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Prestressed composite specimen for
mixed-mode I/II cracking in laminated
materials

András Szekrényes

Abstract

This article presents the mixed-mode I/II prestressed end-loaded split specimen for the fracture testing of composite

materials. The system is based on the fact that one of the two fracture modes is provided by the prestressed state of the

specimen, and the other one is increased up to fracture initiation using a testing machine. The novel beam-like specimen

is able to provide any combination of the mode-I and mode-II energy release rates. A simple closed-form solution is

developed using beam theory as a data reduction scheme and for the calculation of the energy release rates in the new

configuration. The applicability and the limitations of the novel fracture mechanical test are demonstrated using unidi-

rectional glass–polyester composite specimens. If only crack propagation onset is involved, then the prestressed mixed-

mode beam specimen can be used to obtain the fracture criterion of transparent composite materials in the GI–GII plane.
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Introduction

The delamination fracture is one of the major damage
modes in laminated composite materials. Considering
the linear elastic fracture mechanics (LEFM),1 three
basic types of the interlaminar fracture are known:
mode-I (opening), mode-II (sliding or in-plane shear),
and the mode-III (tearing or anti-plane shear). The
significant part of the literature deals with the mode-I,
mode-II, and the mixed-mode I/II cases,2–4 although
the interest of the scientists is subsequently focused
on the mode-III and mixed-mode I/II, II/III
fractures too.5–11

The currently available mixed-mode I/II configura-
tions were summarized in many papers.3,4 Considering
the mixed-mode I/II delamination, there are large
number of fracture systems, such as the mixed-mode
bending (MMB),12–14 the asymmetric double-cantilever
beam (DCB) specimen,15,16 the DCB loaded with
uneven bending moments (DCB–UBM),17,18 the DCB
specimen loaded by forces and moments,19 and –
among others – the Arcan20–22 or compact tension
shear specimen (CTS).23,24 Without any doubt, the
most effective one among them is the MMB specimen

developed by Reeder and Crews.12,13 The specimen is
able to provide any mode ratio; however, the complex
fixture involved by the MMB specimen is a drawback
of the test.

As an alternative possibility, the mixed-mode I/II
prestressed end-notched flexure (PENFI/II) system was
published in 200625 and probably it is the simplest con-
figuration, which is ever developed. The system requires
only a three-point bending setup and few steel rollers
with different diameters. The rollers are used to pre-
stress the specimens by fixing the crack opening
displacement (COD); then we can put the specimen
into a three-point bending setup and the mode-II
energy release rate (ERR) can be increased up to the
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critical value. In Szekrényes25, the applicability and the
drawbacks of the test are demonstrated using glass–
polyester composite specimens. It was shown that the
mode ratio changes with the crack length and the exter-
nal load, although this change is estimated to be small.
An improved beam theory (IBT) scheme was found to
be accurate for the data reduction and the fracture
envelope of the material was obtained using the well-
known power and Williams’ criteria.

Themethod of prestressed composite beams was later
extended to mixed-mode II/III26 and I/III cases27 too.

The aim of this article is to develop a similar mixed/
mode I/II configuration, which makes it possible to
test the material at relatively large crack lengths. This
is the reason for why the combination of the end-loaded
split (ELS),28,29 and the DCB,30,31 is realized. While in
the case of the PENFI/II the crack length range is lim-
ited by the central load introductor, in the ELS speci-
men the end load does not make any restrictions to the
crack length. The PELSI/II is based on the same concept
as the PENFI/II. A steel roller is inserted between the
specimen arms and the built-in prestressed specimen is
loaded by a force at the end. The applicability and the
advantages/drawbacks of the test are demonstrated by
finite element (FE) calculations and experiments.
Finally, a fracture envelope is obtained in the GI–GII

plane.

The PELS specimen for
mixed-mode I/II cracking

The PELSI/II specimen is the combination of the DCB
and ELS specimens. As it is shown in Figure 1, PDCB is
the load related to the mode-I part of the ERR caused
by a steel roller (Figure 1(c)), while PELS is the load
related to the mode-II loading. For the analysis of the
PELSI/II configuration, we superimpose the solutions of
the DCB and ELS specimens. In a previous work, the
IBT solutions for the DCB and ELS specimens were
presented.32

The compliance of the DCB specimen can be
expressed as:32

CDCB ¼
8a3

bh3E11
þ

2a3

bh3E11
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fSV
2

� �
ð1Þ

where a is the crack length, b the specimen width, h the
half thickness, and E11 the flexural modulus of the spe-
cimen. Furthermore, fW1 is obtained from the Winkler–
Pasternak foundation, fT from transverse shear and fSV
accounts for the Saint–Venant effect:
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where E22 is the transverse modulus in the y direction,
G12 the shear modulus of the material in the x–y plane
and k¼ 5/6 the shear correction factor. The mode-I
ERR of the DCB specimen can be obtained using the
Irwin–Kies expression:1
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that is:
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b2h3E11
, ð6Þ

where PDCB is the external load, and:
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Figure 1. The mixed-mode I/II PELS specimen (c) as the superposition of the DCB (mode-I) (a) and ELS (mode-II) (b) specimens.
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The COD (�DCB) of the specimen can be controlled
by inserting a steel roller between the specimen arms.
A reasonable assumption is that the COD is approxi-
mately equal to d0. For this reason, we express the force
which arises in the DCB specimen using Equation (1)
and the definition of CDCB¼ �DCB/PDCB:

PDCB ¼
bh3E11�DCB

8a3
1

1þ fW1 þ fT þ fSV=2ð Þ=4
, ð8Þ

where �DCB¼ d0 is the diameter of the prestressing
roller. Substituting Equation (8) into Equation (6) we
obtain:

GDCB
I ¼

h3E11�
2
DCB

64a4
12þ fW2 þ fT þ fSV½ �
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The improved solution for the ELS specimen’s com-
pliance is:32

CELS ¼
3a3 þ L3
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and the ERR becomes:

GELS
II ¼

P2a2

4b2h3E11
9þ fSH2½ �, ð11Þ

where fSH2 is obtained from the crack tip
deformation:32
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Finally, the mode ratio of the PELSI/II specimen is:
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which depends on the crack length and the applied load
also. All of the factors in Equation (12) have been
defined before. The accuracy of the analytical solution
has already been proven in previous papers.25,32

However, some other questions should be clarified
and these are detailed in the following sections.

The dependence of the mode ratio on the crack
length can be investigated based on Equation (12).
In Table 1, we calculated the mode ratio at a¼ 105mm

using the following material properties: E11¼ 33GPa,
E22¼ 7.2GPa, and G12¼ 3GPa. The geometrical prop-
erties are: b¼ 20mm and 2 h¼ 6.2mm. In the calcula-
tion, we subsequently increased the crack length by
small increments until 2mm. If the crack length is mea-
sured inaccurately, it has a moderate influence on the
mode ratio. If �a¼ 1mm, then the expected error is
5.4%. This indicates that the accurate measurement
of the crack length after crack initiation is important.
During the experiments (in a later section), a transpar-
ent material is used, so that the crack initiation is easily
identified within 0.5mm.

If the crack opening is relatively large, then the crack
lengths of the upper and lower specimen arms will be
different from their original values. This is due to the
fact that the contact point between the specimen arms
and the roller is located at a distance of a�u and a�l
instead of ‘a’ from the crack tip, as it is shown in
Figure 2. We can calculate the distances, a�u and a�l ,
based on a simple geometrical analysis. According to
Figure 2, we need to find the coordinates, a�u and a�l ,
where the derivative of fi(x)¼� (x+2 a)(x� a)2/
(4a3) � �DCB+1/2(4x 3

� 9a2x� 3xL+6a3+2L3)/(3a3+
L3) � �ELS (simple beam theory solution, i¼ 1 for the
upper arm, the positive sign, i¼ 2 for the lower arm,
negative sign) and fc(x)¼ ((�DCB/2)

2
�x2)1/2+ �ELS

(equation of a circle with diameter, �DCB) is the same.
Table 2 shows the changes of the crack length, and the
difference compared to the original crack length. In the
worst case (if d0¼ 13mm), we make a mistake of 1% in
the crack length. A reasonable conclusion is that the
change of the crack length is negligible.

A major question in a mixed-mode configuration is
the estimation of the change in the mode ratio along
the crack front, and its effect on the ERRs. To clarify
this question, a FE model shown in Figure 3 is utilized.
For the calculation, the ANSYS 12 package was used.
The elastic properties of the models were: E11¼ 33GPa,
E22¼E33¼ 7.2GPa, G12¼G13¼G23¼ 3GPa, and
�12¼ �13¼ �23¼ 0.27. The geometrical properties are:
b¼ 20.0mm, 2 h¼ 6.2mm and the length of the
models was L¼ 150mm (Figure 1). The 3D model of
the ELS specimen was built using linear eight-node
solid brick elements. The imposed boundary conditions
and the loading of the model are demonstrated in
Figure 3. At the end of the specimen arms, the displace-
ments shown in Figure 3 were imposed, where �DCB was
equal to the actual roller diameter (d0¼ 6, 7, 8, 10, 12,

Table 1. The changes in the mode ratio GI/GII in the case of

inaccurate crack initiation detection if a¼ 105 mm

�a 0.25 0.35 0.5 0.75 1 1.25 1.5 2

Difference (%)a 1.4 1.9 2.7 4.1 5.4 6.7 8.0 10.4

a(GI/GII|a+�a–GI/GII|a¼105)/(GI/GII|a¼105).
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Figure 2. The effect of the prestressing roller on the crack length of the PELSI/II specimen.

Table 2. The changes in the crack length of the prestressed specimen with the steel roller diameter

�DCB (mm) 0 6 7 8 10 12 13

�ELS (mm) 19.4 16.1 12.8 11.0 8.8 5.6 4.2

a�u (mm) 105 106 105 105 105 105 105

Difference compared to a¼ 105 mm (%) 0.0 1.0 0.0 0.0 0.0 0.0 0.0

a�l (mm) 105.0 104 104 104 104 104 104

Difference compared to a¼ 105 mm (%) 0.0 �1.0 �1.0 �1.0 �1.0 �1.0 �1.0

a�u, the crack length of the upper arm; a�l , the crack length of the lower arm.
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and 13mm) and �ELS was the critical displacement of
the PELSI/II specimen at crack initiation.

In the crack tip, a refined mesh was constructed and
the mode-I and mode-II ERRs were evaluated by using
the virtual crack-closure technique (VCCT),33,34 the

size of the crack tip elements were �x¼�y¼ 0.25mm
and �z¼ 1mm (Figure 3, coordinate system).

Figures 4(a) and (b) and 5(a) show the distribution
of the ERRs along the crack front in the case of d0¼ 8,
10, and 12mm, while Figure 5(b) shows the variation of
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the mode ratio in each case. The values of �ELS were
determined based on crack initiation experiments (in a
later section). As it is expected, the mode-I and mode-II
ERRs have a symmetric distribution along the crack
front (similarly to the results in35). In Figures 4(a)
and (b) and 5(a) and (b), the average ERRs and
mode ratios were obtained by dividing the integrated
area under the curve by the specimen width. Table 3
shows the comparison of the IBT to the VCCT with
respect to the average ERR and mode ratio. The IBT
overestimates GI at most with 4.3% and even GII at
most with 11.9%. This relatively significant difference

is due to the fact that the FE model was loaded by
imposed displacement, and the �ELS displacement was
calculated based on the measured load–displacement
slopes and the critical PELS values. The maximum dif-
ference in the mode ratio is 12.9%, which is the result of
the rounding of GI and GII. Overall, this agreement is
good and based on these results, the IBT is a possible
data reduction scheme for the PELSI/II test.

Since the ERR varies along the crack front, that is, it
is the highest at the center and the lowest at the speci-
men edges, it is obvious that the specimen possesses a
curved crack front under crack propagation. As it is
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seen in Figure 5(b), it is not possible to produce a con-
stant mode ratio along the crack front. Consequently,
some assumptions are required considering the reduc-
tion of the experimental data. In the data reduction and
the calculation of G and GI/GII, the widthwise average
values will be adopted. To assess the possible errors
(Figures 4(a) and (b) and 5(a)) in the calculation of G
and GI/GII by the IBT we assume that the crack initia-
tion takes place at the point where the total ERR (GT)
reaches the highest value. This point can be found
always in the midpoint of the crack fronts marked by
zmax. In Table 3, the ERRs and mode ratios are calcu-
lated by using the values by VCCT at zmax too and they
are compared to the result of IBT. The difference in GI

is around 11.5%, while in the case of GII the difference
changes between 1% and 15%, which seems to be sig-
nificant. On the contrary, the difference in the mode
ratio is negligible in each case.

Although there are some errors in the analytical pre-
dictions of GI and GII, the mode ratio is accurately esti-
mated by the IBT method, and we prefer the IBT as a
data reduction scheme, because the FE analysis-based
data reduction requires much computational time.
Moreover, assumption is also required if we apply the
VCCT to reduce the experimental data, and the IBT
agrees excellently with the widthwise average G and
GI/GII. It should be mentioned that a similar variation
of the mode ratio could exist in the MMB system too.12

In the sequel, the details of the experimental work is
presented.

Experiments

Material properties

The constituent materials of the E-glass–polyester com-
posite were procured from Novia Ltd. The properties
of the E-glass fiber are E¼ 70GPa and �¼ 0.27, and the
properties of the unsaturated polyester resin we applied
are: E¼ 3.5GPa and �¼ 0.35. Both were considered to
be isotropic. The unidirectional ([0�]14) E-glass–polye-
ster specimens with thickness of 2 h¼ 6.2mm, width of
b¼ 20mm, and fiber–volume fraction of Vf¼ 43% were
manufactured in a special pressure tool. A polyamide
(PA) insert with thickness of 0.03mm was placed at the
midplane of the specimens to make an artificial starting
defect. It should be highlighted that this film thickness
is higher than the 0.013mm recommended in the DCB
and MMB test standards.2,3

A great advantage of the E-glass–polyester material
used in this study is its transparency, which makes it
possible to observe the crack initiation visually. The
tool was left at room temperature until the specimens
became dry. Then the specimens were removed from
the tool and were further left at room temperature
until 4–6 h. The specimens were cut to the desired
length and were precracked in opening mode of
4–5mm by using a sharp blade.

The flexural modulus of the material was determined
from a three-point bending test with span length of
2L¼ 150mm using six uncracked specimens with

Table 3. Comparison of the ERRs and mode ratios by beam and FE analysis

Roller diameter d0 (mm) 0 (ELS) 6 7 8 10 12 13 	15 (DCB)

Load at crack initiation PELS (N) 103.1 82.6 70.8 61.9 48.3 31.3 22.5 0

Displacement at crack

initiation

�ELS (mm) 19.4 16.1 12.8 11.0 8.8 5.6 4.2 0

GI (J/m2) IBTa – 48 65 85 132 190 223 412

VCCT widthwise averageb – 47 63 83 129 186 218 395

VCCT at zc
max – 54 73 96 149 215 253 457

Difference (a–b)/b (%) – 2.1 3.2 2.4 2.3 2.2 2.3 4.3

Difference (a–c)/c (%) – �11.1 �11.0 �11.5 �11.4 �11.6 �11.9 �9.8

GII (J/m2) IBTa 707 454 333 255 156 66 34 –

VCCT widthwise averageb 724 502 316 234 151 59 34 –

VCCT at zc
max 767 533 336 249 160 63 36 –

Difference (a–b)/b (%) �2.3 �9.6 5.4 9.0 3.3 11.9 0.0 –

Difference (a–c)/c (%) �7.8 �14.8 �0.9 2.4 �2.5 4.8 �5.6 –

GI/GII IBTa 0 0.11 0.20 0.33 0.85 2.88 6.56 1

VCCT widthwise averageb 0 0.09 0.20 0.35 0.85 3.15 6.41 1

VCCT at zc
max 0 0.10 0.22 0.39 0.93 3.41 7.03 1

Difference (a–b)/b (%) – 12.9 �2.1 �6.1 �1.0 �8.7 2.3 –

Difference (a–c)/c (%) – 4.4 �10.2 �13.5 �9.1 �15.6 �6.7 –

aIBT; bVCCT widthwise average; and cVCCT at zmax.
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thickness of 2 h¼ 6.2mm and width b¼ 20mm. The
flexural modulus was computed in accordance with
simple beam theory expression: �bend¼PL3/(4bh3E11),
which is the displacement at the point of load introduc-
tion. The experiments resulted in E11¼ 33GPa. In fact,
the shear deformation was not accounted for; however,
its contribution to the displacement is quite small:
�shear¼PL/(4bhkG12). The additional properties were
predicted from simple rules of mixture; in this way
E22¼E33¼ 7.2GPa, G12¼G13¼ 3GPa, and �12¼�13¼
0.27 were obtained. Using these values, the ratio of the
displacements from bending and shear deformation at
the center of the specimens is: (h/L)2 �E11/(G12k)¼
0.0056, that is, the amount of shear deformation is
quite small and can be neglected. The material proper-
ties were used in the data reduction process.

DCB test

In the case of the DCB test (Figure 1(b)), we refer to
previous fracture experiments36 performed in the crack
length range of a¼ 20–150mm. It has been found that
the critical ERR at crack initiation becomes indepen-
dent of a, after 90mm. The steady-state ERR was
GIC¼ 412 J/m2 evaluated by using an IBT scheme.
This value will be used in the sequel.

ELS test

For the ELS measurements, four specimens were pre-
pared with a¼ 105mm. Each specimen was put into a
clamping fixture and then the specimens were loaded,
and the load and displacement values were read from
the scale of the testing machine and using a digitronic
indicator, respectively. The crack initiation was identi-
fied visually and when the first non-uniformity in the
previously straight crack front was observed, it was
believed to be the point of crack initiation.

PELS test

The PELSI/II tests were carried out using an Amsler
testing machine under displacement control. The
crack length of interest was a¼ 105mm. The critical
COD measured from the DCB test36 is about 15mm
(if a¼ 105mm). Six steel rollers were used including the
following diameters: d0¼ 6, 7, 8, 10, 12, and 13mm.
It was assumed that the CODs (�DCB) were identical
to these values. The specimen arms transmitted a rela-
tively high pressure to the steel roller; therefore, the
position of the rollers was always stable and no slip
along the x axis was observed during the measure-
ments. Similar to the ELS tests, we applied four cou-
pons at each steel roller. The load–deflection data was
measured by using the scale of the testing machine and

a digitronic indicator. In each case, the critical load at
crack initiation was determined.

Results and discussion

It will be shown subsequently that the stiffness, the
compliance, and the mode-II ERR of the PELSI/II spe-
cimen are identical to those of the ELS specimen.

Load and displacement

Figure 6(a) shows a recorded load–displacement curve
for the PELSI/II specimen in the case of d0¼ 10.0mm.
The response follows essentially a linear relation. The
PELSI/II test was performed according to the following
procedures. The onset of crack advance was identified by
visual observations. In each case, four specimens were
tested, and one of them was used to investigate the crack
front. The other three specimens were loaded continu-
ously and the crack initiation was observed in situ. Thus,
the former specimen was loaded subsequently, at some
points where the initiation was expected the specimen
was relieved, and removed from the rig, and the crack
front was photographed. When the first non-uniformity
was observed, this point was denoted as the point of
fracture initiation. The results of this process are dem-
onstrated in Figure 6(b) for the PELSI/II, when the diam-
eter of the prestressing roller was d0¼ 10.0mm.

Table 4 shows that the slopes of the load–displace-
ment traces of the ELS (d0¼ 0) and PELSI/II specimens
are eventually the same. Consequently, the prestressed
state does not influence the stiffness of the system
noticeably, and the compliance of the PELSI/II can be
assumed to be equal to that of the ELS system. The
maximum difference is 8.6% between the measured and
calculated slopes. On the other hand, the results in
Table 5 confirm that the effect of friction between the
steel roller and the specimen arms on the load–displace-
ment response of the system is insignificant.

Data reduction

Two reduction techniques (IBT and direct beam theory
(DBT)) were applied to reduce the experimental data.
In a relevant work25 for the mixed-mode I/II version of
the PENF specimen, four reduction schemes were uti-
lized: IBT, simple beam theory, DBT,37 and the com-
pliance calibration (CC). For mode-I and mode-II
specimens, the CC is thought to be the most accurate
one; however, its application requires much experimen-
tal work. That is why the IBT is the optimal solution in
unidirectional composites.

Improved beam theory. Double-cantilever beam: In
Equation (6), PDCB should be replaced with PI
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(the load value at crack initiation in the DCB specimen)
in order to obtain the improved analytical expression
for the ERR of the DCB specimen (GIC¼ 412 J/m2

from IBT36).
ELS specimen: Replacing PELS with PII in Equation

(11) gives the improved solution for the ELS coupon,
where PII is the critical load value at crack onset. The
IBT resulted in GIIC¼ 707� 33 J/m2.

PELS specimen: The improved analytical solutions
are given by Equations (9) and (11) for the PELSI/II
system.

Direct beam theory. Double-cantilever beam: For the
DCB specimen, we replace the result of DBT with the
one by IBT (GIC¼ 412 J/m2).

ELS specimen: In accordance with DBT, it is
possible to obtain the following scheme for the ELS
specimen:37

GDBT ¼
9PII�ELSa

2

2b 3a3 þ L3ð Þ
: ð13Þ

where PII and �ELS are the experimentally measured
load and displacement values at the point of crack ini-
tiation in the ELS specimen.

PELS specimen: We obtain the DBT scheme for GII,
the PELSI/II system if we replace PII with PELS in
Equation (13) (GI is calculated by IBT). A significant
advantage of the DBT is that there is no need to deter-
mine the elastic properties of the material.
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Critical ERRs

The critical mode-I, mode-II, and the mixed-mode I/II
ERRs at crack initiation and the mode mix calculated
by the IBT are given in Table 3. The geometries tested
had properties of a¼ 105mm, 2 h¼ 6.2mm, and
L¼ 150mm, and at each value of the diameter of the
prestressing roller (d0) four coupons were used. Table 5
presents the results obtained by the DBT scheme.
In fact, the scatter of the mode-I ERR component is
zero; this is because the mode-I ERR is provided by the
preload of the specimen. Otherwise, the mode-I com-
ponents were substituted by the results of the IBT
scheme. Comparing Tables 3 and 5, it is elaborated
that the difference between the GII values – as well as
the mode ratio – by DBT and IBT decreases with the
roller diameter (which is eventually equal to the COD).
Furthermore, the DBT method gives GI and GII values
which are closer to the maximum values calculated by
the FE model. The mode ratio is predicted by both
methods in an equally accurate manner.

It is important to recommend a data reduction tech-
nique for the PELSI/II system. The reliability and sim-
plicity of the IBT has already been highlighted by other
authors.37,38 On the other hand, the application of the
FEM as a data reduction method requires large com-
putational time. Although the DBT method agrees
quite well with the VCCT method, at the midpoint of
the crack front the IBT seems to be more conservative
method in each mode ratio. At this stage, the optimal
solution is the application of IBT for the evaluation of
both the mode-I and mode-II ERRs; however, the

theoretically possible errors should be considered (sec-
tion 2 and Table 3).

Fracture envelopes

In order to construct a fracture envelope in the GI–GII

plane, we apply two criteria. In accordance with the tra-
ditional power criterion, the following relation may be
established between the mode-I andmode-II ERRs:39, 40

GI

GIC

� �p1

þ
GII

GIIC

� �p2

¼ 1: ð14Þ

Williams’ criterion39 recommends the following
expression for the establishing relation between the
mode-I and mode-II ERRs:

GI

GIC
� 1

� �
GII

GIIC
� 1

� �
� Ii

GI

GIC

� �
GII

GIIC

� �
¼ 0, ð15Þ

where Ii is the interaction parameter between the mode-
I and mode-II ERRs. If Ii¼ 0, then there is no interac-
tion. Also, if Ii¼ 1, then Equation (15) states a simple
addition. In Equations (14) and (15), GIC is the critical
ERR under pure mode-I (calculated from the data of
the DCB specimen) and GIIC is the mode-II critical
ERR (calculated from the data of the ELS specimen).
The results of the PELSI/II test listed in Table 3 (IBT)
were used to provide six additional points in the GI–GII

plane. The power parameters (p1, p2) in Equation (14)
and the interaction parameter (Ii) in Equation (15) were
determined by a curve-fit technique by applying the
OriginPro 7.0 code.

Table 5. Critical ERRs in the PELSI/II specimen calculated by DBT

d0 (mm) 0 (ELS) 6 7 8 10 12 13 	15 (DCB)

GI/GII 0.00 0.10 0.21 0.37 0.91 3.17 6.91 1

– �0.01 �0.02 �0.03 �0.16 �0.93 �0.86 –

DBT GI (J/m2) 0.0 51 70 92 143 206 242 412 (IBT)

GII (J/m2) 735 490 334 251 157 65 35 0.0

�52 �36 �28 �23 �24 �19 �4 –

GT 735 541 404 342 300 271 277 412 (IBT)

Table 4. The changes in the slope of the load–displacement curves of the PELSI/II specimen with the roller diameter

d0 (mm) 0 6 7 8 10 12 13

Load–displacement curve slope-1 (N/mm) 5.5 5.4 5.6 5.5 5.2 5.3 5.7

Difference compared to 5.377 N/mma 1.6 0.6 3.6 1.6 �3.6 �1.9 5.2

Load–displacement curve slope-2 (N/mm) 5.0 5.1 5.4 5.7 5.4 5.5 5.8

Difference compared to 5.377 N/mma
�7.7 �5.5 0.5 5.3 1.1 2.2 8.6

aResult of the analytical model.
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The fracture envelope calculated by the IBT method
is displayed in Figure 7. The main conclusion is that
there is some interaction between the mode-I and
mode-II ERRs. The scatter is also in reasonable
ranges. Overall, the difference between the power and

Williams’ criteria is negligible; both describe the same
failure locus.

In a recent work, the fracture envelopes in theGI–GIII

plane were constructed by the mixed-mode I/III pre-
stressed split-cantilever beam (PSCB)I/III specimen for
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Figure 8. Interlaminar fracture envelope in the GI–GIII plane for E-glass–polyester composite material calculated by the IBT method.
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the same E-glass–polyester material.27 A similar experi-
mental study resulted in a convex envelope in theGI–GIII

plane as it is shown in Figure 8. Based on the compari-
son between Figures 7 and 8 we may conclude that
the material proves similar behavior in the GI–GII,
and the GI–GIII plane, since interaction takes place in
both cases.

Conclusions

In this study, the mixed-mode I/II version of the
PELS specimen was developed for interlaminar frac-
ture testing of laminated transparent composite mate-
rials. Apart from the ELS and the traditional DCB
tests, the PELSI/II specimen was used to obtain the
mixed-mode I/II ERR at crack propagation onset
including six different mode ratios. To perform the
experiments, unidirectional E-glass–polyester speci-
mens were manufactured. An improved beam model
was recommended for the evaluation of both the
mode-I and mode-II ERRs.

A FE analysis was performed and it was shown that
the mode ratio changes along the specimen width and it
is not possible to eliminate this variation. The beam
theory expressions give approximately the widthwise
average value of the ERRs and mode ratio compared
to the FE results. In this respect, some assumptions
were made considering the data reduction, namely
the widthwise average values were believed to give
acceptable and realistic results. To assess the possible
errors committed through these assumptions, a FE
analysis was performed using the VCCT. The crack
initiation was expected at the point where the maxi-
mum of the total ERR was calculated and the values
of GII and GI/GII were compared to the widthwise aver-
age values. The possible errors were estimated to be at
most 11.9% in GII and 15.6% in GI/GII; however, these
differences are the results of the rounding.

Based on the performed experimental study, the
fracture envelope of the present material was deter-
mined indicating a significant interaction between GI

and GII.
The PELSI/II specimen offers several advantages.

First, it incorporates the traditional beam-like specimen
geometry. Second, it was shown that the PSCBI/II speci-
men is able to produce any mode ratio at crack prop-
agation onset. The drawbacks of the PELSI/II specimen
are that the mode ratio changes with the crack length
and the applied load; so the method is recommended
mainly for the testing of transparent composite mate-
rials. Moreover, the mode ratio changes even along the
crack front. Finally, the mode ratio cannot be calcu-
lated without performing experiments (i.e., it cannot be
designated before the test), involving the fact that the
mode ratio will depend on the definition of the crack

initiation and the accuracy of the measurement of the
load and crack length.
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