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Abstract: The classical laminated plate theory is applied to calculate the stresses and energy 
release rate function in symmetrically delaminated orthotropic plates. The governing 
equation system of the double-plate model consists of ten equations. As an example an 
orthotropic simply-supported delaminated plate subjected to a point force is analyzed. The 
3D finite element model of the plate was also created. Results indicate a reasonably good 
agreement between analytical and numerical models. 
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1. INTRODUCTION 

Laminated composite plates have many industrial applications, e.g. the fields of 
pressure vessels, bridge and bodywork construction, aeroplanes and finally but not least ship 
construction can be mentioned. It is well-known, that delamination is one of the major 
damage modes in laminated fiber-reinforced composite materials [1]. Mechanically, the 
formation of cracks and delamination surfaces can be characterized by the energy based 
principles of fracture mechanics [2]. The energy release rate (ERR) is the basic parameter to 
dimensionize the structures against crack initiation and propagation. The limit value of the 
ERR is called the critical ERR (CERR), which can be determined using standard (or 
nonstandard) test methods.  

Although for the mode-I, mode-II and mixed-mode I/II fractures there is a consensus to 
use simple beam tests, for mode-III there is not an internationally accepted test method. In 
general it is thought that the practical significance of mode-III fracture is little, in spite of that 
in the last decades the attention was subsequently focused on this fracture mode. It will be 
shown in this paper that the bending of delaminated plates involves significant mode-III 
contribution; however the mode-II and mode-III fracture take place simultaneously leading to 
a mixed-mode II/III problem. 
 
2. CLASSICAL PLATE MODEL WITH FLEXIBLE JOINT 

In this section we analyze elastic laminated plates with symmetric delamination. The 
classical laminated plate model is completed with the effect if interface deformation [1] in a 
mixed-mode II/III plate problem. We consider the differential plate element shown in Fig. 1, 
which represents the uncracked plate portion. The equilibrium of forces in the x and y 
directions leads to: 

 xyx
xz

NN
x y

τ
∂∂

− =
∂ ∂

, xy y
yz

N N
x y

τ
∂ ∂

− + =
∂ ∂

, (1) 

where Nx, Ny, Nxy are the in-plane forces and shear force, τxz , τyz are the interfacial shear 
stresses. Moreover, equilibrium of bending moments about axes x and y results in: 
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where Mx, My, Mxy are the bending and twisting moments, respectively, furthermore t is the 
thickness (see Fig. 1.). For laminated plates the relationship between the in-plane forces and 
strains (εx

0, εy
0, γxy

0) can be expressed as [3]: 
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The relationship between moments and curvatures is [3]: 
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where w = w(x,y) is the plate deflection. Moreover, in Eqs. (3)-(4) Aij and Dij (i,j = 1,2,6) are 
the  components of the extensional and bending stiffness matrices, aij (compliance matrix) is 
the inverse of Aij [3]: 
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Fig.1. Equilibrium of the top (a) and bottom (b) plate elements. 

 
The next step is the formulation of displacement continuity in the interface plane of the 
double-plate system. There are three different sources of in-plane displacements: in-plane 
normal forces, bending and shear deformation, i.e.: 
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where ksh is the shear compliance and can be defined as the generalization of that in [1]: 
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where N is the number of layers, moreover the shear stiffnesses are [3]: 
 2 2 2 2
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For plates there is a third condition formulated with respect to the in-plane shear strain: 
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Compatibility of the displacement field requires the following: 
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It can be seen that the second and third terms in Eqs.(6)-(7) satisfy automatically the 
compatibility condition. On the contrary, among the first terms the following relation can be 
established: 
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Eqs. (1),(2),(4),(6),(7) and (12) define a boundary value problem including ten equations, with 
ten parameters: Nx, Ny, Nxy, τxz , τyz, Mx, My, Mxy, ∂w/∂x and ∂w/∂y. Combining Eqs.(2) and 
(4) it is possible to derive the governing equation of the plate deflection: 
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where the inhomogeneity is caused by the interface shear stresses. Also by combining the 
equations a PDE system can be obtained for the in-plane forces: 
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and similarly: 
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where Ai and Bi are constants depending on the stiffness and compliance parameters, as well 
as the thickness of the plate. Boundary conditions are necessary to solve this boundary-value 
problem, a specific case is presented in the next section. 
 
3. EXAMPLE – A SIMPLY-SUPPORTED DELAMINATED PLATE 

In this section we adopt Lévy plate formulation to solve the PDE system presented in 
section 2. Fig.2 shows a simply-supported delaminated orthotropic plate. The problem is 
solved in two steps: problem (a) is a traditional plate bending problem, problem (b) improves 
the former with the effect of crack front deformation, which was presented only for beams [1]. 
Here, only a brief description is given. The deflections in the cracked and uncracked part are 
approximated as (both for (a) and (b)): 
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where β = nπ/b. The interfacial shear stresses for problem (b) are: 
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and finally the in-plane forces (problem (b)) can be written as: 
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Problem (a) can be solved in the usual way [3]. Problem (b) involves ten constants, from 
which eight can be determined based on the kinematic and dynamic boundary conditions with 
respect to the plate deflection. Further two conditions can be formulated forτxz: it vanishes at 
the free end (x= -c) and it is the highest at the delamination front. The distribution of the shear 
stress along the front can be obtained by the axial equilibrium of shear tractions over the 
midplane of the delaminated and uncracked portions [1]. 
 

 
Fig. 2. A simply-supported delaminated plate subjected to a point force. 

 
4. ENERGY RELEASE RATE – J-INTEGRAL 

The energy release rate distribution over the delamination front can be calculated by the 
3D J-integral [2]. The 3D J-integral is defined as [2]: 
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where ni is the outward normal vector of the contour C, δij is the Kronecker tensor, σij is the 
stress tensor, ui is the displacement vector, A is the area enclosed by contour C. The contour C 
contains the crack tip and the integration is carried out in the counterclockwise direction [2]. 
For the problem (a) the mode-II and mode-III integrals become: 
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where subscript I and II refers to the delaminated and uncracked parts in Fig.2. For problem 
(b) we obtain (without details): 
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4. RESULTS AND DISCUSSION  

The properties of the analyzed simply-supported plate were (refer to Fig. 2) the 
following: a=105 mm (crack length), c=45 mm (uncracked length), b=100 mm (plate width), 
t=2 mm (plate thickness), Q0=1000 N (point force magnitude), x0=31 mm, y0=50 mm (point 
of action coordinates of Q0). The plate is made of a carbon/epoxy material, the lay-up of the 
plate was [±45°f

2;0°12; ±45°f
2] for the delaminated and [±45°f

2;0°12; ±45°f
2]S for the uncracked 

part. The superscript "f" refers to the fact that the cross-ply laminate is a woven fabric panel. 
The properties of the individual orthotropic laminae are E1=E2=E3=16.39 GPa, G12=16.4, 
G13=G23=5.46 GPa, ν12=0.3, ν13=ν23=0.5, for the ±45°f laminate and E1=148 GPa, 
E2=E3=9.65 GPa, G12=3.71 GPa, G13=4.66 GPa, G23=4.91 GPa, ν12=0.3, ν13=0.25, ν23=0.27, 
for the 0° laminate. The finite element (FE) model of the plate was also constructed, the ERR 
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was calculated by the virtual crack-closure technique (VCCT). Fig. 3 shows the distribution 
of the shear stresses [3], τxz, τyz, over the thickness at given points of the crack front, i.e. at 
x=0. It is seen that τxz changes significantly ─ by 42 % ─ compared to problem (a). Also, τyz 
is improved by more than twice of its original value (increase by 165 %). Thus, the shear 
deformation of the crack front results in significant changes in the interlaminar shear stress 
distributions. 

 

 
Fig. 3. Through thickness distribution of the shear stresses at certain points in the 

delamination front. 
 

 

 
Fig. 4. Distribution of the interface shear stresses: τxz (a), τyz (b). 

 
Fig.4 demonstrates the distribution of the shear stresses over the interface of the 

undelaminated region of the top plate, the stresses decay to zero behind the crack front. The 
mode-II, mode-III ERRs and the mode ratio along the crack front are shown by Fig.5. The 
symbols show the result of the VCCT [4], while the curves represent the purely analytical 
plate theory solutions. The solution of problem (a) provides the major part of the ERRs. It is 
seen that the mode-II component is significantly underestimated by the plate theory solution. 
On the contrary the mode-III component is overestimated. Problem (b) provides a reasonable 
improvement for the mode-II ERR, which is 56% for GII at y=b/2. Also, it is clear that plate 
theory (a+b) underestimates the mode-II component, in the midpoint the difference is about 
24% compared to the VCCT result. In contrast, the mode-III ERR is slightly smaller 
compared to the plate theory solution. The difference between maximum of the mode-III ERR 
by VCCT and the plate model is 0%, the curve crosses over the maximum point symbol. 
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While the VCCT predicts that the mode-III ERR decays suddenly near the edges, there is not 
any decay in accordance with the plate solution. In other words, edge effects are not captured 
properly by the plate model. 

 

 
Fig. 5. Energy release rate distributions (a) and mode ratios (b) by laminated plate theory 

(Lévy solution) and FE analysis. 
 

The mode ratio (GII/GIII) is depicted in Fig.5b. The plate theory solution slightly 
underestimates the mode ratio, however the nature of the curves matches well with the 
numerical result. Also, it is clear that the improvement related to the crack front shear 
deformation is reasonable. 
 
5. CONCLUSION 

A purely analytical plate theory approach has been presented to calculate the shear 
stresses and the mode-II and mode-III ERR distributions along the crack front of 
symmetrically delaminated, layered composite plates subject to bending. The overall 
agreement between the VCCT and plate theory methods is fairly good. The difference 
between the VCCT and plate theory solution can be attributed to the transverse shear effect, 
however, it should be kept in mind that the VCCT method is also mesh sensitive. 
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