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INTERFACE CRACK IN ORTHOTROPIC KIRCHHOFF PLATES
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Budapest University of Technology and Economics, Department of Applied Mechanics
1111 Budapest, Miiegyetem rkp. 5, Building MM

Abstract: The classical laminated plate theory is applied to calculate the stresses and energy
release rate function in symmetrically delaminated orthotropic plates. The governing
equation system of the double-plate model consists of ten equations. As an example an
orthotropic simply-supported delaminated plate subjected to a point force is analyzed. The
3D finite element model of the plate was also created. Results indicate a reasonably good
agreement between analytical and numerical models.
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1. INTRODUCTION

Laminated composite plates have many industrial applications, e.g. the fields of
pressure vessels, bridge and bodywork construction, aeroplanes and finally but not least ship
construction can be mentioned. It is well-known, that delamination is one of the major
damage modes in laminated fiber-reinforced composite materials [1]. Mechanically, the
formation of cracks and delamination surfaces can be characterized by the energy based
principles of fracture mechanics [2]. The energy release rate (ERR) is the basic parameter to
dimensionize the structures against crack initiation and propagation. The limit value of the
ERR is called the critical ERR (CERR), which can be determined using standard (or
nonstandard) test methods.

Although for the mode-1, mode-I1 and mixed-mode 1/11 fractures there is a consensus to
use simple beam tests, for mode-I1l there is not an internationally accepted test method. In
general it is thought that the practical significance of mode-Il1 fracture is little, in spite of that
in the last decades the attention was subsequently focused on this fracture mode. It will be
shown in this paper that the bending of delaminated plates involves significant mode-Ii|
contribution; however the mode-Il1 and mode-I11 fracture take place simultaneously leading to
a mixed-mode II/111 problem.

2. CLASSICAL PLATE MODEL WITH FLEXIBLE JOINT

In this section we analyze elastic laminated plates with symmetric delamination. The
classical laminated plate model is completed with the effect if interface deformation [1] in a
mixed-mode II/111 plate problem. We consider the differential plate element shown in Fig. 1,
which represents the uncracked plate portion. The equilibrium of forces in the x and y
directions leads to:
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where Ny, Ny, N,y are the in-plane forces and shear force, 7, , 7, are the interfacial shear
stresses. Moreover, equilibrium of bending moments about axes x and y results in:
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where My, My, M,y are the bending and twisting moments, respectively, furthermore t is the
thickness (see Fig. 1.). For laminated plates the relationship between the in-plane forces and
strains (s, &°, 7%y") can be expressed as [3]:
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The relationship between moments and curvatures is [3]:
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where w = w(X,y) is the plate deflection. Moreover, in Egs. (3)-(4) Ajj and Dj; (i,j = 1,2,6) are
the components of the extensional and bending stiffness matrices, a;; (compliance matrix) is
the inverse of A; [3]:
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Fig.1. Equilibrium of the top (a) and bottom (b) plate elements.

The next step is the formulation of displacement continuity in the interface plane of the
double-plate system. There are three different sources of in-plane displacements: in-plane
normal forces, bending and shear deformation, i.e.:

t ow
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where kg, is the shear compliance and can be defined as the generalization of that in [1]:
Z,—1 z z
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where N is the number of layers, moreover the shear stiffnesses are [3]:
Css =C,,5in?0+C,, c05*0,Cas = C,, c0s* 0 + Cyy Sin? 6 . 9)
For plates there is a third condition formulated with respect to the in-plane shear strain:
0
7/xy = _aGGny -t—— 6 v kssr? aT ksA;l Tyz = 0 ' (10)
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Compatibility of the displacement field requires the following:
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It can be seen that the second and third terms in Eqs.(6)-(7) satisfy automatically the
compatibility condition. On the contrary, among the first terms the following relation can be

established:
O°N, 1 o°N o°N o°N, &°N
— X =——|a, 5 +a,——a, 24— . (12)
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Egs. (2),(2),(4),(6),(7) and (12) define a boundary value problem including ten equations, with
ten parameters: Ny, Ny, Nyy, %, %z My, My, My, ow/ox and ow/dy. Combining Egs.(2) and
(4) it is possible to derive the governing equation of the plate deflection:
4 4 4 a
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where the inhomogeneity is caused by the interface shear stresses. Also by combining the
equations a PDE system can be obtained for the in-plane forces:
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and similarly:
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where A; and B; are constants depending on the stiffness and compliance parameters, as well
as the thickness of the plate. Boundary conditions are necessary to solve this boundary-value
problem, a specific case is presented in the next section.

+B +B +B +
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3. EXAMPLE - A SIMPLY-SUPPORTED DELAMINATED PLATE

In this section we adopt Lévy plate formulation to solve the PDE system presented in
section 2. Fig.2 shows a simply-supported delaminated orthotropic plate. The problem is
solved in two steps: problem (a) is a traditional plate bending problem, problem (b) improves
the former with the effect of crack front deformation, which was presented only for beams [1].
Here, only a brief description is given. The deflections in the cracked and uncracked part are
approximated as (both for (a) and (b)):

w, (X,y) = sz (X)sin By, w, (X, y) = ZW,,n(x)sin By (16)
n=1 n=1
where £ = nn/b. The interfacial shear stresses for problem (b) are:
7, (%) = X T, (x)sin By, z,,(x,y) = > R, (x)cos By, (17)
n=1 n=1

and finally the in-plane forces (problem (b)) can be written as:

N, () = 30, (0sin 8y . N, (x,Y) = 2, (9sin By N, (x,Y) = 21, ()05 By (1)
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Problem (a) can be solved in the usual way [3]. Problem (b) involves ten constants, from
which eight can be determined based on the kinematic and dynamic boundary conditions with
respect to the plate deflection. Further two conditions can be formulated forz,: it vanishes at
the free end (x= -c) and it is the highest at the delamination front. The distribution of the shear
stress along the front can be obtained by the axial equilibrium of shear tractions over the
midplane of the delaminated and uncracked portions [1].

simply supported simply supported

problem (b)
top plate

plate midplane

Fig. 2. A simply-supported delaminated plate subjected to a point force.

4. ENERGY RELEASE RATE - J-INTEGRAL
The energy release rate distribution over the delamination front can be calculated by the
3D J-integral [2]. The 3D J-integral is defined as [2]:

3, = [Wn —oyu, n))ds + [ WS, — o, ) A, k=12, Iy =Wy, — o u,,n;)ds, (19)
c A C,

where n; is the outward normal vector of the contour C, &; is the Kronecker tensor, o is the
stress tensor, u; is the displacement vector, A is the area enclosed by contour C. The contour C
contains the crack tip and the integration is carried out in the counterclockwise direction [2].
For the problem (a) the mode-Il and mode-I111 integrals become:
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where subscript | and 11 refers to the delaminated and uncracked parts in Fig.2. For problem
(b) we obtain (without details):
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4. RESULTS AND DISCUSSION

The properties of the analyzed simply-supported plate were (refer to Fig. 2) the
following: a=105 mm (crack length), c=45 mm (uncracked length), b=100 mm (plate width),
t=2 mm (plate thickness), Q,=1000 N (point force magnitude), xo=31 mm, y,=50 mm (point
of action coordinates of Q). The plate is made of a carbon/epoxy material, the lay-up of the
plate was [+45°7,;0°1,; +45°%,] for the delaminated and [+45°%;0°,; +45°%]s for the uncracked
part. The superscript "f" refers to the fact that the cross-ply laminate is a woven fabric panel.
The properties of the individual orthotropic laminae are Ei=E,=E3;=16.39 GPa, G,=16.4,
G13=G»3=5.46 GPa, 11,=0.3, wv13=13=0.5, for the 1450f laminate and E;=148 GPa,
E,=E3=9.65 GPa, G1,=3.71 GPa, G;3=4.66 GPa, G»3=4.91 GPa, 11,=0.3, 113=0.25, 1»3=0.27,
for the 0° laminate. The finite element (FE) model of the plate was also constructed, the ERR
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was calculated by the virtual crack-closure technique (VCCT). Fig. 3 shows the distribution
of the shear stresses [3], #., 7., Over the thickness at given points of the crack front, i.e. at
x=0. It is seen that 7, changes significantly — by 42 % — compared to problem (a). Also, 7,
is improved by more than twice of its original value (increase by 165 %). Thus, the shear
deformation of the crack front results in significant changes in the interlaminar shear stress
distributions.
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Fig. 3. Through thickness distribution of the shear stresses at certain points in the
delamination front.
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Fig. 4. Distribution of the interface shear stresses: = (2), 7, (b).

Fig.4 demonstrates the distribution of the shear stresses over the interface of the
undelaminated region of the top plate, the stresses decay to zero behind the crack front. The
mode-11, mode-111 ERRs and the mode ratio along the crack front are shown by Fig.5. The
symbols show the result of the VCCT [4], while the curves represent the purely analytical
plate theory solutions. The solution of problem (a) provides the major part of the ERRSs. It is
seen that the mode-I1 component is significantly underestimated by the plate theory solution.
On the contrary the mode-I1l component is overestimated. Problem (b) provides a reasonable
improvement for the mode-1l1 ERR, which is 56% for G, at y=b/2. Also, it is clear that plate
theory (a+b) underestimates the mode-11 component, in the midpoint the difference is about
24% compared to the VCCT result. In contrast, the mode-lIll ERR is slightly smaller
compared to the plate theory solution. The difference between maximum of the mode-111 ERR
by VCCT and the plate model is 0%, the curve crosses over the maximum point symbol.
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While the VCCT predicts that the mode-111 ERR decays suddenly near the edges, there is not
any decay in accordance with the plate solution. In other words, edge effects are not captured
properly by the plate model.
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Fig. 5. Energy release rate distributions (a) and mode ratios (b) by laminated plate theory
(Lévy solution) and FE analysis.

The mode ratio (Gy/Gy;) is depicted in Fig.5b. The plate theory solution slightly
underestimates the mode ratio, however the nature of the curves matches well with the
numerical result. Also, it is clear that the improvement related to the crack front shear
deformation is reasonable.

5. CONCLUSION

A purely analytical plate theory approach has been presented to calculate the shear
stresses and the mode-1l and mode-Ill ERR distributions along the crack front of
symmetrically delaminated, layered composite plates subject to bending. The overall
agreement between the VCCT and plate theory methods is fairly good. The difference
between the VCCT and plate theory solution can be attributed to the transverse shear effect,
however, it should be kept in mind that the VCCT method is also mesh sensitive.
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