtain:
22

IIIIII fCfCC += . (3.116)
It should be mentioned that the moments MI and MII (and so even PI and PII) are calculated by
using the loads at the end of the specimen arms, on the other hand the effect of the external
load is incorporated in Eq. (3.111). Therefore, the terms CW1, CSV1 and CSH1 may be calculated
by eliminating P1 and P2 in the last two terms of Eqs. (3.94) and (3.95), i.e.:
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Combining Eqs. (3.114), (3.116) and (3.117) the following expression is obtained:
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where fW1 is given by Eq. (3.21), fSV is given by Eq. (3.66), fSH1 is defined by Eq. (3.90) and
CSV is given by Eq. (3.67). Finally, there is now only one unknown parameter, ω, of which
determination is detailed in the following.

3.7 Determination of the coefficient of the Pasternak foundation

We assumed that the torsional springs in the two-parameter elastic foundation (see
Fig. 3.1) are related to the through-thickness (E33) modulus of the specimen. Let us consider a
spring with stiffness of infinity, this is equivalent to the case, when E33=∞. If this is the case
there are no relative lateral displacement between the upper and lower beam elements of the
uncracked region. Moreover, in this case the relative angle of rotation of the upper and lower
beam elements is also equal to zero, and consequently the potential energy in the torsional
springs becomes zero (Eq. (3.1)). This indicates that the initial assumption is right. In order to
determine the unknown parameter of ω the FE method is used. However, some modifications
in comparison with the traditional analyses should be made. First of all the effect of two-
parameter elastic foundation should be separated within the model. In other words the
transverse shear, Saint-Venant and crack tip shear deformation effects, which are related to
the shear modulus of the model should be eliminated. This may be achieved if we construct a
model, wherein the shear modulus tends to infinity, i.e.: G13→∞. If this is the case the terms
in Eq. (3.112), which are related to the shear modulus G13 vanish, since the related corrections
(CTIM, fSV, fSH1, CSV) become zero. It may be assumed that the remained correction arises from
the Winkler-Pasternak foundation (fW1).

To determine ω the simplest way is to consider the FE model of a special DCB
specimen (see Fig. 2.6b), which exhibits shear modulus of G13=100 000 GPa. The compliance
of the FE model of the DCB specimen may be written as (WANG and WILLIAMS, 1992):
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where ξ is the correction from the FE analysis if G13=100 000 GPa. Rearranging Eq. (3.119) ξ
is equal to:
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3.8 Conclusions, scientific significance

h
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FE −= 3 11
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ξ . (3.120)

The corrected SERR by using Eqs. (1.2) and (3.119) is:
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where it was assumed that the correction ξ does not depend on the crack length, it depends
only on material properties.

For the application of the analytical model (Eqs. (3.103) and (3.104)) we need the
bending moments at the crack tip of the DCB specimen, which are: M1=-M2=Pa. Furthermore,
Eq. (3.105) yields that MI=Pa and MII=0 and from Eq. (3.110) that fI=1 and fII=0.
Incorporating Eqs. (3.103) and (3.106) the strain energy release rate of the DCB specimen
including only the effect of the two-parameter elastic foundation is:
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where φ=1+ω. The FE analysis was performed by using the COSMOS/M 2.0 package. The
DCB specimen was meshed with linear elastic PLANE2D elements under plane stress state.
The upper and lower arms of the model were subjected to a concentrated force equal to unity
(see Fig. A1 in Appendix A). The displacements of the arms were used to calculate the
compliance of the model, the value of ξ was determined from Eq. (3.120). The next step is to
compare Eq. (3.121) with Eq. (3.122). In Eq. (3.122) ω should be chosen in order to reach the
best agreement with Eq. (3.121), i.e. with the FE solution, where G13 is equal to 100 000 GPa.
A large amount of FE analysis on models of the DCB specimen with different geometry and
material properties were performed in the crack length range of a=30 to 100mm. The results
are summarized in Table A1 (Appendix A). In all the cases it was found that if we choose
ω=2.5 then the agreement between the FE and analytical solution is excellent. Also, this result
(ω>1) give reason for why Eq. (3.10) was chosen as the solution of Eq. (3.7).

3.8 Conclusions, scientific significance

The global mode decomposition method was improved with the Winkler-Pasternak
foundation, transverse shear, Saint-Venant effect and shear deformation of the crack tip. It
was shown that the first three of these effects contribute only to the mode-I strain energy
release rate, while the crack tip shear deformation improves only the mode-II component.
Also, a general expression for the compliance of unidirectional composite beams with
midplane delamination was developed, however the determination of the terms related to the
Euler-Bernoulli and Timoshenko beam theory - depending on the geometry of the problem -
requires a unique analysis. Finally, the coefficient of the Pasternak foundation parameter, ω
was determined using the developed model and the finite element method and was found to be
a constant value (ω=2.5).
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4.1 Analytical solutions

4 COMPARISON WITH OTHER SOLUTIONS

In this section the models of the SCB,
SLB and MMB delamination specimens are
examined. Four different solutions are
extended for these fracture specimens
including mode-mixity analysis: beam
theory-based solution I., which was
developed in Chapter 3, beam theory-based
solution II. (CARLSSON et al., 1986;
WILLIAMS, 1989; OLSSON, 1992), a solution
based on refined plate theory (BRUNO and
GRECO, 2001a, 2001b) and a numerical (FE)
solution by BAO et al. (1992). Furthermore,
mode decomposition based on the VCCT
was achieved in all the three mixed-mode
specimens. The delamination coupons are
illustrated in Fig. 4.1.

4.1 Analytical solutions

4.1.1 Beam theory-based solution I.

Comparing Fig. 3.6a with Fig. 4.1a we may write: M1=0, M2=Pa. From Eq. (3.105) it
follows that M1=M1I=Pa/2. Comparing the latter to Eq. (3.110) we may write that f1=f1I=1/2
and a#=a.  The compliance of the SCB specimen based on Eq. (3.118) (where the terms CEB

and CTIM were determined by following the way in Section 3.2) becomes (ω=2.5):
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(4.1)
Also, the Saint-Venant effect at the clamped end should be considered, i.e. Eq. (3.67) is also
included in the second term of Eq. (4.1). The SERR of the SCB coupon in Fig. 4.1a may be
obtained from Eqs. (3.103)-(3.109):
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Fig. 4.1.
Mixed-mode I/II delamination specimens.
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4.1 Analytical solutions
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In a similar fashion it may be shown (SZEKRÉNYES and UJ, 2004a) that the compliances, CEB

and CTIM of the SLB specimen (Fig. 4.1b) may be obtained by replacing 2L3 with L3 in the
first term and 2L with L in the fourth term of Eq. (4.1). Furthermore, we may write that
M1=Pa/2, M2=0. From Eq. (3.105) it follows that M1=M1I=Pa/4. Comparing the latter to
Eq. (3.110) we obtain that f1=f1I=1/4 and a#=a. The compliance of the SLB specimen by using
Eq. (3.118) is (note that there is not a clamped end, i.e. CSV in Eq. (3.118) is not included):

].08.258.807.5[
88

2

]43.098.0[
84

31
8

27

4
3

33

11
32

1

33

11
24

1

33

11

11
3

3

13

13

11
22

1

13

11

11
3

32
1

13

11

11
2

2

11
3

33















+














+














+

+
+

+













+














+








+

+
=

E
E

a
h

E
E

a
h

E
E

a
h

Ebh
a

bhkG
La

G
E

a
h

G
E

a
h

Ebh
a

G
E

Ebh
a

Ebh
LaC SLB

π

(4.4)
Using the same mode-I and mode-II bending moments we obtain from Eqs. (3.103)-(3.109):
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The simplest way to obtain the compliance of the MMB specimen (Fig. 4.1c) is to refer to the
work of OZDIL and CARLSSON (1999b):
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i.e. the solution for the MMB specimen (Fig. 2.5c) may be obtained by combining the unique
solutions for the mode-I DCB (Fig. 2.2a) and the mode-II ENF (Fig. 2.3a) specimens. For the
former case P1=P, P2=-P, while for the latter case P1=P2=-P/4. Following the way suggested
before the compliance of the MMB specimen becomes:
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4.1 Analytical solutions

Note that Eq. (4.8) may also be obtained by using Eq. (3.118). For the MMB specimen
(Fig. 4.1c): M1=Pc*a/L, M2=P(c*-L)a/2L, thus we have from Eqs. (3.103)-(3.109):
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The mode ratio (GI/GII) in each case may be obtained by combining the equations above.

4.1.2 Beam theory-based solution II.

The classical solution of WILLIAMS (1989) for the mode-I DCB specimen was
improved with transverse shear and Saint-Venant effect by OLSSON (1992). On the other hand
CARLSSON et al. (1986) performed an improved analysis for the mode-II ENF specimen based
on Timoshenko beam theory. Later, REEDER and CREWS (1990) obtained a solution for the
MMB specimen based on the solutions by WILLIAMS (1989) and CARLSSON et al. (1986). The
MMB specimen was treated as the superposition (refer to Fig. 2.6) of the DCB and ENF
specimens. Combining the results of these works (by summing the proper corrections) the
following expressions may be derived for the energy release rate components:
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where fW is the correction from WILLIAMS classical elastic foundation model (Fig. 2.2b):
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where fT and fSV is defined by Eqs. (3.107 and (3.108). The equations above will be referred to
as the solution by CARLSSON and OLSSON. The bending moments at the crack tip in the case
of the SCB, SLB and MMB specimens are the same as those mentioned in Section 4.1.1.

4.1.3 Solution based on numerical calibration

BAO et al. (1992) derived the energy release rate components based on FE calculation
for certain composite specimens. The following generalized expressions can be obtained
based on their formulation:
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The above solution is based on the principle of superposition, for instance the solution for the
mixed-mode SCB specimen was obtained as the sum of the mode-I DCB and the mode-II
ELS specimens (refer to Fig. 2.6). Moreover it is assumed that ν13=ν31.

4.1.4 Solution based on a refined plate model

BRUNO and GRECO (2001a, 2001b) utilized a linear elastic interface model between
two Reissner-Mindlin plates. Their solution can be simply extended for the mixed-mode I/II
coupons in Fig. 4.1. The solution after some transformations can be written as:
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where fT is given by Eq. (3.107). It should be noted that this formulation gives equivalent
result to the simple beam theory as regarding to the mode-II component (see Eq. (4.21)).

4.2 Finite element solution - VCCT method

For the mixed-mode I/II specimens a series of FE models were constructed to obtain
the mode ratios within reasonable crack length ranges. For the SCB and SLB specimens the
compliance was also computed in order to give some comparison with the analytical
solutions. The models were developed in the commercial code COSMOS/M 2.0 using
PLANE2D elements under plane stress state, which is consistent with the beam formulation
of the problems. The FE models of the SCB and SLB specimens were subjected to a
concentrated force equal to unity. In the case of the MMB specimen the concentrated forces at
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the upper arm and the center point of the specimen were calculated based on Fig. 4.1, in this
case P=1 N was used. Otherwise, the end point of the lower arm and the point below the left
support was constrained in direction x and x-z, respectively (see Fig. 2.5c). The details of the
FE model for the SCB specimen, together with the boundary conditions are demonstrated in
Fig. 4.2. The models for the SLB and MMB specimens were quite similar ones. The
specimens were 150 mm long, b=20 mm wide and 2h=6.1 mm thick. The material properties
are given for glass/polyester composite specimens, which were manufactured in our
laboratory. The flexural modulus of the specimens were determined through a non-standard
three-point bending test with the following dimensions: span length of 2L=151 mm, width of
b=20 mm and thickness of 2h=6.1 mm. The experiment resulted in E11=33 GPa. Additional
material properties were predicted by means of Niederstadt’s (THAMM, 1985) approximate
rule of mixture, this way E33=7.2 GPa, G13=3 GPa and ν13=ν31=0.27 were obtained. The

equations of the VCCT method are given in Chapter 2 (see Eqs (2.4) and (2.5)). A finite
element mesh around the crack tip, as suggested by DAVIDSON et al. (1996) was constructed,
as it is shown in Fig. 4.2. The Saint-Venant effect at the clamped end of the SCB specimen
was also accounted for, as it is illustrated also in Fig. 4.2. Also, the case of the traditional
clamped end was studied in this case. Crack tip elements with finite crack extension of
∆a=0.025 mm were constructed.

4.3 Results

In the following the compliance and SERR expressions from different solutions are
compared to each other (SZEKRÉNYES, 2004a; SZEKRÉNYES and UJ, 2005a). It should be
mentioned that only those compliance expressions are given above, which are based on our

Fig. 4.2.
Details of the FE mesh around the crack tip and boundary conditions.

crack

0.4 mm
x

z

L=150
a

P

BA

B

Constrained in normal
direction
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longitudinal direction
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solution. In the work of BAO et al. (1992) expressions for the compliance are not given, and
so, this void was addressed by our FE models, except in the case of the MMB specimen,
where due to the complex fixture the compliance calculation is difficult. The other two
solutions for the compliance of the specimens are detailed in relevant papers (CARLSSON et
al., 1986; WILLIAMS, 1989; OLSSON, 1992; BRUNO and GRECO, 2001a, 2001b). All the
equations were normalized with the results of the Euler-Bernoulli (CEB) beam theory. These
are the first terms in Eqs. (4.1)-(4.10). The normalized compliance and SERR expressions are
plotted against the normalized crack length.

4.3.1 Compliance

The normalized compliance expressions for the SCB coupon are shown in Fig. 4.3a.
Without the Saint-Venant effect the solutions agree well. The FE solution provides somewhat
different values compared to the analytically obtained curves if the Saint-Venant effect is

(a)

(b)

Fig. 4.3.
Comparison of the compliance of the SCB (a) and SLB (b) specimens.
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(a)

(b)

Fig. 4.4.
Comparison of the compliance of the MMB specimen. Present solution (a), solution by BRUNO

and GRECO, 2001 (b), solution by CARLSSON, 1986 – OLSSON, 1992 (c).
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included. It should be mentioned that the contribution from the Saint-Venant effect (the
second term in Eq. (4.1)) at the clamped end of the SCB specimen is about half time of that
predicted by the FE model. In fact all the analytical curves follow the same trend. Quite
similar curves were obtained in the case of the SLB specimen, as it is shown in Fig. 4.3b. For
the MMB specimen the normalized compliance was displayed at four different lever lengths
c* by three different solutions (refer to Fig. 4.4). In the case of c*=30 mm the present solution

provides the largest improvement. If c*=60 mm the present and CARLSSON-OLSSON’s solution
show similar tendencies. At the other lever length values the solution by CARLSSON-OLSSON

gives the largest improvement.
In fact, in most of the cases demonstrated in Figs. 4.3 and 4.4 the solution by OLSSON

and CARLSSON provides the largest enhancement, however it should be mentioned, that the

Fig. 4.5.
Comparison of the mode-I (a) and mode-II (b) energy release rate for the SCB specimen.
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SERR - which is more important than the compliance - incorporates the derivative of the
compliance with respect to the crack length (refer to Eq. (1.2)).

4.3.2 Strain energy release rate

GI and GII

The results for the SERR of the SCB specimen are illustrated in Fig. 4.5. For the
glass/polyester specimens (Fig. 4.5a) our solution gives the best correlation compared to the
numerical solution. The overprediction by OLSSON and CARLSSON in comparison with BAO’s
solution is somewhat surprising. Fig 4.5a also contains the result of the present solution if

Fig. 4.6.
Comparison of the mode-I (a) and mode-II (b) energy release rate for the SLB and MMB

specimens.
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ω=0. In this case the difference between the present solution and the one by CARLSSON-
OLSSON is proportional to the difference between Eqs. (4.13) and (3.106). Figs. 4.6a and 4.6b
present the same results for the SLB and MMB coupons. For both specimens essentially the
same trends were obtained.

The normalized mode-II component is plotted in Figs. 4.5b-4.6b. In each case, the
agreement was excellent between our model and the one by BAO et al. In contrast, the
mode-II component is equivalent to the formula of Euler-Bernoulli beam model in accordance
with the formulation of BRUNO and GRECO (Fig. 4.6b). Although the model by CARLSSON

provides some correction for the mode-II component, it is clear, that our solution (which is
based on the work by WANG and QIAO (2004a)) seems to be more reasonable.

The mode ratio
The mode ratios for the SCB specimen by five different approximations are compiled

in Table 4.1. Slightly distinct results were obtained even in this case. The models by BRUNO

and GRECO and CARLSSON-OLSSON show larger mode-I dominance compared to the other
solutions. BAO’s numerical formulation shows good agreement with our results. Finally, the
plane stress FE model also shows some crack length dependence of the mode ratio but the
mode-I dominance is not as significant here as in any of the former cases.

Table 4.2 presents the results for the SLB specimen. In this respect our solution
matches well with BAO’s solution and the result of the VCCT. Notice that the mode ratios by
the closed-form solutions are the same as they are in the case of the SCB specimen.

In Table 4.3 the mode ratios are collected at four different lever length values for the
MMB specimen. At c*=30 mm some discrepancies were recognized between the
closed-form solutions and the results of the VCCT method, maybe the lever length is not long

Table 4.1.
Mode ratios (GI/GII) by different methods, SCB specimen.

 a  [mm]     20           30           40           50           60           70           80           90          100

   1.676      1.557      1.500      1.465      1.443      1.427      1.415      1.406      1.398  *
   1.764      1.633      1.555      1.509      1.479      1.458      1.442      1.430      1.420  **
   1.665      1.555      1.500      1.467      1.445      1.429      1.417      1.408      1.400  ***
   1.893      1.719      1.626      1.569      1.530      1.502      1.481      1.465      1.452  ****
   1.250      1.176      1.144      1.120      1.105      1.093      1.085      1.078      1.073  *****

* present, ** BRUNO and GRECO, 2001, *** BAO et al., 1992, **** CARLSSON 1986, OLSSON 1992, ***** VCCT

Table 4.2.
Mode ratios (GI/GII) by different methods, SLB specimen.

 a  [mm]     20                 30                 40                 50                 60                 70

   1.676            1.557            1.500            1.465            1.443            1.427      *
   1.764            1.633            1.555            1.509            1.479            1.458      **
   1.665            1.555            1.500            1.467            1.445            1.429      ***
   1.893            1.719            1.626            1.569            1.530            1.502      ****
   1.658            1.572            1.529            1.502            1.493            1.483      *****

* present, ** BRUNO and GRECO, 2001, *** BAO et al., 1992, **** CARLSSON 1986, OLSSON 1992, ***** VCCT
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enough in this case to open the crack in a sufficient degree. Our and BAO’s solution closely
agree at each lever length, not only in the case of the numerical values, but also in the case of
the dependence of the mode ratio on the crack length. At c*=60 mm the VCCT agrees well
with the values by CARLSSON and OLSSON’s model, in contrast if c*=90 mm the VCCT shows
the best agreement with BAO’s and the present solution. Finally if c*=120 mm the results of
the VCCT show significant differences in comparison with the closed-form solutions.

The summary of these results indicates that the mode ratio depends on the method
applied for calculation.

The total strain energy release rate
Finally we investigate the total SERR (G1+G1I) by the four improved solutions in

comparison with the simple beam theory. The results for the SLB and the SCB specimens are
collected in Table 4.4. The solution for the SLB specimen is given at the crack lengths of
a=20 to 70 mm, while for the SCB specimen the whole range (a=20 to 100 mm) is valid. The
differences are not significant, but it may be observed that in this respect the solution by
BRUNO and GRECO exhibits the smallest enhancing effect. Further consequences may be
drawn by focusing our attention on Table 4.5, where the results are listed for the MMB
specimen at four different lever length values. If c*=30 and 60 mm then our and BAO’s
solution seems to be the best. The other two solutions provide poor results, which may be
explained by the fact that in this case there exists a mode-II dominated condition. Increasing

Table 4.3.
Mode ratios (GI/GII) by different methods, MMB specimen.

 a  [mm]       25                 30                 40                 50                 60                 70

 c*=30 mm 0.033            0.032            0.031            0.030            0.029            0.029        *
    0.035            0.033            0.032            0.031            0.030            0.030        **

 0.033            0.032            0.031            0.030            0.029            0.029        ***
   0.037            0.035            0.033            0.032            0.031            0.031        ****
   0.179            0.175            0.173            0.175            0.175            0.177        *****

 c*=60 mm  0.971            0.942            0.907            0.887            0.873            0.863        *
   1.025            0.987            0.940            0.913            0.895            0.882        **
   0.965            0.938            0.906            0.886            0.873            0.863        ***
   1.083            1.040            0.983            0.949            0.925            0.909        ****
   1.102            1.066            1.038            1.025            1.015            1.018        *****

 c*=90 mm 2.242            2.176            2.095            2.047            2.016            1.993        *
   2.367            2.279            2.171            2.107            2.065            2.036        **
   2.227            2.166            2.091            2.045            2.015            1.993        ***
   2.500            2.400            2.270            2.191            2.137            2.098        ****

      2.078            2.015            1.962            1.929            1.914            1.914        *****

 c*=120 mm  3.428            3.328            3.204            3.131            3.083            3.048        *
   3.621            3.486            3.320            3.223            3.159            3.113        **
   3.406            3.313            3.197            3.128            3.081            3.048        ***
   3.469            3.372            3.246            3.169            3.116            3.078        ****

      2.843            2.759            2.686            2.637            2.620            2.616        *****

  * present, ** BRUNO and GRECO, 2001, *** BAO et al., 1992, **** CARLSSON 1986, OLSSON 1992, ***** VCCT
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the lever length the mode-I component becomes more and more dominant, therefore the
difference between the other solutions and the one by BAO et al. subsequently decays.

4.4 Discussion

As a consequence, the different solutions give distinct results, which should be
clarified. According to the present formulation the total SERR was obtained by a
superposition scheme, which incorporates the influence of Winkler-Pasternak foundation,
Saint-Venant effect, transverse shear and crack tip shear deformation. Interaction between
them was not considered, but the mode-I and mode-II components are equally supported by
reasonable values. Moreover, the comparison showed that the relationship of our solution to
the one by BAO et al. is similar in all the presented cases.

We may assume that BAO’s numerical model provides the more accurate result. Their
model incorporates all the former effects and the possible interaction between them. We can
also state that the form of the formulae is the most difficult in this case. For example the

Table 4.4.
Comparison of the total SERR (GI/II/GI/II,EB) by different methods, SLB and SCB specimens.

 a  [mm]     20           30           40           50           60           70           80           90          100

   1.287      1.183      1.134      1.105      1.087      1.074      1.064      1.057      1.051  *
   1.197      1.128      1.095      1.075      1.063      1.053      1.047      1.041      1.037  **
   1.301      1.196      1.145      1.115      1.095      1.081      1.071      1.063      1.057  ***
   1.303      1.192      1.140      1.110      1.090      1.077      1.067      1.059      1.053  ****

* present, ** BRUNO and GRECO, 2001, *** BAO et al., 1992, **** CARLSSON 1986, OLSSON 1992

Table 4.5.
Comparison of the total SERR (GI/II/GI/II,EB) by different methods, MMB specimen.

 a  [mm]       25                 30                 40                 50                 60                 70

 c*=30 mm 1.102            1.084            1.062            1.049            1.040            1.034        *
   1.007            1.006            1.004            1.003            1.003            1.002        **
   1.116            1.097            1.072            1.057            1.048            1.041        ***
   1.042            1.031            1.019            1.013            1.010            1.008        ****

 c*=60 mm 1.196            1.160            1.117            1.092            1.076            1.065        *
   1.121            1.100            1.074            1.059            1.049            1.042        **
   1.203            1.168            1.124            1.099            1.082            1.070        ***
   1.191            1.155            1.112            1.088            1.072            1.061        ****

 c*=90 mm    1.241            1.197            1.144            1.114            1.094            1.080        *
   1.177            1.146            1.108            1.086            1.071            1.061        **
   1.247            1.204            1.151            1.120            1.099            1.085        ***
   1.263            1.215            1.157            1.124            1.102            1.087        ****

 c*=120 mm 1.261            1.214            1.156            1.123            1.101            1.086        *
   1.201            1.166            1.123            1.097            1.081            1.069        **
   1.267            1.220            1.163            1.129            1.107            1.091        ***
   1.295            1.241            1.177            1.140            1.115            1.098        ****

  * present, ** BRUNO and GRECO, 2001, *** BAO et al., 1992, **** CARLSSON 1986, OLSSON 1992
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analytical solution showed that the transverse elastic modulus, E33 has not any influence on
the mode-II SERR (refer to Eq. (4.3)), in contrast it is included in BAO et al.’s solution (refer
to Eq. (4.18)).

The refined plate model by BRUNO and GRECO affirms the significance of bending–
shear interaction. Their model does not provide improved solution for the mode-II
component, whereas the present and BAO’s solutions show that the mode-II component
should be contributed apart from simple beam theory. Thus, the overestimated mode ratios
may be explained by the lack of correction for the mode-II component. Furthermore the
solution does not depend on the through-thickness modulus (E33) of the specimens, it depends
only on the shear modulus (G13). Therefore, this solution seems to be a little bit simplified.

The combined solution by CARLSSON and OLSSON is based on similar considerations
to those of the present beam model. In Chapter 3 the elastic foundation was captured based on
a general loading scheme under mixed-mode I/II condition, where the theorem of parallel
axes (Eqs. (3.13) and (3.16)) was considered. Consequently, this effect was ignored in
OLSSON’s (WILLIAMS’) solution, the model does not account for the theorem of parallel axes
in the case of the elastic foundation and so it causes the discrepancy between Eq. (4.13) and
Eq. (3.106) (if ω=0). Consequently, the generalization of WILLIAMS’ solution (Eqs. (2.1)-
(2.2)), which was applied by numerous authors (REEDER and CREWS, 1990; OZDIL and
CARLSSON, 1999b, CHEN et al., 1999) for mixed-mode I/II coupons is not straightforward.
Apart from that, the mode-II component by CARLSSON is only slightly contributed in
comparison with the present (WANG and QIAO, 2004a) and BAO’s solution. This may cause
again overprediction in the mode ratio.

It should be kept in mind that in the case of the VCCT method there is also some
uncertainty, which was already highlighted in Section 2.3.2.

4.5 Conclusions, scientific significance

Based on the improved solution developed in the former chapter it was shown that in
the case of mixed-mode I/II coupons the elastic foundation effect has a different form
(Eq. (3.106)) compared to the classical solution by WILLIAMS (Eq. (4.13)). The source of the
discrepancy between the present and WILLIAMS’ solution is that in the former the second
order moment of inertia with a reference plane located at the midplane of the uncracked
region was calculated (theorem of parallel axes). In contrast, WILLIAMS (1989) computed the
second order moment of inertia with beam height h only. This resulted in a four times higher
second order moment of inertia of the uncracked region in our solution. The improved
solution was extended for the models of several mixed-mode I/II delamination coupons, such
as the SLB, SCB and MMB specimens. The results were compared with previously developed
beam, plate and FE solutions, respectively. It was found that the present solution gives the
reasonably good description of both the compliance and the strain energy release rate and in
every cases shows similar relationship to the FE solution by BAO et al. (1992).
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5 EXPERIMENTS

Through the experimental measurements the attention was focused on two important
things. First, apart from the analytical and numerical models the experimental method is
essential in order to verify the developed solutions for delamination specimens. Second, the
experiments provide some structural information on the composite material, such as stiffness,
strength and mainly, the resistance to delamination. In light of these conclusions the
experiments play an important role in the design and development of composite structures.
Thus, in the sequel some configurations previously developed in the literature will be used to
confirm the application of the current analytical solution. These configurations were selected
by keeping the simplicity in view. In the last subsection a novel mixed-mode configuration is
presented. The details of the specimen preparation are given in Appendix B. Four kind of
composite materials were manufactured in our laboratory, as it is shown by Fig. B1. For the
experimental measurements only glass/polyester specimens were used. The flexural properties
of the specimens were mentioned in Section 4.2.

5.1 Mode-II configurations

In the present section we analyze the mode-II ELS and ONF specimens (SZEKRÉNYES

2004b; SZEKRÉNYES and UJ, 2005b). The mode-II fracture specimens are illustrated in
Fig. 5.1. Our choice can be explained by the fact that these specimens are suitable for crack
propagation tests and require simpler experimental equipment than the 4ENF test (refer
to Fig. 2.3c). The location of load
introduction and constraints of the ELS
and ONF configurations are essentially
different (Fig. 2.3). Comparison between
their results may be useful. Moreover,
relatively small amount of experimental
result was found by us as regarding to the
glass fiber-reinforced ELS and, especially
the ONF specimens. The test coupons are
analyzed by using linear beam theories,
the finite element method and
experiments. Comparison between the
results of the analysis, numerical solution
and experiment is made.

5.1.1 Experimental procedure

The fixtures for the ELS and ONF tests are illustrated in Fig. 5.2. The tests were
carried out using an Amsler testing machine under displacement control. The load-deflection

Fig. 5.1.
Mode-II delamination specimens.

x

zP

h

h
a

L

x

z

L
sLP

2
)2( −

L
Ps
2

P

h

h

a

s

2L

(a) ELS

(b) ONF



CHAPTER 5 – EXPERIMENTS 52

5.1 Mode-II configurations

data was measured, the former was read from the scale of the testing machine, the latter was
monitored by the dial gauge, shown in Figs. 5.2a and 5.2b. The distance between the load and
the clamped cross section was L=150 mm in the case of the ELS geometry. The full span
length was 2L=151 mm for the ONF test, the position of the external load was s=47.5 mm
(refer to Fig. 5.1). The special clamping fixture detailed in Fig. C4 (see Appendix C) was used
for the ELS test. The contact regions above the supports were slightly roughened in order to
prevent longitudinal sliding during the ONF test.

Two kinds of measurements were carried out. At the first stage crack initiation tests
were performed on both configurations. In the case of the ELS test the specimens with the
following initial crack length values were prepared: 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 90,
100, 110, 120, 130 and 140 mm. This allowed the determination of the fracture properties at
crack initiation in a quite extended (0.23L≤a≤0.93L) crack length range. For the ONF test the
crack length range from 50 to 105 mm (0.33⋅2L≤a≤0.69⋅2L) with 5 mm increment was
investigated. If the initial crack length was higher than 105 mm (ONF test) we were not able
to facilitate crack initiation and large displacement of the specimens occurred. The specimens
were tested to failure at the crack length of interest and the critical load and deflection were
recorded.

At the second stage crack propagation tests using six ONF specimens with a0=50 mm
initial crack length were performed. A millimeter scale was traced on the lateral sides of the
specimens, the crack length was measured visually by following the crack front on the upper
surface of the specimens and the position of the crack tip was marked. The compliance of the
specimens was determined at each crack length. The reason for using only the ONF test for
crack propagation is that in the case of the ELS configuration the crack initiation was
followed by large displacements. We were not able to control the crack propagation even in
those crack lengths, where the stable crack propagation would have been expected.

Dial gauge
measuring the

specimen
displacement

clamping
fixture

Fig. 5.2.
 End-loaded split (a) and over-notched flexure (b) tests for mode-II interlaminar fracture.

support(a) ELS (b) ONF

specimen
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5.1.2 Data reduction

Four methods were used for data reduction: the beam theory-based approach
developed in Chapter 3, the compliance calibration (CC) (e.g.: OZDIL and CARLSSON, 1999a),
the direct beam theory approach (e.g.: HASHEMI et al., 1990b) and the VCCT. In the case the
ELS geometry due to the large radius of the loading head the system was corrected. This is
strictly related to our non-standard fixture, thus it is detailed in Appendix D. The ONF system
was not corrected, which may be explained by the fact that the correction gives misleading
result in this case.

Using the developed beam model (see Chapter 3) the compliance of the ELS specimen
may be obtained based on similar concepts as it was done in the case of Eqs. (4.1) and (4.4).
With the aid of Fig. 5.1a we may write: M1=M2=Pa/2. From Eq. (3.105) it follows that M1=0
and M1I=Pa/2. Comparing the latter to Eq. (3.110) we may write that f1=0, f1I=1/2 and a#=a.
The terms CEB and CTIM were determined by following the way in Section 3.2. The
compliance based on Eq. (3.118) is:
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Note that the Saint-Venant effect at the clamped end (Eq. (3.67)) is considered. The SERR by
using Eq. (1.2) is given by the following expression:
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Based on Chapter 3 similar equations may be derived also for the ONF specimen. The
required parameters based on Fig. 5.1a are: M1=M2=Ps(2L-a)/2L, therefore from Eq. (3.105):
MI=0, MII=Ps(2L-a)/4L, furthermore from Eq. (3.110) it follows that fI=0, fII=s/4L and
a#=2L-a. This means that the crack length a in Eq. (3.118) should be replaced with 2L-a.
Substituting 2L-a with c and determining the relevant terms, CEB and CTIM in Eq. (3.118) the
compliance of the ONF specimen becomes:
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where c is the length of the uncracked region (2L-a). The first term is from Euler-Bernoulli
beam theory, the second one is from Timoshenko beam theory and the last term is from crack
tip deformation analysis. The SERR by using Eq. (1.2) becomes:
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To the best of our knowledge these equations are not yet published in the literature. In the
followings we verify the derived equations by numerical models and experiments.

 In the case of the ELS test for the application of the CC method the experimental
compliance values were fit by the following polynomial of the form (HASHEMI et al., 1990a):

 3
01 maCC ELS += , (5.5)

where C01 and m were found by using least square fitting. The compliance of the ONF
specimen may be written as (WANG et al., 2003):

3
02 )2( aLnCC ONF −+= . (5.6)

The coefficients C02 and n were determined by using least square fitting. The SERR may be
calculated by Eq. (1.2).

In the case of the DBT the flexural modulus of the specimens is eliminated. The
relevant equations based on direct beam theory are:
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where P is the load,  δ  is the experimentally determined specimen displacement at the point
of load application, respectively.

Finally, we describe the details of the numerical analysis. The FE analysis was
performed under plane stress condition to validate the beam theory-based expressions. The
specimens were meshed with linear PLANE2D elements using the commercial code
COSMOS/M 2.0. In order to prevent the penetration between the nodes along the crack faces
the same vertical displacements were imposed by using the command CPDOF. The boundary
conditions were the same as those mentioned in Section 4.2. The compliance of the models
was used to validate the beam theory-based solution. The mode-II energy release rate (GII)
was calculated using the virtual crack-closure technique (VCCT). At the crack tip the same
mesh was applied as it was shown in Fig. 4.2. The finite crack extension was ∆a=0.025 mm.

5.1.3 Crack stability and frictional effects

The problem of crack stability was investigated by CARLSSON et al. (1986) for the
ENF specimen and DAVIES et al. (1992) for the ELS specimen. For the commonly assumed
fixed grip condition the SERR may be expressed as (CARLSSON et al., 1986):

da
dC

bC
GII 2

2

2
δ

= . (5.10)

Stable crack propagation can be expected if dGII/da is zero or negative. Differentiating
Eq. (5.10) with respect to the crack length yields:
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We consider only the first term in Eq. (5.1). Substituting it into Eq. (5.11) we obtain:
55.0/ ≥La , (5.12)

i.e. stable crack propagation in the ELS specimen may be expected if Eq. (5.12) is satisfied. If
we suppose to perform only crack initiation tests, then Eq. (5.12) can be ignored, since in this
case we need the critical load and the deflection only at the point of fracture initiation. These
may be determined experimentally also at those crack lengths (a<0.55L), which do not satisfy
Eq. (5.12). The stability chart for the ELS specimen is illustrated in Appendix E (Fig. E1a).

For the ONF specimen the result of the simple beam theory is the first term in
Eq. (5.3). Substituting it into Eq. (5.11), and assuming that the right hand of Eq. (5.11) is
equal to zero we obtain a fourth order polynomial as a function of the crack length. The
polynomial has four roots, of which two are real:
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Since s is always less than L it appears that we should consider only the first root. If a≤(a)1

then dGII/da is zero or negative. On the other hand it is obvious, that a always should be
higher than s but (as Eq. (5.13) shows) should be less than 2L. Thus, the requirement is:

Las 2<< , (5.14)
i.e. stable crack propagation may be expected at any crack length. The stability chart for
certain s values is plotted in Appendix E. (Fig. E1b).

The effect of friction in mode-II fracture specimens was investigated by WANG et al.
(2003). The Coulomb-type friction model including frictional coefficients within µ=0.25 and
0.5 was adopted in their work. The developed beam and FE models indicated negligible
effects induced by friction. In the case of µ=0.25 the energy release rate of the ONF specimen
changes by only 3% due to friction between crack faces. Since this is close to a practical value
(e.g.: SCHÖN, 2000) the effect of friction in both specimens was neglected in the current
investigations. The frictional effect was found to be insignificant also by PEREIRA and
MORAIS (2004).

5.1.4 Results and discussion

Crack initiation tests
The recorded load/displacement curves up to fracture initiation are illustrated in

Fig. 5.3. The response was essentially linear elastic, which confirms the application of LEFM.
It is apparent that the critical load decreases with the initial crack length in the case of the
ELS specimen. On the contrary, the ONF specimen requires higher load values for fracture
initiation as the crack length increases. The range of the applied load is approximately three
times higher in the ONF than in the ELS case. In spite of this the ELS specimens suffered
from large displacements, especially in the ranges of a=35-60 mm, and 110-140 mm, as it can
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be seen from Fig. 4.3a. During the ONF test no large displacements were experienced, which
is one of the great advantages of this setup.

The compliance values calculated from the beam theory-based solution (Eq. (5.1))
were compared with the results of the FE analysis. Tables 5.1 and 5.2 show the ratio between
the results of the two solutions for both configurations. The agreement between them was
found to be excellent, which confirms the applicability of the analytical solution.

Fig. 5.3.
 Load/displacement curves up to fracture initiation, ELS test (a), ONF test (b).
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Table 5.1.
Comparison of the results by the FE and beam models, ELS specimen.

    a [mm]         35       40       45       50       55       60       65       70       75        80      90      100     110     120     130     140

 CFE/CBeam     1.069  1.069  1.067  1.066  1.064  1.063  1.060  1.058  1.056  1.053  1.048  1.043  1.039  1.034  1.030  1.027

  a - crack length, CFE - compliance, plane stress FE model, CBeam - compliance, beam model, Eq. (5.1)
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The compliance curves determined based on crack initiation tests are plotted in
Fig. 5.4. For the ELS specimen the advanced beam model (Eq. (5.1)) shows very good
agreement with the experimental points. The ONF test produces a somewhat unusual
compliance curve. It is important to note that in this case the characteristic distance is the
length of the uncracked region. Eq. (5.3) does not agree closely with the experimental
compliance values. It was mentioned before that the ONF specimens require relatively high
load values for crack initiation, on the other hand the values of the displacements are
relatively small (in comparison with the ELS test, Fig. 5.3a). Hence, a little difference in the

Table 5.2.
Comparison of the results by the FE and beam models, ONF specimen.

   a [mm]             50          55          60          65         70          75           80         85          90          95         100         105

 CFE/CBeam        1.074     1.071     1.070     1.068     1.066     1.066     1.065     1.065     1.064     1.063     1.063     1.063

  a - crack length, CFE - compliance, plane stress FE model, CBeam - compliance, beam model, Eq. (5.3)

(a)

Fig. 5.4.
Measured and calculated compliance from initiation tests, ELS specimen (a), ONF specimen (b).
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measured and calculated displacement values causes comparatively large differences in the
compliance, as it was shown in Fig. 5.4b.

Four methods were used to calculate the SERR. Its values versus the crack length are
illustrated in Fig. 5.5. Each set of data points was fit with a third order polynomial. For the
ELS test the CC method indicates a GI/II,ss,init=713 J/m2 approximate plateau value, while the
direct beam theory gives a GI/II,ss,init=765 J/m2 for the same quantity. This means 7%

difference between them. The analytical solution (Eq. (5.2)) agrees well with the results of the
CC and the VCCT methods, however the latter provides slightly lower values. As a
consequence, the four reduction schemes more or less show good correlation in the case of the
ELS coupon. From other perspectives it is clear from Fig. 5.5a, that the SERR values depend
on the crack length, but this dependence is not serious. Fig. 5.5b presents the SERR values
from the ONF test as obtained by the various methods of data reduction. It seems that in this
case the CC method gives somewhat surprising results. The direct beam theory indicates a
GI/II,ss,init=730 J/m2 steady-state value (which correlates well with the results of the ELS test),

Fig. 5.5.
 Values of the SERR against the crack length, initiation tests. ELS specimen (a), ONF specimen (b).
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while the value of 540 J/m2 was obtained by means of the CC method
(26% difference compared to the result of DBT). Both the analytical (Eq. (5.2)) and numerical
(VCCT) solutions show values, which are closer to the results of the direct beam theory. The
reason for the CC method does not agree with the other methods is the same as it was
mentioned in the discussion of Fig. 5.4b. It seems that in this case the CC method is very
sensitive to the accuracy of the measuring instrument.

Crack propagation tests
We have found that the ELS geometry was not suitable to investigate crack

propagation in the current material. The reason for that may be explained by the followings.
The specimens suffered from relatively large displacements in order to reach the point of
fracture initiation. For the crack propagation much larger displacements were required. After

crack initiation the crack seemed to be beyond control, i.e. the crack has reached the clamped
end in a flash. This indicates that the stiffness of the system was not large enough for the ELS
testing. This may be supported by the large amount of experimental works, performed, in
general, only on those composite materials, which exhibit high flexural modulus (HASHEMI et
al., 1990a and 1990b; WANG et al., 1996; WANG et al., 2003). Thus, in the sequel the attention
is focused on the ONF test to measure the propagation toughness.

The recorded load/displacement curves from six ONF specimens are shown in
Fig. 5.6. It is noteworthy, that the range of the applied load is about twice higher in
comparison with that of the crack initiation tests (refer to Fig. 5.3b). Crack initiation was
observed always around 350-400 N.

The measured compliance values and the calculated curves are plotted in Fig. 5.7 as
obtained by the crack propagation test data of one ONF specimen. A remarkable feature is
that the experimentally measured compliance values somewhat differ from those, which were
recorded through the crack initiation tests (refer to Fig. 5.4b). In spite of this the beam theory-

Fig.  5.6.
 Load/displacement curves from ONF propagation tests.
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based solution (Eq. (5.3)) matches better with the experimental values than in the case of the
crack initiation tests. However, there is also some discrepancy between the measured and
calculated curves. The fiber-bridging is one possible source of the mentioned discrepancy.
During crack propagation some of the fibers were pulled out, these caused the extensive fiber-
bridging between the crack faces. This feature increased the resistance to delamination, and
consequently, a higher load value was required for the crack advance. Therefore, further work
is required to clarify these results.

Three reduction schemes were used to calculate the SERR. The results for two
specimens are presented in Figs. 5.8a, 5.8b and 5.8c. The CC method shows that the value at
which steady-state crack propagation occurred is 2693 and 2442 J/m2, respectively.
Considering the data of six specimens the mean value of 2787 J/m2 was obtained for the
critical SERR. The plateau values were determined by using the asymptotic values of the fits
in Fig. 5.8. The relevant steady-state values are 2584 J/m2 and 2234 J/m2  (2637 J/m2 mean
value from six specimens) from the DBT and 2911 J/m2 and 2534 J/m2 (2817 J/m2 average
value from six coupons) from the beam theory-based solution, respectively. It should be kept
in mind that the CC method is the only data reduction technique, which considers the effect of
fiber-bridging. We have found that the CC technique is sensitive to the accuracy of the
displacement measurement. It is important to note that in the case of propagation tests the CC
method showed good agreement with the analytical and the direct beam theory approaches. In
spite of this the result of the CC method is slightly dubious. An experimental reduction
scheme, which gives reliable results for crack initiation test and is able to account for the
effect of fiber-bridging would be useful. Further work is required to clarify these results.

 For comparison we provide some experimental results, which were previously
published on similar systems. OZDIL et al. (1998) investigated unidirectional glass/polyester
ENF specimens with a=32 mm, 2L=100 mm and Vf=45%. The value of GIIC=496±135 J/m2

was obtained for the SERR at crack initiation by using the simple beam theory solution. This

Fig. 5.7.
Measured and calculated compliance from the propagation test of one ONF specimen.
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is significantly less than those obtained by us (713 J/m2 from ELS test and 730 J/m2 from the
ONF test), however that value was obtained at a definite crack length, while in our
experiments the extended range of crack length was investigated. DAVIES et al. (1996)
presented slightly higher GIIC values for glass/epoxy ELS and ENF specimens as obtained by

(c)

(b)

(a)

Fig. 5.8.
SERR against the crack length by different methods, ONF test. Compliance calibration (a),

direct beam theory (b), beam theory (c).
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three different reduction techniques. For the ELS coupon the critical SERRs (at crack
initiation) were within 1500-2000 J/m2. In the case of the ENF test they were around 1400-
1500 J/m2. The significance of the employed data reduction was highlighted in the former
work. Considering the propagation tests the work of DAVIES et al. (2004) may be referred to,
wherein they tested unidirectional glass/epoxy 4ENF specimens. For specimens with similar
fiber-volume fraction (52%) to that of our coupons and with 2L=100 mm, they measured
2013±135 J/m2 toughness value at crack initiation and 3040±450 J/m2 propagation toughness
in the range of a=47-76mm. These values are higher in comparison with our results, however
the R-curve followed a similar trend to that found by us in Figs. 5.8a, 5.8b and 5.8c.

5.2 Mixed-mode I/II configurations

In the following sections we investigate unidirectional mixed-mode I/II SLB and SCB
specimens. Apart from the analytical solution (refer to Chapter 4) we further analyze them by
the help of experiments (SZEKRÉNYES and UJ, 2003c, 2004a, 2004c). Although these tests are
not as universal as the MMB, they require simpler experimental equipment, as it has been
highlighted in the literature review. The SLB and SCB tests produce linear load-deflection
curve up to fracture and simple reduction techniques can be applied. The mixed-mode I/II
specimens have been demonstrated in Fig. 4.1.

5.2.1 Experimental procedure

The fixtures for the SLB and SCB specimens are illustrated in Fig. 5.9. The SLB test
was performed in a three-point bending fixture (see Fig. 5.9a) with span length of 2L=151

support

clamping
fixture

specimen

Dial gauge
measuring the

specimen
displacement

Fig. 5.9.
The single-leg bending (a) and the single-cantilever beam (b) specimens for mixed-mode I/II

interlaminar fracture testing.

(b) SCB(a) SLB
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mm. The special fixture depicted in Fig. 5.9b was used to carry out the SCB test with full
length of L=150 mm. In order to avoid the effects of fiber-bridgings (which arises due to the
mixed-mode I/II condition), specimens with different crack lengths were prepared and only
crack initiation tests were performed. The SLB coupons with crack lengths from a=20 to 75
mm (0.13⋅2L≤a≤0.5⋅2L) with 5 mm increment were used. For the ELS specimen the former
crack length range was improved from a=80 to 140 mm (0.13L≤a≤0.93L) with 10 mm
increment. The tests were conducted under displacement control using an Amsler testing
machine. The load-deflection data was recorded, the deflection was monitored by the dial
gauge, shown in Figs. 5.9a-b.

Two methods were used in this case to calculate the fracture properties of the
specimens. The correction of the SLB and SCB systems is detailed in Appendix D.

The relevant equations based on the proposed model are given by Eqs. (4.1)-(4.3) for
the SCB specimen and by Eqs. (4.4)-(4.6) for the SLB specimen.

For both specimens we apply also the compliance calibration (CC) method. The
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compliance was calculated by means of the same polynomial function, as it is given by
Eq. (5.5), while the SERR was computed by using Eq. (1.2).

5.2.2 Results and discussion

For both tests linear load/deflection curves were recorded up to fracture initiation, as it
is shown by Figs. 5.10a and 5.10b. These results are quite similar to those, reported in
Section 5.1.4 for mode-II crack initiation tests (refer to Fig. 5.3). On the base of these results

the application of the LEFM is again justified. An immediate observation is that the critical
load values are approximately twice higher in the case of the SLB test, than those for the SCB
test. From other perspectives, we may draw that the large displacements arise only in the case
of the SCB test. In this respect the critical range of the crack length is: a=20-30 and a=110-
140 mm. During the SLB test the small displacements are always ensured.

(a)

(b)

Fig. 5.11.
Compliance against the crack length, SLB (a), SCB (b) specimen.
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 The compliance curves are illustrated in Fig. 5.11 for the SLB and SCB specimens. In
both cases the correlation between the results of the model (Eq. (4.4), Eq. (4.1)) and
experiment was found to be quite good, but it should be noted that Eq. (4.4) slightly
overestimates the experimental points, however this is not significant. The SERR values by
the CC method and beam theory can be seen in Figs. 5.12a and 5.12b. The agreement between

the model (Eq. (4.5) and (4.6) for the SLB, Eqs. (4.2) and (4.3) for the SCB specimen) and
experiment is also very good. The CC method indicates an average steady-state value of
GI/II,ss,init=645 J/m2 for both tests, which is an excellent correspondence. The advanced beam
model gives a GI/II,ss,init=625 J/m2 plateau value for the SLB and a GI/II,ss,init=602 J/m2 for the
SCB specimen (refer to Figs. 5.12a and 5.12b). The mode-I and mode-II energy release rate
components are also plotted in Fig. 5.12, the relevant mode ratios can be found in Tables 4.1
and 4.2.

(b)

(a)

Fig. 5.12.
Values of the initiation SERR against the crack length, SLB (a), SCB (b) specimen.
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Since the MMF specimen is quite similar to the SLB coupon and both produce the
same mode ratio (GI/GII=4/3) based on simple beam theory we provide comparison between
our experimental work and those by ALBERTSEN et al. (1995) and KORJAKIN et al. (1998).
The former work reported GI/II,init=145 J/m2 value at crack initiation and GI/II,ss=330 J/m2 mean
values at crack propagation for carbon-fiber reinforced MMF specimens. In the latter work
the relevant quantities were GI/II,init=456 J/m2 and GI/II,ss=525 J/m2 for glass/epoxy MMF
specimens. Similar R-curves were obtained by HASHEMI et al. (1990b) for the SCB specimen,
who determined (based on crack propagation tests) GI/II,init=1200 J/m2 initiation toughness and
GI/II,ss=1480 J/m2 plateau value using PES SCB specimens (1990b). The same authors
reported GI/II,init=1510 J/m2 and GI/II,ss=1810 J/m2 values for carbon/PEEK SCB specimens
(1990a). Although the current study presents only values at crack initiation, the behavior is
similar to results previously published on similar systems.

The contributions of the various effects to the compliance and the SERR of the SLB
specimen are listed in Table 5.3. Overall, all these effects provide only a small improvement.
The SERR values are summarized also in Table 5.3. In this point of view the Timoshenko
beam model supports the strain energy release rate with very small values. The contribution of
elastic foundation, Saint-Venant effect and crack tip shear deformation decays subsequently,
but provides reasonable values at small crack length. Table 5.4 presents the compliances and
SERRs obtained from the SCB test. As expected, the Saint-Venant effect is the most
significant one, the other effects are negligible in the case of the compliance. The SERR
calculated by beam analysis are also presented in Table 5.4 for the SCB specimen. The effect
of transverse shear can be neglected, as demonstrated in Table 5.4. The two-parameter elastic
foundation, Saint-Venant and crack tip shear deformation effects show meaningful values at
the beginning phase (a=20 to 50 mm) as shown by the last four columns in Table 5.4.

Table 5.3.
Compliances and SERRs by beam analysis, SLB specimen.

     a         CEB      CWP       CTIM       CSV        CCTS             GI/II,EB      GI/II,WP      GI/II,TIM    GI/II,SV   GI/II,CTS

  [mm]         [mm/N]⋅10-3             [J/m2]

    20   6.20 0.08 0.14 0.05 0.03       396.51       52.74 6.21 37.70 21.58
    25   6.49 0.11 0.15 0.07 0.04       480.43       49.97 4.91 36.87 20.69
    30   7.00 0.16 0.15 0.11 0.06       509.79       42.56 3.53 32.18 17.79
    35   7.72 0.21 0.15 0.15 0.09       547.74       38.14 2.74 29.35 16.05
    40   8.68 0.27 0.16 0.20 0.11       562.47       33.59 2.12 26.19 14.20
    45   9.98 0.34 0.16 0.26 0.14       566.89       29.49 1.66 23.23 12.52
    50 11.42 0.41 0.17 0.31 0.18       587.17       27.39 1.40 21.74 11.66
    55 13.47 0.50 0.17 0.39 0.21       586.08       24.42 1.13 19.52 10.43
    60 15.67 0.59 0.18 0.46 0.25       585.37       22.29 0.96 17.92   9.54
    65 18.56 0.69 0.18 0.54 0.30       579.88       20.17 0.80 16.29   8.65
    70 21.79 0.80 0.18 0.63 0.35       591.73       19.01 0.70 15.42   8.17
    75 25.12 0.90 0.19 0.72 0.39       570.03       17.14 0.59 13.94   7.37

 a - crack length
 CEB - Euler-Bernoulli beam model
 CWP - Winkler-Pasternak foundation model
 CTIM - Timoshenko beam model
 CSV - Saint-Venant effect
 CCTS - Crack tip shear deformation

 GI/II,EB     - Euler-Bernoulli beam model
 GI/II,WP     - Winkler-Pasternak foundation model
 GI/II,TIM     - Timoshenko beam model
 GI/II,SV     - Saint-Venant effect
 GI/II,CTS     - Crack tip shear deformation
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5.3 A novel mixed-mode I/II configuration: the OLB test

In the current section we develop
another alternative for the mixed-mode I/II
fracture investigation in composites: the
over-leg bending (OLB) specimen
(SZEKRÉNYES and UJ, 2004f, 2005c). The
original idea is based on the mode-II over-
notched flexure test (ONF, Fig. 2.3d) (WANG

et al., 2003), which is the modification of the
ENF (Fig. 2.3a) specimen. The only
difference between them is that in the ONF setup the load is introduced eccentrically between
the two supports. We apply the developed beam model to the novel configuration (see
Fig. 5.13), moreover FE analysis and experiments are also performed. Some comparison is
made between the OLB and the traditional SLB configurations.

5.3.1 Experimental procedure

Crack initiation and propagation tests were performed using unidirectional
glass/polyester specimens. In the case of the initiation tests the crack length range from a=55
to 115 mm with 5 mm increment was investigated, while the crack propagation tests using six
specimens with a=50 mm initial crack length were performed. The OLB configuration is

Fig. 5.13.
Free-body diagram of the over-leg bending
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Table 5.4.
Compliances and SERRs by beam analysis, SCB specimen.

     a         CEB       CWP      CTIM        CSV       CCTS             GI/II,EB      GI/II,WP     GI/II,TIM     GI/II,SV    GI/II,CTS

  [mm]         [mm/N]⋅10-3            [J/m2]

    20 102.71   0.32 0.58   6.51 0.12       345.79       47.07 5.61 33.54 19.24
    30 106.80   0.68 0.62   6.80 0.27       430.21       35.50 2.90 26.88 14.84
    40 115.51   1.24 0.66   7.25 0.51       475.50       27.19 1.64 21.27 11.51
    50 126.90   1.82 0.69   7.71 0.75       544.90       24.95 1.25 19.83 10.63
    60 146.03   2.61 0.72   8.33 1.09       574.48       21.44 0.89 17.26   9.18
    70 172.37   3.51 0.76   9.06 1.47       575.06       18.19 0.65 14.76   7.81
    80 206.33   4.51 0.79   9.87 1.91       576.17       15.87 0.50 12.96   6.84
    90 251.77   6.69 0.83 10.83 2.41       576.30       14.00 0.40 11.49   6.04
  100 311.37   7.05 0.86 11.94 3.00       567.34       12.28 0.31 10.12   5.31
  110 377.31   8.41 0.90 13.06 3.59       581.11       11.44 0.27   9.46   4.95
  120 465.54   10.07 0.93 14.43 4.31       565.29       10.12 0.21   8.39   4.38
  130 564.79   11.77 0.97 15.84 5.04       585.18         9.64 0.19   8.01   4.18
  140 680.33   13.61 1.00 17.35 5.84       552.59         8.44 0.15   7.02   3.66

 a - crack length
 CEB - Euler-Bernoulli beam model
 CWP - Winkler-Pasternak foundation model
 CTIM - Timoshenko beam model
 CSV - Saint-Venant effect
 CCTS - Crack tip shear deformation

 GI/II,EB     - Euler-Bernoulli beam model
 GI/II,WP     - Winkler-Pasternak foundation model
 GI/II,TIM     - Timoshenko beam model
 GI/II,SV     - Saint-Venant effect
 GI/II,CTS     - Crack tip shear deformation
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illustrated in Fig. 5.14. The tests were carried
out in a similar fashion to that mentioned in
Section 5.1.1 (ONF test) with the same
dimensions (2L=151 mm, s=47.5 mm).

5.3.2 Data reduction

Two methods were used for data
reduction: beam theory-based approach
described in Chapter 3 and the CC method.
The finite element analysis was performed in
order to confirm the analytical solution. It is
remarkable that although the fixture is the
same as before, this time the radii of the
supports is not considered in the data
reduction. The reason for that is the
correction gives misleading results.

For the analytical compliance
expression of the OLB specimen (Fig. 5.13) the required parameters are: M1=Ps(2L-a)/2L,
M2=0 therefore from Eq. (3.105): MI=MII=Ps(2L-a)/4L, furthermore from Eq. (3.110) it
follows that fI=fII=s/4L and a#=2L-a. Thus, the crack length a in Eq. (3.118) should be
replaced with 2L-a. Calculating the relevant terms, CEB and CTIM in Eq. (3.118) (Chapter 3)
the compliance of the OLB specimen has the following form:
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The SERR components by the help of Eqs. (3.103)-(3.109) are:
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Fig. 5.14.
 Over-leg bending test configuration.
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5.3 A novel mixed-mode I/II configuration: the OLB test

where s is the position of the applied load from the left side of the specimen and c=2L-a is the
length of the uncracked part. The total fracture energy (GI/II=GI+GII) can be calculated by
summing the equations above. The mixed mode-ratio (GI/GII) can be also computed.

In accordance with the CC method the compliance of the OLB specimen may be
written as (WANG et al., 2003):

3
02 )2( aLnCC OLB −+= . (5.18)

The coefficients C02 and n were determined by least square fitting. The form of Eq. (5.18)
may be explained by focusing our attention on Eq. (5.5), which was also applied in the case of
the mixed-mode I/II SLB and SCB coupons. The difference between Eq. (5.5) and Eq. (5.18)
is only the characteristic length. The SERR was calculated from Eq. (1.2).

5.3.3 Finite element analysis

The FE analysis was performed under plane stress condition only to validate the beam
theory-based formulae. The specimens were meshed with PLANE2D elements using the
commercial code COSMOS/M 2.0. The boundary conditions were the followings. At the end
of the upper specimen arm the displacements in the directions x and z were constrained, while
at the end of the uncracked part the displacement in the direction z was constrained
(Fig. 5.13). The mode mix ratio (GI/GII) was calculated using the virtual crack-closure
technique (VCCT). At the crack tip the usual FE mesh with finite crack extension of
∆a=0.025 mm was used (refer to Fig. 5.2).

5.3.4 Results and discussion

Crack initiation tests
The compliances calculated from the beam model were compared with the results of

the FE analysis. Table 5.5 shows the ratio of the results of the two solutions. Eq. (5.15) shows
very good agreement with the FE results, which confirms the application of the analytical
solution. The mode-mix ratio is also collected in Table 5.5. The ratio by FE analysis changes
within 1.31 to 1.24 in the case of the OLB specimen. For comparison the relevant mode ratios
changes within 1.66 to 1.48 in the case of the SLB specimen by FE analysis (refer to
Table 4.2). The beam model predicts values between 1.68 and 1.43 for the SLB test and, in
accordance with Table 5.5 GI/GII changes within 1.4 to 1.52 for the OLB

Table 5.5.
Comparison of the results by the FE and beam models, OLB specimen.

     a [mm]           55       60       65       70       75       80       85       90       95     100      105    110      115

    CFE/CBeam  1.016  1.013  1.010  1.009  1.007  1.006  1.005  1.004  1.003  1.002  1.002  1.001  1.001
    (GI/GII)Beam  1.402  1.406  1.410  1.415  1.420  1.427  1.434  1.443  1.453  1.465  1.480  1.499  1.524
    (GI/GII)FE     1.314  1.319  1.308  1.304  1.299  1.294  1.298  1.280  1.272  1.275  1.249  1.250  1.236

  a - crack length, CFE - compliance, plane stress FE model, CBeam - compliance, beam model, Eq. (5.15),
  (GI/GII)Beam - mode mix ratio, beam model, (GI/GII)FE - mode mix ratio, FE model
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Fig. 5.15.
Load/displacement traces up to fracture initiation, OLB test.

(b)

(a)

Fig. 5.16.
Values of the compliance (a) and the SERR (b) against the crack length, OLB test.
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5.3 A novel mixed-mode I/II configuration: the OLB test

specimen. Based on the VCCT method the crack length dependence of the mode mix ratio is
somewhat stronger in the case of the SLB coupon (compare Table 5.5 with Table 4.2).

Fig. 5.15 shows the load/displacement curves recorded up to fracture initiation. Each
curve is typically linear. During the OLB test both the critical force and displacement
increases with the crack length. In addition reaching the crack length of a=100 mm it seems
that the specimens suffer from large displacements. In comparison with the SLB test (refer to
Fig. 5.10a) the ranges of the applied load are essentially the same in both tests, but it should
be kept in mind that the crack length ranges are different. The SLB test indicates the critical
load reaches the highest value if the smallest crack length is considered (Fig. 5.10a). The
results of the OLB test in Fig. 5.15 are in sharp contrast with these facts.

The compliances and SERR values are illustrated in Fig. 5.16. In the case of the
compliance curve, similarly to the ONF specimen, the characteristic distance is the length of
the uncracked region c. Overall, the beam model (Eq. (5.15)) correlates very well with the
measured points. The values of the SERR at crack initiation are plotted in Fig. 5.16b. In the
case of the OLB specimens the CC method results in a 650 J/m2 plateau value, while the beam
model predicts a 715 J/m2 for the same quantity (9% difference). These results show the
opposite trends, which were found in the case of the SLB specimen. In other words the beam
model overpredicts the experiments. The nature of the curves are eventually the same as
determined from the SLB and SCB tests (refer to Figs. 5.12a and 5.12b).

Crack propagation tests
It has been shown in the previous sections that neither the SLB nor the SCB specimen

was suitable to perform propagation tests under the current geometrical and material
parameters. In the case of the SLB test at short crack lengths (a=20-45 mm) sudden jumps
(15-30 mm) in the crack advance frequently occurred. The remaining interval (until the point

Fig. 5.17.
Load/displacement traces from the propagation test of six OLB specimens.
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of load introduction) was insufficient for studying crack propagation. On the other hand the
large displacements were great obstacles, when we tried to use the SCB specimen for crack
propagation investigations. Hence, the OLB test was used as a candidate to measure the
mixed-mode I/II crack propagation.

The load/displacement curves of six specimens are depicted in Fig. 5.17. The range of
the applied load is eventually the same as those recorded during crack initiation tests (refer to
Fig. 5.15). Crack initiation always occurred at P=170-180 N.

The compliance curves of each specimen were essentially the same as those
determined through crack initiation test (refer to Fig. 5.16a). The R-curves at crack
propagation are plotted in Fig. 5.18. Although six specimens were tested, we display the
results obtained by only two of them. The curves show the R-curve behavior, i.e. there is not a
clear plateau value (as it was for instance in the ONF test in Fig. 5.8) and the SERR grows up
to 1160 J/m2 in accordance with the CC method and about 1210 J/m2 according to beam

Fig. 5.18.
SERR under crack propagation from the measurement of two OLB specimens. CC method (a),

beam theory (b).
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5.4 Conclusions, scientific significance

theory. This involves less than 5% difference between the results of the applied reduction
techniques. Note that fiber-bridging was observed during testing, however this effect was not
considered here. Furthermore, due to the relatively small displacements before the crack tip
region the influence of the fiber-bridging was estimated to be small. Although the fiber-
bridging is absolutely accidental, its extension was only mild in each case.

 For comparison TRACY et al. (2003) determined similar propagation R-curves with
1500 J/m2 and 1750 J/m2 plateau values using the proposed SFPLB configuration (see
Fig. 2.5d) with carbon/epoxy coupons to those, shown in Fig. 5.18. Also, beam theory-based
formulae were used for data reduction in their study. The small difference between our and
TRACY et al.’s results may be explained by the different materials applied for testing.

5.4 Conclusions, scientific significance

The mode-II and the mixed-mode I/II interlaminar fracture in unidirectional
glass/polyester ELS, ONF, SLB and SCB specimens were investigated from the theoretical
and experimental points of view, respectively. Closed-form solutions were obtained for the
compliance and the strain energy release rate of the mentioned delamination coupons. The
experiments and the developed finite element models verified the analytical solution. This
indicates that linear beam theories can be applied for analysis.

Considering the ELS, SLB and SCB configurations the results of the present beam
model agreed closely with the results of the experiments and the other applied reduction
techniques. From other perspectives, it was found that the CC method is very sensitive to the
accuracy of the measuring instrument in the case of the ONF specimen. Therefore, misleading
results were obtained when we evaluated the data by crack initiation test using this technique.
Consequently, the application of the CC method is not recommended in this case.

Under the current geometry and material the traditional SLB and SCB configurations
were suitable only to investigate crack initiation events, as it was discussed in Section 5.3.
Therefore, a novel mixed-mode I/II configuration was proposed, here called the over-leg
bending (OLB) specimen. Also, the compliance and the strain energy release rate were
derived using the developed model for delamination coupons in Chapter 3. The closed-form
solution showed – similarly to the SLB and SCB specimens – quite good agreement with the
reduced experimental data. A remarkable advantage of the test is that the large displacements
(which play a dominant role in composites with low flexural modulus) do not influence the
crack propagation and the propagation can be easily controlled. The test gives essentially a
linear elastic response and simple reduction techniques can be applied for data evaluation. A
relative drawback of the test (similarly to the SLB and SCB coupons) is that the mode ratio
may be changed only in a small degree.
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6.1 Beam analysis

6 FIBER-BRIDGING ANALYSIS IN THE DCB SPECIMEN

The aim of this chapter is to develop a beam theory-based solution for fiber-bridging
modeling (SZEKRÉNYES 2003a, 2003b; SZEKRÉNYES and UJ, 2004e, 2005d). The main
objective is to provide information on the number of bridgings and the bridging force. The
approximate character of these quantities would be useful in order to understand the
phenomenon more deeply. Traditional DCB test (see Fig. 2.2) on unidirectional
glass/polyester specimens is performed providing input data for the analysis.

6.1 Beam analysis

In this section a
closed-form expression is
developed for the compliance
of unidirectional DCB
specimens. The model
incorporates the Winkler-type
elastic foundation (classical
solution of WILLIAMS (1989)
and considers the effect of
fiber-bridging. The bridgings
are represented by elastic
beam elements, of which
extensional stiffness and
initial length is utilized. Let us consider the model of the DCB specimen loaded by edge
forces in Fig. 6.1. The governing equations of the deflections are:
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The deflection functions of the lower arm can be expressed by solving Eq. (6.1), thus we
have:
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(6.4)
where Iy=bh3/12 is the second order moment of inertia and E11 is the flexural modulus. The
subscript l refers to the lower arm. In the uncracked region the solution may be obtained by

Fig. 6.1.
For the analysis of the fiber-bridging in the DCB specimen.
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combining the generalized Krylov-functions (PONOMARJOV, 1968), which are compiled in
Appendix F. Based on Fig. 6.1 the boundary and matching conditions are:

( ) 03 =′′ cwl , 0)(3 =′′′ cwl , (6.5)
)()( 1211 LwLw ll −=− , )()( 1211 LwLw ll −′=−′ ,

)0()0( 32 ll ww = , )0()0( 32 ll ww ′=′ ,
)0()0( 32 ll ww ′′=′′ , )0()0( 32 ll ww ′′′=′′′ .

Eq. (6.5) is necessary for the determination of the constant parameters (h1-h8) in Eqs. (6.3),
(6.4) and  (F.2) (see Appendix F). For the upper half of the model the same boundary value
problem may be established. We assume a joint-like connection between the bridging and the
specimen arms. Thus, the elongation in the bridging is (refer to Fig. 6.1):
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where L01=|L2-L1| is the initial length of the bridging. The displacements in Eq. (6.6) can be
expressed by taking the deflections at the positions of x=-L1 and x=-L2, thus we obtain:
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Eqs. (6.7) and (6.8) were substantially simplified based on the work of OZDIL and CARLSSON

(1999a). The tensile force in the bridging can be obtained by using the following equations:
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where s1 is the extensional stiffness, A1 is the cross-section of the bridging, Ef is the elastic
modulus of the fiber, nf is the number of fibers per bridging and df is the fiber diameter. The
offaxis angle between the bridging and the axis x by the help of Fig. 6.1 becomes:
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Let us denote the vertical component of the force F1 as P1. According to Fig. 6.1 P1 may be
obtained as:

111 sinαFP = . (6.11)
Substituting Eqs. (6.6), (6.7) and (6.8) into Eq. (6.11) and substituting Eqs. (6.7) and (6.8)
into Eq. (6.10) and combining it again with Eq. (6.11) a transcendental equation may be
obtained, of which solution is the force P1. The compliance of the lower arm becomes:
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The compliance of the DCB specimen (CDCB=δ/P) may be obtained by summing the
compliances of the upper and lower arms, consequently we have:
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Incorporating the value of λ (see Appendix F) into Eq. (6.13) yields:
FB
DCBDCBDCB CCC −= 0 , (6.14)

where:
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where the term C0

DCB in Eq. (6.14) is given by Eq. (2.1), which is the specimen compliance
based on the classical elastic foundation model (WILLIAMS, 1989). The effect of fiber-
bridging is incorporated in the term CFB

DCB. The SERR may be obtained by using Eq. (1.2).
Combining it with Eq. (2.1) the energy
release rate may be easily obtained without
the bridging effect, the relevant expression
(WILLIAMS, 1989; OLSSON, 1992; OZDIL and
CARLSSON, 1999) is given by Eq. (2.2).
Considering Eq. (6.15) we must differentiate
all those parameters which depend on the
crack length. Although the location of the
bridgings, L1(a) and L2(a) are linear
functions of the crack length a, the force
P1(a) as a function of the crack length is
difficult to obtain (see Eqs. (6.10) and
(6.11)). Hence, a closed-from solution is not
available for the SERR and furthermore, the
dependence of L1 and L2 on the crack length
is not considered.

It is evident that the equations above should be generalized in order to model any
amount (n) of bridging fibers. In the followings the model introduced before is modified for
‘n’ number of bridgings. In Fig. 6.2 a general asymmetric arrangement can be seen. The
elongation in the ‘j’-th bridging is (where ‘j’ is a number between 1 and ‘n’):
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where L0j=|L2j-L2j-1| is the initial length of the ‘j’-th bridging. The value of the deflection at
x=-L2j in the upper arm is:
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where:

Fig. 6.2.
A general case for asymmetrical fiber-bridging.
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The deflection at the position of x=-L2j-1 in the lower arm becomes:
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 where:
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It is obvious that the distances, L2j and L2j-1 should strictly determine the location of the ‘j’-th
bridging. The tensile force in the ‘j’-th bridging is:
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where sj is the extensional stiffness of the ‘j’-th bridging. The offaxis angle between the ‘j’-th
bridging and the axis x may be obtained as:
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The ‘j’-th force Pj , according to Fig. 6.2 is:
jjj FP αsin= . (6.23)

Combining Eqs. (6.16)-(6.23) the system of equations may be built, from which the solutions
for the forces (Pi, i=1...n) may be obtained. The mathematical form of the equation system is
detailed in Appendix F. The compliance of the bridged DCB specimen becomes:
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The number of unknown forces, as well as the number of bridgings is equal to n. Note that
interaction between elastic foundation and the bridgings is included in Eqs. (6.17), (6.19) and
(6.24). It should be kept in mind that the upper and lower deflection functions are forced to
depend on each other in the case of asymmetrically arranged bridgings. This effect was
assumed to be very small in the case of sufficient number of bridgings, and consequently, it is
neglected in the above formulation. Also, the horizontal component of the tensile force in
Eq. (6.21) was ignored. As we mentioned before the SERR can not be expressed in closed-
form. In the following we use only the compliance expression.

The J-integral results in the following expression for the energy release rate including
the bridged zone (SUO et al., 1992; LINDHAGEN et al., 2000):

0
0

*

)( II GdGJ +== ∫
δ

δδσ , (6.25)
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where GI0 is the energy release rate from matrix cracking (and it is assumed to be a constant
value), the first term is the contribution of the fiber-bridging to the steady-state fracture
toughness. Differentiating Eq. (6.25) with respect to δ the bridging stress becomes:

*)(
δ

δσ
∂
∂

= IG , (6.26)

where δ* is the crack opening displacement at the initial crack tip (see Fig. 6.1.). Eq. (6.26) is
called the bridging law. An exact expression for the displacement at the initial tip (δ*=δ*

u-δ*
l)

may be obtained by replacing L2j and L2j-1 with a-a0 in Eqs. (6.17-6.20).
It should be noted that the present model does not account for those bridgings, of

which initial length changes (i.e. fiber peels away from matrix) as the crack propagates.
Further local effects, such as fiber debonding, failure, pull-out and sliding are also ignored.
All these mechanisms are demonstrated in the work by KAUTE et al. (1995). As a
consequence, the developed model is suitable only for approximate computations. Due to the
complexity of our model a simple numerical solver was developed in the code MAPLE
(HECK, 1993).

6.2 Experiments

The flexural and other material properties are consistent with those, mentioned in
Section 4.2. For the sake of completeness they are: E11=33 GPa, E33=7.2 GPa, h=3.05 mm,
b=20 mm. The fiber diameter and the fiber modulus are: df=12 µm and Ef=70 GPa,
respectively (PHILLIPS, 1989).

The DCB test setup is depicted in Fig. 6.3. Steel hinges were bonded to the upper and
lower specimen arms. The tests were conducted under displacement control using an Amsler
testing machine, illustrated in Fig. 6.3. Load/deflection data was recorded, the deflection was

Specimen

Dial gauge measuring
the crack opening

displacement

Dial gauges
measuring the

displacement at
the initial crack

tip

Fig. 6.3.
Experimental setup for DCB testing.

Steel hinge
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monitored by the dial gauge, shown at the upper left of Fig. 6.3. Crack initiation/propagation
was followed visually, the curved crack front was easily observable through the upper and
lower specimen surfaces.

Two kinds of measurements were performed. At the first stage we eliminated the
effect of fiber-bridging by using 18 specimens with the following crack lengths: 30, 35, 40,
45, 50, 55, 60, 65, 70, 75, 80, 90, 100, 110, 120, 130, 140 and 150 mm. The specimens were
loaded only up to fracture initiation and the
compliance was determined for each
specimen at the same point. This procedure
was suitable to determine the fracture
properties at crack initiation without the
fiber-bridging effect in the mentioned (a=30-
150 mm) crack length range.

At the second stage six specimens
with an initial crack length of a0=30 mm
were investigated in the same test
configuration, as shown in Fig. 6.3. In this
case the complete R-curve including the
bridging effect was determined within the
same crack length interval (a=30-150 mm).
The displacement at the initial crack tip was
recorded by using the two dial gauges
depicted in Fig. 6.3. It was necessary for the
determination of the bridging law. The data
reduction was the same as in the case of the
crack initiation tests. Some specimens with
extensive fiber-bridging are shown in
Fig. 6.4.

The compliance calibration method
was used to reduce the experimental data.
The compliance of the DCB specimen is
given by Eq. (2.9), where β and m may be find by using a fitting technique. Furthermore, the
crack length was corrected in accordance with THAMM et al. (1985), who suggested a
correction for large displacements:

 *Naa = ,
2

*6
11 






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a
N δ , (6.27)

where a* is the measured, a is the corrected crack length and δ is the experimentally measured
displacement at the point of load application. The length of the initial crack was similarly
corrected. Thus, the relevant equations are:
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Fig. 6.4.
Length of the bridged zone at different crack

lengths.
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where a0
* is the measured, a0 is the corrected value of the initial crack length and δ* is the

experimentally measured displacement at the initial crack tip (refer to Fig. 6.1).

6.3 Test results

6.3.1 Crack initiation tests

Linear load/displacement curves were recorded through crack initiation tests, as shown
by Fig. 6.5a. The compliance versus the crack length is plotted in Fig. 6.5b, only Eq. (2.1)
was used for data evaluation. The correlation was found to be excellent between the Winkler
foundation model and the experimental points. It is noteworthy, that the exponent (m) in

Eq. (2.9) was less than 3. The fracture resistance curve at crack initiation can be seen in
Fig. 6.7b. The steady-state value is about 412 J/m2. Also, the points by the analysis and
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Fig. 6.5.
Load/displacement curves (a), measured and calculated compliance (b) from initiation tests.
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experiments almost coincide. The closed-form solution was obtained by combining Eqs. (2.1)
and (1.2), of which result (Eq. (2.2)) compared to the experimentally determined values
agrees quite closely in the entire crack length interval. As a consequence, in this case the
classical elastic foundation model provides the reasonably accurate description of both the
compliance and the energy release rate.

6.3.2 Crack propagation tests

A typical load/displacement curve is plotted in Fig. 6.6a. The crack initiation was
observed at P=86-90 N, while the peak value of the load was always about 117-122 N. During
testing extensive fiber-bridging was observed as it is shown by the photographs in Fig. 6.4,
the bridgings appeared under a shallow angle. The crack always propagated along the
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Fig. 6.6.
Load/displacement curve (a) and compliance curves (b) from propagation tests.
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midplane of the specimens. In Fig. 6.6b the experimental compliance values and the analytical
curve (Eq. (2.1)) are illustrated. The exponent (m) in Eq. (2.9) was higher than 3 for all the six
specimens. An immediate observation is that the model (Eq. (2.1)) significantly overpredicts
the experimental compliance values. The values of the energy release rate and the averaged
GI-a data is plotted in Figs. 6.7a and b. Again, the closed-form solution is given by Eq. (2.2).
The difference was found to be particularly significant between the analytically and
experimentally determined SERR values (Fig. 6.7b).

As shown by Fig. 6.7b distinct values were obtained for the strain energy release rate
from the crack initiation and crack propagation tests at the crack length value of a=30 mm.
For both tests the force at crack initiation was the same (86-90 N) at this point. The difference
may be explained by the fact that the derivative of the compliance was higher in the case of
crack initiation than in the case of propagation tests (refer to Figs. 6.5b and 6.6b).

(b)

(a)

412 J/m2

 - Experiment (propagation)
 - Winkler foundation model 

           (propagation)

St
ra

in
 e

ne
rg

y 
re

le
as

e 
ra

te
 - 

G
I [

J/
m

2 ]

0 32 64 96 128 160
0

400

800

1200

1600

160 J/m2

 - Experiment (initiation)
 - Winkler foundation model 

           (initiation)

Crack length - a [mm]

 - Specimen 5
 - Specimen 6

 - Specimen 1

 - Specimen 4

 - Specimen 2

0 32 64 96 128 160
0

350

700

1050

1400

1100 J/m2

 - Specimen 3

St
ra

in
 e

ne
rg

y 
re

le
as

e 
ra

te
 - 

G
I [

J/
m

2 ]

Crack length - a [mm]

Fig. 6.7.
GI –a data from the propagation test of six specimens (a). Initiation and propagation R-curves,

comparison between experiment and analysis (b).



CHAPTER 6 – FIBER-BRIDGING ANALYSIS 83
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6.4 Application of the developed beam model

The accuracy of the classical elastic foundation model (Eq. (2.1)) was demonstrated
through the crack initiation tests. Thus, we may assume that the overpredictions experienced
in the crack propagation tests arise due to the fiber-bridging phenomenon. In order to estimate
the number of bridging fibers and the bridging force the experimental data was evaluated by
using the model developed in Section 6.1.

6.4.1 Compliance calculation

The computation was performed according to the following procedure. Based on the
crack propagation test data the applied load P, the displacements, δ and δ* measured from the
tests of six specimens were averaged with respect to the crack length. The experimental
compliance was calculated based on the averaged P and δ values, then the compliance values
were fit by using a third order polynomial of the form:

3
3

2
210 aCaCaCCC +++= . (6.29)

The reason for that is the analytical compliance expression (Eq. (6.24)) can be written in the
form of a third order polynomial. On the other hand Eq. (2.9) and Eq. (6.29) gives somewhat
distinct result as regarding to the number of bridgings, especially in the range of a=30 to 50
mm. The application of Eq. (2.9) is reasonable if we calculate the SERR, but at this stage
Eq. (6.29) is more reasonable. The analytical compliance value (Eq. (6.24)) was computed for
the actual crack length by an iterative technique. In each step the crack increment was 3-5
mm, while the number and location of the bridgings were chosen in order to hold the
difference between the analytical and experimental compliance values (Fig. 6.6b) within ±2-
3%. Also, the displacement at the initial crack tip (δ*) was considered and the difference
between the analytical and experimental values was held within ±2-3%. Only symmetrically
arranged bridgings were applied with the same fiber content. Finally, it was assumed that the
average bridging stress calculated from the beam model (see Eq. (6.30)) is equal to that
obtained by Eq. (6.26). If these criterions are satisfied it was believed to be a possible solution
of the problem.

6.4.2 Bridging law computation

Two approaches were used to calculate the nonlinear bridging law. The first method
(denoted as the average stress method) is based on the average bridging stress:
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)( 1*
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=

⋅
=δσ , (6.30)

where n is the number of bridgings, nf is the number of fibers per bridging, Pi are the forces in
the bridgings and A(a) is the area of the bridged zone at the actual crack length. The length of
the bridged zone is illustrated in Fig. 6.4 at certain crack lengths, where the white arrows
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show the position of the crack tip. At the beginning of the delamination process the bridged
zone extended over the initial crack tip with several millimeters, but it reached an
approximately constant value (45 mm) during crack propagation. The area of the bridged zone
yields by multiplying the bridged length with the specimen width b. It should be mentioned,
that the bridging law (Eq. (6.26)) assumes a uniform stress distribution. Similarly, in
Eq. (6.30) the average stress is considered. It is evident that the bridging force is not
uniformly distributed. Thus, the result of Eq. (6.30) is only approximate.

For the second approach Eq. (6.25) is used. Although it is based on the experimentally
determined quantities, these may be calculated also by the present beam model. The
compliance values calculated from Eq. (6.24) may be fit by Eq. (2.9). The SERR may be
obtained by using Eq. (1.2), then the bridging law is determined by the help of Eq. (6.26)
incorporating a curve fit of the GI-δ* data. This method was denoted as the J-integral method.
Comparison of the two analytical and the experimental bridging laws is made.

6.5 Results and discussion

The compliance values calculated by the present beam model are illustrated in
Fig. 6.8a. The comparison with the experimental values in Fig. 6.6b shows a good agreement.
The coefficient (β) and the exponent (m) of the fit curve (Eq. (2.9)) are essentially the same in
Fig. 6.6b as in Fig. 6.8a. As a consequence, the same energy release rate values may be
determined from the calculated compliance curve in Fig. 6.8a, as those plotted in Fig. 6.7b.

The total bridging force and the number of bridging fibers are illustrated in Figs. 6.8b
and 6.8c as a function of the displacement at the initial tip. The force reaches a peak value of
about 176 N and then it slightly decreases until the value of 120 N. At the beginning of the
delamination the number of bridging fibers reaches a maximum value and then it decreases
significantly as the crack opens (Fig. 6.8c). KAUTE et al. (1995) presented quite similar results
using a semi-empirical model. In their work the fiber force was assumed to be constant after
crack initiation, while the number of bridgings decreased in accordance with an exponential
function.

Fig. 6.9a shows the GI-δ* curves determined from experiment and analysis. As
expected, the correlation was found to be excellent, despite the beam model shows a little
overestimation. Figs. 6.9b and 6.9c demonstrate the bridging laws. The result of the average
stress method (Eq. (6.30)) is depicted in Fig. 6.9c, in comparison with the J-integral approach
the agreement seems to be very good. According to the average stress method the stress is
equal to zero at crack initiation, it reaches a peak value  (0.32 MPa, refer to Fig. 6.9c) and
finally decays notably. At the crack initiation the J-integral method indicates 4.92 MPa
(Fig. 6.9c) value based on beam analysis and 3.94 MPa from experiment (Fig. 6.9b). For
comparison the work by TAMUZS et al. (2001) may be referred to, wherein the presented
bridging law follows the same trend as it was found by us.

According to Eq. (6.25) the term GI0 from matrix cracking is assumed to be a constant
value. The first term in Eq. (6.25) is defined by the integral over the total crack opening.
Consequently, the term, GI0 may be determined by subtracting the first term from the total
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Fig. 6.8.
Compliance calculated from the present beam model (a). The total bridging force (b) and the total

number of bridging fibers (c) against the displacement at the initial crack tip.
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strain energy release rate. Based on the experimentally determined bridging law this term is
approximately equal to 160 J/m2, which is identical to the initiation value in Fig. 6.7b (square
symbols). A reasonable assumption is that during crack initiation tests the total energy release
rate comes from matrix cracking and it is a constant value at any crack length. In spite of this,
the initiation toughness increases (from 280 to 415 J/m2) with the crack length in accordance
with Fig. 6.7b. HASHEMI et al. (1990b) experienced similar behavior to that found by us. In
fact, the dependence of the initiation SERR on the initial crack length is not serious in
Fig. 6.7b and we assumed that for the current material Eq. (6.25) is valid.

It was mentioned by LINDHAGEN and BERGLUND (2000) that as the crack advances the
steady-state toughness is equal to the area under the curve of the bridging law. Note that the
length of the specimen was not large enough to reach a plateau value, in other words some
fiber-bridging was observed at the end of the delamination process (refer to Fig. 6.7b).
LINDHAGEN and BERGLUND investigated short-fiber-reinforced composite specimens and they
have found that in some cases the SERR from matrix cracking may be neglected. On the base
of our experiments the SERR increases up to 1100 J/m2. At this point the matrix cracking
(160 J/m2) contributes to the total energy release rate with about 15%, which is not negligible.

6.6 Application guideline

The following guideline may be given for the application of the newly developed
approach:
         • Perform experimental crack propagation tests on proper number of DCB specimens,

record the load/crack opening displacement data and the corresponding crack length
values and measure the displacement at the initial crack tip at each crack length.
Determine approximately the length of the bridged zone at each crack length.

         • Evaluate the experimental data by means of the compliance calibration method using
Eq. (2.9) and determine the bridging law by the help of Eq. (6.26).

         • Calculate the analytical compliance values (Eq. (6.24)) including the effect of the
fiber-bridgings at the crack length of interest. Fit the experimental compliance values
by Eq. (6.29). The number and the location of the bridgings may be estimated by
holding the difference between the experimental (Eq. (6.29)) and analytical
displacements (δ and δ*) within ±2-3%. Furthermore, the average bridging stress may
be equated to that calculated by the J-integral. Record the number of bridgings and
calculate the total bridging force.

6.7 Conclusions, scientific significance

The fiber-bridging phenomenon was investigated using linear beam theory and
experiments in unidirectional glass/polyester DCB coupons. Extensive fiber-bridging was
observed during the crack propagation tests. The objective of the present chapter was to
determine approximately the number of bridging fibers and the bridging force. Based on
linear beam theory the compliance of the bridged DCB specimen was derived. The bridging
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mechanism was simulated by elastic beam elements. A numerical solver was written using the
MAPLE package. The location and the number of fibers were determined by an iterative
technique.

A hyperbolic character was found in the case of the number of bridging fibers as a
function of the displacement at the initial crack tip. The bridging force reaches a peak value
first, and then it tends to a plateau value of about 120 N as the crack advances. The bridging
law was calculated based on experiments and analysis. Comparison between them showed
good agreement, but it should be kept in mind that in one of the analytical approaches the
average bridging stress was considered.

The obtained results were compared with other ones, previously published on similar
systems. Similar behavior was found, which partly confirms the analytical solution. From
other perspectives the present formulation involves several approximations. For instance,
local effects (fiber pull-out, fiber breakage, etc.) were not taken into account.

Although the application of the model is slightly time-consuming, the calculation may
be performed (in contrast with the previously developed numerical and semi-empirical
approaches) by the help of some essential material properties, namely the fiber diameter df

and the elastic modulus of the fibers Ef.
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7 SUMMARY OF THE RESULTS

In the final chapter we summarize the results of the analysis and the experimental
interlaminar fracture tests.

7.1 Generalization of the compliance of delaminated composite beams

Based on Chapters 3 and 6 the compliance of midplane delaminated composite beams,
of which arms exhibit the same mechanical properties may be written in the form of a full
third order polynomial as the function of the crack length:

3
3

2
2

1
1

0
0 aCaCaCaCC +++= , (7.1)

where the terms C0, C1, C2 and C3 may be related to the different theories and effects in
accordance with Table 7.1.

It should be mentioned that the Euler-Bernoulli beam theory results in a full third
order polynomial for the compliance of the ONF (Eq. (5.3)) and OLB specimens (Eq. (5.15)).
This is the reason for that why all the terms (C0, C1, C2 and C3) are influenced by the Euler-
Bernoulli beam theory. Also, the crack tip shear deformation (third term in Eq. (5.3) and
fourth term in Eq. (5.15)) affects the terms related to a0, a1 and a2 in Eq. (7.1) because
c=2L-a. The same conclusion may be drawn if we investigate the Saint-Venant effect at the
crack tip in the case of the OLB specimen. The developed beam model in Chapter 6 showed
that the fiber-bridging influences only the terms C0 and C1 (refer to Eq. (6.24)). It is
remarkable that this effect was analyzed only in a mode-I problem and the dependence of
some parameters on the crack length was not taken into account. Consequently the effect of
the bridgings is incorporated only in an explicit form.

Table 7.1 also explains why we used a full third order polynomial for the compliance
calculation in Chapter 6 (see Eq. (6.29)). Although in the case of a bridged DCB specimen the

Table 7.1.
Contribution of the various theories and effects to the compliance of delaminated composite beams
with midplane crack in explicit form.

       C - compliance
C0      C1     C2      C3

    Application of the Euler-Bernoulli beam theory + + + +
    Application of the Timoshenko beam theory + + - -
    Application of the Winkler-Pasternak foundation + + + -
    Saint-Venant effect at the crack tip + + + -
    Saint-Venant effect at the clamped end + - - -
    Crack tip shear deformation + + + -
    Fiber-bridging phenomenon + + - -

  Notation:
+  the corresponding coefficient in the compliance is influenced
 -  the corresponding coefficient in the compliance is not influenced
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Euler-Bernoulli beam model affects only the term C3, the consideration of the other effects -
especially the fiber-bridging - requires a full third order polynomial.

7.2 The critical load and displacement

The critical load is denoted here as the value, which is necessary to induce crack
initiation. Also, the critical displacement is the value at the same point. Figs. 7.1a and 7.1b

illustrate the critical load and the critical displacement at crack initiation against the crack
length in the case of the DCB, ELS and SCB specimens. The critical load shows hyperbolic,
while the displacement has parabolic relation for all the three specimens. It is shown in
Fig. 7.1 that in each case large displacements occur, however it does not matter in the case of
the DCB specimen. The reason for this is that the crack length can be easily corrected if large

(b)

(a)

Fig. 7.1.
The values of the critical load (a) and displacement (b) against the crack length in the case of

the DCB, ELS and SCB specimens.
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displacement occurs and the crack propagation is always stable without any significant crack
jumps. On the other hand the presence of the large displacements is a serious problem in the
case of the ELS and SCB specimens. In fact it was reason for that we were not able to
perform crack propagation tests in these cases. The large displacements caused sudden jumps
in the crack advance.

The mode-II ELS specimen was studied by HASHEMI et al. (1990a). In their tests the
crack length range of 0.5L<a<0.81L was investigated for carbon/PEEK specimens. Also, in
another study the relevant range of the crack length was 0.58L<a<0.92L for PES-fiber
composite specimens (HASHEMI et al., 1990b). It is important to note that in these papers

propagation tests were also performed. The flexural modulus of the specimens in HASHEMI et
al.’s works were E11=124 GPa and E11=132 GPa, respectively, i.e. the flexural modulus of the
specimens used by them were about 3.8-4 times higher than that of our specimens. This

(b)

(a)

Fig. 7.2.
The values of the critical load (a) and displacement (b) against the crack length in the case of

the ONF, SLB and OLB specimens.
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indicates that the stiffness of the ELS system in our experiments was not large enough, and
consequently it was not possible to conduct crack propagation tests. However, to minimize
the large displacements in crack initiation tests the recommended crack length range is (see
Fig. 7.1): 55 mm<a<130 mm, i.e. 0.37L<a<0.87L. It is also interesting that the critical
displacement in Fig. 7.1 reaches the lowest value at a=80 mm, i.e. a/L=0.53, which is
eventually the limit of the stable crack propagation (refer to Eq. (5.12)).

Quite similar conclusions may be drawn in the case of the SCB specimen. It is clear
from Fig. 7.1a that large displacements occur again. For a useful crack length interval the
lower bound is a=35 mm, the upper one is a=120 mm, writing simply: 0.23L<a<0.8L.
HASHEMI et al. performed experiments on mixed-mode carbon/PEEK (HASHEMI et al., 1990a)
and PES-fiber (HASHEMI et al., 1990b) SCB specimens with L=135 mm and L=120 mm,
respectively. The relevant crack length ranges were 0.5L<a<0.8L and 0.2L<a<0.7L,
respectively, which agrees well with the ranges used in the present experiments.

In Fig. 7.2 the results of the three other configurations, namely the ONF, SLB and the
newly designed OLB specimens are summarized. A remarkable feature is that all these are
three-point bending setups, however the load is eccentrically introduced in the ONF and OLB
setups. In accordance with Fig. 7.2a we may observe that the critical load follows a parabolic
trend in the case of the ONF and OLB specimens. As regarding to the results of the SLB test,
similarly to the results in Fig. 7.1b, the load shows a hyperbolic nature as a function of the
crack length. Furthermore, comparing the ONF to OLB results in Fig. 7.2a shows that at each
crack length a higher load value is required under mode-II condition. Fig. 7.2b presents the
values of the displacements at crack initiation as obtained by the three types of tests. No large
displacements were experienced through the SLB test, which indicates that the chosen crack
interval (0.13⋅2L<a<0.49⋅2L) is reasonable for fracture investigation using linear beam
theories. For comparison KORJAKIN et al. (1998) used glass/epoxy MMF specimens within the
crack length range of 0.25⋅2L<a<0.45⋅2L (2L=76 mm). The displacements are somewhat
higher for the OLB and ONF tests, however the result of the beam analysis gives values close
to the measured points. Hence, we may state that the ONF and OLB specimens are efficient
tools for crack initiation and propagation tests without the presence of large displacements
and without the necessity of considering stability range in the case of the ONF test.

7.3 Comparison of the SERR under different loading conditions

It is also an important issue to compare the steady-state values of the critical strain
energy release rate under different loading conditions. In this section we consider the result of
the CC method, except in the case of the ONF test, where we refer to results of the direct
beam theory. In Table 7.2 a review on those interlaminar fracture toughness values is given,
which were measured by other authors and those determined within the scope of this work.

Running through the fracture toughness results at crack initiation presented in
Table 7.2, we may establish the following relation: GIC<GI/IIC<GIIC, i.e. the initiation fracture
toughness exhibits the lower value under pure mode-I, while it reaches the highest value
under pure mode-II condition. This trend was found considering also the results by the other
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authors, except those by HASHEMI et al. (1990a) for carbon/PEEK composite specimens,
whose results are compiled in Table 7.2. In this respect the results of our experimental test are
absolutely reasonable.

Let us consider the results listed in Table 7.3, where the values of the propagation
toughness are demonstrated for different type of composite materials by few authors. This
time we can not observe an explicit trend, since the relative values of the fracture toughness
are quite different ones. The source of this fact can only be that the different materials behave
differently under mode-I, mode-II and mixed-mode I/II conditions. However, looking at
Table 7.3 an immediate observation is that the mode-II critical SERR measured by our test is

Table 7.2.
Interlaminar fracture energy (GC -[J/m2]) values by experimental initiation tests.

SLB
 Author - material DCB ENF ELS ONF     (MMF) SCB OLB MMB

           mode-I           mode-II            mixed-mode I/II

 Present – glass/polyester 412   - 713 730 645 645 650    -

 HASHEMI et al. – carbon/PEEK 1800   - 1730    -   - 1530    -    -

 HASHEMI et al. – PES-fiber 800   - 1250    -   - 1180    -    -

 OZDIL et al. – glass/polyester 282 496    -    -   -    -    - 311

 KORJAKIN et al. – glass/epoxy 223 2115    -    - 456    -    -    -

 ALBERTSEN et al. – C/HG9106 120 335 565    - 145    -    -    -

 DAHLEN et al. – T300/976 135 450    -    -    - 196    -    -

 DAHLEN et al. – IM7/977-2 333 994    -    -    - 497    -    -

 DAVIDSON et al. – IM7/977-2 360 910    -    - 370    -    -    -

 POLAHA et al. – graphite/epoxy 265 875    -    - 335    -    -    -

Table 7.3.
Interlaminar fracture energy (GC -[J/m2])  values by experimental propagation tests.

 Author - material DCB ENF ELS ONF MMF SCB OLB MMB
            mode-I            mode-II                 mixed-mode I/II

 Present – glass/polyester 1100   -    - 2787   -    -  1160    -

 HASHEMI et al. – carbon/PEEK 2290   - 2890    -   - 2080    -    -

 HASHEMI et al. – PES-fiber 2000   - 1850    -   - 1480    -    -

 KORJAKIN et al. – glass/epoxy 552   -    -    - 525    -    -    -

 ALBERTSEN et al. – C/HG9106 490   - 800    - 330    -    -    -

 REYES et al. – glass/polyprop. 2450 3800    -    -   -    -    - 4750
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significantly higher compared to those measured under pure mode-I and mixed-mode I/II
conditions. As a final word our results for the propagation toughness are reasonable and
enrich the referable values in the composite literature.

It is noteworthy that in this study only specimens with mode-I precrack were used.
The effect of precracking mode on the initiation toughness was investigated by POLAHA et al.
(1996), DAVIDSON et al. (1999) and MORAIS et al. (2004). All these authors have found that in
the case of mode-I precracking the toughness may be expected to be lower in comparison with
the mode-II precracking. Also, the toughness has a higher value when the crack is initiated
directly from the insert, as it is shown by MORAIS et al. (2004). Thus, the presented results
should be considered in the light of these establishments.

7.4 Fracture envelope

The fracture envelope for the present composite material was composed by using two
criterions. In accordance with the traditional criterion the following relation may be
established between the mode-I and mode-II strain energy release rates (HASHEMI et al.,
1990a, 1990b):
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where GIC is the critical strain energy release rate under pure mode-I, GIIC is the mode-II
critical strain energy release rate and can be equated to the steady-state values collected in the
first row of Tables 7.2 and 7.3. To construct the fracture envelope we need at least three
points. The pure mode-I and mode-II toughnesses are known. The mixed-mode I/II toughness
in Tables 7.2 and 7.3 should be decomposed into mode-I and mode-II parts. Although in
Chapter 4 it was shown that the mode-ratio (GI/GII) has different values at each crack length,
we utilize the result of the Euler-Bernoulli beam theory. In this case the mode ratio of the
OLB specimen is equal to 1.33, so a third point is known for Eq. (7.2). WILLIAMS’ criterion
(HASHEMI et al., 1990a, 1990b) recommends the following expression:
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where Ii is the interaction parameter between the mode-I and mode-II strain energy release
rates. If Ii=0 then there is no interaction. Also, if Ii=1 then Eq. (7.3) states a simple addition.
The power parameters (p1, p2) in Eq. (7.2) and the interaction parameter (Ii) in Eq. (7.3) may
be determined by a curve fitting technique.

The fracture envelopes at crack initiation and crack propagation are depicted in
Fig. 7.3. In fact the difference between the traditional and WILLIAMS’ criterion is negligible,
both criteria describe the same failure locus. Overall, the fit curves report that there is a
notable interaction between the mode-I and mode-II loading.

For comparison several works may be referred to. Quite similar fracture envelope was
determined by RIKARDS et al. (1998) for glass/epoxy composite, only initiation toughness
values were measured with the compact tension shear (CTS) specimen. HASHEMI et al.



CHAPTER 7 – SUMMARY 95

7.4 Fracture envelope

determined fracture envelopes for crack initiation and propagation by using the DCB, ELS
and SCB specimens for carbon/PEEK (1990a) and polyether sulphone-fiber (1990b)
composites. The determined envelopes followed the same trend as it was found by us in
Figs. 7.3a and 7.3b.

Since the strain energy release rate is an interface property the presented envelopes
may also be used to predict failure locus in practical composite structures, which are
manufactured by using the same constituents and exhibit the same fiber-volume fraction as
the present glass/polyester material. However, to evaluate the mode-I and mode-II SERRs and
the mode-ratio in a real structure, which can not be considered as a slender beam a numerical
(FE) model incorporating the VCCT method is required.

Fig. 7.3.
Interlaminar fracture envelopes for unidirectional glass/polyester composite under crack

initiation (a) and crack propagation (b).
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7.5 Conclusions, scientific significance

The compliance of delaminated composite beams with midplane crack was
generalized in the form of a third order polynomial, where the coefficients were related to the
different theories and effects. The results of Table 7.1 were applied in the fiber-bridging
analysis of the DCB specimen (Chapter 6).

The fracture behavior of the DCB, ELS and SCB specimens was studied in a quite
extended range of crack length. In some points of view (considering the critical load and
critical displacement) comparison between them was made. It was shown that the critical load
follows a hyperbolically decreasing trend in the function of the crack length in the case of
crack initiation. The critical displacements were also investigated and in each case a parabolic
nature was established. The large displacements are significant in the case of the ELS and
SCB specimens, which may cause the crack to be uncontrollable. As a consequence, crack
propagation tests were not possible to be performed. In the case of the DCB specimen large
displacement have also been observed, however these do not influence the crack propagation
and the geometry of the system may be simply corrected.

In the case of the ONF, SLB and OLB specimens comparison was also made. The
results of ONF and OLB tests were found to be slightly unusual as regarding to the critical
displacement and the critical load against the crack length. The traditional SLB test provided
similar results to that of the SCB specimen. In contrast, the critical load showed a parabolic
relation with the crack length in the case of the ONF and OLB setups. An important feature is
that the large displacements were not experienced in these cases. In particular, the ONF and
OLB configurations are efficient tools to measure the propagation toughness.

Using the results of the interlaminar fracture tests the approximate fracture envelope of
the present glass/polyester composite was constructed including crack initiation and crack
propagation conditions. Two criterions were adopted, both predicted a strong interaction
between the mode-I and mode-II strain energy release rates.



THESES 97

Theses

THESES

1. Thesis

It was shown that the correction function derived by using the Winkler-type elastic
foundation for the strain energy release rate of composite beams with midplane delamination
and when the upper and lower arms exhibit the same mechanical properties under mixed-
mode I/II condition may be written as:
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The classical solution of WILLIAMS for the mode-I double-cantilever beam specimen including
the Winkler-type elastic foundation resulted in the following term:
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The difference between Eqs. (8.1) and (8.2) may be explained by the theorem of
parallel axes. The present formulation considers that the reference plane with respect to
bending coincides with the midplane of the model. This fact resulted in a four times higher
second order moment of inertia of the uncracked region of the model in comparison with
WILLIAMS’ formulation. This indicates that the generalization of WILLIAMS’ solution for mixed-
mode I/II problems is unjustified. The difference between the two solutions was demonstrated
by using the models of SCB, SLB and MMB specimens.

2. Thesis

The global mode decomposition method was completed with the Winkler-Pasternak
foundation, transverse shear, Saint-Venant and crack tip shear deformation effects in that
case when the upper and lower arms of the model exhibit the same mechanical properties and
the delamination is symmetrically located along the beam thickness. The individual
components of the strain energy release rate are:
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2.1 It was shown that the Winkler-Pasternak elastic foundation (fW2), transverse shear
(fT) and the Saint-Venant (fSV) effect improves only the mode-I, while the crack tip shear
deformation (fSH2) contributes only to the mode-II strain energy release rate.

2.2 Using the developed strain energy release rate expressions (Eqs. (8.3) and (8.4))
and the finite element method the coefficient of the Pasternak foundation parameter was
determined. It was found to be a constant value (ω=2.5).
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2.3 The results of the solution were compared with existing beam, plate and finite
element solutions, respectively. It was found that the present solution gives the reasonably
good description of both the compliance and the strain energy release rate and in each case
shows similar relationship to the finite element solution.

2.4 Mode-II (ELS, ONF) and mixed-mode I/II (SLB, SCB) experimental tests were
performed on unidirectional glass/polyester composite specimens with midplane delamination
to demonstrate the applicability of the developed beam model, which was found to be suitable
to reduce the experimental data.

3. Thesis

An improved expression was derived for the compliance of composite beams, which
accounts for the Winkler-Pasternak foundation (fW1), transverse shear (CTIM), Saint-Venant
(fSV, CSV) and crack tip shear deformation (fSH1) effects, in that case when the arms of the
model exhibit the same mechanical properties and the delamination is symmetrically located
along the beam thickness:
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3.1 The application of Eq. (8.5) was demonstrated through models of unidirectional
SCB, SLB and MMB specimens. The obtained results were compared with results by finite
element calculations and existing analytical models. It was shown that the developed
compliance expression ensures the desired accuracy.

3.2 The applicability of Eq. (8.5) was demonstrated through experiments performed on
unidirectional glass/polyester composite ELS, ONF, SCB and SLB specimens. In each case
the result of Eq. (8.5) was in good agreement with the measured compliance values.

4. Thesis

A novel mixed-mode I/II test configuration was developed, which is called the
over-leg bending (OLB) specimen. The OLB specimen is the modified version of the
traditional single-leg bending (SLB) coupon.

4.1 The applicability of the test was demonstrated by using unidirectional
glass/polyester specimens with midplane delamination. The compliance and the individual
strain energy release rate components of the novel configuration were derived by the help of
the developed beam model.

4.2 A remarkable advantage of the test is that the large displacements (which play a
dominant role in composites with low flexural modulus) can be avoided and the crack
propagation can be easily controlled (in contrast with the SLB and SCB coupons). The test
gives essentially a linear elastic response and simple reduction techniques can be applied for
data evaluation. A relative drawback of the test is that the mode-ratio may be varied only with
a small degree.
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5. Thesis

A combined analytical-experimental approach was developed to investigate the fiber-
bridging effect in unidirectional mode-I double-cantilever beam specimens with midplane
delamination.

5.1 The beam theory-based solution is suitable to predict the number of bridging fibers
and the bridging force. The application of the model is slightly time-consuming, however the
calculation may be performed (in contrast with the previously developed numerical and semi-
empirical approaches) by the help of some essential material properties, such as the fiber
diameter df and elastic modulus of the fibers Ef.

5.2 A numerical solver for the application of the model was developed in the code
MAPLE. The applicability of the model was demonstrated by using unidirectional
glass/polyester double-cantilever beam specimens. It was shown that the number of bridging
fibers follows a hyperbolically decreasing trend as the crack advances, while the bridging
force reaches a peak value and then it tends to a steady-state value. In comparison with the
results of a semi-empirical solution the obtained results are quite similar.

6. Thesis

6.1 It was established that in the case of the DCB, ELS, SCB and SLB specimens the
critical load at crack initiation approximately exhibits a hyperbolic behavior against the
crack length. In contrast, the critical force has approximately a parabolic nature in the case
of the ONF and OLB coupons. The latter may be explained by the eccentrically introduced
load between the two supports and that the characteristic distance is the length of the
uncracked region instead of the crack length.

6.2 The critical displacement at crack initiation showed approximately a parabolic
dependence on the crack length in each specimen type (DCB, ELS, ONF, SCB, SLB and
OLB). In the case of the ELS and SCB specimens the limitation of the large displacements
was established and the reasonable range of the crack length was indicated.

6.3 It was shown that the smallest critical displacement occurs in the ELS coupon if
a=0.53L, which is eventually the limit of crack stability (a≥0.55L).
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APPLICATION AND UTILIZATION OF THE RESULTS

The presented results may be equally utilized in the field of the theoretical and
experimental fracture mechanics in accordance with the followings:

• The derived and verified formulae may be applied for indirect evaluation of data by
interlaminar fracture tests. Closed-form solutions with high accuracy may be derived
for the compliance and strain energy release rate of midplane delaminated composite
specimens of which arms have the same mechanical properties. The mode ratio can
also be calculated.

• The formula of the compliance can show what type of function should be used for the
curve fitting of the experimental compliance values, since in some cases the Euler-
Bernoulli beam theory results in an incomplete third order polynomial.

• The novel OLB configuration is an efficient tool for interlaminar fracture testing in
composites with low flexural modulus.

• The combined experimental-analytical fiber-bridging modeling technique is suitable to
estimate the number of bridging fibers and the bridging force.

• Based on the measured critical load/crack length diagrams - assuming similar behavior
in other type of composite materials - it is possible to estimate how the displacement
changes with the crack length.

• Using the critical load/crack length diagrams of the ELS, SCB and OLB specimens -
assuming similar behavior in other type of composite materials - the ranges of the
large displacements may be established and the efficiency of propagation tests can be
facilitated.

• The presented strain energy release rate values at crack initiation and propagation may
be used as reference results.

• The determined interlaminar fracture envelopes may be used for the design of
composite structures manufactured from glass/polyester composite material with the
same fiber-volume fraction.
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APPENDIX A

APPENDIX A

A.1 – Constant parameters, Timoshenko beam theory

The constant parameters in Eqs. (3.38)-(3.43) are:
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A.2 – Constant parameters, crack tip shear deformation

The constant parameters in Eqs. (3.83)-(3.86)
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A.3 – Determination of ω for the Pasternak foundation

The FE model of the DCB specimen is depicted in Fig. A1. The results of the analysis
described in Section 3.7 are listed in Table A1.

P=1N

P=1N

Crack tip

Fig. A1.
FE model of the DCB specimen for the determination of ω.

a
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APPENDIX B – Specimen preparation

APPENDIX B – Specimen preparation

The constituent materials were procured by native companies (Novia Ltd, Alvin-Plast
Ltd). The unidirectional coupons were manufactured by using the workbench in Fig. B1. The
pure glass-fiber roving (EC 13 2520 907) was run through the resin bath full of unsaturated

Table A1.
Corrections for the SERR of the DCB specimen from Winkler-Pasternak elastic foundation if
G13=100 000 GPa and ω=2.5.

a  [mm]              30          40           50          60          70          80          90         100

E-glass/polyester specimen: E11=33 GPa, E33=7.2 GPa, ν13=0.27 (present)

  h=2 mm GI,FEM/GI,EB 1.090 1.067 1.053 1.047 1.041 1.035 1.031 1.028
GI,WP/GI,EB 1.089 1.066 1.052 1.043 1.037 1.032 1.028 1.025

 Difference [%] 0.092 0.094 0.095 0.382 0.384 0.289 0.291 0.292

  h=3.05 mm GI,FEM/GI,EB 1.143 1.106 1.084 1.070 1.060 1.052 1.046 1.042
GI,WP/GI,EB 1.142 1.103 1.081 1.067 1.057 1.049 1.043 1.039
Difference [%] 0.087 0.271 0.276 0.280 0.283 0.285 0.287 0.288

  h=4.5 mm GI,FEM/GI,EB 1.218 1.161 1.128 1.106 1.090 1.079 1.070 1.063
GI,WP/GI,EB 1.219 1.158 1.123 1.101 1.086 1.074 1.066 1.059

 Difference [%]   -0.082 0.258 0.443 0.452 0.357 0.463 0.373 0.376

Carbon/epoxy specimen: E11=124 GPa, E33=10 GPa, ν13=0.25 (HASHEMI et al. (1990a))

  h=2 mm GI,FEM/GI,EB 1.124 1.092 1.073 1.066 1.057 1.050 1.044 1.040
GI,WP/GI,EB 1.117 1.086 1.067 1.056 1.047 1.041 1.036 1.033

 Difference [%] 0.062 0.549 0.559 0.938 0.946 0.854 0.766 0.673

  h=3.05 mm GI,FEM/GI,EB 1.192 1.142 1.113 1.094 1.080 1.070 1.062 1.056
GI,WP/GI,EB 1.187 1.135 1.106 1.087 1.074 1.064 1.057 1.051
Difference [%] 0.419 0.613 0.628 0.640 0.574 0.561 0.471 0.473

  h=4.5 mm GI,FEM/GI,EB 1.291 1.213 1.169 1.140 1.119 1.104 1.092 1.083
GI,WP/GI,EB 1.294 1.210 1.163 1.133 1.112 1.097 1.086 1.076

 Difference [%]   -0.232 0.247 0.513 0.614 0.656 0.634 0.549 0.646

 Isotropic specimen: E11=33 GPa, E33=33 GPa, ν13=0.27

  h=2 mm GI,FEM/GI,EB 1.058 1.044 1.035 1.030 1.026 1.023 1.020 1.018
GI,WP/GI,EB 1.059 1.044 1.035 1.029 1.025 1.022 1.019 1.017

 Difference [%]   -0.095 0.000 0.000 0.097 0.097 0.098 0.098 0.098

  h=3.05 mm GI,FEM/GI,EB 1.091 1.068 1.054 1.045 1.038 1.034 1.030 1.027
GI,WP/GI,EB 1.093 1.068 1.054 1.045 1.038 1.033 1.029 1.026
Difference [%]   -0.183 0.000 0.000 0.000 0.000 0.097 0.097 0.097

  h=4.5 mm GI,FEM/GI,EB 1.137 1.102 1.081 1.067 1.057 1.050 1.045 1.040
GI,WP/GI,EB 1.143 1.104 1.082 1.067 1.057 1.050 1.044 1.039

 Difference [%]   -0.528    -0.181    -0.093 0.000 0.000 0.000 0.096 0.096

 GI,FEM – plane stres FE model, Eq. (3.121), GI,WP – analytical solution, Eq. (3.122)
 GI,EB – solution based on Euler-Bernoulli beam theory



APPENDICES xi

APPENDIX B – Specimen preparation

polyester (styrol: 42.7%; R 10-20-36/38; S 24-26-51; CAS No.:100-42-5; EU No.:202-851-5)
and was rolled up to a steel frame (see Fig. B1). The latter ensured the thickness of the
bundles by means of those notches, highlighted in Fig. B1. A polyamide (PA) insert with
thickness of 0.04 mm was placed at the midplane of each bundle to make an artificial starting
defect. After the sufficient amount of roving was rolled up, then the frame was put to the
special pressure block tool depicted in Fig. B2. With the aid this tool two pieces of specimens
can be manufactured simultaneously. The thickness of the coupons, and so even the fiber-

volume fraction may be controlled by the screws, shown in Fig. B2b. The tool was left on
room temperature until the bundles became dry (6-8 hours).

Then the specimens were removed from the tool and were further left on room
temperature until 4-6 hours. Finally, they were cut to the desired length and were precracked
in opening mode of about 4-5 mm by using a sharp blade. This involved an area full of
pulled-out fibers before the crack tip, but this effect was assumed to be negligible. The
manufactured specimens have nominal width of b=20 mm, thickness of 2h=6.1 mm, full
length of about 180 mm and fiber-volume fraction of Vf=43%. A millimeter scale was traced

Roving

Resin bath

Frame

Fig. B1.
Workbench for unidirectional specimen preparation.

Roll
Notch
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APPENDIX B – Specimen preparation

(c)

(b)

(a)

Fig. B2.
Pressure tool for unidirectional specimens, assembled state (a), front view (b), exploded view (c).

Screws

Fig. B3.
Unidirectional composite carbon/epoxy (a), glass/epoxy (b), glass/vinylester (c) and

glass/polyester (d) specimens.

(a)

(d)(c)

(b)
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APPENDIX C – Clamping fixture for the ELS and SCB tests

on the lateral sides of the coupons in order to facilitate the visual measurement of the crack
length. Four types of composite material can be manufactured in our laboratory, as it is shown
in Fig. B3. In the present work only [0°]14 E-glass/polyester specimens were tested. In this
point of view the transparency is a great advantage of the glass/polyester material. The
properties of the E-glass-fiber are E=70 GPa and ν=0.27, while for the unsaturated polyester
resin they are E=3.5 GPa and ν=0.35 (PHILLIPS, 1989). Both were considered as isotropic.

APPENDIX C – Clamping fixture for the ELS and SCB tests

APPENDIX D – Crack length correction

D.1 ELS specimen

The loading head of our (non-standard) test fixture have relatively large radii (refer to
Figs. 5.2a and b). Figure D1a shows how the contact line between the loading head and the
specimen changes as the load increases, and so, for example the crack length becomes shorter.
This fact should be considered in the data reduction. The corrections are calculated based on
simple beam theory and the experimentally measured displacement at the point of load
application.

For the ELS coupon the end displacement and the derivative of the deflection based on
simple beam theory are:

11
3

3*3*

2
)3(

Ebh
LaP +

=δ ,
11

3

2*2*

4
)3(3

Ebh
LaP +

=φ . (D.1)

On the base of Fig. D1a the corrected crack length and the specimen length are:
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3
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φ
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3
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φφφ RLRLL . (D.2)

Fig. C1.
Details of the clamping fixture, exploded view (a), assembled state (b).

(a) (b)



APPENDICES xiv

APPENDIX D – Crack length correction

Combining the first and second expressions in Eq. (D.1) one may obtain:
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)3(
)3(

2
3

3*3*

2*2*

La
La

+

+
=χ . (D.3)

Eq. (D.2) can be rewritten as:
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Note that in all the equations a is the corrected,
a* is the measured crack length, L is the
corrected, L* is the measured specimen length
and δ is the experimentally measured specimen
displacement. The radius of the loading head is:
R1=6 mm.

D.2 SLB and SCB specimens

The corrections for the crack length and other geometrical parameters are calculated in
the same fashion as it was shown before. Let us consider the schematic illustration in
Fig. D2a.  The corrected parameters of the SLB specimen are:
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Loading head
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Fig. D1.
Correction of the ELS system.

(a) (b)

Fig.  D2.
 Correction of the SLB (a) and SCB (b) systems.
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APPENDIX E – Crack stability charts

The same approximation in the case of the SCB configuration in Fig. D2b leads to the
following equations:
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This correction involves the correction of the full specimen length (L) of the SCB coupon
since L=a+c. All in the equations a is the corrected, a* is the measured crack length, δ  is the
experimentally measured specimen displacement at the point of load application. The radius
of the supports is: R=8 mm.

APPENDIX E – Crack stability charts
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Fig. E1.
 The crack stability charts of the ELS (a) and ONF (b) specimens.
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APPENDIX F

APPENDIX F

F.1 The generalized Krylov-functions

The homogeneous, generalized Krylov-functions are (PONOMARJOV, 1968):
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The deflection function of the uncracked region is:
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where according to OZDIL and CARLSSON (1999a) λ is equal to:
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where E33 is the through-thickness modulus of the specimen.

F.2 Constant parameters

The constants in Eqs. (6.3), (6.4 and (F.2) are:
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APPENDIX F

F.3 Form of the system of equations

We express the forces Pj in an unabridged form. Combining Eqs. (6.17), (6.19) and
(6.22), with Eq. (6.23) the ‘j’-th force results in:
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Rearranging Eqs. (6.17) and (6.19) the lateral displacements can be rewritten in the following
form:
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In order to simplify Eq. (F.6) we use the following trigonometric identity:
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Thus, from Eq. (F.6) the simplest form of the equation for the ‘j’-th force Pj becomes:
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which has only a numerical solution. We have ‘j’ number of equations, where the ‘j’-th
equation contains all the forces (i=1...n). Eqs. (F.6)-(F.11) are suitable to determine the
unknown forces which arise in the bridgings.
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