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The classical laminated plate theory is applied to calculate the stresses and energy release rate function in
symmetrically delaminated orthotropic plates. First, the equilibrium of classical plate forces, moments
and interfacial shear stresses is formulated. Second, the displacement continuity between the interface
plane of a double-plate model was considered. The governing equation system of the double-plate model
consists of ten equations. As an example a delaminated, orthotropic, simply-supported plate subjected to
a point force is analyzed. The distribution of the plate forces as well as the interlaminar shear stresses
over the uncracked part were determined. Moreover, the mode-II and mode-III energy release rate distri-
butions along the crack front were calculated by the J-integral. The 3D finite element model of the del-
aminated composite plate was also created. The results indicate a reasonably good agreement between
analysis and numerical calculation.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Laminated composite plates have many industrial applications,
e.g., the fields of bridge and bodywork construction, aeroplanes
and finally but not least ship construction can be mentioned.
Delamination is one of the major damage mode in laminated
fiber-reinforced polymer matrix composite materials (Brunner
and Flüeler, 2005; Brunner et al., 2008), on which the paper is
focusing. Mechanically, the formation of cracks and delamination
surfaces can be characterized by means of the energy-based princi-
ples of fracture mechanics (Anderson, 2005), however it must be
mentioned that for many structural applications (e.g., aircrafts)
strength-stiffness criteria are still used for design (Tsai, 1992). The
energy release rate (ERR) is the basic parameter dimensioning the
structures against crack initiation and propagation. The limit value
of the ERR is called the critical ERR (CERR), which can be determined
using standard (or nonstandard) test methods. It has to be noted
that some standards specify a minimum bending stiffness require-
ments for the material (e.g., ISO 15024 for mode-I). Beam tests, in
general involve simple geometry and reduction schemes. Although
for the mode-I (Wilkins et al., 1982; ISO15024, 2001), mode-II
(Russel and Street, 1982; JIS7086, 1993) and mixed-mode I/II
fracture (Reeder and Crews, 1990; ASTMD6671-01, 2001) there is
a consensus to use simple beam tests, for mode-III (Lee, 1993; Li
and O’Brien, 1996; Farshad and Flüeler, 1998; de Moura et al.,
ll rights reserved.
2009; Szekrényes, 2009a; de Morais and Pereira, 2009; Browning
et al., 2010, 2011; de Morais et al., 2011; Pereira et al., 2011) there
is not yet an internationally accepted test. Also, the combination of
the mode-I and mode-II fractures have the greatest attention in the
society of researchers and engineers (e.g., Plain and Tong, 2011;
da Silva et al., 2011; Jumel et al., 2011). On the contrary, mixed-
mode I/III (Pereira and de Morais, 2009; Szekrényes, 2009b), II/III
(Szekrényes, 2007; de Morais and Pereira, 2008; Suemasu et al.,
2010; Kondo et al., 2011) and I/II/III (Marat-Mendes and Freitas,
2010; Davidson and Sediles, 2011; Szekrényes, 2011) were investi-
gated only in the 21st century. The mode-III fracture involves signif-
icant difficulties: first pure mode-III condition is impossible to be
achieved, second the geometry of the test samples is also a critical
point. Beam specimens are in general very stiff, plate specimens
are much more difficult to be manufactured.

An important issue in mixed-mode fracture is the separation of
fracture modes. For beams (mixed-mode I/II) the energy-based
method developed by Williams (1988) must be mentioned first.
This so-called global method is valid only for symmetrically dela-
minated beams, moreover the top and bottom subbeams must
have identical mechanical properties. A local method was devel-
oped by Suo and Hutchinson (1990). The ERR was calculated based
on beam theory, but the mode ratio was calculated by solving the
problem of a semi infinite crack by the distributed dislocation
method (Hills et al., 1996). The main aspect is that it works for
unsymmetrically delaminated beams too. A similar model was also
proposed by Davidson et al. (1995). Mode separation in cracked
bodies is also possible by using the J-integral (Rice, 1968;
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Cherepanov, 1997) by utilizing field theories, either for plane or 3D
problems (Shivakumar and Raju, 1992; Rigby and Aliabadi, 1998).
The virtual crack-closure technique (VCCT) is a powerful numerical
method for the calculation of ERR and mode ratio. (e.g., Marat-
Mendes and Freitas, 2010). Apart from that there is a plate theory
based method in conjunction with finite element analysis, see e.g.,
(Sankar and Sonik, 1995; Davidson et al., 2000). The so-called crack
tip force method (CTFM) (Park and Sankar, 2002) is based on sim-
ilar considerations as the VCCT. The main problem of the FE models
is that for plates the 3D model should be constructed with rela-
tively high mesh resolution and in most of the FE packages the
VCCT is not available as a built-in command. Considering the mode
separation problem the development of new approaches is still in
progress (see e.g. Wang and Harvey, 2012; Valvo, 2012).

In this paper the classical laminated plate theory (CLPT) is com-
plemented with a flexible joint. The governing equations of mixed-
mode II/III delamination problems are formulated for a double
plate model. The equilibrium of in-plane forces, interfacial shear
stresses, bending and twisting moments is considered. Apart from
that the displacement continuity between the top and bottom
plates is derived. The boundary value problem is solved for a sim-
ply-supported orthotropic plate with midplane delamination. The
whole problem is solved in two steps. First CLPT is applied, second
the flexible joint model is utilized. The resultant stress field and en-
ergy release rate are calculated by superimposing the results of the
two subproblems.
2. Classical laminate plate model with flexible joint

Fig. 1 shows two differentially small plate elements taken from
the top (a) and bottom (b) layers of an uncracked orthotropic plate.
Here we consider only balanced laminated plates, i.e., the top and
bottom layers are also orthotropic and their lay-up is symmetric
with respect to the local mid-planes. It is assumed that the deflec-
tion of the top and bottom plate elements are the same and are
equal to wðx; yÞ. The equilibrium of the in-plane plate forces and
the interfacial shear stresses leads to (see Fig. 1):
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Fig. 1. Equilibrium of the top (a) and bottom (b) differential plate elements.
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where Nx;Ny are the in-plane normal forces, Nxy is the in-plane
shear force, sxz=sxzðx; yÞ and syz=syzðx; yÞ are the interfacial shear
stresses, respectively. Considering the moment equilibrium about
axes x and y we obtain:
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where Mx;My and Mxy are the bending and twisting moments. The
direct and inverse relations between forces and strains are (Reddy,
2004):
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where Aij are the corresponding extensional stiffnesses, while aij are
the compliances calculated from the inverse of the extensional stiff-
ness matrix (Reddy, 2004; Kollár and Springer, 2003). Following the
basic equations of CLPT the moment–curvature relationships are
(Kollár and Springer, 2003):
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where Dij is the corresponding bending/twisting stiffness. As a next
step we formulate the continuity conditions over the interface of
the uncracked portion of a delaminated plate system. Along the
crack front a flexible joint model (Wang and Qiao, 2004) is applied.
Fig. 2. presents the possible sources of the in-plane displacements:
in-plane forces (a), bending (b) and finally the interface shear defor-
mation (c and d). The resultant displacement from these effects
along the interface of the top plate is:
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Z
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are the shear compliances and are calculated as the generalization
of the one given by Suhir (1986). Moreover C55 and C44 are the shear
stiffnesses for a single laminate (Reddy, 2004). A third condition
must be satisfied for plates: the shear strain must be equal to zero
along the interface. In this respect three effects should be consid-
ered based on Fig. 3 (Chou and Pagano, 1967): in-plane shear force
(a), twisting moment (b) and the shear strain induced by interface
shear stresses (c), i.e.,
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Eqs. (6), (7) and (9) can be obtained also by formulating the conti-
nuity conditions for the bottom plate element. In order to obtain
a kinematically compatible displacement field Eqs. (6) and (7) must
satisfy the following equation (Chou and Pagano, 1967):



x y

z

Nx

u0 v0

NxNy

Ny

(a)

x y

z(c)

k xz

xz

x y

z(d)

yz

x y

z(b)

t w
2 x

Mx

Mx

dx dy

sh
55 k yzsh

44

Fig. 2. Deformations of the top plate element under in-plane forces (a), bending (b) and interface shear stresses (c,d).
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The second and third terms in Eqs. (6) and (7) satisfy automatically
this condition. On the contrary, with respect to the first terms in the
same equations the following relationship can be obtained:

@2Nxy

@x@y
¼ � 1

a66
a11

@2Nx

@y2 þ a22
@2Ny

@x2 þ a12
@2Nx

@x2 þ
@2Ny

@y2

( ) !
ð11Þ

The basic equations for the uncracked portion of laminated plates
with a flexible joint are given by Eqs. (1) and (2) (equilibrium equa-
tions), (5) (moment–curvature relationships), (6), (7) and (9) (kine-
matic conditions), which are totally ten equations building a system
of partial differential equations (PDE). The ten parameters are:
Nx;Ny;Nxy, Mx;My;Mxy; sxz; syz; @w=@x and @w=@y. Utilizing the mo-
ment–curvature equations (Eqs. (5)) and taking them back into
Eq. (2), it is possible to obtain the governing differential equation
of the plate deflection for the uncracked region in the form of:
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i.e., the inhomogeneity is caused by the interfacial shear stresses.
3. Governing equations of in-plane forces

In this section we derive the PDEs for the in-plane forces. The
first step is that we express @w=@x; @w=@y and @2w=@x@y from
Eqs. (6), (7) and (9), respectively. Then we take them back into
(Eq. (5)). Afterwards sxzðx; yÞ and syzðx; yÞ are calculated from Eq.
(1), the derivative of Nxyðx; yÞ is given by Eq. (11), all of them should
be taken back into the expressions of moments. Finally, the first
derivatives of the moments are put into the equilibrium equations
(Eq. (2)). This procedure leads to the following equations:
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where the coefficients are collected in Appendix A. In the next sec-
tion we present the solution for a simply-supported thin orthotro-
pic plate subjected to a point force.

4. Solution of a simply-supported delaminated plate

Let us consider now Fig. 4, where the whole problem is treated
as the sum of two subproblems. Problem (a) in Fig. 4a is a delami-
nated composite plate treated as a general plate bending problem
using CLPT. Problem (b) implies that the plate is loaded by the
interfacial shear tractions, sxzðx; yÞ and syzðx; yÞ. This problem is
solved by using the equations presented in Sections 2,3 providing
an improvement with respect to the original (a) problem.

4.1. Problem (a) – simply-supported stepped thickness plate

This problem is treated as a stepped thickness plate (Guo,
1997), where the different bending stiffness of the delaminated
and uncracked parts are considered (see Fig. 4). The deflection of
the cracked (1) and uncracked (2) plate portions are:

wa
1ðx; yÞ : 0 6 x 6 a; 0 6 y 6 b

wa
2ðx; yÞ : �c 6 x 6 0; 0 6 y 6 b

ð15Þ

In accordance with Lévy plate formulation (Reddy, 2004), we have:
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where b ¼ np
b . Taking the deflections back into the general governing

equation of laminated plates (Reddy, 2004) we obtain:
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Fig. 4. A simply-supported delaminated plate subjected to point force. Subproblem
(a): stepped thickness plate. Subproblem (b): top plate subject to shear tractions.
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In the undelaminated part the deflection is governed by:
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where Ain and Bin are constants and the subscript, n refers to the ac-
tual Fourier term. The characteristic roots based on Eqs. (17), (19)
are:
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where k refers to the delaminated (1) and uncracked (2) part, and:
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Moreover, the continuity of the deflection, slope, bending moment
and effective (Kirchhoff) shear force involves four more conditions
(Guo, 1997):
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If the deflection is known, the interlaminar shear stresses can be ob-
tained for each layer using the 3D equilibrium equations (Reddy,
2004, p. 250).
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4.2. Problem (b) – simply-supported plate subject to shear tractions

Since the plate is symmetric, it is sufficient to analyze only the
top plates of the cracked and uncracked regions. Consequently, the
bending and extensional stiffnesses for problem (b) are equal to
the halves of those in problem (a). Similar to the deflection we shall
approximate the in-plane forces and shear stress by Fourier series
in the y direction as:
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From Eq. (20) it is clear that WnðxÞ has a homogeneous and a partic-
ular solutions as well. It is a reasonable assumption, that the shear
stresses, sxz and syz have only particular solutions. Moreover the in-
plane forces are:
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i.e., even the forces have homogeneous and particular solutions.
Eqs. (6) and (7) are satisfied only by the particular solutions of
the forces, thus from Eqs. (13) and (14) we have:
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Utilizing these solutions, from Eq. (31) we obtain:

Q11 Q12

Q21 Q22

� 	ðiÞ Nin

Min

� 	
¼

0
0

� 	
ð33Þ

The characteristic equation is obtained by setting the determinant
of the matrix in Eq. (33) to zero, i.e., Q11Q22 � Q12Q21 ¼ 0. It is
important to note that the constants in Eq. (32) are not independent
of each other, e.g., Min ¼ �½Q11=Q12�ðiÞNin. The next step is the calcu-
lation of Nxy from Eq. (11):
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Based on Eqs. (29) and (1) the shear stresses are approximated as:
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� �

=ðað2Þ66bkiÞ

Din ¼ Ninðað2Þ11bb
2 � að2Þ12bk

2
i Þ �Minðað2Þ22bk

2 � ðað2Þ12b þ að2Þ66bÞb
2Þ

� �
=ðað2Þ66bbÞ

ð37Þ
In Eqs. (32) and (36) there are eight characteristic roots, however it
can be proven that only two of them result in kinematically com-
patible displacement fields. In general, it is � the smallest real root.
Therefore six of the eight constants in Eq. (36) are zero:
Cin ¼ Din ¼ 0; i ¼ 3 . . . 8. The deflections in problem (b) are approx-
imated as:

wb
1ðx; yÞ ¼

X1
n¼1

Wb
1nðxÞ sin by; wb

2ðx; yÞ ¼
X1
n¼1

Wb
2nðxÞ sin by ð38Þ

The deflection of the delaminated part is governed by Eqs. (19),
while in the uncracked part it is governed by Eq. (12). The solutions
are obtained in the usual way:

Wb
1nðxÞ ¼

X4

i¼1

Ginekð1Þ
i

x; Wb
2nðxÞ ¼

X4

i¼1

Hinekð2Þ
i

x þWb
2npðxÞ ð39Þ

where the particular solution of the latter is obtained by taking back
Eq. (35) into Eq. (12):

Wb
2npðxÞ ¼

1
2

X8

i¼1

Dð2Þ11bt Ciki � Dibð Þekix

k2
i Dð2Þ11b � b2ðDð2Þ12b þ 2Dð2Þ66bÞ

h i2
� b4D�22b

ð40Þ

where: D�2b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðDð2Þ12bÞ

2 þ 4Dð2Þ12bDð2Þ66b þ 4ðDð2Þ66bÞ
2 � Dð2Þ11bDð2Þ22b

q
. Appar-

ently, it is necessary to calculate the homogeneous solutions of
the in-plane forces. Eqs. (6) and (7) can be satisfied only solutions
having the same characteristic roots as the homogeneous solution
of the deflection in the uncracked part. Therefore, we assume the
following solutions:

nh
nxðxÞ ¼

X4

i¼1

Xinekð2Þ
i

x; nh
nyðxÞ ¼

X4

i¼1

Yinekð2Þ
i

x; nh
nxyðxÞ ¼

X4

i¼1

Kinekð2Þ
i

x

ð41Þ
where the constants can be obtained by Eqs. (6), (7) and (9) in the
form of:

Xin ¼ Hin
t
2

að2Þ12bb
2 þ að2Þ22bk

ð2Þ2
i

að2Þ11bað2Þ22b � ða
ð2Þ
12bÞ

2 ;

Yin ¼ �Hin
t
2

að2Þ11bb
2 þ að2Þ12bk

ð2Þ2
i

að2Þ11bað2Þ22b � ða
ð2Þ
12bÞ

2 ð42Þ

Kin ¼ �Hint
bkð2Þi

að2Þ66b

ð43Þ

thus, the constants Xin;Yin and Kin depend equally on Hin (see Eq.
(39)). Finally, we need to formulate the B.C.s. In Eqs. (39) and (36)
we have ten unknown constants. Eight of them can be determined
through Wb

2n and Wb
1n. Essentially, these are the same as Eqs. (24)–

(28). Two more conditions can be formulated with respect to the
shear stresses. The shear stress, sxz must vanish at the end of the un-
cracked portion, therefore we have:

Tnð�cÞ ¼ 0 ð44Þ

The last condition is obtained based on the axial equilibrium of the
resultant forces coming from the shear tractions along the mid-
planes of the cracked and uncracked portions (refer to Fig. 4) (Wang
and Qiao, 2004). However, in this respect we need to use two con-
ditions. First, we assume that in the y direction the distribution of
sxz in problem (b) is the same as that in problem (a). For that we uti-
lize the following:

sðaÞxz2

���
z¼0
¼
X1
n¼1

T0
nðxÞ sin by ð45Þ

where sðaÞxz2=sðaÞxz2ðx; y; zÞ is the shear stress at the layer containing the
midplane of the uncracked part determined from the 3D equilib-
rium equations for problem (a). Finally, the tenth condition is:
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Tnð0Þ ¼ CT0
nðxÞ ð46Þ

where C is determined by:Z b

0

Z a

x0

sðaÞxz1

���
z¼0

dxdyþ
Z b

0

Z x0

0
sðaÞxz1

���
z¼0

dxdy�
Z b

0

Z 0

�c
sxzdxdy

¼ 0 ð47Þ

where sðaÞxz1 is the shear stress in the layer containing the z ¼ 0 plane
in the delaminated region from problem (a), while sxz is the shear
stress in problem (b). In the following section we discuss the details
how the ERR is calculated.

5. Energy release rate and mode mixity

In the general 3D case the J-integral is (Shivakumar and Raju,
1992):

Jk ¼
Z

C
ðWnk � rijui;knjÞdsþ

Z
A
ðWdk3 � ri3ui;kÞ;3dA; k ¼ 1;2

J3 ¼
Z

C
ðW3n1 � r3ju3;1njÞds

ð48Þ

where W and W3 are the strain energy densities defined as:

W ¼
Z eij

0
rijdeij;W3 ¼

Z e3j

0
r3jde3j ð49Þ

and nk is the outward normal vector of the contour C; dij is the Kro-
necker tensor, rij is the stress tensor (rijnj is the traction vector), ui

is the displacement vector, A is the area enclosed by contour C. The
mode separation of the J-integral is possible by a direct method
(Rigby and Aliabadi, 1998):

J1 ¼ JI þ JII þ JIII; J2 ¼ �2
ffiffiffiffiffiffiffi
JIJII

p
; J3 ¼ JIII ð50Þ

In our case x1 ¼ x, x2 ¼ z and x3 ¼ y. For the calculation we apply a
zero-area path, in other words the integration bounds are x=�0 and
x=+0 around the crack tip. This way the surface integral in Eq. (48)
becomes zero.

5.1. J-integral for problem (a)

For problem (a) the strain energy densities become:

W ¼ 1
2
ðrxex þ ryey þ sxycxyÞ; W3 ¼

1
2
ðryey þ sxycxyÞ ð51Þ

where the stresses can be determined layerwise (Reddy, 2004, p.
100), moreover ex ¼ �w;xx � z, ey ¼ �w;yy � z; cxy ¼ �2w;xy � z. How-
ever, the terms related to ry and �y in J1 and J3 should be ignored.
This can be justified by the incompatible displacement field illus-
trated in Fig. 5. It is seen that the CLPT model predicts erroneously
the displacement field and so the stress state in the transition zone,
which can be counteracted only by ignoring the terms in question.
Thus, the J-integrals are:

J1a ¼ �
1
2

Ma
x1wa

1;xx

���
x¼þ0
�Ma

x2wa
2;xx

���
x¼�0

� �

þ 2 Ma
xy1wa

1;xy

���
x¼þ0
�Ma

xy2wa
2;xy

���
x¼�0

� �
ð52Þ

J2a ¼ 0; J3a ¼ 2 Ma
xy1wa

1;xy

���
x¼þ0
�Ma

xy2wa
2;xy

���
x¼�0

� �
ð53Þ

where in the moments (1) refers to the delaminated, (2) refers to
the uncracked portion of the plate (see Fig. 4). It is important to note
the subscripts 1 and 2 on the right hand side refer to the actual
component of the J-integral. Based on Eq. (50) we have:

JIIaðyÞ ¼ �
1
2

Ma
x1wa

1;xx

���
x¼þ0
�Ma

x2wa
2;xx

���
x¼�0

� �
ð54Þ
JIIIaðyÞ ¼ 2 Ma
xy1wa

1;xy

���
x¼þ0
�Ma

xy2wa
2;xy

���
x¼�0

� �
ð55Þ
5.2. J-integral for problem (b)

For problem (b) the strain energy densities for the delaminated
(1) part are the same as those given by Eq. (51), for the uncracked
(2) part they are:

W ð2Þ ¼ 1
2

rð2Þx eð2Þx þ rð2Þy eð2Þy þ sð2Þxy cð2Þxy þ sð2Þxz cð2Þxz þ sð2Þyz cð2Þyz

� �
W ð2Þ

3 ¼
1
2

rð2Þy eð2Þy þ sð2Þxy cð2Þxy þ sð2Þyz cð2Þyz

� � ð56Þ

In the uncracked part due to the presence of the in-plane normal
and shear forces in Eq. (56) we have: ex ¼ e0

x �w;xx � z,
ey ¼ e0

y �w;yy � z; cxy ¼ c0
xy � 2w;xy � z, where �0

x ; �
0
y and c0

xy, can be cal-
culated by Eq. (4). Again, the terms related to ry and �y in J1b and J3b

should be ignored. Calculating the mode-II and mode-III integrals
we have: JIIb=2 � J1b � 2 � J3b and JIIb=2 � J3b where a multiplication
by 2 is necessary because we have two plates (top and bottom),
and for problem (b) only one of them have been analyzed. Thus,
we obtain:

JIIb ¼ 2 �1
2

Mb
x1wb

1;xx

���
x¼þ0
�Mb

x2wb
2;xx

���
x¼�0

� �
þ 1

2
Nxe0

x

��
x¼�0




þ
XNl

k¼1

Z zkþ1

zk

sðkÞxz ðwb
2;x �

1
2

ubðkÞ
2;z Þdzjx¼�0

)
ð57Þ
JIIIb¼2 2 Mb
xy1wb

1;xy

���
x¼þ0
�Mb

xy2wb
2;xy

���
x¼�0

� �
þNxy

�
1
2
c0

xyþv0b
2;x

�
jx¼�0




�1
2

XNl

k¼1

Z zkþ1

zk

sðkÞyz vbðkÞ
2;z dzjx¼�0

)
ð58Þ

where based on Eqs. (6) and (7):

ubðkÞ
2;z ¼ k55

sh
@sð2ÞðkÞxz

@z
; vbðkÞ

2;z ¼ k44
sh

@sð2ÞðkÞyz

@z
;

v0b
2 ¼

Z
ðað2Þ12bNx þ að2Þ22bNyÞdy ð59Þ

where the first two are the derivatives of the in-plane displace-
ments induced by the shear stresses in the kth layer. Finally, the
ERRs are: GII ¼ JIIa þ JIIb; GIII ¼ JIIIa þ JIIIb. The mode mixity (GII=GIII)
can also be calculated at each y location along the crack front.
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6. Results and discussion

The properties of the analyzed simply-supported plate were (re-
fer to Fig. 4): a ¼ 105 mm (crack length), c ¼ 45 mm (uncracked
length), b ¼ 100 mm (plate width), t ¼ 2 mm (half plate thickness),
Q0 ¼ 1000 N (point force magnitude), x0 ¼ 31 mm, y0 ¼ 50 mm
(point of action coordinates of Q0). The plate is made of a carbon/
epoxy material, the lay-up of the plate was ½�45�f2 ; 0�12;�45�f2 � for
the delaminated and ½�45�f2 ; 0�12;�45�f2 �s for the uncracked part.
The properties of the individual laminae are given by Table 1 (Kollár
and Springer, 2003). The computation was performed in the code
MAPLE. First, problem (a) in Fig. 4 was solved varying the number
of Fourier series terms (N) by creating a for-do cycle. Then, from
the 3D equilibrium equations (Reddy, 2004) the transverse shear
stress distributions were calculated. The next step was the solution
of problem (b) in Fig. 5, the system of equations was constructed
using Eqs. (36) and (39) by utilizing the B.C.s given by Eqs. (24)–
(28). It was assumed that the interfacial shear stresses have the same
distributions in terms of z as those of problem (a). The shear stress
(sxz) for problem (b) was determined from Eq. (47). Afterwards,
the in-plane normal and shear forces were determined from Eqs.
(32), (34) and (41), while the ERRs were calculated using the J-inte-
gral. The convergence of the results was analyzed and it was found
that after the 13th Fourier term there was no change in the displace-
ment field, stresses, forces and ERRs.
6.1. Finite element model

The 3D finite element model of the plate was created in the
code ANSYS 12 using 8 node layered solid elements. 50, 78 and
10 elements were applied along the plate width (y), length (x)
and thickness (z), respectively. The global element size was
2 mm � 2 mm � 0.4 mm. In the vicinity of the crack tip a refined
mesh was constructed including trapezoid shape elements. The z
displacements of the contact nodes over the delaminated surface
were imposed to be the same. The mode-II and mode-III ERRs were
calculated by the VCCT, the size of the crack tip elements were
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Table 1
Elastic properties of single carbon/epoxy composite laminates.

Ex [GPa] Ey [GPa] Ez [GPa] Gyz [GPa]

�45
� f 16.39 16.39 16.4 5.46

0� 148 9.65 9.65 4.91
Dx ¼ 0:2 mm, Dy ¼ 0:2 mm and Dz ¼ 2 mm. For the determination
of GII and GIII along the delamination front a so-called MACRO was
written in the ANSYS Design and Parametric Language.

6.2. Classical plate theory results

Figs. 6 and 7 demonstrate the distribution of the in-plane nor-
mal and shear forces over the interface of the undelaminated re-
gion of the top plate (N = 19). In the case of Nx both solutions are
symmetric in the y direction, in contrast, the shear force Nxy has
asymmetric distributions. It is important to note that the homoge-
neous part of Nxy is induced by the twisting curvature of the top
and bottom plate elements (refer to Fig. 3b), while the particular
solution is related to the interfacial shear stresses. The interface
shear stresses are plotted in Fig. 8. Similar to the particular solution
of in-plane forces, they decay to zero behind the crack front. In
Fig. 9 the normal stress distributions are shown at two points along
the crack front. It is shown that both rx and ry decrease by approx-
imately 10% compared to problem (a). This is not a miscalculation,
the deflection of the uncracked part is different in problem (a) than
in problem (b).

Fig. 10 shows the distribution of the shear stresses, sxz and syz

over the thickness at x = 0. It is seen that sxz changes significantly
– by 42% – compared to problem (a). Also, syz is improved by more
than twice of its original value (increase by 165%). Thus, the shear
deformation of the crack front results in significant changes in the
interlaminar shear stress distributions. It must be mentioned that
the stresses from Nx;Ny and Nxy are negligibly small, therefore
these were not considered.

6.3. Classical plate theory against VCCT

The mode-II, mode-III ERRs and the mode ratio along the crack
front are shown by Fig. 11. The symbols show the result of the
VCCT, while the curves represent the plate theory solutions. The
solution of problem (a) provides the major part of the ERRs, but
problem (b) provides a reasonable improvement for the mode-II
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ERR. It can be seen that the contribution of the mode-III ERR is neg-
ligible (Fig. 11a). While the VCCT predicts that the mode-III ERR
decays suddenly near the edges, there is not any decay in accor-
dance with the CLPT solution. In other words, edge effects are
not captured properly by the CLPT model. The mode ratio
(GII=GIII) is depicted in Fig. 11b. The plate theory solution slightly
underestimates the mode ratio by VCCT, however the nature of
the curves matches well with the numerical result. Also, it is clear
that the improvement related to the shear deformation of the crack
front is reasonable.

Fig. 12 shows the relative error of the CLPT approach compared
to the VCCT. The error becomes huge near the edges for both com-
ponents, but for the mode-II component it is also significant be-
tween the edge and the midpart of the crack front.

The overall agreement between the VCCT and plate theory meth-
ods is fairly good, the differences can be attributed to the transverse
shear and edge effects. It should also be kept in mind that the VCCT
method is mesh sensitive to a certain degree and the convergence
study of the VCCT was outside the scope of this report.
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7. Summary and conclusions

An analytical plate theory approach utilizing a flexible joint
model has been presented to determine the displacement and
stress fields in symmetrically delaminated, layered composite
plates subject to bending. The energy release rates have been cal-
culated using the 3D J-integral. The results have been compared
to those of a 3D finite element model and a fairly good agreement
has been found. It has been shown that the interface shear stress
contributes significantly only to the mode-II energy release rate.
Also, the effect of crack front shear deformation on the interlami-
nar shear stresses was found to be significant.

The possible application field of the presented method is the
fracture mechanics of composite materials. In the last few years
test methods involving the bending of delaminated composite
plates have been developed (Lee, 1993; Li and O’Brien, 1996; Far-
shad and Flüeler, 1998; de Morais and Pereira, 2009, 2008; Pereira
and de Morais, 2009) for mode-III, mixed-mode II/III and I/III.
Although the application of the proposed formulation is lengthy,
it can help the experimentalists to reduce measured data by plate
specimens in an easier way than it is usually provided by VCCT.

Considering the available methods for the calculation of the ERR
in plates the first choice is in general the VCCT. However, for a 3D
FE model the computation could be lengthy, especially if the model
has relatively large dimensions. Moreover in the crack tip a refined
mesh should be constructed to obtain accurate ERR values. Finally,
in most of the commercial FE packages the VCCT has not yet been
implemented. In this respect the present work provides another
possibility for plate bending problems including delamination.
The disadvantages of the proposed formulation are the facts that
the ERRs can be calculated in two steps, the method can be applied
for plates with through the width crack and involving simple B.C.s
wherein the Lévy plate formulation can be applied. On the other
hand the two level computation can be performed in the same MA-
PLE worksheet and the data of the model (material and geometrical
properties, load position and magnitude) can be very simply varied
compared to a FE model. The present model can further be devel-
oped for the following cases: plates with asymmetric delamination
and unbalanced lay-up, moderately thick plates utilizing the Reiss-
ner–Mindlin plate theory, thick plates utilizing elasticity solution,
which involves a similar mathematical formulation and finally
but not least plates with more complex B.C.s, like free edges and
point supports.
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Appendix A. Coefficients for Eqs. 13,14

A1 ¼ 2
D11k55

sh a� þ k44
sh a12D�

a66t
; A2 ¼ 2

k55
sh ða11D11 þ a�D66Þ þ k44

sh a11D�

a66t
ðA:1Þ

A3 ¼ �
2ða11D11 þ a12D�Þ

t
þ ta�

2a66
; A4 ¼

2a11D66k55
sh

a66t
;

A5 ¼ �
2a11D66

t
þ ta�

2a66
ðA:2Þ
A3 ¼ �
2ða11D11 þ a12D�Þ

t
þ ta�

2a66
; A4 ¼

2a11D66k55
sh

a66t
;

A5 ¼ �
2a11D66

t
þ ta�

2a66
ðA:3Þ

A6 ¼ 2a22
D11k55

sh þ k44
sh D�

a66t
; A7 ¼ 2

k55
sh ða12D11 þ a22D66Þ þ k44

sh a�D�

a66t
;

A9 ¼ A4
a12

a11
ðA:4Þ

A8 ¼ �
2ða12D11 þ a22D�Þ

t
þ ta22

2a66t
;A10 ¼ A5

a12

a11
;

B1 ¼
2a22D66k44

sh

a66t
ðA:5Þ

B2 ¼ 2
k55

sh a22D� þ k44
sh ða22D22 þ a�D66Þ
a66t

;

B3 ¼
a22

a11
A5; B4 ¼ 2

D22k44
sh a� þ k55

sh a12D�

a66t
ðA:6Þ

B5 ¼ �
2ða22D22 þ a12D�Þ

t
þ ta�

2a66
; B6 ¼

a12

a22
B1; B8 ¼ A10;

B9 ¼ 2a11
D22k44

sh þ k55
sh D�

a66t
ðA:7Þ

B7 ¼ 2
k44

sh ða12D22 þ a11D66Þ þ k55
sh a�D�

a66t
;

B10 ¼ �
2ða12D22 þ a11D�Þ

t
þ ta11

2a66
ðA:8Þ

where a� ¼ a12 þ a66 and D� ¼ D12 þ D66.
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