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ABSTRACT: In this work a novel beam analysis of the end-loaded split (ELS) and
over-notched flexure (ONF) specimens are presented. New compliance and strain
energy release rate equations are developed incorporating crack tip deformation and
transverse shear analysis. The Saint Venant effect at the clamped end of the ELS
specimen is also considered. Unidirectional glass–polyester specimens are
manufactured and experimental (initiation and propagation) tests are performed
to confirm the theoretical models. The experimental data is evaluated by means
of four reduction techniques: the exact beam theory, virtual crack closure technique,
compliance calibration method, and direct beam theory. It is shown that the results
by the four methods agree quite closely; however, the compliance calibration method
is not recommended for initiation data reduction in the case of the ONF specimen.
The ELS specimens suffer from relatively large displacements. Thus, propagation
tests are not possible to be performed. The ONF test seems to be a better tool to
evaluate the mode-II toughness of composite materials with low flexural modulus.

KEY WORDS: delamination, strain energy release rate, crack tip deformation,
transverse shear, end-loaded split, over-notched flexure.

INTRODUCTION

T
HE INCREASING APPLICATION of composite materials in the aircraft and automobile
industry encouraged the researchers to study the fracture behavior of composite

systems. Great attention has been focused in the last decade on the investigation of the
mode-II interlaminar fracture.

The most popular specimen geometries are the end-notched flexure (ENF) and the four-
point bend end-notched flexure (4ENF) specimens. The mode-II fracture in these coupons
was discussed by many authors from the theoretical and experimental points of view [1–6].
A remarkable study was performed on carbon fiber-reinforced ENF and 4ENF systems
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by Schuecker and Davidson [1]. It was shown that these two tests give the same fracture
toughness values if the crack length and the compliance are measured accurately.
The stabilized end-notched flexure (SENF) specimen was developed [7] to overcome the
problem of instability in the ENF specimen. Another candidate for mode-II fracture
investigation is the end-loaded split (ELS) specimen, which was studied in detail by
Hashemi et al. [8,9] and Wang et al. [10]. The over-notched flexure (ONF) specimen
was applied by other researchers [11,12]. Finally the tapered end-notched flexure (TENF)
specimen should be mentioned, which is an efficient way to investigate the mode-II
fracture in composites [13,14].

According to this short review, six specimens are available for mode-II fracture
investigation. The ENF specimen is suitable only to determine the initiation toughness;
crack stability restricts the available crack length range. The SENF configuration requires
additional equipment compared to the ENF one. The usage of the ELS specimen is
limited by large displacements and again by crack stability, but it is possible to perform
propagation tests with it. The 4ENF specimen requires a slightly complex loading system,
but it eliminates the transverse shear effect and is suitable to measure the propagation
toughness. In the TENF specimen, the geometry is slightly difficult compared to the
traditional ENF one; however, it was shown that in the case of proper specimen design,
the compliance rate change is independent of the crack length [13,14]. The ONF specimen
seems to be the simplest alternative, i.e., we need only a three-point bending setup, no
large displacement occurs and (as will be shown later) the stable crack propagation is
guaranteed at any crack length.

Within the scope of linear elastic fracture mechanics (LEFM), the fracture specimens
are treated as slender beams. The solutions are essentially based on simple beam theory;
however, this can be improved using other theories. Ozdil et al. [15] applied the
Timoshenko beam theory for angle-ply laminate ENF specimen. The transverse shear
effect was found to be insignificant. Carlsson et al. [16] introduced a correction for the
strain energy release rate (SERR) incorporating transverse shear analysis; however, only a
small improvement was made compared to the simple beam theory solution. The elastic
foundation models were successfully applied for mode-I fracture problems [17,18]. Hence,
the researchers tried to develop similar models for mode-II fracture specimens also. An
improved analysis was performed by Chatterje [19] for the ENF specimen. The solution
was in good agreement with previous finite element (FE) results. Later, Ding and
Kortschot [20] applied tangential springs along the midplane of the ENF specimen.
Unfortunately, their model was too complicated and could not be applied directly. Wang
and Qiao [21] provided the simplest and most practical solution for the ENF specimen.
The results of their analysis (called crack tip deformation) were in excellent agreement with
previous FE studies. Later, the crack tip deformation theory, together with the elastic
foundation model was used to obtain generalized solutions for bimaterial interfaces
[22,23].

The energy release rate may be obtained in closed form by a combined beam theory–
FE-based analysis. In this respect, the works by Wang and Williams [24] and Bao et al. [25]
are noteworthy.

The objective of our work is to develop improved solutions for the compliance and
the energy release rate of the ELS and ONF coupons. The analyses by Ozdil et al. [16],
Olsson [17], and Wang and Qiao [21] are incorporated. From other perspectives,
relatively small amount of experimental results were found in the literature as regarding
the glass-fiber-reinforced ELS and, especially the ONF specimens. The current work seeks
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to address this void. The mode-II fracture specimens are illustrated in Figure 1. Our choice
can further be explained by the facts that these specimens are suitable for propagation tests
and require simpler experimental equipment than the 4ENF test. Moreover, the location
of load introduction and constraints of the ELS and ONF coupons are essentially
different. Comparison between their results may be useful. The test coupons are analyzed
by using linear beam theories, the FE method, and experiments.

BEAM ANALYSIS

The beam analysis section primarily investigates the ELS specimen, but the analysis will
be extended to the ONF specimen, also. The analysis of Wang and Qiao [21] is closely
followed. In Figure 2(a), the model of the ELS specimen is subjected to end loading P
(subproblem one), while the subproblem two in Figure 2(b) represents a beam with a shear
traction along the neutral plane of the upper specimen arm. Due to skew symmetry, only
the upper half of the beam is analyzed. We solve the problem by superposing the results of
the two subproblems in Figure 2, which leads to the complete solution.

Euler–Bernoulli and Timoshenko Beam Theory

The solution of problem (a) in Figure 2 including transverse shear effect can be obtained
based on previous works [16,21]. Thus, the compliance of the ELS specimen becomes:

C ¼
3a3 þ L3

2bh3E11
þ

L

2bhkG13
, ð1Þ
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Figure 1. Mode-II fracture specimens.
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where a is the crack length, L is the specimen length, b is the width, h is half of the
thickness (refer to Figure 1), E11 is the flexural modulus, G13 is the shear modulus, and
k¼ 5/6 is the shear correction factor.

Crack Tip Deformation Analysis

In this section we analyze only problem (b) in Figure 2 by following the work of
Wang and Qiao [21]. Note that w(x) is the deflection function of the uncracked region,
while w0(x) is the deflection function of the cracked portion of the beam. The shear stress,
�0 can be calculated on the basis of strength of materials analysis. Its magnitude is:

�0 ¼
3

4

P

bh
, ð2Þ

where P is the applied load (Figure 2(a)). The relationships of internal forces and
stresses are:

dN

dx
¼ b�,

dM

dx
¼ �

h

2
b�, ð3Þ

where N is the normal force and M is the bending moment. We use the following
constitutive equations:

d2w

dx2
¼ �

M

IyE11
,

du

dx
¼ �

N

E11bh
, ð4Þ

where Iy is the second-order moment of inertia. The longitudinal displacement along the
neutral plane of the uncracked region should be zero, consequently we have:

uðxÞ ¼ �
1

bhE11

Z
Ndxþ K� �

h

2

dw

dx
¼ 0, ð5Þ
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Figure 2. For the beam analysis of the ELS specimen.
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where K is the shear compliance:

K ¼
h

3�G13
: ð6Þ

In Equation (6), � is the modification factor due to orthotropy. After differentiating
Equation (5) twice we obtain:

K
d2�

dx2
�

1

bhE11

dN

dx
�
h

2

d3w

dx3
¼ 0: ð7Þ

Differentiating the first expression in Equation (4) and combining it with Equations (3)
and (7) one may obtain the governing differential equation with respect to the shear stress:

d2�

dx2
� �2� ¼ 0, � ¼

12�G13

E11h2

� �1=2

: ð8Þ

The solution of the differential equation is:

�ðxÞ ¼ c1e
��x þ c2e

�x: ð9Þ

The term after c2 is very small and can be neglected. The longitudinal forces must vanish
along the full length of the specimen [21]. This condition allows for the determination
of c1. The approximate solution of Equation (8) becomes:

�ðxÞ ¼ �
3

4

P

bh
� � ae��x: ð10Þ

The bending moment function yields by integrating the shear stress along the uncracked
region. From Equation (4), the deflection of the uncracked part is:

wðxÞ ¼ �
3

8

Pa

IyE11�2
e��x þ d1xþ d2, Iy ¼

bh3

12
: ð11Þ

Since the shear traction acts along the neutral plane of the cracked region, the deflection
function can be obtained as:

w0ðxÞ ¼ d3xþ d4: ð12Þ

In order to determine the four constant parameters (d1–d4) we use the following boundary
and matching conditions:

wðcÞ ¼ 0, w0ðcÞ ¼ 0,

w0ð0Þ ¼ wð0Þ, w0
0ð0Þ ¼ w0ð0Þ:

ð13Þ
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After simplification, the compliance of the beam in Figure 2(b) becomes:

CSH ¼
w0ð�aÞ

P
¼

3

8IyE11

a

�2
þ
a2

�

� �
: ð14Þ

Wang and Qiao have found the best agreement with FE results in the case of �¼ 6.
Substituting � (Equation (8)) into Equation (14) we obtain:

CSH ¼
a3

2bh3E11
1:06

h

a

� �
E11

G13

� �1
2

þ0:125
h

a

� �2
E11

G13

� �" #
: ð15Þ

Saint Venant Effect

The problem of Saint Venant effect was analyzed by Olsson [17] for the double-
cantilever beam (DCB) specimen. The Saint Venant effect is necessary to be considered
due to the clamped end of the ELS coupon. Referring to Olsson’s analysis, the compliance
contribution has the following form in the case of the mode-II ELS specimen:

CSV ¼
3

�

L2

2bh2E11

E11

G13

� �1=2

, ð16Þ

which is independent of the crack length, and (as shown later) does not provide any
contribution to the SERR.

SUMMARY OF THE COMPLIANCE AND ENERGY RELEASE RATE
ELS Specimen

Superposing Equations (1), (15), and (16) we obtain the compliance of the ELS
specimen:

CELS ¼
3a3 þ L3

2bh3E11
þ

L

2bhkG13
þ

3

�

L2

2bh2E11

E11

G13

� �1=2

þ
a3

2bh3E11
1:06

h

a

� �
E11

G13

� �1=2

þ 0:125
h

a

� �2
E11

G13

� �" # : ð17Þ

The mode-II SERR is given by the Irwin-Kies expression [16]:

GII ¼
P2

2b

dC

da
: ð18Þ
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The combination of Equations (17) and (18) results in:

GELS
II ¼

9P2a2

4b2h3E11
1þ 0:236

h

a

� �
E11

G13

� �1=2

þ 0:014
h

a

� �2
E11

G13

� �" #
: ð19Þ

ONF Specimen
Based on the analysis, equations similar to the aforementioned may be derived for the

ONF specimen, also. The compliance is:

CONF ¼
s2c3

8bh3E11L2
1þ 4

a

c
þ 8

aL

c2
þ 16

aL2

c3
þ 8

Lsðs� 4LÞ

c3

� �
þ

sð2L� sÞ

8bhkG13L
þ

þ
s2c3

8bh3E11L2
1:06

h

c

� �
E11

G13

� �1=2

þ 0:125
h

c

� �2
E11

G13

� �" #
,

ð20Þ

where L is half of the span length, s is the position of the applied load, and c is the length
of the uncracked region (2L� a) (see Figure 1(b)). The first term is from Euler–Bernoulli
beam theory, the second from Timoshenko beam theory, and the last one from crack tip
deformation analysis. The mode-II strain energy release rate by using Equation (18)
becomes:

GONF
II ¼

9P2s2c2

16b2h3E11L2
1þ 0:236

h

c

� �
E11

G13

� �1=2

þ 0:014
h

c

� �2
E11

G13

� �" #
: ð21Þ

To the best of our knowledge, these equations are not yet published in the literature. In the
following sections, we verify the derived equations by numerical models and experiments.

Crack Stability

The problem of crack stability was investigated by Carlsson et al. [16] for the ENF
specimen and Davies et al. [26] for the ELS specimen. For the commonly assumed fixed
grip condition, the SERR may be expressed as [15]:

GII ¼
�2

2bC2

dC

da
: ð22Þ

Stable crack propagation can be expected if dGII/da is zero or negative. Differentiating
Equation (22) with respect to the crack length yields:

dGII

da
¼

�2

2bC2

d2C

da2
�

2

C

dC

da

� �2
 !

: ð23Þ

Mode-II Fracture in E-glass–polyester Composite 7



We consider only the first term in Equation (17). Substituting it into Equation (23) we
obtain:

a

L
� 0:55, ð24Þ

i.e., stable crack propagation in the ELS specimen may be expected if Equation (24) is
satisfied. If we perform only the initiation tests, then Equation (24) can be ignored, since in
this case we need the critical load and the deflection only at the point of fracture initiation.
These may be determined experimentally at those crack lengths (a<0.55L), which do not
satisfy Equation (24).

For the ONF specimen, the result of the simple beam theory is the first term in
Equation (20). Substituting it into Equation (23), and assuming that the right-hand side of
Equation (23) is equal to zero, we obtain a fourth-order polynomial as a function of the
crack length. The polynomial has four roots, of which two are real:

ðaÞ1 ¼ 2L, ðaÞ2 ¼
1

3
ð144L3 � 144sL2 þ 36Ls2Þ1=3 þ 2L: ð25Þ

Since s is always less than L it appears that we should consider only the first root.
If a� (a)1 then dGII/da is zero or negative. On the other hand, it is obvious that a should
always be higher than s but (as Equation (25) shows) should be less than 2L. Thus, the
requirement is:

s < a < 2L, ð26Þ

i.e., stable crack propagation may be expected at any crack length.

The Effect of Friction

The effect of friction in mode-II fracture specimens was investigated by Wang et al. [12].
The Coulomb-type friction model including frictional coefficients within �¼ 0.25 and
0.5 was adopted in their work. The developed beam and FE models indicated negligible
effects induced by friction. In the case of �¼ 0.25, the energy release rate changes by only
3% due to friction between crack faces. We have found that this is close to a practical
value [27]. As a consequence, the effect of friction on the SERR of both specimens was
neglected in the current study.

FINITE ELEMENT ANALYSIS

The FE analysis was performed under plane strain condition to validate the beam
theory-based equations. The specimens were meshed with linear PLANE2D elements
using the commercial FE code COSMOS/M 2.0. The details of the FE model of the ELS
specimen are demonstrated in Figure 3. For the ONF specimen, a similar FE model was
developed. The material was assumed to be linear elastic with orthotropic material
properties. The material properties and the model dimensions are given in the next section.
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In order to prevent the penetration between the nodes along the crack faces, the same
vertical displacements were imposed by using the command CPDOF. The specimens were
loaded by concentrated forces, of which values were determined based on experimental
initiation tests. The compliance (C¼ �/P, where � is the deflection at the point of load
application) of the specimens was used to validate the beam theory-based solutions.
Moreover, the mode-II energy release rate (GII) was calculated by means of the virtual
crack closure technique (VCCT) [28]. At the crack tip a typical mesh (Figure 3(b)) as
suggested by Davidson et al. [29] was constructed with singular elements. The finite crack
extension was �a¼ 0.025mm.

EXPERIMENTS AND DATA REDUCTION

The constituent materials were procured from a native company (Novia Ltd).
The properties of the E-glass fiber are E¼ 70GPa and �¼ 0.27, while for the unsaturated
polyester resin they are E¼ 3.5GPa and �¼ 0.35. Both were considered as isotropic. The
unidirectional ([0�]14) E-glass–polyester specimens with nominal thickness of 2h¼ 6.1mm,
width of b¼ 20mm, total length of 180mm, and Vf¼ 43% were manufactured in a special
pressure tool. A great advantage of this material is the transparency, i.e., the crack length
may be measured accurately based on visual observations. A nylon insert with a thickness
of 0.03mm was placed at the midplane of each specimen to make an artificial starting
defect. Then the specimens were precracked in an opening mode of 4–5mm. The effect of
precracking mode on the initiation toughness was investigated by Davidson et al. [30],
Polaha et al. [31], and de Morais et al. [32]. They have found that in the case of mode-I
precracking, the toughness may be expected to be lower in comparison with the mode-II
precracking. Also, the toughness has a higher value when the crack is initiated directly
from the insert, as shown in [31]. Thus, in the following, the presented results should

(b)

Constrained in x direction

crack

0.4 mm

2hP

a c
x

y

(a)

(b)

Constrained in y direction
20 mm

(a)

Figure 3. Details of the FE model of the ELS specimen. FE mesh around the crack tip (a) and details of
the clamped end (b).
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be considered in the light of these establishments. The flexural modulus was determined
from a three-point bending test using six uncracked specimens with a span length of
151mm and a thickness of 6.1mm. The experiment resulted in E11¼ 33GPa, additional
properties were predicted by means of Niederstadt’s [33] approximate rule of mixture, this
way E33¼ 7.2GPa, G13¼ 3GPa, and �13¼ 0.27 were obtained.

The fixtures for the ELS and ONF tests are illustrated in Figure 4. The tests were carried
out using an Amsler testing machine under displacement control. The load–deflection data
were measured, the latter was monitored by the dial gauge, shown in Figure 4(a) and (b).
The distance between the load and the clamped cross section was L¼ 150mm in the case
of the ELS geometry. The full span length was 2L¼ 151mm for the ONF test, the position
of the external load was s¼ 47.5mm (refer to Figure 1). The contact regions above
the supports were slightly roughened in order to prevent longitudinal sliding during the
ONF test.

Two kinds of measurements were carried out. At the first stage, initiation tests were
performed on both the configurations. In the case of the ELS test, the specimens with the
following initial crack length values were prepared: 35, 40, 45, 50, 55, 60, 65, 70, 75, 80,
90, 100, 110, 120, 130, and 140mm. This allowed for the determination of the initiation
fracture properties in quite an extended (0.23L� a� 0.93L) crack length range. For the
ONF test, the crack length range from 50 to 105mm (0.33�2L � a � 0.69�2L) with 5mm
increment was investigated. If the initial crack length was higher than 105mm, then we
were unable to facilitate crack initiation, and large displacement of the specimens
occurred. The specimens were tested to failure at the crack length of interest and the
critical load and deflection were recorded.

At the second stage, propagation tests using six ONF specimens with a0¼ 50mm initial
crack length were performed. In this case, a millimeter scale was traced on the lateral sides

Figure 4. End-loaded split (a) and over-notched flexure (b) tests for mode-II interlaminar fracture.
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of the specimens, the crack length was measured visually by following the crack front
on the upper surface of the specimens, and the position of the crack tip was marked. The
compliance of the specimens was determined at each crack length. The reason for using
only the ONF test for crack propagation is that in the case of the ELS configuration, the
crack initiation was followed by large displacements. We were not able to control the
crack propagation even in those crack lengths, where the stable crack propagation would
have been expected.

Two methods were used for data reduction apart from the beam theory-based approach
and the VCCT: the compliance calibration (CC) [34] and the direct beam theory
approaches [8].

Compliance Calibration

In the case of the ELS test, the experimental compliance values were fit with a
third-order polynomial of the form as in [34]:

CELS ¼ C01 þma3, ð27Þ

where C01 and m were found by using least square fitting. The compliance of the ONF
specimen may be written as [12]:

CONF ¼ C02 þ nða� 2LÞ3: ð28Þ

The coefficients C02 and n were determined in the same fashion. The SERR was calculated
using Equation (18).

Direct Beam Theory

In this case, the flexural modulus of the specimens is eliminated. The relevant equations
based on direct beam theory are:

GELS
II ¼

9P�a2

2bð3a3 � L3Þ
, ð29Þ

GONF
II ¼

9P�

2bð2L� aÞ

1

�
, ð30Þ

where

� ¼ 1þ
4a

2L� a
þ

8aL

ð2L� aÞ2
þ

16L2a

ð2L� aÞ3
þ
8Lsðs� 4LÞ

ð2L� aÞ3
, ð31Þ

where P is the applied load and � is the experimentally determined specimen displacement,
respectively.
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Crack Length Correction

The loading head and supports of our (non-standard) test fixture have relatively large
radii (refer to Figure 4(a) and (b)). Figure 5(a) shows how the contact line between
the loading head and the specimen changes as the load increases, and so, for example, the
crack length becomes shorter. This fact should be considered in the data reduction.
The corrections are calculated based on simple beam theory and the experimentally
measured displacement at the point of load application.

For the ELS coupon, the end displacement and the derivative of the deflection based
on simple beam theory are:

� ¼
Pð3a�3 þ L�3Þ

2bh3E11
, 	 ¼

3Pð3a�2 þ L�2Þ

4bh3E11
: ð32Þ

On the basis of Figure 5(a), the corrected crack length and the specimen length are:

a ¼ a� � R sin	 ffi a� � R 	�
	3

3!
þ � � �

� �
, L ¼ L� � R sin	 ffi L� � R 	�

	3

3!
þ � � �

� �
:

ð33Þ

Combining the first and second expressions in Equation (32) one may obtain:

	 ¼ 
�, 
 ¼
3

2

ð3a�2 þ L�2Þ

ð3a�3 þ L�3Þ
: ð34Þ

Equation (33) can be rewritten as:

a ffi a� � R1 
��
ð
�Þ3

6

� �
, L ffi L� � R1 
��

ð
�Þ3

6

� �
, ð35Þ

(a)

h

h

P

R1

a*,L*

φ

a,L

φ

Loading head

δ

z

x

(b)

s*

h

a*
a

z

P/2

R2

2L*

φ1

s

φ1

Support

h

P/2

R2φ2

2L

φ2

2h
x

Crack tip

Figure 5. Correction of the ELS (a) and ONF (b) systems.
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Note that in all the equations, a and a* are the corrected, and the measured crack length,
respectively, L and L* are the corrected and the measured specimen length, respectively,
and � is the experimentally measured specimen displacement. The radius of the loading
head is: R1¼ 6mm.

A similar approach for the ONF specimen (Figure 5(b)) results in the following
equations:


1 ¼
8L�3 þ 3a�3 � 18L�a�2 þ 36a�L�2 � 24s�L�2 þ 4L�s�2Þ

s�ð8L�3 þ 3a�3 � 18L�a�2 þ 36a�L�2 � 32s�L�2 þ 8L�s�2Þ
,


2 ¼
4L�3 � 3a�3 þ 9L�a�2 � 4L�s�2

s�ð8L�3 þ 3a�3 � 18L�a�2 þ 36a�L�2 � 32s�L�2 þ 8L�s�2Þ
:

ð36Þ

The corrected parameters are:

a ffi a� � R2 
1��
ð
1�Þ

3

6

� �
, s ffi s� � R2 
1��

ð
1�Þ
3

6

� �
, ð37Þ

2L ffi 2L� � R2 ½
1 þ 
2���
ð½
1 þ 
2��Þ

3

6

� �
, ð38Þ

where s* and s are the measured and the corrected position of the applied load from the
left support, respectively and R2¼ 8mm is the radius of the supports. Also, the FE models
were constructed using the corrected geometrical parameters.

RESULTS AND DISCUSSION

Initiation Tests

LOAD AND DEFLECTION
The recorded load–displacement curves up to fracture initiation are illustrated in

Figure 6. The response was essentially linear elastic, which confirms the application of
LEFM. It is apparent that the critical load decreases with the initial crack length in the
case of the ELS specimen. On the contrary, the ONF specimen requires higher load values
for fracture initiation as the crack length increases. The range of the applied load is
approximately three times higher in the ONF than in the ELS case. In spite of this,
the ELS specimens suffered from large displacements, especially in the ranges of
a¼ 35–60mm, and 110–140mm, as seen in Figure 6(a). During the ONF test, no large
displacements were experienced in the mentioned crack length range, which is one of
the greatest advantages of this setup.

COMPLIANCE AND STRAIN ENERGY RELEASE RATE
The compliance values calculated from the beam theory-based solution (Equations (17)

and (20)) were compared with the results of the FE analysis. Tables 1 and 2 show the ratio
between the results of the two solutions. The agreement between them was found to be
excellent, which confirms the applicability of the analytical solutions.
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Figure 6. Load–displacement curves up to fracture initiation, ELS test (a) and ONF test (b).

Table 2. Comparison of the results by the FE and beam models, ONF specimen.

a� 50 55 60 65 70 75 80 85 90 95 100 105

CFE/CBeam 1.011 1.014 1.009 1.010 1.011 1.009 1.014 1.014 1.002 1.005 1.007 1.010

a�–measured crack length; CFE – compliance, plane strain FE model; CBeam – compliance, beam model, Equation (20).

Table 1. Comparison of the results by the FE and beam models, ELS specimen.

a� 35 40 45 50 55 60 65 70 75 80 90 100 110 120 130 140

CFE/CBeam 1.068 1.074 1.091 1.069 1.055 1.062 1.060 1.056 1.053 1.050 1.055 1.049 1.033 1.030 1.028 1.025

a�–measured crack length; CFE – compliance, plane strain FE model; and CBeam – compliance, beam model, Equation (17).
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The compliances determined based on initiation tests are plotted in Figure 7. For the
ELS specimen, the advanced beam equation (Equation (17)) shows good agreement with
the experimental points. The ONF test produces a somewhat unusual compliance curve.
It is important to note that in this case, the characteristic distance is the length of the
uncracked region. Otherwise, Equation (20) closely agrees with the experimental
compliance values.

Four methods were used to calculate the strain energy release rate. Its values versus
the crack length are illustrated in Figure 7. Each set of data points was fit with a third-
order polynomial. For the ELS test, the CC method indicates a 713 J/m2 plateau value,
while the direct beam theory gives the value of 765 J/m2. This means that there is a 7%
difference between them. The analytical solution (Equation (19)) agrees well with
the results of the CC and the VCCT methods; however, the latter provides slightly lower
values. As a consequence, the four reduction schemes show good correlation in the
case of the ELS coupon. From other perspectives, it is clear (Figure 8(a)) that the SERR
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Figure 7. Measured and calculated compliance from initiation tests, ELS specimen (a) and ONF specimen (b).
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values depend on the crack length, but this is not serious. Figure 8(b) presents the SERR
values from the ONF test as obtained by the various methods of data reduction. It seems
that in this case, the CC method gives somewhat surprising results. The direct beam theory
indicates a 790 J/m2 steady-state value (which correlates well with the results of the ELS
test), while the value of 540 J/m2 was obtained by means of the CC method (31%
difference). Both the analytical (Equation (21)) and numerical (VCCT) solutions show
values, which are closer to the results of the direct beam theory. Therefore, we may assume
that the application of the CC method is highly questionable in this case.

Propagation Tests

We have found that the ELS geometry was not suitable to investigate the crack
propagation in the current material. The reason for that may be explained as follows.
The ELS specimens suffered from relatively large displacements in order to overcome
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the point of fracture initiation. To facilitate the crack propagation, larger displacements
were required. After crack initiation, the crack seemed beyond control, i.e., the crack had
reached the clamped end in a flash. This indicated that the stiffness of the system was not
large enough for the ELS test. This may be supported by the large amount of experimental
work performed, in general, on those composite materials, which exhibit high flexural
modulus [8–10,12]. Thus, in the sequel, the attention is focused on the ONF test to
measure the propagation toughness.

LOAD–DISPLACEMENT CURVES
The recorded load–displacement curves from the measurement of six ONF specimens

are shown in Figure 9. It is noteworthy that the range of the applied load is about twice
higher in comparison with that of the initiation tests (refer to Figure 6(b)). Crack initiation
was observed always around 350–400N.

COMPLIANCE AND FRACTURE RESISTANCE
The measured compliance values and the calculated curves are plotted in Figure 10 as

obtained by the propagation test data of one specimen. A remarkable feature is that the
experimentally measured compliance values somewhat differ from those obtained by the
initiation tests (refer to Figure 7(b)). On the other hand, the beam theory-based solution
(Equation (20)) does not match as well with the experimental values, as it does in the case
of the initiation tests. The fiber bridging is one possible source of the mentioned
discrepancy. During crack propagation, some of the fibers were pulled out, this caused the
extensive fiber bridging between the crack faces. This feature increased the resistance to
delamination, and consequently, a higher load value was required for the crack advance.
Further work is required to clarify the discrepancy between the measured and calculated
compliance.

Three reduction schemes were used to calculate the SERR. The results for two
specimens are presented in Figure 11(a)–(c). The CC method shows that the value at which
steady-state crack propagation occurred are 2670 and 2414 J/m2, respectively. The data by
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Figure 9. Load–displacement curves from ONF propagation tests.
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six specimens yielded a mean value of 2789 J/m2 for the critical SERR. The plateau values
were determined by using the asymptotic values of the fits in Figure 11. The relevant
steady-state values are 3050 and 2589 J/m2 (3121 J/m2 mean value from six specimens)
from the direct beam theory and 2893 and 2497 J/m2 (2790 J/m2 average value from six
coupons) from the beam theory-based solution, respectively.

It should be kept in mind, that the CC method is the only data reduction technique,
which considers the effect of fiber bridging. We have found that the CC technique is not
recommended for the evaluation of initiation test data. It is important to note that in the
case of propagation tests, the CC method showed good agreement with the analytical and
the direct beam theory approaches. In spite of this, the result of the CC method is slightly
doubtful. An experimental reduction scheme, which gives reliable results for initiation test
and is able to account for the effect of fiber bridging would be useful. Further work is
required to clarify these results.

Comparison with Published Results

For comparison, we provide some experimental results, which were previously pub-
lished on similar systems. Ozdil et al. [15] investigated unidirectional glass–polyester
ENF specimens with a¼ 32mm and 2L¼ 100mm. The value of GIIC¼ 496	
135 J/m2 was obtained for the initiation energy release rate by using the simple beam
theory solution. This is slightly less than those obtained by us (700 and 790 J/m2); however,
this value was obtained at a definite crack length, while in our experiments the
extended ranges of crack length were investigated. Davies et al. [7] presented slightly
higher GIIC values for glass–epoxy ELS and ENF specimens as obtained by three different
reduction techniques. For the ELS coupon, the critical (initiation) SERRs were
within 1500–2000 J/m2. In the case of the ENF test, they were 1400–1500 J/m2. The
significance of the employed data reduction was highlighted in the former work.
Considering the propagation tests, the work by Davies et al. [6] may be referred to,
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Figure 10. Measured and calculated compliance from the propagation test of one ONF specimen.
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wherein they tested unidirectional glass–epoxy 4ENF specimens. For specimens with
similar fiber volume fraction (52%) to that of our coupons and with 2L¼ 100mm, they
measured 2013	 135 J/m2 initiation and 3040	 450 J/m2 propagation toughness in the
range of a¼ 47–76mm. These values are higher in comparison with our results; however,
the R-curve followed a similar trend as found by us in Figure 11(a)–(c).

CONCLUSIONS

The mode-II interlaminar fracture in glass–polyester end-loaded split and over-notched
flexure specimens were investigated from the theoretical and experimental points of view.
Closed-form solutions were developed for the compliance and the strain energy release
rate of the mentioned delamination coupons. The experiments and the developed finite
element models validated the analytical solution. The experimental data were reduced
by four methods in the case of the initiation tests. It was found that the compliance
calibration method gives misleading results in the case of the ONF specimens.
Consequently, the application of the CC method is not recommended. All the other
solutions were in good agreement in both the test coupons.

The ONF specimen was used as a candidate to measure the propagation toughness.
This test was found to be relatively easy to perform and the crack propagation was
easy to control. In the light of these establishments, we may conclude that the ONF test
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Figure 11. SERR against the crack length by different methods, ONF test. Compliance calibration (a); direct
beam theory (b); and beam theory (c).
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is an efficient tool to obtain the mode-II strain energy release rate of composite materials
with low flexural modulus. The propagation test data were evaluated by three different
methods: exact beam theory, compliance calibration, and direct beam theory. In each
case, a clear plateau value was reached as the crack advanced. It is noteworthy that
direct beam theory indicated the highest plateau value (3121 J/m2), while the
compliance calibration and exact beam theory provided identical result (2789 against
2790 J/m2). This indicates the applicability of the present beam equations for data
reduction.

The relatively high value of the mode-II toughness was supported by previous
experiments carried out on similar type of composite materials.
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