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Abstract In this work Kirchhoff plate theory is used
to calculate the energy release rate function in delam-
inated isotropic plates. The approximation is based on
the consideration of the equilibrium equations and the
displacement continuity between the interface plane of
a double-plate model. It is shown that the interface
shear stresses are governed by a fourth order partial
differential equation system. As an example, a simply
supported delaminated plate subjected to a point force
is analyzed adopting Lévy plate formulation and the
mode-II and mode-III energy release rate distributions
along the crack front were calculated by the J -integral.
To confirm the analytical results the 3D finite element
model of the delaminated plate was created, the en-
ergy release rates were calculated by the virtual crack-
closure technique and the J -integral. The results indi-
cate a good agreement between analysis and numerical
computation.
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1 Introduction

Kirchhoff plate theory plays a very significant role in
the mechanical design of engineering structures such
as metal [1–3], composite [4] and sandwich [5] struc-
tures. One of the damage modes of these engineer-
ing materials is the formation of cracks and delami-
nation surfaces. The energy release rate (ERR) is an
important parameter in fracture mechanics to charac-
terize the fracture properties of metals, plastics, com-
posites and other engineering materials [6]. In general
the interlaminar fracture is investigated by beam spec-
imens including relatively simple loading conditions
and geometry. Generally, simple beam theory is ap-
plied for the analytical description of these systems in-
cluding mode-I (opening mode), [7–12] mode-II (slid-
ing mode) [8, 13–15] and mode-III (tearing mode)
fracture conditions [16–19]. At the same time, numer-
ous refined models were developed (e.g.: [20–28]).

Under mixed-mode conditions (I/II (e.g.: [25, 29–
31]), I/III (e.g.: [32, 33]), II/III ([34–39]) or I/II/III [19,
40, 41]) the mode partitioning is an important issue.
In this respect Williams [42] provided a simple beam
theory based (global) method for the separation of en-
ergy release rates under mixed-mode I/II condition.
However, only simple loading schemes were consid-
ered and the method gave misleading result for unsym-
metric specimens. Suo and Hutchinson [43, 44] devel-
oped the so-called local mode decomposition method.
The energy release rate was calculated by beam the-
ory, the mode mixity was resolved by a continuum
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model based on integral equation methods. Indepen-
dently, Davidson et al. [45] proposed the crack tip el-
ement (CTE) analysis, where—similarly to [43]—the
energy release rate was calculated by beam theory, but
the mode ratio was obtained by finite element analy-
sis. Both methods gave realistic results for unsymmet-
rically delaminated systems.

The J -integral was developed by Rice [46] and
Cherepanov [47] independently, first for 2D prob-
lems, later it was generalized for 3D problems too
[48–50]. For plate bending problems including sur-
face or edge cracks the J -integral—among others—
was applied by Valaire et al. [51] and Wearing et
al. [52]. For delaminated plates, where the crack lies
in the midplane of the plate the J -integral was used
by Lee and Tu [53]. The problem under considera-
tion was an edge-delaminated plate subjected to pure
bending and/or uniaxial tension which involves rel-
atively simple solution procedure. Later Wang and
Huang [54] proposed the continuous analysis of de-
laminated plates based on Fourier series solution. The
problem of embedded delaminations was analyzed.

Continuing with plate problems, Bruno and Greco
[55] performed the refined analysis of cracked com-
posite plates including interface analysis, where the
interface stiffness was considered to tend to infinity.
Although in that work a plate analysis was referred to,
in fact only simple (beam-like) loading schemes were
adopted. Later their model was completed with the ef-
fect of transverse shear [56]. They applied a similar
scheme to that Williams provided for mode partition-
ing in mixed-mode I/II cases.

The classical work of Suo and Hutchinson inspired
Wang and Qiao [57] to improve the so-called lo-
cal method by transverse shear effect and modify
the equations for bi-material beams too. It was a
closed-form solution, however due to the high number
of complex equations it requires much computation.
Later the method was further developed by complet-
ing the model by a flexible joint at the crack tip [22].
Essentially, the interface shear and normal (or peel)
stresses were captured and the displacement conti-
nuity of the interface was formulated. The method
was developed to analyze mixed-mode I/II problems
only.

Nowadays more and more attention is favored to
the mode-III and mixed-mode II/III or I/III fracture of
composite materials. Recently, de Morais and Pereira
published many studies for carbon/epoxy systems in-
volving the bending of plate specimens. The mode-III

4-point bending plate [17], the mixed-mode I/III 8-
point bending [33] and the mixed-mode II/III 6-point
bending plate [39] specimens involve the bending of
delaminated plates.

Apart from the virtual crack-closure technique
(VCCT) (e.g.: [40, 58]), there are only few alternatives
for the possible fracture mechanical analysis of these
plate bending systems. The method of Qiao and Wang
[59] applies only for beam-like geometry, however the
basic equations for a possible plate analysis were sum-
marized [60]. As another alternative Sankar and Sonik
[61] and Davidson et al. [62] published plate theory
based methods in conjunction with finite element anal-
ysis. The energy release rates (mode-I, mode-II and
mode-III) were calculated by using the classical plate
theory (CPT) forces and moments, strains and mid-
plane curvatures, respectively, however all of these
were calculated by shell finite element models. A very
good agreement with 3D FE analysis (VCCT) was ob-
tained. The so-called crack-tip force method (CTFM)
[63] applies the nodal forces for the ERR calculation.
It gives almost the same results as the VCCT. Later, a
3D modelling technique was developed based on inter-
face and first order shear deformable plate theory [64].
The method was effective, however finite element im-
plementation of the equations is necessary. This short
overview shows that a purely analytical solution is not
available for general plate bending problems including
through the width delamination surfaces.

In this report it is shown how Kirchhoff plate theory
can be used to predict the energy release rate distribu-
tion in bent plate specimens under mixed-mode II/III
loading conditions. Although the present formulation
applies material isotropy, it is applicable for quasi-
isotropic and short random-fiber reinforced composite
laminates or polymer materials. First, the undelam-
inated part of the plate is treated as a double-plate
system by formulating the proper kinematic continu-
ity conditions over the interface. Then, the governing
equations of the interface shear stress field are devel-
oped. As an example a simply supported, isotropic,
symmetrically delaminated plate is analyzed. The
function of the mode-II and mode-III ERRs is deter-
mined and the results are compared to a 3D FE model
evaluated by the VCCT and the J -integral.
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2 Kirchhoff plate model, undelaminated region

Let us consider the differential plate elements in Fig. 1,
which are the top and bottom layers of the uncracked
part of a plate containing a delamination. The thick-
ness of the elements is t . The in-plane force equilib-
rium of the top plate element in the x and y direction,
respectively involves:

∂Nx

∂x
− ∂Nxy

∂y
= τxz

−∂Nxy

∂x
+ ∂Ny

∂y
= τyz

(1)

where Nx , Ny are the in-plane normal forces, Nxy is
the in-plane shear force, τxz = τxz(x, y) and τyz =
τyz(x, y) are the interface shear stress in the x and y

directions. Second, we consider the moment equilib-
rium about axes x and y resulting in:

∂Mx

∂x
+ ∂Mxy

∂y
= −τxz

t

2

∂Mxy

∂x
+ ∂My

∂y
= −τyz

t

2

(2)

where Mx , My and Mxy are the bending and twisting
moments, respectively. We note that the peel stress, σz

is not considered in the present analysis. To involve
the interface peel stress the consideration of the shear
forces (Qx and Qy ) in Eqs. (5)–(8) would be neces-
sary (see also the force equilibrium in z by Fig. 1).
However in this case Kirchhoff plate theory is not ap-
plicable, because together with the shear forces we
have too many parameters and more constitutive equa-
tions are required. Therefore, the peel stress is not
taken into account here, due to the fact that in this case
plate theory with transverse shear effect must be used.
The present formulation is suitable to analyze mixed-
mode II/III problems only. Following the basic equa-
tions of Kirchhoff plate theory the moment-curvature
and the twisting moment-twisting curvature relation-
ships, respectively still hold [1–4]:

Mx = −I1E1(w,xx + νw,yy)

My = −I1E1(w,yy + νw,xx)

Mxy = Myx = −I1E1(1 − ν)w,xy

(3)

where I1 = 1/3 · t3 is the area moment of inertia of one
plate element with thickness of t and with a reference

Fig. 1 Equilibrium of the top (a) and bottom (b) differential
plate elements

located at the interface plane, and E1 = E/(1 − ν2).
Due to the midplane delamination the deflection of
the top and bottom plate elements is the same, i.e.:
w1 = w2 = w. Assuming plane stress state, the gen-
eral relationship between in-plane forces and strains
for isotropic plates in matrix form becomes [1]:

⎡
⎣

Nx

Ny

Nxy

⎤
⎦ = E1

⎡
⎣

1 v 0
v 1 0
0 0 (1 − v)/2

⎤
⎦

⎡
⎢⎣

ε0
x

ε0
y

γ 0
xy

⎤
⎥⎦ (4)

Expressing the in-plane strains in terms of the in-plane
displacement components we have:

ε0
x = ∂u0

∂x
= 1

Et
(Nx − vNy), γ 0

xy = Nxy

Gt

ε0
y = ∂v0

∂x
= 1

Et
(Ny − vNx)

(5)

The next step is the formulation of the kinematic con-
tinuity conditions over the interface of the uncracked
portion of a delaminated plate system, where the top
and bottom plates are connected to each other. Here we
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Fig. 2 Deformations of the top plate element under in-plane
forces (a), bending (b) and interface shear stresses (c), (d)

consider the simplest case, namely when the plate is
symmetrically delaminated. Figure 2 presents the pos-
sible sources of the in-plane displacements: in-plane
forces (a), bending (b) (both about axes x and y) and
finally the interface shear deformation (c and d). The
resultant displacement from these effects are:

ui = ±
{

1

Et

∫ (
N(i)

x − vN(i)
y

)
dx

+ z
∂wi

∂x
− kshτ

(i)
xz (x, y, z)

}
(6)

vi = ±
{

1

Et

∫ (
N(i)

y − vN(i)
x

)
dy

+ z
∂wi

∂y
− kshτ

(i)
yz (x, y, z)

}

where the upper sign and i = 1 goes with the top plate
element, the lower sign and i = 2 goes with the bottom
plate element, moreover ksh = t/3G is the shear com-
pliance for isotropic material [65]. The shear stresses
are [1]:

τ (i)
xz (x, y, z) = τxz(x, y)

(
1 − (z ± t/2)2

t2

)

τ (i)
yz (x, y, z) = τyz(x, y)

(
1 − (z ± t/2)2

t2

) (7)

With respect to the shear strain three effects should be
considered as it is shown by Fig. 3 [66]: in-plane shear
force (a), twisting moment (b) and the shear strain in-
duced by interface shear stresses (c):

γ (i)
xy = ±

{
−N

(i)
xy

Gt
+ 2z

∂2wi

∂x∂y

− ksh

(
∂τ

(i)
xz (x, y, z)

∂y
+ ∂τ

(i)
yz (x, y, z)

∂x

)}
(8)

To satisfy the continuity conditions the in-plane dis-
placements and the shear strain at the interface must
be zero. Therefore, based on Eqs. (6) the conditions
for the in-plane displacements formulated in the lo-
cal x, y, z coordinate system of the top plate element
are:

u1|z=−t/2 = 1

Et

∫
(Nx − vNy)dx − t

2

∂w

∂x

− kshτxz = 0

v1|z=−t/2 = 1

Et

∫
(Ny − vNx)dy − t

2

∂w

∂y

− kshτyz = 0

(9)

The superscript (i) is omitted in the equations above
because we obtain the same for the bottom plate ele-
ment due to the symmetric delamination. Similarly to
u and v, the shear strain must be zero at the interface
due to the opposite deformation of the top and bottom
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Fig. 3 Deformations of the top plate element under in-plane
shear force (a), torsion (b) and interface shear stresses (c)

plate elements, i.e.:

γ (1)
xy

∣∣
z=−t/2 = −Nxy

Gt
− t

∂2w

∂x∂y
− ksh

(
∂τxz

∂y
+ ∂τyz

∂x

)

= 0 (10)

These equations can be obtained also by formulat-
ing the conditions for the bottom plate element. We
note that Wang and Qiao derived only one of these
conditions, first for a symmetrically delaminated end-
notched flexure (ENF) specimen [22] and second for a
2D beam problem [59].

The basic equations for the uncracked portion of
delaminated Kirchhoff plates are given by Eqs. (1), (2)
(equilibrium equations), (3) (moment-curvature rela-
tionships), (9) and (10) (kinematic conditions), which
are totally ten equations building a system of partial
differential equations. The ten parameters are: Nx , Ny ,
Nxy , Mx , My , Mxy , τxz, τyz, ∂w/∂x and ∂w/∂y. Uti-
lizing the moment-curvature equations (Eqs. (3) and

taking them back into Eq. (2)) it is possible to obtain
the governing differential equation of the plate deflec-
tion for the uncracked region in the form of:

∂4w

∂x4
+ 2

∂4w

∂x2∂y2
+ ∂4w

∂y4

= t

2I1E1

(
∂τxz

∂x
+ ∂τyz

∂y

)
(11)

i.e., the inhomogeneity is caused by the interface shear
stresses. Consequently, Eq. (11) can be solved only
if we know the functions of the interface stresses,
τxz(x, y) and τyz(x, y). The solutions can be obtained
by solving partial differential equations detailed in
next section. In order to obtain a compatible displace-
ment field the following condition for the in-plane
displacements and the shear strain should be satis-
fied [66]:

γ (1)
xy

∣∣
z=−t/2 = ∂u1

∂y
+ ∂v1

∂x

∣∣∣∣
z=−t/2

(12)

It can be seen that the second and third terms in Eq. (9)
satisfy automatically the compatibility equation. On
the contrary, the first terms in the same equations
must be investigated. Differentiating the first terms in
Eqs. (9) and (10) with respect to x and y, respectively
and utilizing the compatibility condition we have:

∂2Nxy

∂x∂y
= − 1

2(1 + ν)

(
∂2Nx

∂y2
+ ∂2Ny

∂x2

− ν

{
∂2Nx

∂x2
+ ∂2Ny

∂y2

})
(13)

Incorporating Eqs. (1) the following PDE is obtained
for Nxy :

−
{

∂4Nxy

∂x4
+ 2

∂4Nxy

∂x2∂y2
+ ∂4Nxy

∂y4

}

= ∂3τxz

∂y3
+ ∂3τyz

∂x3
− ν

{
∂3τxz

∂x2∂y
+ ∂3τyz

∂x∂y2

}
(14)

which should be incorporated in order to obtain a kine-
matically compatible displacement field.

3 Governing equations of interface shear stresses

In this section we derive the partial differential equa-
tions for the shear stresses, τxz(x, y) and τyz(x, y).
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The first step is that we express ∂w/∂x, ∂w/∂y and
∂2w/∂x∂y from Eqs. (9) and (10), respectively. Then
we take them back into the moment-curvature equa-
tions (Eq. (3)). Finally, the first derivatives of the mo-
ments are put into the equilibrium equations (Eq. (2)).
This procedure leads to the following equations in
terms of τxz(x, y) and τyz(x, y):

∂2τxz

∂x2
+ (1 − ν)

2

∂2τxz

∂y2

+ (1 + ν)

2

∂2τyz

∂x∂y
− 3(1 − ν)

8t2
τxz = 0

∂2τyz

∂y2
+ (1 − ν)

2

∂2τyz

∂x2

+ (1 + ν)

2

∂2τxz

∂x∂y
− 3(1 − ν)

8t2
τyz = 0

(15)

It is required to separate the equations with respect
to τxz(x, y) and τyz(x, y). Therefore, from the first of
Eqs. (15) we express ∂2τyz/∂x∂y, ∂4τyz/∂x3∂y, and
∂4τyz/∂x∂y3. Differentiating the second of Eqs. (15)
with respect to x and y and substituting back the for-
mer terms, the following equation is obtained:

∂4τxz

∂x4
+ ∂4τxz

∂y4
− A

(
∂2τxz

∂x2
+ ∂2τxz

∂y2

)

+ B
∂4τxz

∂x2∂y2
+ Cτxz = 0 (16)

A similar mathematical manipulation of Eq. (15) re-
sults in:

∂4τyz

∂x4
+ ∂4τyz

∂y4
− A

(
∂2τyz

∂x2
+ ∂2τyz

∂y2

)

+ B
∂4τyz

∂x2∂y2
+ Cτyz = 0 (17)

where:

A = 3(3 − ν)

8t2
, B = 2, C = 9(1 − ν)

32t4
(18)

i.e., the governing equations of the interface shear
stresses are given by fourth order PDEs. In the next
section we present the solution for a simply supported
plate subjected to point force.

Fig. 4 A simply supported delaminated plate subjected to point
force. Subproblem (a): stepped thickness plate

4 Solution of a simply supported delaminated
plate

The simply supported boundary conditions for a rect-
angular plate mean that if x = a or x = −c then w = 0,
Mx = 0, moreover if y = 0 or y = b then w = 0,
My = 0 as it is given in [4], p. 247. Let us consider
now Figs. 4 and 5, where the whole problem is divided
into two subproblems: problem (a) and problem (b).
Problem (a) in Fig. 4 is a delaminated plate without
the consideration of the interface shear stresses. This
problem is treated as a general plate bending problem
using Kirchhoff plate theory. Problem (b) (Fig. 5) im-
plies that the plate is loaded by the interface shear trac-
tions, τxz(x, y) and τyz(x, y). This problem is solved
by using the equations presented in Sects. 2–3. We cal-
culate the initial values of the unknown shear tractions
from problem (a) [20, 67]. This provides an improve-
ment with respect to the original (a) problem.

4.1 Problem (a)—simply supported stepped
thickness plate

In fact this problem is treated as a stepped thickness
plate [68, 69], where the different bending stiffness
of the delaminated and uncracked parts are considered
(see Fig. 4). The deflection and the area moment of in-
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Fig. 5 A simply supported delaminated plate subjected to point
force. Subproblem (b): plate subject to shear tractions in the un-
delaminated region

ertias of the cracked and uncracked plate portions are:

wa
I (x, y): 0 ≤ x ≤ a, 0 ≤ y ≤ b

I I
1 = 1

6
t3

wa
II(x, y): − c ≤ x ≤ 0, 0 ≤ y ≤ b

I II
1 = 2

3
t3

(19)

In accordance with Lévy plate formulation [4], we ap-
ply the following solutions:

wa
I (x, y) =

∞∑
n=1

Wa
In(x) sinβy

wa
II(x, y) =

∞∑
n=1

Wa
IIn(x) sinβy

(20)

which satisfy the simply supported plate boundary
conditions at y = 0 and y = b and where β = nπ

b
.

Taking the deflections back into the general governing
equation of plate bending problems [1] we obtain:

∂4Wa
In

∂x4
− 2β2 ∂2Wa

In

∂x2
+ β4Wa

In = Qn

II
1 E1

(21)

where under the presence of a concentrated force with
point of action located at x0 and y0 the function Qn(x)

becomes [4]:

Qn = 2Q0

b
δ(x − x0) sinβy0 (22)

For the uncracked portion of the plate there is no ex-
ternal load, therefore we have:

∂4Wa
IIn

∂x4
− 2β2 ∂2Wa

IIn

∂x2
+ β4Wa

IIn = 0 (23)

The solution functions are:

Wa
In(x) = A1ne

βx + A2ne
βx · x + A3ne

−βx

+ A4ne
−βx · x

+ Q0 sinβy0(β(x − x0) · coshβ(x − x0)

β3bI I
1 E1

− sinhβ(x − x0)

β3bI I
1 E1

(24)

if x0 ≤ x ≤ a, and:

Wa
In(x) = A1ne

βx + A2ne
βx · x

+ A3ne
−βx + A4ne

−βx · x (25)

if 0 ≤ x ≤ x0, moreover:

Wa
IIn(x) = B1ne

βx + B2ne
βx · x

+ B3ne
−βx + B4ne

−βx · x (26)

if −c ≤ x ≤ 0. In the solutions above Ain and Bin are
constants and the subscript n refers to the number of
actual Fourier term. The solution functions must sat-
isfy the following boundary conditions:

Wa
In(a) = 0,

∂2Wa
In

∂x2
− β2νWa

In

∣∣∣∣
x=a

= 0 (27)

Wa
IIn(−c) = 0

∂2Wa
IIn

∂x2
− β2νWa

IIn

∣∣∣∣
x=−c

= 0
(28)

Moreover, continuity of the deflection, slope, bending
moment and effective (Kirchhoff) shear force must be
ensured involving the following conditions [68, 69]:

Wa
In(0) = Wa

IIn(0)

∂Wa
In

∂x

∣∣∣∣
x=0

= ∂Wa
IIn

∂x

∣∣∣∣
x=0

(29)
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I I
1

(
∂2Wa

In

∂x2
− β2νWa

In

)∣∣∣∣
x=0

= I II
1

(
∂2Wa

IIn

∂x2
− β2νWa

IIn

)∣∣∣∣
x=0

(30)

I I
1

(
∂3Wa

In

∂x3
− β2(2 − ν)

∂Wa
In

∂x

)∣∣∣∣
x=0

= I II
1

(
∂3Wa

IIn

∂x3
− β2(2 − ν)

∂Wa
IIn

∂x

)∣∣∣∣
x=0

(31)

Using the above conditions and the deflection func-
tions the eight unknown constants and the deflec-
tion functions can be calculated. Essentially, based on
problem (a) it is possible to calculate the interface
shear stress, τxz along the crack front. The shear forces
can be expressed as [1, 2]:

Qx = −I II
1 E1(� w),x

Qy = −I II
1 E1(� w),y

(32)

Accordingly, the transverse shear stresses in the inter-
face plane of the uncracked part are given by:

τ 0
xz(x, y)

=
(

3

2

Qx(x, y)

t

)

= −3I II
1

2t

∞∑
n=1

(
∂3Wa

IIn

∂x3
− β2 ∂Wa

IIn

∂x

)
sinβy

=
∞∑

n=1

T 0
n (x) sinβy (33)

τ 0
yz(x, y)

=
(

3

2

Qy(x, y)

t

)

= −3I II
1

2t

∞∑
n=1

(
β

∂2Wa
IIn

∂x2
− β3Wa

IIn

)
cosβy

=
∞∑

n=1

R0
n(x) cosβy (34)

4.2 Problem (b)—simply supported plate subject to
shear tractions

In accordance with Eqs. (33)–(34) it is reasonable to
approximate the interface shear stresses in the form

of:

τxz(x, y) =
∞∑

n=1

Tn(x) sinβy

τyz(x, y) =
∞∑

n=1

Rn(x) cosβy

(35)

i.e., similarly to the deflections the shear stresses are
approximated by Fourier series in the y direction. Tak-
ing the shear stress solutions back into the governing
equations (Eqs. (16)–(17)) one can obtain:

∂4Tn(x)

∂x4
− S1

∂2Tn(x)

∂x2
+ S2Tn(x) = 0

∂4Rn(x)

∂x4
− S1

∂2Rn(x)

∂x2
+ S2Rn(x) = 0

(36)

where: S1 = A + Bβ2, S2 = β4 + Aβ2 + C. The solu-
tion can be found in the form of exponential functions.
The characteristic roots of Eq. (36) using Eq. (18) are:

λ1 = −
√

3(1 − ν)

8t2
+

(
nπ

b

)2

λ2 =
√

3(1 − ν)

8t2
+

(
nπ

b

)2

λ3 = −
√

3

4t2
+

(
nπ

b

)2

λ4 =
√

3

4t2
+

(
nπ

b

)2

(37)

The solution functions are:

Tn(x) =
4∑

i=1

Cine
λix, Rn(x) =

4∑
i=1

Dine
λix

(38)

Eq. (38) contains eight unknown coefficients. How-
ever, the shear stresses must satisfy the coupled gov-
erning equation. Taking back Eq. (38) into (15) the re-
lationship between Cin and Din can be established:

Din = 2λ2
i − (1 − ν)(β2 + 3/4t2)

λiβ(1 + ν)
Cin

Din = λiβ(1 + ν)

2β2 − (1 − ν)(λ2
i − 3/4t2)

Cin

(39)
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i.e., Cin and Din are not independent of each other,
and if λi is a characteristic root, then both equations
in (39) have to give the same. Based on the equilibrium
equations (Eq. (1)) and the interface shear stresses the
in-plane shear force can be expressed as:

Nxy(x, y) =
∞∑

n=1

nnxy(x) · cosβy (40)

Investigating the compatibility condition given by
Eq. (14) yields:

∂4nnxy

∂x4
− 2β2 ∂2nnxy

∂x2
+ β4nnxy

= β3Tn − ∂3Rn

∂x3
+ ν

(
β

∂2Tn

∂x2
− β2 ∂Rn

∂x

)
(41)

The homogeneous and particular solutions of nnxy are:

nh
nxy(x) = K1ne

βx + K2ne
βx · x

+ K3ne
−βx + K4ne

−βx · x (42)

n
p
nxy(x) =

4∑
i=1

Ci

βeλi (νλ2
i + β2)

(β2 − λ2
i )

2

−
4∑

i=1

Di

λie
λi (λ2

i + νβ2)

(β2 − λ2
i )

2
(43)

It can be shown by taking back Eqs. (43), (38) and
(49) (see later) into Eq. (10) that the compatibility
condition can be satisfied only by λ1 and λ2. Conse-
quently, due to this condition and Eq. (39) we have:
C3 = C4 = D3 = D4 = 0. As a next step we formulate
the deflection functions for problem (b). The plate is
still simply supported, therefore:

wb
I (x, y) =

∞∑
n=1

Wb
In(x) sinβy

wb
II(x, y) =

∞∑
n=1

Wb
IIn(x) sinβy

(44)

where the superscript b refers to problem (b). Substi-
tuting the deflections into the plate equation (left-hand
side of Eq. (11)) we have the following equations for
the delaminated and uncracked portions, respectively:

∂4Wb
In(x)

∂x4
− 2β2 ∂2Wb

In(x)

∂x2
+ β4Wb

In(x) = 0 (45)

∂4Wb
IIn(x)

∂x4
− 2β2 ∂2Wb

IIn(x)

∂x2
+ β4Wb

IIn(x)

= t

2I I
1 E1

(
∂Tn(x)

∂x
− βRn(x)

)

= t

2I I
1 E1

4∑
i=1

(
λiCine

λix − βDine
λix

)
(46)

Note, that we consider only one half of the problem,
due to symmetry with respect to the x axis. This is
the reason for applying I1 = I II

1 /2 in Eq. (11). The
solutions are given by:

Wb
In(x) = G1ne

βx + G2ne
βx · x

+ G3ne
−βx + G4ne

−βx · x (47)

Wb
IIn(x) = H1ne

βx + H2ne
βx · x + H3ne

−βx

+ H4ne
−βx · x + Wb

IInp(x) (48)

where Wb
IInp(x) is the particular solution of Eq. (46)

(uncracked portion):

Wb
IInp(x) = t

I II
1 E1

{
4∑

i=1

Ci

λie
λi

(β2 − λ2
i )

2

−
4∑

i=1

Di

βeλi

(β2 − λ2
i )

2

}
(49)

Eqs. (38), (47) and (48) contain 10 independent con-
stants. The four boundary and four continuity con-
ditions are the same as those for problem (a), see
Eqs. (27)–(31). Two more conditions can be formu-
lated with respect to the shear stresses. The shear
stress, τxz must vanish at the end of the uncracked por-
tion, therefore we have:

Tn(−c) = 0 (50)

The former involves that τyz (or Rn) decays also to
zero. The last condition is obtained based on the axial
equilibrium of the resultant forces obtained from the
shear tractions along the midplanes of the cracked and
uncracked portions [22]. However, in this respect we
need to use two conditions. First, we assume that in
the y direction the distribution of τxz in problem (b) is
the same as that in problem (a). For that we utilize the
following:

Author's personal copy



Meccanica

τ (a)
xz

∣∣
z=0 =

∞∑
n=1

T 0
n (x) sinβy (51)

where τ
(a)
xz is the shear stress in the midplane of the

uncracked part using Eq. (33) for problem (a). Then,
the tenth condition is:

Tn(0) = CT 0
n (x) (52)

where C is determined by the axial equilibrium of the
shear tractions in the midplanes of regions I and II,
respectively (refer to Fig. 5):
∫ b

0

∫ a

x0

τ (a)
xz

∣∣∣∣∣
z=−t/2

dxdy+
∫ b

0

∫ x0

0
τ (a)
xz

∣∣∣∣∣
z=−t/2

dxdy

−
∫ b

0

∫ 0

−c

τxzdxdy = 0 (53)

where τ
(a)
xz is the shear stress in the z = −t/2 plane

(interface plane), refer to Eq. (7) in the delaminated
region from problem (a), while τxz is the interfacial
shear stress in problem (b). We note that in the y di-
rection the equilibrium of shear tractions is also satis-
fied (see later the asymmetric distribution of τyz). Fi-
nally, by taking back Eqs. (38), (42), (43), (48) and
(49) into (10) it can be seen that Kin and Hin con-
stants are not independent of each other, the relation-
ships among them are:

K1n = −Gt2β(βH1n + H2n)

K2n = −Gt2β2H2n

K3n = Gt2β(βH3n − H2n)

K4n = Gt2β2H4n

(54)

That means ten constants and ten conditions, conse-
quently the system of equations can be solved. Based
on the deflection functions it is possible to calculate
the in-plane forces and interface stresses by substitut-
ing back the constants (Cin and Din) into Eq. (38) and
utilizing the equilibrium equations (Eq. (1)). The ERR
calculation is detailed in the next section.

5 Determination of the energy release rate and
mode mixity

It is well-known that for a linear elastic homogeneous
material the J -integral is equivalent to the ERR. In the

Fig. 6 Integration path for the 3-dimensional J -integral (a) and
reference system for problem a (b)

general 3D case the J -integral is [49, 50, 70]:

Jk =
∫

C

(Wnk − σijui,knj )ds

+
∫

A

(Wδk3 − σi3ui,k),3dA (55)

where k = 1,2 and:

J3 =
∫

C

(W3n1 − σ3j u3,1nj )ds (56)

where W and W3 are the strain energy densities:

W =
∫ εij

0
σij dεij , W3 =

∫ ε3j

0
σ3j dε3j (57)

where according to Fig. 6a nk is the outward normal
vector of the contour C, δij is the Kronecker tensor,
σij is the stress tensor (σijnj is the traction vector),
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Fig. 7 Incompatible displacement field predicted by Kirchhoff plate theory

ui is the displacement vector, A is the area enclosed by
contour C. The contour C contains the crack tip and
the integration is carried out in the counterclockwise
direction (see Fig. 6a). To separate the mixed mode
J -integral including all of the three fracture modes
there is a direct method (see e.g. [49, 50]) based on
the Jk integrals:

J1 = JI + JII + JIII, J2 = −2
√

JIJII

J3 = JIII

(58)

i.e., in the general case the JIII integral is directly ob-
tained from J3. The above method is relatively sim-
ple, however in certain cases the integration of singu-
lar functions can lead to erroneous results. An other
decomposition method has been proposed by Shivaku-
mar and Raju [49] which is based on the separation
of the displacement and stress components into sym-
metric and antisymmetric parts. Later, it was shown
by Rigby and Aliabadi [50] that the stress decompo-
sition in [49] was partly incorrect and the method has
been revisited, which was applied later by numerous
authors, e.g.: [52, 71].

In our case x1 = x, x2 = z and x3 = y (refer to
Figs. 6a–b). For the calculation we apply a zero-area
path [61], in other words the integration bounds are
x = −0 and x = +0 around the crack tip, which is
shown by Fig. 6b. This way the surface integral in
Eq. (55) becomes zero.

5.1 J -integral for problem (a)

For problem (a) the strain energy density becomes:

W = 1

2
(σxεx + σyεy + τxyγxy) (59)

where:

⎡
⎣

σx

σy

τxy

⎤
⎦ = z

I1

⎡
⎣

Mx

My

Mxy

⎤
⎦

⎡
⎣

εx

εy

γxy

⎤
⎦ = −z

⎡
⎣

w,xx

w,yy

2w,xy

⎤
⎦

(60)

In the above expression the terms related to σy and
εy in J1 and J3 should be ignored. This can be justi-
fied by the incompatible displacement field illustrated
in Fig. 7. Theoretically, if there is no crack opening,
then at the point where the cracked and uncracked
parts are connected to each other the strain in the y

direction and the distribution of the stress σy are the
same, in other words there is no discontinuity in this
respect. Therefore, in the ideal case the integration of
the stress, σy producted by the strain in the y direction
along contour C would lead to zero. Consequently, the
Kirchhoff plate model predicts erroneously the stress
state in the transition zone, which can be counteracted
only by ignoring the terms in question. Thus, the J -
integrals for problem (a) are:

J1a = −1

2

(
Ma

xIw
a
I,xx

∣∣
x=+0 − Ma

xIIw
a
II,xx

∣∣
x=−0

)

+ 2
(
Ma

xyIw
a
I,xy

∣∣
x=+0 − Ma

xyIIw
a
II,xy

∣∣
x=−0

)

(61)

J2a = 0

J3a = 2
(
Ma

xyIw
a
I,xy

∣∣
x=+0

− Ma
xyIIw

a
II,xy

∣∣
x=−0

)
(62)
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Based on the direct decomposition method (Eq. (58)),
we have:

JIIa(y) = −1

2

(
Ma

xIw
a
I,xx

∣∣
x=+0

− Ma
xIIw

a
II,xx

∣∣
x=−0

)

JIIIa(y) = 2
(
Ma

xyIw
a
I,xy

∣∣
x=+0

− Ma
xyIIw

a
II,xy

∣∣
x=−0

)

(63)

5.2 J -integral for problem (b)

For problem (b) the strain energy densities are:

WI = 1

2

(
σ I

x εI
x + σ I

y εI
y + τ I

xyγ
I
xy

)

WI
3 = 1

2

(
σ I

y εI
y + τ I

xyγ
I
xy

)

W II = 1

2

(
σ II

x εII
x + σ II

y εII
y + τ II

xyγ
II
xy

+ τ II
xzγ

II
zy + τ II

yzγ
II
yz

)

W II
3 = 1

2

(
σ II

y εII
y + τ II

xyγ
II
xy + τ II

yzγ
II
yz

)

(64)

where “I” refers to the delaminated part, “II” refers to
the uncracked part of the plate, τxz and τyz are given
by Eqs. (7), moreover γxz = τxz/G and γyz = τyz/G.
For the delaminated part the J -integral is calculated in
the same way as that for problem (a) using Eq. (60). In
contrast, for the uncracked part the stresses are:

σ II
x = E1

(
εII
x + νεII

y

)

σ II
y = E1

(
εII
y + νεII

x

)

τ II
xy = Gγ II

xy

(65)

where εx , εy and γxy can be calculated by Eq. (60).
Thus, we have:

J1b = −
∫ t/2

−t/2
WIdz +

∫ t/2

−t/2

(
σ I

x εI
x + τ I

yxγ
I
xy

)
dz

+
∫ t/2

−t/2
W IIdz

−
∫ t/2

−t/2

(
σ II

x

∂uII

∂x
+ τ II

yx

∂vII

∂x
+ τ II

zx

∂wII

∂x

)
dz

(66)

where εI
x = wI,xx · z, γ I

xy = 2 · wI,xy · z, furthermore
uII , vII are given by:

uII = u0II − ∂wII

∂x
z, vII = v0II − ∂wII

∂y
z (67)

where u0 and v0 can be determined based on Eqs. (5),
while wII is given by the second of Eq. (44). Similarly
to problem (a), J2b = 0, moreover:

J3b = −
∫ t/2

−t/2
WI

3 dz +
∫ t/2

−t/2
τ I
yx

∂vI

∂x
dz

+
∫ t/2

−t/2
W II

3 dz −
∫ t/2

−t/2
τ II
yx

∂vII

∂x
dz (68)

Again, the terms related to σy and εy in J1b and J3b

should be ignored. Although displacement and shear
strain continuity is ensured for the uncracked por-
tion, for the delaminated part it is not. Calculating
the mode-II and mode-III integrals we have: JIIb =
2 · J1b − 2 · J3b and JIIb = 2 · J3b where a production
by 2 is necessary because we have two layers (top and
bottom), and for problem (b) only one of them have
been analyzed. Thus, we obtain:

JIIb = 2

{
−1

2
(MxIwI,xx |x=+0 − MxIIwII,xx |x=−0)

+ 1

2
Nxε

0
x

∣∣∣∣
x=−0

+
∫ t/2

−t/2
τxz

(
wII,x − 1

2
uII,z

)
dz

∣∣∣∣∣
x=−0

}

(69)

JIIIb = 2

{
2
(
Mb

xyIw
b
I,xy

∣∣
x=+0 − Mb

xyIIw
b
II,xy

∣∣
x=−0

)

+ Nxy

(
1

2
γ 0
xy + vb

II,x

)∣∣∣∣
x=−0

− 1

2

∫ t/2

t/2
τyzv

b
II,zdz

∣∣∣∣∣
x=−0

}
(70)

where based on Eq. (6):

uII,z = ksh

∂τxz

∂z
, vII,z = ksh

∂τyz

∂z
(71)
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Table 1 The convergence of the plate theory solution by increasing the number of Fourier terms

N 1 3 5 7 9 11 13 15 17 19

wa
I (x0, y0) [mm] −4.883 −5.146 −5.205 −5.226 −5.236 −5.241 −5.245 −5.247 −5.248 −5.249

Nx(0, b/2) [N/mm] −13.15 −14.30 −14.42 −14.44 −14.44 −14.44 −14.44 −14.44 −14.44 −14.43

Nxy(0,0) [N/mm] 4.91 4.77 4.78 4.78 4.78 4.78 4.78 4.78 4.78 4.78

τxz(0, b/2) [N/mm2] −1.466 −1.689 −1.1720 −1.7249 −1.7255 −1.7256 −1.7256 −1.7256 −1.7256 −1.7256

τyz(0,0) [N/mm2] −0.1358 −0.0760 −0.0894 −0.0869 −0.0873 −0.0873 −0.0873 −0.0873 −0.0873 −0.0873

GII(0, b/2) [J/m2] 64.6 91.7 96.3 97.0 97.1 97.1 97.1 97.1 97.1 97.1

GIII(0,0) [J/m2] 517.4 403.2 418.1 416.0 416.3 416.3 416.3 416.3 416.3 416.3

Finally, the ERRs are:

GII = JII = JIIa + JIIb

GIII = JIII = JIIIa + JIIIb

(72)

The mode mixity (GII/GIII) is calculated by using
Eq. (72) at each y location along the crack front.

6 Results and discussion

The properties of the analyzed simply supported plate
were (refer to Fig. 4): a = 105 mm (crack length), c =
45 mm (uncracked length), b = 100 mm (plate width),
t = 1.55 mm (plate thickness), E = 33 GPa (modulus
of elasticity), ν = 0.27 (Poisson’s ratio), Q0 = 1000 N
(point force magnitude), x0 = 31 mm, y0 = 50 mm
(point of action coordinates of Q0). The computation
was performed by using the code MAPLE [72] in ac-
cordance with the following points. First, problem (a)
in Fig. 4 was solved varying the number of Fourier se-
ries terms (N ) by creating a for-do cycle. Then, from
the deflection functions of problem (a) the transverse
shear stress was calculated (Eq. (33)). The next step
was the solution of problem (b) in Fig. 5, the system of
equations was constructed using Eqs. (38), (46), (47)
and (48) by utilizing the B.C.s given by Eqs. (27)–(31)
and (50)–(53). The in-plane normal and shear forces
were determined from Eqs. (54), (42), (43), then by
using Eq. (1) while the ERRs were calculated using
the J -integral.

6.1 Convergence analysis

Table 1 shows how the results converge as we increase
the number of terms in the Fourier series solution. It is
seen that after the 15th term there is no change in any

Fig. 8 ANSYS FE model of the simply supported delaminated
plate

of the quantities presented in Table 1. Consequently,
the relatively fast convergence of Lévy’s method [1]
can be exploited also for the calculation of ERRs.

6.2 Finite element model—VCCT and J -integral

In order to verify the analytical results a finite element
analysis was carried out. The 3D finite element model
of the plate is shown by Fig. 8. The model was created
in the commercial ANSYS 12 package using 8 node
solid elements. In the vicinity of the crack tip a re-
fined mesh was constructed including trapezoid shape
elements [73]. The z displacements of contact nodes
over the delaminated surface were imposed to be the
same. The mode-II and mode-III ERRs were calcu-
lated by the VCCT method, the size of the crack tip
elements were �x = 0.25 mm, �y = 0.25 mm and
�z = 2 mm. For the determination of GII and GIII

a so-called MACRO was written in the ANSYS De-
sign and Parametric Language (ADPL). The MACRO
gets the nodal forces and displacements at the crack
tip and at each pair of nodes, respectively, then by
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Fig. 9 Plate deflections from subproblems (a) and (b)

defining the size of crack tip elements it determines
and plots the ERRs at each point along the crack front.
Apart from the VCCT GII and GIII were determined
also by the J -integral, which is available in ANSYS
12 as a built-in command.

6.3 Kirchhoff plate theory results

The deflection functions calculated for problems (a)
and (b) are depicted in Fig. 9, respectively when N =
19 (number of terms in the Fourier series). As ex-
pected, the maximum deflection in problem (a) takes
place at the point of action of Q0. Compared to prob-
lem (a), problem (b) provides essentially very small
displacement values.

Fig. 10 Distribution of total (a) and particular (b) solutions of
the in-plane normal force

Figures 10 and 11 demonstrate the distribution of
the in-plane normal and shear forces over the interface
of the undelaminated region of the top plate (N = 19).
The total solutions are shown by Figs. 10a and 11a.
For Nx the total solution vanishes only at the end of
the plate, while Nxp decays very fastly behind the
crack front. Similar conclusions can be drawn based
on Figs. 11a and 11b. It is important to note that the
homogeneous part of Nxy is induced by the twisting
curvature of the top and bottom plate elements (refer
to Fig. 3b), while the particular solution is related to
the interface shear stresses.
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Fig. 11 Distribution of total (a) and particular (b) solutions of
the in-plane shear force

The interface shear stresses are plotted in Fig. 12.
Similarly to the particular solution of in-plane forces,
they decay fastly to zero behind the crack front.

The mode-II, mode-III ERRs and the mode ratio
along the crack front are shown by Fig. 13. The sym-
bols show the result of the VCCT and the J -integral
by FEM, while the curves represent the purely analyti-
cal plate theory solutions. The solution of problem (a)
provides the major part of the ERRs. It is seen that
the mode-II component is significantly underestimated
by the classical plate theory solution. On the contrary
the mode-III component is overestimated. Problem (b)
provides a reasonable improvement for the mode-II

Fig. 12 Distribution of the interface shear stresses: τxz (a),
τyz (b)

ERR, which is 43.8 % for GII and only −5.7 % for
GIII .

Also, it is clear that plate theory still underestimates
the mode-II component, in the midpoint the difference
is about 24.5 % compared to the VCCT result. In con-
trast, the mode-III ERR is slightly smaller compared to
the plate theory. From this point of view the difference
between maximum of the mode-III ERR by VCCT and
the plate model is about 1.2 %. While the VCCT pre-
dicts that the mode-III ERR decays suddenly near the
edges, there is not any decay in accordance with the
plate solution. From the practical point of view this
difference is insignificant. The crack is expected to ini-
tiate/propagate at the points where the highest ERR
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Fig. 13 Energy release rate distributions (a) and mode ratios
(b) by Kirchhoff plate theory (Lévy solution) and FE analysis
(VCCT and J -integral)

takes place. This point is in fact almost identical pre-
dicted by the two methods. The ANSYS’ J -integral
underpredicts both ERR components in comparison
with the VCCT. In this respect, the plate theory solu-
tion (a+b) agrees very-well with the mode-II ERR, on
the contrary the mode-III component by the numerical
J -integral is significantly underpredicted and neither
the plate theory nor the VCCT shows good agreement
with it.

The mode ratio (GII/GIII ) is depicted in Fig. 13b.
It shows that the VCCT and the numerical J -integral
is in a reasonably good agreement with each other.
The classical plate theory solution (a) slightly under-
estimates the mode ratio, however the contribution of

problem (b) makes the solution matching well with the
numerical results.

The overall agreement between the VCCT and
plate theory methods is fairly good. The difference be-
tween the VCCT and plate theory solution can be at-
tributed to the transverse shear effect. Moreover, the
continuity of the displacements is ensured only in
problem (b), and it was elaborated that the stress and
displacement fields in the y direction lead to incom-
patibilities in problem (a).

It has been shown in numerous papers that trans-
verse shear has a significant effect on the ERRs [24,
26, 56, 57]. It is expected that in the case of the
mode-II ERR the effect of transverse shear takes place
in higher degree in the middle of the crack front, while
it vanishes at the plate edges. Considering the mode-III
ERR the transverse shear effect is assumed to be sig-
nificant near the edges and negligible in the middle of
the crack front.

7 Applications, future developments

The possible application field of the presented method
is the fracture mechanics of composite materials. In
the last few years test methods involving the bending
of delaminated composite plates have been developed
[17, 33, 39] for mode-III, mixed-mode II/III and I/III.
For the determination of the ERR an analytical data
reduction scheme has not yet been developed for these
systems.

The solution can be improved by using the Reissner-
Mindlin [2–4] and other higher order plate theories
[74–76] to elaborate the significance of transverse
shear effect on the ERRs. An essential requirement
is that the formulation should be generalized for un-
symmetrically delaminated plates too. Furthermore
for composites the formulation should be done incor-
porating the theory of laminated plates. It should be
noted that in the case when the top and bottom plate
elements have different material properties then the
shear stresses can not be expressed in the way shown
in Sect. 3. A useful alternative in this case is that we
derive first the governing equations of the in-plane
forces, Nx and Ny , afterwards incorporating the com-
patibility and equilibrium equations it is possible to
obtain Nxy and the interface shear stresses. The rele-
vant equations are presented in the Appendix for sym-
metric delamination and with material isotropy, for
laminated plates the procedure works similarly [77].
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Finally but not least, the mode-I (opening mode)
ERR was not considered in this study. A possible solu-
tion for this problem is the application of elastic foun-
dation plates [1, 78]. Further work is necessary to in-
clude all of these effects and possibilities.

8 Conclusions

A purely analytical plate theory approach has been
presented to calculate the mode-II and mode-III ERR
distributions along the crack front of symmetrically
delaminated, isotropic plates subjected to bending.
The formulation is based on the consideration of in-
terface shear stresses and the continuity of the dis-
placements and shear strain over the interface of a
double-plate system. The governing equations have
been developed for the interface shear stresses leading
to fourth order partial differential equations. The rela-
tionship among the shear stresses and the well-known
fourth order PDE of plate deflection has been estab-
lished. The solution of system of PDEs has been pre-
sented for a simply supported delaminated plate as-
suming material isotropy. To solve the problem Lévy
plate formulation has been adopted. The whole prob-
lem has been solved in two steps: problem (a) covered
a stepped thickness plate where the transverse shear
stress has been calculated and utilized as input data
(initial value) for a further analysis. Problem (b) has
been formulated by separating the double-plate sys-
tem into two individual plates (top and bottom) as-
suming shear tractions over the uncracked portions of
the plates. The energy release rates have been calcu-
lated using the 3-dimensional J -integral by defining
a zero-area path around the crack front. The mode-II
and mode-III components have been determined by a
direct mode decomposition method. The results have
been compared to those of a 3D finite element model
and a fairly good agreement has been found. It has
been shown that for the presented problem the inter-
face shear stresses contribute significantly only to the
mode-II energy release rate.

Considering the available methods for the calcula-
tion of the ERR in plates subjected to bending the first
choice is in general the VCCT method. However, for
a 3D FE model the computation could be lengthy, es-
pecially if the model has relatively large dimensions.
Moreover in the crack tip a refined mesh should be
constructed with relatively small elements compared

to the global element size to obtain accurate ERR val-
ues and reach the desired convergence. Finally, to pro-
cess the FE results a user-defined subroutine is neces-
sary, because in most of the commercial FE packages
the VCCT has not yet been implemented. The other al-
ternatives available in the literature have similar draw-
backs. In this respect the present work provides an-
other possibility for plate bending problems including
delamination. The main goal of this paper is that it has
been shown how we can use plate theories to predict
ERR distributions in plate-like structures. From other
perspectives, the disadvantages of the proposed formu-
lation are the facts that the original problem must have
an analytical solution and the ERRs can be calculated
in two steps. The method can be applied for plates with
through the width crack and involving simple bound-
ary conditions wherein the Lévy plate formulation can
be applied. On the other hand the two level computa-
tion can be performed in the same MAPLE worksheet
and the data of the model (material and geometrical
properties, load position and magnitude) can be very
simply varied compared to a FE model.
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Appendix

To derive the governing equations for the in-plane
forces Nx and Ny we express first the moments from
Eqs. (3), (9) and (10):

Mx = −2I1

t2
Nx + 2I1E1ksh

t

×
(

∂2Nx

∂x2
− (1 + ν)

∂2Nxy

∂x∂y
+ ν

∂2Ny

∂y2

)

My = −2I1

t2
Ny + 2I1E1ksh

t

×
(

∂2Ny

∂y2
− (1 + ν)

∂2Nxy

∂x∂y
+ ν

∂2Nx

∂x2

)

(73)
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Mxy = 2I1

t2
Nxy + I1E1(1 − ν)ksh

t

×
(

∂2Nx

∂x∂y
− ∂2Nxy

∂x2
− ∂2Nxy

∂y2
+ ∂2Ny

∂x∂y

)
(74)

Incorporating the equilibrium equations (Eqs. (1), (2))
and the compatibility equation (Eq. (14)) one can ob-
tain the following coupled PDE system:

A1
∂4Nx

∂x4
+ A2

∂4Nx

∂x2∂y2
+ A3

∂2Nx

∂x2
+ A4

∂4Nx

∂y4

+ A5
∂2Nx

∂y2
+ A6

∂4Ny

∂x4
+ A7

∂4Ny

∂x2∂y2
+ A8

∂2Ny

∂x2

+ A9
∂4Ny

∂y4
+ A10

∂2Ny

∂y2
= 0 (75)

A1
∂4Ny

∂y4
+ A2

∂4Ny

∂x2∂y2
+ A3

∂2Ny

∂y2
+ A4

∂4Ny

∂x4

+ A5
∂2Ny

∂x2
+ A6

∂4Nx

∂y4
+ A7

∂4Nx

∂x2∂y2
+ A8

∂2Nx

∂y2

+ A9
∂4Nx

∂x4
+ A10

∂2Nx

∂x2
= 0 (76)

where the constants are:

A1 = 1

9

t3(4 + ν − ν2)

1 − ν2

A2 = 1

9

t3(5 − ν2)

1 − ν2

A3 = − 1

12

t (2 + ν)

1 + ν
, A4 = 1

9

t3

1 + ν

A5 = − 1

12

t

1 + ν
, A6 = 1

9

t3(3 + ν)

1 − ν2

A7 = 1

9

t3(3 + ν2)

1 − ν2
, A8 = A5

A9 = −νA4, A10 = −νA8

(77)

The above PDE system can be solved by using the
Fourier series solutions for Nx and Ny .
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