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Abstract

Generally, the delamination testing of composite specimens involves the analytical determination of the compliance and
the energy release rate for the actual configuration. In this work an improved analysis for unidirectional composite delam-
ination specimens is presented, which is based on the results of the last 30 years. The main goal of the present model is the
improvement of the global mode decomposition method including four mechanical deformations apart from simple beam
theory: Winkler–Pasternak foundation, transverse shear, Saint–Venant effect and crack tip shear deformation, respectively.
These effects are investigated separately using a general loading scheme and at the final stage their results are superim-
posed. The derived model is applied to the mixed-mode I/II single-cantilever beam, the single-leg bending and the universal
mixed-mode bending specimens. Beside the present solution three other ones are adopted to compare the results for the
compliance and energy release rate of the mentioned specimens. Although the present model shows similar results to
the most accurate finite element model, it is simpler and helps us to understand better the mechanisms of the delamination
process.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Within the scope of the linear elastic fracture
mechanics (LEFM) the interlaminar fracture behav-
ior of composite materials has been very intensively
investigated in the literature. In this respect the most
important quantity is the energy release rate (ERR),
of which critical value must be exceeded in order to
produce a unit of crack extension. In most cases for
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the common mode-I and mode-II beam-type speci-
mens the ERR is determined through improved
beam analysis. The double-cantilever beam (DCB)
is a standard specimen for mode-I delamination
testing. The elastic foundation was first applied by
Kanninen and Popelar (1985) for the DCB specimen
to model the deflection and rotation at the crack tip
zone and to improve the formulae of the compliance
and the ERR by simple beam theory. Williams
(1989) extended this model for orthotropic materi-
als, while Olsson (1992) completed the analysis of
the DCB specimen with transverse shear and
.
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Saint–Venant (S–V) effects. The elastic foundation
model was extended later for angle-ply laminate
DCB coupons by Ozdil and Carlsson (1999a). For
the mode-II end-notched flexure (ENF) delamina-
tion specimen improved beam analyses have been
also performed. The first one was made by Carlsson
et al. (1986), but only a little improvement was
achieved. Ozdil et al. (1998) extended the Timo-
shenko beam theory for angle-ply laminate ENF
specimens, while Ding and Kortschot (1999) intro-
duced an elastic foundation model using tangential
springs along the uncracked portion of the ENF
coupon. In fact their model was too complicated
and could not be applied directly. Later Wang and
Qiao (2004a) presented a simpler and more practical
solution for the ENF specimen, which had a similar
form to that Williams (1989) provided for the DCB
coupon. For mixed-mode I/II interlaminar fracture
many configurations were developed (see the works
by Davidson and Sundararaman (1996), Lai et al.
(1996) and Sundararaman and Davidson (1997,
1998)). In this respect the standard mixed-mode
bending (MMB) is the most universal tool. In the
original papers of Crews and Reeder (1988) and
Reeder and Crews (1990) a data reduction scheme
based on elastic foundation and Timoshenko beam
theory was developed. The single-cantilever beam
(SCB), known as the mixed-mode end-loaded split
(MMELS) specimen was applied among others by
Hashemi et al. (1990a,b) and Reyes and Cantwell
(2000) for experimental investigations. Also, beam-
theory-based equations were applied for data reduc-
tion in these works. Improved expressions can also
be obtained for the ERR using combined beam-the-
ory-finite-element-based analysis. In this respect the
work by Wang and Williams (1992) should be men-
tioned who presented corrections for mode-II ENF
and ELS fracture specimens based on numerical cal-
culations. Independently Bao et al. (1992) derived
similar improvements for the DCB, mode-II ELS
and SCB configurations.

In the case of mixed-mode I/II tests the mode-
mixity analysis is an important issue. The so-called
global method was developed by Williams (1988)
based on simple beam theory. A different local
approach was provided by Suo and Hutchinson
(1990) using beam theory and integral equation
methods. The latter was used to study several
delamination specimens (Suo, 1990). Sundararaman
and Davidson (1997, 1998) developed the crack tip
element (CTE) analysis which was eventually equiv-
alent to the local method. It should be mentioned
that the local method is more accurate than the glo-
bal one, because the latter is valid only in the case of
midplane delamination and with same material
properties of the upper and lower layers (Hutchin-
son and Suo, 1992; Bruno and Greco, 2001a; Zou
et al., 2001, 2002). In few works (Zou et al., 2001;
Bruno and Greco, 2001a) it has been shown, that
if an appropriate kinematical plate model is used
then the global method gives the same result as
the local approach. Later, the local method was gen-
eralized for laminates with optional stacking
sequence and multiple delaminations by Sheinman
and Kardomateas (1997) and it was completed with
shear effect using first-order shear deformable plate
theory by Wang and Qiao (2004b,c). Bruno and
Greco (2001a,b) also investigated the shear defor-
mation effect on the ERR of delaminated plates.
Notable contribution from shear–bending coupling
was found, and it was shown that the shear effect
improves only the mode-I component. Finally, the
virtual crack-closure technique (VCCT) should be
mentioned, which is widely accepted and applied
for the computation of the ERR and mode decom-
position in delaminated composite structures (Ryb-
icki and Kanninen, 1977; Raju et al., 1988; Ducept
et al., 1999).

The Winkler–Pasternak (W–P) elastic foundation
is intensively applied by researchers to handle
mainly dynamic (Rosa, 1995; Filipich and Rosales,
2002; Cos�kun, 2003) and finite element problems
(Alemdar and Gülkan, 1997; Omurtag and
Kadıoĝlu, 1998; Khazanovich, 2003). However, to
the best of the author’s knowledge it is not yet
adopted for the beam analysis of fracture speci-
mens. The two-parameter elastic foundation (Pas-
ternak or Filonenko–Borodich) model assumes,
that at the contact point between the beam and
the foundation there are also moments, which are
proportional to the angle of rotation. In our last
work the Winkler-type elastic foundation and the
result of the Timoshenko beam theory were
extended for mixed-mode I/II (ELS and SLB)
delamination specimens (Szekrényes and Uj, 2004).
In the present work we analyse a more general load-
ing scheme using the W–P foundation, Timoshenko
beam theory, the theory of crack tip shear deforma-
tion (CTSD) analysis (Wang and Qiao, 2004a) and
the S–V effect (Olsson, 1992). These effects are inves-
tigated separately but in the final stage the obtained
results are superimposed. Finally, an improved
scheme is developed, which is suitable to calculate
the compliance, the mode-I and mode-II ERRs.
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To demonstrate the accuracy of the developed
model it is applied to the SCB, SLB and the
MMB specimens, respectively and comparison is
made with other analytical (Carlsson et al., 1986;
Olsson, 1992; Bruno and Greco, 2001a) and numer-
ical (Bao et al., 1992) solutions.

2. Beam analysis

In this section we adopt linear beam theories to
obtain refined solution for the compliance and the
ERR of midplane delaminated composite beams.
The beams are assumed to have a linear elastic
behavior and the model arms have the same
mechanical properties. The W–P foundation analy-
sis (Rosa, 1995; Szekrényes, 2005), Timoshenko
beam theory (Washizu, 1968), S–V effect (Olsson,
1992) and the concept of CTSD analysis (Wang
and Qiao, 2004a; Szekrényes, 2005) are utilized in
our formulation. The total solution is obtained by
the principle of superposition. Interaction among
the former effects is not considered but in the last
section some explanations will be available, which
will show that the possible interactions can be
ignored. Also, mode-mixity is performed by means
of the global approach (Williams, 1988).

2.1. Winkler–Pasternak foundation analysis

The problem in Fig. 1 shows a delaminated beam
is subjected to a general loading condition. In the
uncracked region the two-parameter elastic founda-
tion model captures the transverse elasticity. The
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Fig. 1. Two-parameter elastic foundation model.
arms of the model are subjected to different loads.
A detailed view at the crack tip is also shown at
the bottom of Fig. 1. The linear springs are con-
nected to the midplane of the upper and lower beam
elements, while the moment in the torsional springs
is proportional to the difference in the angle of rota-
tions of the upper (wu2(x)) and lower (wl2(x)) beam
elements. The potential energy of the system in
Fig. 1 is

P ¼ 1

2

Z
ðlÞ
½Iu

y2E11w00u2ðxÞ
2 þ Il

y2E11w00l2ðxÞ
2

þ Iu
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where Iu
y2, Il

y2; I
u
y1 and Il

y1 are the relevant second-or-
der moments of inertia (refer to Fig. 1), E11 is the
flexural modulus, ke is the Winkler foundation
parameter, kG is the Pasternak foundation parame-
ter and P1 and P2 are the external loads, respec-
tively. The potential energy in the torsional
springs is proportional to the square of the differ-
ences in the angle of rotations. The application of
the minimum of the potential energy principle in-
volves the following governing equations:

Il
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The definition of the foundation parameter ke is
(Ozdil and Carlsson (1999a):

ke ¼
bE33

h
: ð3Þ

The rotational foundation parameter cannot be so
simply expressed. Generally, in the relevant litera-
ture the foundation parameters are varied within a
wide range (Rosa, 1995; Alemdar and Gülkan,
1997; Cos�kun, 2003), or only approximate expres-
sions are given for the calculation of kG (Omurtag
and Kadıoĝlu, 1998; Khazanovich, 2003). Some
assumptions are required to determine the second
foundation stiffness. The rearranged form of the
governing equations is
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d4wl2ðxÞ
dx4

� 2v4 d2wl2ðxÞ
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þ 4g4wl2ðxÞ

¼ �2v4 d2wu2ðxÞ
dx2
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dx4
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where g and v will be defined later. Eq. (4) has three
distinct solutions depending on which condition:
v4 < 21/2g2, v4 = 21/2g2 or v4 > 21/2g2, respectively
holds (Alemdar and Gülkan, 1997). It will be shown
subsequently that in our case the last condition is in-
volved. In this case the characteristic roots of Eq.
(4) are:

m41 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v4 �

ffiffiffi
2
p

g2

q
;

m42 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v4 þ

ffiffiffi
2
p

g2

q
:

ð5Þ

In the followings we assume that the rotational
springs – similarly to the linear springs – depend
on the through-thickness modulus (E33). We adopt
the following relation between v and g:

v4 ¼ x21=2g2; ð6Þ

where x > 1 and will be determined based on finite
element (FE) calculations. The solutions of the un-
cracked part are given by

wl2ðxÞ ¼ c1 þ c2xþ c3x2 þ c4x3 þ ½c5 coshðm41xÞ
þ c6 sinhðm41xÞ� coshðm42xÞ
þ ½c7 coshðm41xÞ þ c8 sinhðm41xÞ� sinhðm42xÞ;

0 6 x 6 c;

wu2ðxÞ ¼ c1 þ c2xþ c3x2 þ c4x3 � ½c5 coshðm41xÞ
þ c6 sinhðm41xÞ� coshðm42xÞ
� ½c7 coshðm41xÞ þ c8 sinhðm41xÞ� sinhðm42xÞ;

0 6 x 6 c:

ð7Þ

The deflection functions of the upper and lower
model arms (Fig. 1) can be expressed in the usual
way using Euler–Bernoulli beam theory. Using the
theorem of parallel axes the second-order moments
of inertia of the cracked and uncracked portions of
the model in Fig. 1 are Iu

y2 ¼ Il
y2 ¼ h3b=3 and

Iu
y1 ¼ Il

y1 ¼ h3b=12, respectively, where in the calcu-
lation of Iu

y2 and Il
y2 it was considered that the refer-

ence plane coincides with the x–y plane of the model
depicted in Fig. 1. The same method was applied by
Davidson and Sundararaman (1996) and Sundarar-
aman and Davidson (1998). This condition assumes
strain compatibility along the interface, which is as-
sumed not to be violated by the elastic foundation.
The coefficients, g and v may be expressed by using
Eqs. (2)–(4) and (6):
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The constants (c1–c8) in Eq. (7) and further four un-
known constants (c9–c12) in the deflection functions
of the upper and lower model arms can be obtained
by using the usual boundary and matching condi-
tions. However, the following matching conditions
are important to highlight:

w00u1ð0Þ ¼ 4w00u2ð0Þ; w00l1ð0Þ ¼ 4w00l2ð0Þ;
w000u1ð0Þ ¼ 4w000u2ð0Þ; w000l1ð0Þ ¼ 4w000l2ð0Þ:

ð9Þ

It is noteworthy that the theorem of parallel axes
should be considered when we match the second
and third derivative of the relevant deflection
functions in Eq. (9). We are interested to find
the compliance of each arm, that can be obtained
by taking the deflections wu1(x), wl1(x) at the po-
sition of x = �a and dividing them by the external
loads, P1 and P2, respectively. Meaningful simpli-
fications can be achieved by assuming that the
length of the uncracked region, c is much larger
than half of the specimen thickness, h. Note that
the constant parameters, c1–c12 are extremely
complicated, therefore they are not detailed here.
Utilizing Eq. (8) the compliance of the upper
arm becomes:

CEB;WP ;1 ¼
7a3 þ L3

2bh3E11

þ ðL
3 � a3ÞP 2

2bh3E11P 1

þ a3ðP 1 � P 2Þ
2bh3E11P 1
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ð10Þ

where L = a + c is the full length of the model in
Fig. 1. Furthermore:

fW1 ¼ 2:71
h
a

� �
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� �1
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/
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h
a
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E33

� �3
4

/
1
2; ð11Þ

where / = 1 + x. The first two terms in Eq. (10) are
the result of the Euler–Bernoulli beam theory, while
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the third one is the correction based on the two-
parameter elastic foundation. A similar expression
may be obtained for the lower arm. The ERR for
the upper arm may be obtained by using the follow-
ing equation (Anderson, 2005):

GEB;WP ;1 ¼
P 2

1

2b
dCEB;WP ;1

da
: ð12Þ

Thus, we may obtain:

GEB;WP ;1 ¼
21P 2

1a2

4b2h3E11

� 3P 1P 2a2
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þ P 1ðP 1 � P 2Þa2

4b2h3E11

fW 2;

ð13Þ

where
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h
a

� �
E11

E33

� �1
4

/
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2

/:
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The ERR for the lower arm of the model in Fig. 1
can be calculated similarly.
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Fig. 2. A general loading scheme for Timoshenko beam theory.
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2.2. Timoshenko beam theory

Fig. 2 shows a delaminated beam loaded by dif-
ferent concentrated forces at the end of both arms
and the beam has a clamped end. The effect of trans-
verse shear was analysed in our last work (Szekrén-
yes and Uj, 2004). The analysis resulted in the
following compliance and ERR corrections:

CTIM;1 ¼
LðP 1 þ P 2Þ þ aðP 1 � P 2Þ

2bhkG13P 1

; ð15Þ

where G13 is the shear modulus in the x–z plane, fur-
thermore the ERR is

GTIM;1 ¼
P 1ðP 1 � P 2Þ

4b2hkG13

; ð16Þ

where k = 5/6 is the shear correction factor. For the
lower arm similar expressions can be derived.

2.3. Saint–Venant effect

Olsson (1992) considered the problem of S–V
effect in the compliance analysis of the mode-I
DCB specimen. In this section we adopt the same
theory. The S–V effect represents a rotational angle
at the crack tip or at the clamped end of the
model. In Fig. 3 three cases are compiled. Fig. 3a
shows the deformation of the crack tip under pure
mode-I condition. In this case the strain compati-
bility condition is satisfied, hence the S–V effect
should be considered. In contrast, focusing our
attention on Fig. 3b we may observe that the
2h x
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2h
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zθ3
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ode-II (b). Saint–Venant effect at the clamped end (c).
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S–V effect must vanish if the pure mode-II condi-
tion is involved. In this case the rotational angles
would induce opposite axial displacements at the
crack tip, which is physically not possible. Finally,
Fig. 3c shows the clamped end of the uncracked
part of the model, where the S–V effect also takes
place. Therefore, in the sequel we discuss only the
pure mode-I condition and the case of the clamped
end. The mixed-mode I/II problem can be sepa-
rated into the unique mode-I and mode-II prob-
lems using the principle of superposition (refer to
Fig. 4). We note that in accordance with strength
of materials analysis there are zero axial displace-
ments at the clamped end. The present formulation
is an attempt to capture better the deformation at
the clamped end.

According to Olsson’s analysis the derivative of
the strain energy in the coordinate system in
Fig. 3 is bounded by the following inequality:

oU
ox
6 2

oU
ox

����
0

e�
2x
j ; j ¼ h

2p
E11

G13

� �1
2

; ð17Þ

where U is the strain energy, j is the characteristic
decay length in the material.
2.3.1. Saint–Venant effect at the crack tip

In the followings we investigate the mode-I part
of the problem (Fig. 4b), furthermore only the
upper half of the model is considered. In the case
of slender beams under bending the derivative of
the strain energy per unit length can be calculated as

oU
ox

� �
1

����
0
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2
Iu

y1E11ðw00j0Þ
2 ¼ 1

2

M2
1

Iu
y1E11

¼ 6M2
1
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ð18Þ

where Iu
y1 is identical to that mentioned in Section

2.1. The moments, M1 and M2 are (refer to Fig. 4b):

M1 ¼
ðP 1 � P 2Þa

2
; M2 ¼

ðP 2 � P 1Þa
2

: ð19Þ

For M3 and M4 in Fig. 3 refer to Fig. 4c. From Eqs.
(17) and (18) the strain energy ahead of the crack tip
is

U 1 6

Z 1

0

2
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� �
1

����
0

e�
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j dx

¼ 12M2
1
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Z 1

0
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j dx) U 1 6

6M2
1j
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Let us consider the lower sign in Eq. (20). Using
Castigliano’s second theorem and Eq. (19) we ob-
tain the rotational angles at x = 0:

h1 ¼
oU 1

oM1

¼ 12M1j

bh3E11

¼ 6ðP 1 � P 2Þaj

bh3E11

: ð21Þ

The displacement at the end of the model arm is (see
Fig. 5)

d1 ¼ h1a ¼ 6ðP 1 � P 2Þa2j

bh3E11

: ð22Þ

Substituting j (the second in Eq. (17)) into Eq. (22)
we obtain:

CSV;1 ¼
d1

P 1

¼ 3

p
ðP 1 � P 2Þa2

bh2E11P 1

E11

G13

� �1
2

: ð23Þ

the application of Eq. (12) results in the ERR as

GSV;1 ¼
P 1ðP 1 � P 2Þa2

4b2h3E11

fSV; ð24Þ

where

fSV ¼
12

p
h
a

� �
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G13

� �1
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: ð25Þ

For the lower half of the problem similar expres-
sions can be obtained.
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Fig. 5. Deformation of the crack tip due to Saint–Venant effect.
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2.3.2. Saint–Venant effect at the clamped end

A similar analysis at the clamped end of the
model (see Fig. 3c) gives:

CSV ¼
3

p
L2

2bh2E11

E11

G13

� �1
2

; ð26Þ

where L = a + c is the full length of the model. As it
can be seen, in this case there is no contribution to
the ERR.

2.4. Crack tip shear deformation analysis

Wang and Qiao (2004a) performed an improved
beam analysis for the mode-II ENF coupon. Their
solution can be easily extended for mixed-mode
I/II specimens. Let us consider the problem in
Fig. 6. Based on the strength of materials analysis
the shear stresses in the upper and lower arms of
the model are:

s01 ¼
3

2

P 1

bh
; s02 ¼

3

2

P 2

bh
: ð27Þ

We consider the shear stresses in Eq. (27) as shear
tractions and the effect of the concentrated forces,
P1 and P2 is not included in the analysis (they have
already been considered in Sections 2.1 and 2.2). In
contrast with Wang and Qiao (2004a) in the present
analysis we assume that the shear tractions act
along the midplane of the upper and lower arms
and do not between crack faces. The relationships
between the section forces and stresses of the un-
cracked region are:

dN u2

dx
¼ bsu2;

dNl2

dx
¼ bsl2;

dMu2

dx
¼ � h

2
bsu2;

dMl2

dx
¼ � h

2
bsl2; ð28Þ

where N is the normal force and M is the bending
moment, respectively. The relationship between
the deflections and the bending moments are:
wu2(x)

wl2(x)

c

x

τ(x)

tip shear deformation analysis.
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d2wu2

dx2
¼ �Mu2

Iu
y2E11

;
d2wl2

dx2
¼ �Ml2

Il
y2E11

; ð29Þ

where Iu
y2 and I l

y2 are the same moments of inertia as
mentioned in Section 2.1. The longitudinal displace-
ment at the neutral plane of the uncracked portion
(0 6 x 6 c) can be written as

uu2ðxÞ ¼ �
Z

N u2

bhE11

dxþ K1su2 �
h
2

dwu2

dx
; ð30Þ

ul2ðxÞ ¼
Z

N l2

bhE11

dx� K2sl2 þ
h
2

dwl2

dx
; ð31Þ

where K1 and K2 are the shear compliances and we
will define them later. Along the interface of the
upper and lower beam elements of the uncracked re-
gion the axial displacements should be identical, i.e.
strain compatibility is required and the relative dis-
placement is zero:

uu2ðxÞ � ul2ðxÞ ¼ 0: ð32Þ

Substituting Eqs. (30) and (31) into (32) and differ-
entiating the resulting expression twice we have:

� 1

bhE11

dN u2

dx
þ dN l2

dx

� �
þ K1

d2su2

dx2
þ K2

d2sl2

dx2

� h
2

d3wu2

dx3
þ d3wl2

dx3

� �
¼ 0: ð33Þ

In accordance with Wang and Qiao (2004a) the
shear compliances are K1 = K2 = h/3G13. Combin-
ing Eqs. (28), (29) and (33) and recognizing that at
the interface the shear stresses are equal
(su2 = sl2 = s), the following governing equation
can be obtained:

d2s
dx2
� q2s ¼ 0; q ¼ 21G13

4E11h2

� �1
2

: ð34Þ

The solution of Eq. (34) is

sðxÞ ¼ f1e�qx þ f2eqx: ð35Þ

Referring to Wang and Qiao (2004a) the second
term in Eq. (35) can be neglected. On the other hand
the longitudinal forces must vanish along the whole
length of the model, i.e.:Z 0

�a
ðs01 þ s02Þbhdx�

Z c

0

f1e�qxb � 2h � dx ¼ 0: ð36Þ

Assuming that e�qc ffi 0 if c >> h we obtain from
Eqs. (27), (35) and (36) the following solution:

sðxÞ ¼ � 3

4

P 1 þ P 2

bh
q � ae�qx: ð37Þ
In the sequel we analyse only the upper half of the
model. The bending moment function in the un-
cracked region using Eq. (28) is

Mu2ðxÞ ¼ �
h
2

Z
3

4

P 1 þ P 2

bh
q � ae�qxb � dx

� �

¼ 3

8
ðP 1 þ P 2Þae�qx: ð38Þ

Using Eqs. (29) and (38) the deflection function of
the uncracked part becomes:

wu2ðxÞ ¼ �
3

8

ðP 1 þ P 2Þa
Iu

y2E11q2
e�qx þ g1xþ g2: ð39Þ

Since the shear stresses act along the neutral plane
of the upper and lower model arms they do not
cause bending moment, consequently they are sim-
ple linear functions. Using the boundary conditions
depicted in Fig. 6 and matching the deflections and
their derivates at x = 0 we may obtain the compli-
ance of the upper arm of the model after some sim-
plifications (Wang and Qiao, 2004a):

CSH;1 ¼
wu1ð�aÞ

P 1

¼ ðP 1 þ P 2Þa3

2P 1bh3E11

fSH1; ð40Þ

where

fSH;1 ¼ 0:98
h
a

� �
E11

G13

� �1
2

þ 0:43
h
a

� �2 E11

G13

� �
: ð41Þ

The ERR for the upper arm by using Eq. (12) is

GSH;1 ¼
P 1ðP 1 þ P 2Þa3

2b2h3E11

fSH2; ð42Þ

where

fSH2 ¼ 1:96
h
a

� �
E11

G13

� �1
2

þ 0:43
h
a

� �2 E11

G13

� �
: ð43Þ

The solution can be obtained also for the lower half
of the problem; however it is noteworthy that the
analysis shows that the deflection functions of the
upper and lower beam elements are identical.

2.5. Mode-mixity analysis – global method

Let us consider the problem in Fig. 7a. We super-
impose the results of the elastic foundation, trans-
verse shear analysis, S–V and CTSD effects,
respectively. The compliance of the upper arm of
the model (Fig. 7a) by summarizing Eqs. (10),
(15), (23) and (40) is
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Fig. 7. Reduction scheme for mixed-mode partitioning. Original
problem (a). Reduced problem (b).
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C1 ¼
7a3 þ L3

2bh3E11

þ ðL
3 � a3ÞP 2

2bh3E11P 1

þ LðP 1 þ P 2Þ þ aðP 1 � P 2Þ
2bhkG13P 1

þ a3ðP 1 � P 2Þ
2bh3E11P 1

ðfW1 þ
fSV

2
Þ þ a3ðP 1 þ P 2Þ

2bh3E11P 1

fSH1;

ð44Þ
where fW1 is the correction from two-parameter
elastic foundation analysis, fSV is the correction
from S–V effect and fSH1 is from CTSD analysis,
respectively. Note that the S–V effect is considered
only at the crack tip. The ERR for the upper arm
by summarizing Eqs. (13), (16), (24) and (42) is

G1 ¼
21P 2

1a2

4b2h3E11

� 3P 1P 2a2

4b2h3E11

þ P 1ðP 1 � P 2Þa2

4b2h3E11

ðfW 2 þ fT þ fSVÞ

þ P 1ðP 1 þ P 2Þa2

4b2h3E11

fSH2; ð45Þ

where fT is defined as

fT ¼
1

k
h
a

� �2 E11

G13

� �
: ð46Þ

According to Fig. 7 we reduce problem (a) into
problem (b), where M1 = P1a, M2 = P2a, and M3 =
M1 + M2 are bending moments at the crack tip.
The total ERR (including Eq. (45) and the relevant
solution for the lower arm) can be transformed as
GT ¼
21ðM2

1 þM2
2Þ � 6M1M2 þ ðM1 �M2Þ2ðfW 2 þ fT þ fS

4b2h3E11
Following Williams’ global mode decomposition
method (Williams, 1988; Ducept et al., 1999) the
mode-I and mode-II ERR components become:

GI ¼
M2

I ð12þ fW 2 þ fT þ fSVÞ
b2h3E11

;

GII ¼
M2

IIð9þ fSH2Þ
b2h3E11

;

ð48Þ

where the mode-I and mode-II bending moments
(Williams, 1988; Ducept et al., 1999) are:

M I ¼ ðM1 �M2Þ=2; M II ¼ ðM1 þM2Þ=2: ð49Þ

According to the first of Eq. (48) the W–P founda-
tion, transverse shear and the S–V effect contributes
only to the mode-I component. The first is obvious,
since the two-parameter elastic foundation incorpo-
rates the differences between the vertical displace-
ments and the angle of rotations of the upper and
lower beam elements. Under mode-II these are
equal to zero. Considering the transverse shear ef-
fect the conclusion may be explained by the fact that
under pure mode-II the cracked and uncracked por-
tions have the same shear compliances. This was
supported also by Ozdil and Carlsson (1999a) and
Wang and Qiao (2004a). It has already been dis-
cussed why the S–V effect contributes only to the
mode-I component. On the other hand the CTSD
improves only the mode-II component according
to the second of Eq. (48).
2.6. Compliance calculation

We derive a general expression based on a super-
position analysis, which can be applied to calculate
the compliance for a symmetrically delaminated uni-
directional beam under general mixed-mode I/II
loading condition. The method is the generalization
of that presented by Ozdil and Carlsson (1999b) for
the MMB test rig. In a general form the mode-I and
mode-II bending moments in Eq. (49) are:

M I ¼ P � fI � a#; M II ¼ P � fII � a#; ð50Þ

where P is the external load, fI and fII are related to
geometrical parameters of the system and a# is the
characteristic length (in each case may be related
to the crack length). It is noteworthy that in some
specimens the characteristic length is the length of
VÞ þ ðM1 þM2Þ2fSH2
: ð47Þ
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the uncracked portion (e.g.: the ONF and OLB
specimens (Szekrényes and Uj, 2005, 2007)). Actu-
ally, it is helpful to use concentrated forces instead
of the moments:

P I ¼ P � fI; P II ¼ P � fII; ð51Þ

i.e., MI = PIa
# and MII = PIIa

#. We note that Eq.
(44) is applicable only in particular circumstances,
namely when the external loads act at the end of
the model arms. Although the extension of the mod-
el (Eq. (44)), for example to the ELS, SCB and DCB
specimens is relatively simple, the application, for
instance to the SLB and MMB specimens is not so
trivial. Hence, a more general scheme is preferred.
Based on the present chapter the compliance of uni-
directional composite beams with midplane delami-
nation may be written as

C ¼ CEB þ CTIM þ CW1 þ CSV1 þ CSH1 þ CSV; ð52Þ

where CEB is the result of Euler–Bernoulli beam the-
ory, CTIM is the contribution of transverse shear
deformation, CW1 is the effect of the W–P founda-
tion, CSV1 is from the S–V effect at the crack tip,
CSH1 accounts for the CTSD and CSV considers
the S–V effect at the clamped end, respectively.
The determination of the first two terms requires a
unique analysis. Usually, these two terms may be
determined by following the way shown by Ozdil
et al. (1998). On the other hand CSV (Eq. (26)) is a
simple additive term. Considering the other three
terms it has been shown that the W–P foundation
and the S–V effect at the crack tip contributes to
the mode-I, while the CTSD improves the mode-II
component. We assume that the deflection at the
point of load application (d) is equal to the sum of
the displacements related to the mode-I and mode-
II effects:

d ¼ dEB þ dTIM þ fIdI þ fIIdII þ CSVP ; ð53Þ

where fI and fII are the same as those mentioned in
Eq. (50). The compliance corrections related to the
mode-I and mode-II effects may be expressed as

CI ¼
dI

P I

¼ CW1 þ CSV1; CII ¼
dII

P II

¼ CSH1: ð54Þ

The combination of Eqs. (51) and (54) with Eq. (53)
leads to the followings:

d ¼ dEB þ dTIM þ CIf 2
I P þ CIIf 2

IIP þ CSVP ;

C ¼ CEB þ CTIM þ CIf 2
I þ CIIf 2

II þ CSV:
ð55Þ

The compliance related to the mode-I loading (CI)
can be obtained by substituting P1 = P and
P2 = � P into Eq. (44) and the one for the lower
model arm. Similarly, the compliance related to
the mode-II loading (CII) can be obtained by substi-
tuting P1 = P2 = �P/2 into the same equations. The
former is the case of the mode-I DCB specimen,
while the latter is that of the mode-II ELS specimen.
In other words the solution is obtained as the super-
position of the models of these specimens. Using the
geometrical factors, fI and fII the compliance can be
transformed to the point of load application even if
the load does not act at the model end, for example
in the SLB and MMB specimens (see later). There-
fore, the terms CW1, CSV1 and CSH1 may be calcu-
lated by achieving the former substitutions into
Eq. (44) and the one for the lower arm and compar-
ing to Eq. (55), this calculation gives:

CW1 ¼
2a3

bh3E11

fW1; CSV1 ¼
2a3

bh3E11

fSV

2
;

CSH1 ¼
2a3

bh3E11

fSH1: ð56Þ

Combining Eq. (54), the second of (55) and Eq. (56)
the following expression is obtained:

C ¼ CEB þ CTIM þ
2f 2

I a3

bh3E11

fW1 þ
fSV

2

� �

þ 2f 2
IIa

3

bh3E11

fSH1 þ CSV; ð57Þ

where fW1 is given by Eq. (11), fSV is given by Eq.
(25), fSH1 is defined by Eq. (41) and CSV is given
by Eq. (26). Finally, there is now only one unknown
parameter, x, (in Eq. (6)) of which determination is
detailed in the following.

2.7. Determination of the coefficient of the

Pasternak foundation

We assumed that the torsional springs in the two-
parameter elastic foundation (see Fig. 1) are related
to the through-thickness (E33) modulus of the spec-
imen. If we consider a spring with stiffness of infinity
this is equivalent to the case, when E33 =1. If this
is the case there is no relative vertical displacement
between the upper and lower beam elements of the
uncracked region. Moreover, in this case the relative
angle of rotation of the upper and lower beam ele-
ments is also equal to zero, and consequently even
the potential energy in the torsional springs
becomes zero (Eq. (1)). This indicates that the initial
assumption is right. In order to determine the
unknown parameter (x) the FE method is used.
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First of all the effect of two-parameter elastic foun-
dation should be isolated within the model. In other
words the transverse shear, S–V and CTSD effects,
which are related to the shear modulus of the model
should be eliminated. This may be achieved if we
construct a model, wherein the shear modulus tends
to infinity, i.e.: G13!1. If this is the case the terms
in Eq. (57), which are related to the shear modulus
G13 vanish, since the related corrections (CTIM, fSV,
fSH1, CSV) become zero. It may be assumed that the
remaining correction can be completely related to
the W–P foundation (fW1).

To determine x the simplest way is to consider
the FE model of a DCB specimen, in which the
shear modulus is G13=100 000 GPa. The compliance
and the ERR of the FE model of the DCB specimen
may be written as (Wang and Williams, 1992)

CDCB
FE ¼ 8ðaþ nhÞ3

bh3E11

; GDCB
I;FE ¼

12P 2ðaþ nhÞ2

b2h3E11

; ð58Þ

where n is the correction from the FE analysis if
G13 = 100000 GPa. Rearranging the first of Eq.
(58) n is equal to:

n ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CDCB

FE bE11

8

3

s
� a

h
; ð59Þ

where it was assumed that the correction n does not
depend on the crack length, it depends only on
material properties.

For the application of the analytical model (Eq.
(48)) we need the bending moments at the crack tip
of the DCB specimen, which are: M1 = �M2 = Pa.
Furthermore, Eq. (49) yields that MI = Pa and
MII = 0 and from Eq. (50) that fI = 1 and fII = 0.
Incorporating Eq. (48) the ERR of the DCB model
including only the effect of the two-parameter elastic
foundation is:

GDCB
I;WP ¼

12P 2a3

b2h3E11

þ P 2a2

b2h3E11

5:42
h
a

� �
E11

E33

� �1
4

/
1
2

"

þ2:45
h
a

� �2 E11

E33

� �1
2

/

#
; ð60Þ

where / = 1 + x. The FE analysis was performed
by using the COSMOS/M 2.0 package. The model
of the DCB specimen was meshed with linear elastic
PLANE2D elements under plane stress state. The
upper and lower arms of the model were subjected
to concentrated forces equal to unity. The displace-
ments of the arms were used to calculate the compli-
ance of the model, the value of n was determined
from Eq. (59). The next step was to compare the sec-
ond of Eq. (58) with Eq. (60). In Eq. (60) x was cho-
sen in order to reach the best agreement with the
second of Eq. (58), i.e. with the FE solution, where
G13 is equal to 100000 GPa. A large amount of FE
analysis on models of the DCB specimen with differ-
ent geometrical and material properties were
performed in the crack length range of a = 30–
100 mm. The results are summarized in Table A1
(Appendix). In all the cases it was found that if we
choose x = 2.5 then the agreement between the
FE and analytical solution is excellent. Also, this re-
sult (x > 1) justifies why Eq. (7) was chosen as the
solution of Eq. (4). Finally, based on the analysis
performed above the stiffness of the Pasternak foun-
dation by using Eqs. (6) and (8) is

kG ¼ 2:04bh
ffiffiffiffiffiffiffiffiffiffiffiffiffi
E11E33

p
; ð61Þ

while for isotropic materials kG = 2.04bhE11. It is
important to note that in most of the works the Pas-
ternak foundation stiffness is related to the shear
modulus (Omurtag and Kadıoĝlu, 1998; Khazano-
vich, 2003). It is also noteworthy that in our last
work x was estimated to be 1/2 (Szekrényes and
Uj, 2006).
3. Application to delamination specimens

In this section the models of the SCB, SLB and
MMB delamination specimens are utilized in order
to demonstrate the accuracy of the improved model.
For the geometry of the delamination coupons refer
to Szekrényes and Uj (2006).

For the SCB specimen we may write that:
M1 = 0, M2 = Pa. From Eq. (49) it follows that
MI = �MII = �Pa/2. Comparing the latter to Eq.
(50) we may write that fI = �fII = �1/2 and
a# = a. The compliance of the SCB specimen based
on Eq. (57) (where the terms CEB and CTIM were
determined by following the way shown for example
by Ozdil et al. (1998)) becomes (x = 2.5):

CSCB ¼ 7a3 þ L3

2bh3E11

þ aþ L
2bhkG13

þ a3

2bh3E11

fW1 þ
fSV

2
þ fSH1

� �
þ 3L2

2pbh2E11

E11

G13

� �1
2

:

ð62Þ

Also, the S–V effect at the clamped end should be
considered, i.e. Eq. (26) is also included in the
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second term of Eq. (62). The ERRs of the SCB cou-
pon may be obtained from Eq. (48):

GSCB
I ¼ 12P 2a2

4b2h3E11

1þ 0:85
h
a

� �
E11

E33

� �1
4

"

þ0:71
h
a

� �2 E11

E33

� �1
2

þ 0:32
h
a

� �
E11

G13

� �1
2

þ0:1
h
a

� �2 E11

G13

� �#
; ð63Þ

GSCB
II ¼

9P 2a2

4b2h3E11

1þ0:22
h
a

� �
E11

G13

� �1
2

þ0:048
h
a

� �2 E11

G13

� �" #
:

The compliance terms, CEB and CTIM of the SLB
specimen are given in Szekrényes and Uj, 2004) Fur-
thermore, we may write for the SLB specimen that
M1 = Pa/2, M2 = 0. From Eq. (49) it follows that
MI = MII = Pa/4. Comparing the latter to Eq.
(50) we obtain that fI = fII = 1/4 and a# = a. The
compliance of the SLB specimen by using Eq. (57)
is (note that CSV in Eq. (57) is excluded)

CSLB ¼ 7a3 þ 2L3

8bh3E11

þ aþ 2L
8bhkG13

þ a3

8bh3E11

fW1 þ
fSV

2
þ fSH1

� �
: ð64Þ

Using the same mode-I and mode-II bending mo-
ments we obtain from Eq. (48) that:

GSLB
I ¼ 12P 2a2

16b2h3E11

1þ 0:85
h
a

� �
E11

E33

� �1
4

"

þ0:71
h
a

� �2 E11

E33

� �1
2

þ 0:32
h
a

� �
E11

G13

� �1
2

þ0:1
h
a

� �2 E11

G13

� �#
; ð65Þ

GSLB
II ¼

9P 2a2

16b2h3E11

1þ0:22
h
a

� �
E11

G13

� �1
2

þ0:048
h
a

� �2 E11

G13

� �" #
:

The compliance of the MMB specimen is (Ozdil and
Carlsson, 1999b):

CMMB ¼ 3c� � L
4L

� �2

CDCB þ 1þ c�

L

� �2

CENF; ð66Þ

i.e. the solution for the MMB specimen may be ob-
tained by combining the unique solutions for the
mode-I DCB (Fig. 4b) and the mode-II ENF
(Fig. 4c) specimens. For the former case P1 = P,
P2 = �P, while for the latter case P1 = P2 = �P/4.
Thus, the compliance of the MMB specimen
becomes:

CMMB ¼ 3c� � L
4L

� �2
8a3

bh3E11

þ 2a3

bh3E11

fW1 þ fT þ
fSV

2

� �� �

þ 1þ c�

L

� �2
3a3 þ 2L3

8bh3E11
þ L

4bhkG13

þ a3

8bh3E11

fSH1

� �
;

ð67Þ
where fT is given by Eq. (46). Note that Eq. (67)
may also be obtained by using Eq. (57). For the
MMB specimen: M1 = Pc*a/L, M2 = P(c* � L)a/
2L, thus we have from Eq. (48):

GMMB
I ¼ 12P 2a2ð3c� � LÞ2

16b2h3E11L2
1þ 0:85

h
a

� �
E11

E33

� �1
4

"

þ0:71
h
a

� �2 E11

E33

� �1
2

þ 0:32
h
a

� �
E11

G13

� �1
2

þ0:1
h
a

� �2 E11

G13

� �#
; ð68Þ

GMMB
II ¼ 9P 2a2ðc� þ LÞ2

16b2h3E11L2
1þ 0:22

h
a

� �
E11

G13

� �1
2

"

þ0:048
h
a

� �2 E11

G13

� �#
:

The mode ratio (GI/GII) may be obtained by com-
bining the equations above.

4. Finite element solution – VCCT method

For the mixed-mode I/II specimens a series of FE
models was developed to obtain the ERRs and the
mode ratio in the chosen crack length ranges. For
the SCB and SLB specimens the compliance was
also computed in order to give some comparison
with the analytical solutions. The models were
developed in the commercial code COSMOS/M
2.0 using PLANE2D elements under plane stress
state. This is consistent with the beam formulation
of the problems. The details of the specimens and
FE models are shown in a previous work (Szekrén-
yes and Uj, 2006). The models were 150 mm long,
b = 20 mm wide and 2h = 6.1 mm thick. For the
computation the material properties of a glass/poly-
ester composite is adopted (Szekrényes and Uj,
2004): E11 = 33 GPa, E33 = 7.2 GPa, G13 = 3 GPa
and m13 = m31 = 0.27. The formulae of the VCCT
method used for the calculation are given by
Szekrényes and Uj (2006). A finite element mesh
around the crack tip, as suggested by Davidson
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and Sundararaman (1996) was constructed. The
S–V effect at the clamped end of the SCB specimen
was also accounted for. Also, the case of the tradi-
tional clamped end was studied in this case. Crack
tip elements with finite crack extension of Da =
0.025 mm were constructed.

5. Other solutions

Apart from the present model (beam theory-
based solution I.) three other solutions are extended
for the mentioned fracture specimens: beam theory-
based solution II. (Carlsson et al., 1986; Williams,
1989; Olsson, 1992) (denoted as Carlsson–Olsson),
a solution based on refined plate theory (Bruno
and Greco, 2001a,b) and a numerical (FE) solution
by Bao et al. (1992). For the ERR expressions of
these solutions refer to Szekrényes and Uj (2006).

6. Results

In the following the compliance and ERR expres-
sions from different solutions are compared to each
other. In the work of Bao et al. (1992) expressions
for the compliance are not given, and so, this void
was addressed by our FE models, except in the case
of the MMB specimen, where due to the complex fix-
ture the compliance calculation is difficult. The other
two solutions for the compliance of the specimens are
detailed in relevant papers (Carlsson et al., 1986;
Williams, 1989; Olsson, 1992; Bruno and Greco,
2001a,b). All of the equations were normalized with
the results of the Euler–Bernoulli (CEB) beam theory.
These are the first terms in Eqs. (62)–(69). The nor-
malized compliance and ERR expressions are plot-
ted against the normalized crack length.

6.1. Compliance

The normalized compliance expressions for the
SCB coupon are shown in Fig. 8a. Without the
S–V effect the solutions agree well. The FE solution
provides somewhat different values compared to the
analytically obtained curves if the S–V effect is
included. It should be mentioned that the contribu-
tion from the S–V effect (the second term in Eq.
(62)) at the clamped end of the SCB specimen is
about half time of that predicted by the FE model.
In fact all of the analytical curves follow the same
trend. Quite similar curves were obtained in the case
of the SLB specimen, as it is shown in Fig. 8b. For
the MMB specimen the normalized compliance was
displayed at four different positions of the load, (c*)
by three different solutions (refer to Fig. 9). In the
case of c* = 30 mm the present solution provides
the largest improvement. If c* = 60 mm the present
and Carlsson–Olsson’s solution show similar ten-
dencies. At the other values of c* the solution by
Carlsson–Olsson gives the largest improvement.

6.2. Energy release rate

6.2.1. GI and GII

The results for the ERR of the SLB and MMB
specimens are illustrated in Fig. 10 (for the SCB
specimen the same results were obtained for
L = 150 mm). For the glass/polyester specimens
(Fig. 10a) our solution gives the best correlation
compared to the numerical solution. The overpre-
diction by Carlsson–Olsson in comparison with
Bao’s solution is somewhat surprising. Fig 10a also
contains the result of the present solution if x = 0.
In this case the difference between the present solu-
tion and the one by Carlsson–Olsson is proportional
to the difference between the classical elastic foun-
dation model for a pure mode-I problem by Wil-
liams (1989) and Eq. (60), i.e. the solution based
on the Winkler foundation model for a general
mixed-mode I/II problem.

The normalized mode-II component is plotted in
Fig. 10b and in each case, the agreement was excel-
lent between our model and the one by Bao et al.
(1992). In contrast, the mode-II component is equiv-
alent to the formula of Euler–Bernoulli beam model
in accordance with Bruno and Greco (Fig. 10b).
Although the model by Carlsson et al. (1986) pro-
vides some correction for the mode-II component,
it is clear, that our solution (Wang and Qiao,
2004a) is more reasonable.

The results in Fig. 11 confirm the accuracy of the
model even for a high modulus carbon/peek com-
posite material (taken from Hashemi et al., 1990a).

6.2.2. The mode ratio

The mode ratios for the SCB specimen by five
different approximations are compiled in Fig. 12a.
The models by Bruno and Greco and Carlsson–Ols-
son show the largest mode-I dominance compared
to the other solutions. Bao’s numerical formulation
shows good agreement with our results. Finally, the
plane stress FE model also shows some crack length
dependence of the mode ratio, although the mode-I
dominance is not as significant here as in any of the
former cases. The reason for the poor agreement
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between the results of the VCCT and the other solu-
tions was elaborated by Szekrényes and Uj (2007).

In the case of the SLB specimen the same results
were obtained, the only differences are that the half
span length is L = 75 mm and that the results of the
VCCT (Szekrényes and Uj, 2006) agree better with
the analysis results than in the SCB specimen.

In Fig. 12b the mode ratios are depicted for the
MMB specimen at c* = 60 mm. Essentially the same
trends were observed as those in Fig. 12a, although
the VCCT agrees better with the analytical methods
in this case. Furthermore the results are indepen-
dent of c*. For more details refer to Szekrényes
and Uj (2006).

6.2.3. The total energy release rate

Finally we investigate the total ERR (G1 + G1I)
by the four improved solutions in comparison with
the simple beam theory. The results for the SLB and
the SCB specimens are collected in Table 1. The
solution for the SLB specimen is given in the crack
length range of a = 20–70 mm, while for the SCB
specimen the whole range (a = 20–100 mm) is valid.
The differences are not significant, but it may be
observed that in this respect the solution by Bruno
and Greco produces the smallest improvement. Fur-
ther consequences may be drawn by focusing our
attention in Table 2, where the results are listed
for the MMB specimen at four different values of
the position of the load. If c* = 30 and 60 mm then
our and Bao’s solution seems to be the best. The
other two solutions provide poor results, which
may be explained by the fact that in this case there
is a mode-II dominated condition. Increasing c* the
mode-I component becomes more and more domi-
nant; therefore the difference between the other



a

b 

c

0.0 0.2 0.4 0.6 0.8 1.0
1.00

1.04

1.08

1.12

1.16

L=75 mm

a/L

C
/C

E
B

c*=30 mm
c*=60 mm
c*=90 mm
c*=120 mm

0.0 0.2 0.4 0.6 0.8` 1.0
1.00

1.04

1.08

1.12

1.16

L=75 mm

a/L

C
/C

E
B

c*=30 mm
c*=60 mm
c*=90 mm
c*=120 mm

0.0 0.2 0.4 0.6 0.8 1.0
1.00

1.04

1.08

1.12

1.16

L=75 mm

a/L

C
/C

E
B

c*=30 mm
c*=60 mm
c*=90 mm
c*=120 mm

Fig. 9. Comparison of the compliance of the MMB specimen. Present solution (a), solution by Bruno and Greco (2001) (b), and solution
by Carlsson et al., 1986 – Olsson, 1992 (c).
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solutions and the one by Bao et al. subsequently
decays.

7. Discussion

As a consequence, the different solutions give dis-
tinct results, which should be clarified. According to
the present formulation the total ERR was obtained
by a superposition scheme, which incorporates the
influence of W–P foundation, S–V effect, transverse
shear and CTSD. Interaction among them was not
considered, but the mode-I and mode-II ERR com-
ponents are equally supported by reasonable values.
Moreover, the comparison showed that the relation-
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ship of our solution to the one by Bao et al. is sim-
ilar in all the presented cases.

We may assume that Bao’s numerical model pro-
vides the more accurate result. Their model incorpo-
rates all of the former effects and the possible
interaction among them. In spite of that we can also
state that the form of the formulae is the most diffi-
cult in this case. For example the analytical solution
showed that the transverse elastic modulus, E33 has
not any influence on the mode-II ERR (refer to e.g.
Eq. (48)), in contrast it is included in Bao et al.’s
solution (Bao et al., 1992). This issue was also
addressed by Qiao et al. (2003) and they have
reported the same conclusion.
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0.0 0.2 0.4 0.6 0.8 1.0
1.0

1.2

1.4

1.6

1.8

h =2.65 mm
E

11
=124 GPa

E
33

=10 GPa

G
13

=5 GPa

ν
13

=0.25

Present solution, =2.5
Present solution,

ω
=0

Bruno and Greco, 2001a
Bao et al., 1992
Carlsson et al., 1986 - Olsson, 1992

L=75 mm

a/L

G
I /

G
I,E

B

0.0 0.2 0.4 0.6 0.8 1.0
1.00

1.15

1.30

1.45

1.60

h=2.65 mm
E

11
=124 GPa

E
33

=10 GPa

G
13

=5 GPa

ν
13

=0.25

L=75 mm

Bruno and Greco, 2001a

a/L

G
II /G

II,
E

B

Present solution
Bao et al., 1992
Carlsson et al., 1986 - Olsson, 1992

Fig. 11. Comparison of the mode-I (a) and mode-II (b) energy release rates for carbon/PEEK SLB and MMB specimens.
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The refined plate model by Bruno and Greco
affirms the significance of bending–shear interac-
tion. Their model does not provide improved solu-
tion for the mode-II component, while the present
and Bao’s solutions show that the mode-II compo-
nent should be contributed apart from simple beam
theory. Thus, the overestimated mode ratios may be
explained by the lack of correction for the mode-II
component. Furthermore the solution does not
depend on the through-thickness modulus (E33) of
the specimens, it depends only on the shear modulus
(G13).

The combined solution by Carlsson and Olsson is
based on similar considerations to those of the pres-
ent beam model. In Section 2 the elastic foundation
effect was captured based on a general loading
scheme under mixed-mode I/II condition, where
the theorem of parallel axes was considered. Appar-
ently, this effect was ignored in Olsson’s (Williams’)
solution, the model does not account for the theo-
rem of parallel axes in the case of the elastic founda-
tion and so it causes the discrepancy between
Williams’ classical solution and Eq. (60) (if x = 0).
Consequently, the generalization of Williams’ solu-
tion, which was applied by numerous authors (Ree-
der and Crews, 1990; Ozdil and Carlsson, 1999b;
Chen et al., 1999) for mixed-mode I/II coupons is
not straightforward. Apart from that, the mode-II
component by Carlsson et al. is only slightly con-
tributed in comparison with the present (Wang
and Qiao, 2004a) and Bao’s solution. This may
cause again the overprediction of the mode ratio.
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970 A. Szekrényes / Mechanics of Materials 39 (2007) 953–974
8. Interactions

The interaction among the different mechanical
effects and deformations was not considered
in the present model and the factors were super-
imposed rather mechanically. In spite of that in
Table 1
Comparison of the total ERR (GI/II/GI/II,EB) by different methods, SLB

a (mm)

20 30 40 50 60

1.287 1.183 1.134 1.105 1.0
1.197 1.128 1.095 1.075 1.0
1.301 1.196 1.145 1.115 1.0
1.303 1.192 1.140 1.110 1.0

a Present.
b Bruno and Greco (2001a,b).
c Bao et al. (1992).
d Carlsson et al. (1986) and Olsson (1992).
each case the agreement with the most accurate
model by Bao et al. (1992) was found to be
excellent. In the followings – considering the
possible interaction from factor by factor – some
justifications are given to explain the reasons for
that.
and SCB specimens

70 80 90 100

87 1.074 1.064 1.057 1.051a

63 1.053 1.047 1.041 1.037b

95 1.081 1.071 1.063 1.057c

90 1.077 1.067 1.059 1.053d



Table 2
Comparison of the total ERR (GI/II/GI/II, EB) by different
methods, MMB specimen

a (mm)

25 30 40 50 60 70

c* = 30 mm 1.102 1.084 1.062 1.049 1.040 1.034a

1.007 1.006 1.004 1.003 1.003 1.002b

1.116 1.097 1.072 1.057 1.048 1.041c

1.042 1.031 1.019 1.013 1.010 1.008d

c* = 60 mm 1.196 1.160 1.117 1.092 1.076 1.065a

1.121 1.100 1.074 1.059 1.049 1.042b

1.203 1.168 1.124 1.099 1.082 1.070c

1.191 1.155 1.112 1.088 1.072 1.061d

c* = 90 mm 1.241 1.197 1.144 1.114 1.094 1.080a

1.177 1.146 1.108 1.086 1.071 1.061b

1.247 1.204 1.151 1.120 1.099 1.085c

1.263 1.215 1.157 1.124 1.102 1.087d

c* = 120 mm 1.261 1.214 1.156 1.123 1.101 1.086a

1.201 1.166 1.123 1.097 1.081 1.069b

1.267 1.220 1.163 1.129 1.107 1.091c

1.295 1.241 1.177 1.140 1.115 1.098d

a Present.
b Bruno and Greco (2001a,b).
c Bao et al. (1992).
d Carlsson et al. (1986), Olsson (1992).
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8.1. Winkler–Pasternak foundation and crack tip

shear deformation

It can be seen that the CTSD causes an increment
in the deflection of both the upper and lower beam
elements. However, in each case the increment of
the deflection acts always in the same direction,
i.e. the deflection functions are equal to each other.
Using Eq. (39) the effect of the CTSD could be
included in the functional in Eq. (1), although it is
now obvious that it would influence neither the gov-
erning equations (Eq. (2)) nor the results. This indi-
cates that the increment of the deflection from
CTSD does not cause interaction with the two-
parameter foundation.
8.2. Winkler–Pasternak foundation and Saint–
Venant effect

The S–V effect induces the rotation of the cross
section of the crack tip; however it does not cause
changes in the deflection functions. So, if only the
cross section rotates then the deflection in the
uncracked region holds its original shape. Since
the two-parameter foundation model incorporates
the differences in the deflection and its derivative it
is elaborated that there is probably no interaction
between these effects.

8.3. Crack tip shear deformation and Saint–Venant

effect

The S–V effect involves strain compatibility along
the interface. So, in a mixed-mode I/II problem the
rotation of the cross sections of the upper and lower
beam elements at the crack tip induces axial dis-
placements in the same direction, and so they do
not increase or decrease the shear stress at the inter-
face. This confirms that there is no interaction.

8.4. Crack tip shear deformation and transverse shear

In accordance with the model utilized in the anal-
ysis (Section 2.4) the shear tractions are considered
as the results of the external loading, i.e. the effect
of transverse shear is included in the loading. Other-
wise the combination of Timoshenko beam theory
with the theory of CTSD leads to the same governing
equation as Eq. (35). So, interaction between CTSD
and transverse shear does not take place.

8.5. Saint–Venant effect and transverse shear

The model of S–V effect assumes zero vertical
displacements at the crack tip and in the clamped
end. To calculate the rotation of the cross section
we applied Castigliano’s second theorem, which
involves the derivative of the strain energy with
respect to the bending moment. Although the effect
of transverse shear can be included in the strain
energy (Eq. (18)) due to the differentiation with
respect to the bending moment it vanishes. This
indicates that there is not any interaction.

8.6. Winkler–Pasternak foundation and transverse

shear

These are the only effects, where interaction may
arise. However the solution of the problem is quite
difficult and involves very complicated solution
functions. The form of the simplified correction
function (Eqs. (11) and (14)) would be much more
complicated, which would make the application of
Eq. (48) more difficult. On the other hand the inter-
action between these two factors is estimated to be
very small, because the transverse shear causes only
a small amount of deformation.
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9. Conclusions

This work presented an improved solution for
the compliance and energy release rate of symmet-
ric, slender and orthotropic unidirectional compos-
ite delamination specimens. The problem was
investigated based on a general loading scheme
including the following effects apart from Euler–
Bernoulli beam theory: Winkler–Pasternak founda-
tion, transverse shear, Saint–Venant effect and crack
tip shear deformation. These theories were used to
obtain the solution for the compliance and the
energy release rate based on a generalized mixed-
mode I/II problem and the results were imple-
mented into Williams’ global mode decomposition
method. It was shown that the first three of these
effects contribute only to the mode-I energy release
rate, while the crack tip shear deformation improves
only the mode-II component. Also, a general
expression for the compliance of unidirectional
composite beams with midplane delamination was
developed, however the determination of the terms
related to the Euler–Bernoulli and Timoshenko
beam theory – depending on the geometry of the
problem – requires a unique analysis. Finally, the
coefficient, x and the stiffness of the Pasternak foun-
dation was determined using the developed model
and the finite element method. Perhaps, this can
Table A1
Corrections for the ERR of the DCB specimen from Winkler–Pasterna

a (mm)

30 40 50

E-glass/polyester specimen: E11 = 33 GPa, E33 = 7.2 Pa, m13 = 0.27 (pre
h = 2 mm GI,FEM/GI,EB 1.090 1.067 1.0

GI,WP/GI,EB 1.089 1.066 1.0
Difference (%) 0.092 0.094 0.0

h = 3.05 mm GI,FEM/GI,EB 1.143 1.106 1.0
GI,WP/GI,EB 1.142 1.103 1.0
Difference (%) 0.087 0.271 0.2

h = 4.5 mm GI,FEM/GI,EB 1.218 1.161 1.1
GI,WP/GI,EB 1.219 1.158 1.1
Difference (%) �0.082 0.258 0.4

Carbon/epoxy specimen: E11 = 124 GPa, E33 = 10 GPa, m13 = 0.25 (Has
h = 2 mm GI,FEM/GI,EB 1.124 1.092 1.0

GI,WP/GI,EB 1.117 1.086 1.0
Difference (%) 0.062 0.549 0.5

h = 3.05 mm GI,FEM/GI,EB 1.192 1.142 1.1
GI,WP/GI,EB 1.187 1.135 1.1
Difference (%) 0.419 0.613 0.6
be applied also for dynamic problems. The per-
formed analysis helps us to understand better the
different mechanism and processes, which take place
during the delamination.

The possible interactions among the mentioned
effects were not accounted for, but it was elaborated
that interaction probably may arise only between
the Winkler–Pasternak foundation and transverse
shear.

Three other solutions were utilised for compari-
son with the one developed in this work. The most
important conclusion of the comparison is that the
present solution shows the same relation to the
numerical model by Bao et al. in all the presented
cases.
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Appendix A

The results of the FE calculations for the deter-
mination of x are given in Table A1.
k elastic foundation if G13 = 100000 GPa and x = 2.5

60 70 80 90 100

sent)
53 1.047 1.041 1.035 1.031 1.028
52 1.043 1.037 1.032 1.028 1.025
95 0.382 0.384 0.289 0.291 0.292

84 1.070 1.060 1.052 1.046 1.042
81 1.067 1.057 1.049 1.043 1.039
76 0.280 0.283 0.285 0.287 0.288

28 1.106 1.090 1.079 1.070 1.063
23 1.101 1.086 1.074 1.066 1.059
43 0.452 0.357 0.463 0.373 0.376

hemi et al., 1990a)
73 1.066 1.057 1.050 1.044 1.040
67 1.056 1.047 1.041 1.036 1.033
59 0.938 0.946 0.854 0.766 0.673

13 1.094 1.080 1.070 1.062 1.056
06 1.087 1.074 1.064 1.057 1.051
28 0.640 0.574 0.561 0.471 0.473



Table A1 (continued)

a (mm)

30 40 50 60 70 80 90 100

h = 4.5 mm GI,FEM/GI,EB 1.291 1.213 1.169 1.140 1.119 1.104 1.092 1.083
GI,WP/GI,EB 1.294 1.210 1.163 1.133 1.112 1.097 1.086 1.076
Difference (%) �0.232 0.247 0.513 0.614 0.656 0.634 0.549 0.646

Isotropic specimen: E11 = 33 GPa, E33 = 33 GPa, m13 = 0.27
h = 2 mm GI,FEM/GI,EB 1.058 1.044 1.035 1.030 1.026 1.023 1.020 1.018

GI,WP/GI,EB 1.059 1.044 1.035 1.029 1.025 1.022 1.019 1.017
Difference (%) �0.095 0.000 0.000 0.097 0.097 0.098 0.098 0.098

h = 3.05 mm GI,FEM/GI,EB 1.091 1.068 1.054 1.045 1.038 1.034 1.030 1.027
GI,WP/GI,EB 1.093 1.068 1.054 1.045 1.038 1.033 1.029 1.026
Difference (%) �0.183 0.000 0.000 0.000 0.000 0.097 0.097 0.097

h = 4.5 mm GI,FEM/GI,EB 1.137 1.102 1.081 1.067 1.057 1.050 1.045 1.040
GI,WP/GI,EB 1.143 1.104 1.082 1.067 1.057 1.050 1.044 1.039
Difference (%) �0.528 �0.181 �0.093 0.000 0.000 0.000 0.096 0.096

GI,EB – solution based on Euler–Bernoulli beam theory.
GI,FEM – plane stress FE model, second in Eq. (58), GI,WP – analytical solution, Eq. (60).
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