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Abstract

This work investigates the interlaminar fracture and fiber-bridging in double-cantilever beam specimens from the
theoretical and experimental points of view. Crack initiation and propagation tests were performed on unidirectional
E-glass/polyester double-cantilever beam specimens. The well-known classical beam theory-based solution agrees excel-
lently with the experimental results in the case of crack initiation tests. In contrast, the classical model seems to be inad-
equate for the evaluation of the propagation test data. The apparent contradiction was attributed to the fiber-bridging
phenomenon. Thus, a novel beam model was developed, which accounts for the effect of fiber-bridging. Based on the
solution of beam theory, the number of the bridging fibers and the bridging force can be approximated. The former
reaches a peak value and decreases notably, while the force tends to a plateau value as the crack grows.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

The double-cantilever beam (DCB) test is a standard (ASTM D5528, ISO/DIS 15024) method to mea-
sure the mode-I interlaminar fracture toughness of composite materials. Within the scope of linear elastic
fracture mechanics (LEFM) the DCB specimen is treated as a slender beam. The researchers provided a
large amount of theoretical analyses on the DCB specimen. An advanced solution for the DCB specimen
was developed by Kanninen, applying a Timoshenko beam on Winkler-type elastic foundation [1]. Later,
Williams [2] extended the elastic foundation model for orthotropic materials, the elegant solution was
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1 Tel.: +36 1 463 2228.

mailto:szeki@mm.bme.hu
mailto:uj@mm.bme.hu
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referred to by numerous authors [3–5]. In fact, the elastic foundation model does not account for the effect
of fiber-bridging, which is an essential feature not only in unidirectional, but even in angle-ply laminate
DCB specimens [4]. Furthermore it is observable also under mixed-mode I/II conditions [6].

The bridging fibers increase the resistance to delamination. In this case the energy release rate increases
with the crack length, this feature is known as the R-curve effect. Numerous authors have investigated the
fiber-bridging in composite materials. The phenomenon was studied by Suo et al. [7] in certain composite
specimens. It was highlighted that the R-curve cannot be considered as a material property, since it
depends on the specimen size and geometry. The concept of the bridging law is widely applied in the
literature to characterize the R-curve for DCB specimens. Kaute et al. [8] introduced a semi-empirical
model for fiber-bridging modeling. The bridging law was composed by the product of two terms: the fiber
force and the number of bridging fibers per unit area of crack face. The functions of these two terms were
determined based on experiments. Unfortunately this model required too much parameters to be deter-
mined. Later Yan et al. [9] introduced a numerical model based on an elastic-plastic damage interface be-
tween the adjacent plies of the composite laminate. The experiments by Hashemi et al. [10] were utilized to
validate their model. Tamuzs et al. applied also the finite element technique for fiber-bridging modeling in
carbon/epoxy DCB specimens [11]. The bridgings were represented by nonlinear spring elements along the
bridged zone of the specimen. The behavior of the springs was controlled based on the determined bridging
law. Sohn et al. investigated the fiber-bridging using the bridging stress function in the case of polycrystal-
line alumina composites [12]. The bridging tractions were estimated based on the measured crack opening
displacement. The phenomenon was studied also in short fiber-reinforced composites. An extensive study
was carried out by Lindhagen and Berglund [13], the fiber-bridging in several type of composite materials
was investigated and the bridging laws were determined using the DCB coupon loaded by pure bending
moments. Also, Fernberg and Berglund [14] determined the bridging law for certain short-fiber-reinforced
composites. A remarkable feature is that the bridging law was found to be a material parameter in these
studies.

In the present work we developed a model for fiber-bridging analysis based on classical beam theory.
Traditional DCB test (see Fig. 1) including crack initiation and propagation on unidirectional E-glass/poly-
ester specimens was performed providing input data for the analysis. The main goal of our work is to pro-
vide information on the number of bridgings and the bridging force. The approximate character of these
quantities would be useful in order to understand the phenomenon more deeply. The presented method
is relatively easy to apply by using a Maple worksheet.
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Fig. 1. DCB specimen for mode-I delamination testing.
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2. Beam analysis

2.1. Analysis of the bridged DCB specimen

In this section a closed-form expression is developed for the compliance of unidirectional DCB speci-
mens. The model incorporates the Winkler-type elastic foundation (classical solution of Williams [2])
and considers the effect of fiber-bridging. The bridgings are represented by elastic beam elements, of which
extensional stiffness and initial length is utilized. Let us consider the model of the DCB specimen loaded by
edge forces in Fig. 2. The governing equations are
d2wðxÞ
dx2

¼ �MðxÞ
IyE11

; �a 6 x 6 0; ð1Þ

d4wðxÞ
dx4

þ 4k4wðxÞ ¼ 0; 0 6 x 6 c. ð2Þ
The deflection functions of the lower arm can be expressed by solving Eq. (1), thus we have
wl1ðxÞ ¼ � P
IyE11

1

2
ax2 þ 1

6
x3

� �
þ c1xþ c2; �a 6 x 6 �L1; ð3Þ

wl2ðxÞ ¼ � P
IyE11

1

2
ax2 þ 1

6
x3

� �
þ P 1

IyE11

1

2
L1x2 þ

1

6
x3

� �
þ c3xþ c4; �L1 6 x 6 0; ð4Þ
where Iy = bh3/12 is the second order moment of inertia and E11 is the flexural modulus. The subscript �l�
refers to the lower arm. In the uncracked region the solution may be obtained by combining the generalized
Krylov-functions [15], which are compiled in the Appendix A. Based on Fig. 2 the boundary and matching
conditions are
w00
l3ðcÞ ¼ 0; w000

l3ðcÞ ¼ 0;

wl1ð�L1Þ ¼ wl2ð�L1Þ; w0
l1ð�L1Þ ¼ w0

l2ð�L1Þ;
wl2ð0Þ ¼ wl3ð0Þ; w0

l2ð0Þ ¼ w0
l3ð0Þ;

w00
l2ð0Þ ¼ w00

l3ð0Þ; w000
l2ð0Þ ¼ w000

l3ð0Þ;

ð5Þ
which allow the determination of the constant parameters in Eqs. (3), (4) and (A.2). For the upper
half of the model the same boundary value problem may be formulated. We assume a joint-like
δ*
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Fig. 2. For the analysis of the fiber-bridging in the DCB specimen.
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connection between the bridging and the specimen arms. Thus, the elongation in the bridging is (refer to
Fig. 2)
Dr1 ¼ r1 � L01 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½wu1ð�L2Þ � wl1ð�L1Þ�2 þ L2

01

q
� L01; ð6Þ
where L01 = jL2 � L1j is the initial length of the bridging. The displacements in Eq. (6) can be expressed by
taking the deflections at the positions of x = �L1 and x = �L2, thus we obtain
wu1ð�L2Þ ¼ ðk3½PL2
2ð3a� L2Þ � 2P 1L3

2� þ 6L2k
2ðPa� P 1L2Þ þ 3k½P ðL2 þ aÞ � 2P 1L2�

þ 3ðP � P 1ÞÞ=ð6k3IyE11Þ; ð7Þ
wl1ð�L1Þ ¼ �ðk3½PL2

1ð3a� L1Þ � 2P 1L3
1� þ 6L1k

2ðPa� P 1L1Þ þ 3k½P ðL1 þ aÞ � 2P 1L1�
þ 3ðP � P 1ÞÞ=ð6k3IyE11Þ. ð8Þ
Eqs. (7) and (8) were substantially simplified based on the work of Ozdil and Carlsson [4]. The tensile force
in the bridging can be obtained by using the following equations:
F 1 ¼ s1Dr1; s1 ¼
A1Ef

L01

; A1 ¼ nf
d2
fp
4

; ð9Þ
where s1 is the extensional stiffness, A1 is the cross-section of the bridging, Ef is the elastic modulus of the
fiber, nf is the number of fibers per bridging and df is the fiber diameter. The offaxis angle between the bridg-
ing and the axis x by the help of Fig. 2 becomes
a1 ¼ arctan
wu1ð�L2Þ � wl1ð�L1Þ

jL2 � L1j

� �
. ð10Þ
Let us denote the vertical component of the force F1 as P1. According to Fig. 2 P1 may be obtained
as
P 1 ¼ F 1 sin a1. ð11Þ

Substituting Eqs. (6)–(8) into Eq. (11) and substituting Eqs. (7) and (8) into Eq. (10) and combining it again
with Eq. (11) a transcendental equation may be obtained, of which solution is the force P1. The compliance
of the lower arm becomes
Cl ¼
wl1ð�aÞ

P

¼ 2a3k3 þ 6a2k2 þ 6ak þ 3� P 1

P
ðð3aL2

1 � L3
1Þk

3 þ 6aL1k
2Bþ 3kðL1 þ aÞ þ 3Þ

� ��
ð6k3IyE11Þ. ð12Þ
The compliance of the DCB specimen (CDCB = d/P) may be obtained by summing the compliances of
the upper and lower arms, consequently we have
CDCB ¼ Cl þ Cu ¼
2a3k3 þ 6a2k2 þ 6ak þ 3

3k3IyE11

� P 1

P
½ð3aðL2

1 þ L2
2Þ � ðL3

1 þ L3
2ÞÞk

3 þ 6aðL1 þ L2Þk2 þ 3kðL1 þ L2 þ 2aÞ þ 6�
6k3IyE11

. ð13Þ
Substituting the value of k (see Appendix A) into Eq. (13) yields:
CDCB ¼ C0
DCB � CFB

DCB; ð14Þ
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where
C0
DCB ¼ 8a3

bh3E11

1þ 1.92
h
a

� �
E11

E33

� �1
4

þ 1.22
h
a

� �2 E11

E33
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þ 0.39
h
a
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" #
; ð15Þ

CFB
DCB ¼ P 1

P
½ð3aðL2

1 þ L2
2Þ � ðL3

1 þ L3
2ÞÞk

3 þ 6aðL1 þ L2Þk2 þ 3kðL1 þ L2 þ 2aÞ þ 6�
6k3IyE11

; ð16Þ
where the term C0
DCB is the specimen compliance based on the classical elastic foundation model [2]. The

effect of fiber-bridging is incorporated in the term CFB
DCB. The energy release rate may be obtained by using

the Irwin–Kies expression [16]
GI ¼
P 2

2b
dCDCB

da
. ð17Þ
Using Eqs. (15) and (17) the energy release rate may be easily obtained without the bridging effect, the
relevant expression [2,4,5] is not detailed here, but it will be used in the sequel. Considering Eq. (16) we
must differentiate all those parameters which depend on the crack length. Although the location of the brid-
gings, L1(a) and L2(a) are linear functions of the crack length a, the force P1(a) as a function of the crack
length is difficult to obtain [see Eqs. (10) and (11)]. Hence, a closed-from solution is not available for the
energy release rate. Furthermore the dependence of L1 and L2 on the crack length is not considered.

2.2. Generalization for ‘n’ number of bridgings

It is evident, that the equations above should be generalized in order to model any amount (n) of bridg-
ing fibers. The model introduced in Section 2.1 is modified here for �n� number of bridgings. In Fig. 3 a gen-
eral asymmetric arrangement can be seen. The elongation in the �j�th bridging is (where �j� is a number
between 1 and �n�)
Drj ¼ rj � L0j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½wuð�L2jÞ � wlð�L2j�1Þ�2 þ L2

0j

q
� L0j; ð18Þ
where L0j = jL2j � L2j�1j is the initial length of the �j�th bridging. The value of the deflection at x = �L2j in
the upper arm is
wuð�L2jÞ ¼
Xn

i¼1

ðk3½PL2
2jð3a� L2jÞ þ P i/2i� þ 6L2jk

2ðPa� P iL2iÞ

þ 3k½PðL2j þ aÞ � P iðL2i þ L2jÞ� þ 3ðP � P iÞÞ=ð6k3IyE11Þ; ð19Þ
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Fig. 3. A general case for asymmetrical fiber-bridging.
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where
/2i ¼ L2
2iðL2i � 3L2jÞ; if jL2jj P jL2ij; ð20Þ

/2i ¼ L2
2jðL2j � 3L2iÞ; if jL2jj < jL2ij; j ¼ 1; 2; 3; . . . ; n.
The deflection at the position of x = �L2j�1 in the lower arm becomes
wlð�L2j�1Þ ¼ �
Xn

i¼1

ðk3½PL2
2j�1ð3a� L2j�1Þ þ P i/2i�1� þ 6L2j�1k

2ðPa� P iL2i�1Þ

þ 3k½P ðL2j�1 þ aÞ � P iðL2i�1 þ L2j�1Þ� þ 3ðP � P iÞÞ=ð6k3IyE11Þ; ð21Þ
where
/2i�1 ¼ L2
2i�1ðL2i�1 � 3L2j�1Þ; if jL2j�1j P jL2i�1j; ð22Þ

/2i�1 ¼ L2
2j�1ðL2j�1 � 3L2i�1Þ; if jL2j�1j < jL2i�1j; j ¼ 1; 2; 3; . . . ; n.
It is obvious, that the distances, L2j and L2j�1 should strictly determine the location of the �j�th bridging.
The tensile force in the �j�th bridging is
F j ¼ sjDrj; sj ¼
AjEf

L0j
; Aj ¼ nf

d2
fp
4

. ð23Þ
The offaxis angle between the �j�th bridging and the axis x may be obtained as
aj ¼ arctan
wuð�L2jÞ � wlð�L2j�1Þ

jL2j � L2j�1j

� �
. ð24Þ
The �j�th force Pj according to Fig. 3 is
P j ¼ F j sin aj. ð25Þ

Combining Eqs. (18)–(25) the system of equations may be built, from which the solutions for the forces
(Pi, i = 1, . . . ,n) may be obtained. The compliance of the bridged DCB specimen becomes
CDCB ¼
Xn

i¼1

fk3½4Pa3 þ P iðL2
2iðL2i � 3aÞ þ L2

2i�1ðL2i�1 � 3aÞÞ� þ 6k2½að2Pa� P iðL2i þ L2i�1ÞÞ�

þ 3k½4Pa� P iðL2i þ L2i�1 þ 2aÞ� þ 6ðP � P iÞg=ð6Pk3IyE11Þ. ð26Þ
The number of unknown forces, as well as the number of bridgings is equal to n. Note that interaction
between elastic foundation and the bridgings is included in Eqs. (19), (21) and (26). It should be kept in
mind, that the upper and lower deflection functions are forced to depend on each other in the case of asym-
metrically arranged bridgings. This effect was assumed to be very small in the case of sufficient number of
bridgings, and consequently, it is neglected in the above formulation. Also, the horizontal component of the
tensile force in the first of Eq. (23) was ignored.

As we mentioned before, the energy release rate cannot be expressed in closed-form. In the sequel we will
use only the compliance expression.

2.3. Bridging law

The J-integral results in the following expression for the energy release rate including the bridged zone
[7,13]:
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J ¼ GI ¼
Z d�

0

rðdÞdd þ GI0; ð27Þ
where GI0 is the fracture energy from matrix cracking (and it is assumed to be a constant value), the first
term is the contribution of the fiber-bridging to the steady-state fracture toughness. Differentiating Eq. (27)
the bridging stress becomes
rðdÞ ¼ oGI

od� ; ð28Þ
where d* is the crack opening displacement at the initial crack tip (see Fig. 2). Eq. (28) is called the bridging
law. An exact expression for the displacement at the initial tip ðd� ¼ d�

u � d�
l Þ may be obtained by replacing

L2j and L2j�1 with a � a0 in Eqs. (19)–(22).
It should be noted that the present model does not account for those bridgings, of which initial length

changes (i.e. fiber peels away from matrix) as the crack propagates. Further local effects, such as fiber de-
bonding, failure, pull-out and sliding are also ignored. All these mechanisms are demonstrated in [8]. As a
consequence, the developed model is suitable only for approximate computations. Due to the complexity of
our model a simple numerical solver was developed in the code Maple [17].
2.4. Crack length correction

Thamm et al. suggested a correction factor for large displacements based on a simple geometrical scheme
[18]
a ¼ Na�; N ¼ 1� 1

6

d
a�

� �2

; ð29Þ
where a* is the measured, a is the corrected crack length and d is the experimentally measured specimen
displacement. The length of the initial crack was similarly corrected. Thus, the relevant equations are
a0 ¼ Na� � N �ða� � a�0Þ; N � ¼ 1� 1

6

d�

a� � a�0

� �2

; ð30Þ
where a�0 is the measured value of the initial crack length, a0 is the corrected crack length and d* is the exper-
imentally measured displacement at the initial crack tip (refer to Fig. 2).
3. Experiments

3.1. Data reduction

The compliance calibration (CC) method [4] was used to reduce the experimental data. The compliance
of the DCB specimen may be written as
C ¼ bam; ð31Þ

where b and m may be found by using a curve-fitting technique.
3.2. Experimental procedure

For the measurements unidirectional [0�]14 E-glass/polyester coupons were manufactured in a special
pressure block tool. The specimens have nominal width of 20 mm, thickness of 2h = 6 mm and fiber-volume
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fraction of 43%. A nylon insert with thickness of 0.04 mm was placed at the midplane of each specimen.
The specimens were cut to the desired length and have been precracked in opening mode of about 4–
5 mm by using a sharp blade. This involved an area full of pulled-out fibers before the crack tip, but this
effect was assumed to be negligible. A millimeter scale was traced on the lateral sides of the coupons in
order to facilitate the visual measurement of the crack length. The flexural modulus was determined
through a three-point bending test, which resulted in E11 = 33 GPa. Additional elastic material properties
were predicted by means of Niederstadt�s [19] approximate rule of mixture, this way G13 = 3 GPa and
E33 = 7.2 GPa was obtained. The fiber diameter and the fiber modulus is: df = 12 lm, Ef = 70 GPa [20],
respectively.

The DCB test setup is depicted in Fig. 4. Steel hinges were bonded to the upper and lower specimen
arms. The tests were performed under displacement control using an Amsler testing machine, illustrated
in Fig. 4. The load/deflection data was recorded. The load values were read from the scale of the testing
machine, while the deflection was monitored by the dial gauge, shown at the upper left of Fig. 4. Crack
initiation/propagation was measured visually, the curved crack front was easily observable through the
upper and lower specimen surfaces.

We have performed two kinds of measurements. At the first stage we eliminated the effect of fiber-bridg-
ing by using 18 specimens with the following crack lengths: 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 90, 100,
110, 120, 130, 140 and 150 mm. The specimens were loaded only up to fracture initiation and the compli-
ance was determined for each specimen at the same point. The data was fit by Eq. (31) and the energy re-
lease rate at the point of crack initiation was determined through Eq. (17). This procedure was suitable to
determine the fracture properties at crack initiation without the fiber-bridging effect in a quite extended
(a = 30–150 mm) crack length range.

At the second stage six specimens with an initial crack length of a0 = 30 mm were investigated in the
same test configuration, as shown in Fig. 4. In this case the complete R-curve including the bridging effect
was determined within the same crack length range (a = 30–150 mm). The displacement at the initial crack
tip was recorded by using the two dial gauges depicted in Fig. 4. It was necessary for the determination of
the bridging law. The method of data reduction was the same as it was in the case of the crack initiation
tests. Some specimens with extensive fiber-bridging are shown in Fig. 5.
Fig. 4. Experimental setup for DCB testing.
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4. Test results

4.1. Crack initiation tests

Linear load/displacement curves were recorded through initiation tests, as shown by Fig. 6a. The
compliance of the specimens versus the crack length is plotted in Fig. 6b, only Eq. (15) was used for
data evaluation. The correlation was found to be excellent between the Winkler foundation model
and the experimentally determined values. It is noteworthy, that the exponent (m) in Eq. (31) was less
than 3. In Fig. 8b the initiation fracture resistance curve can be seen. The closed-form solution was obtained
by combining Eqs. (15) and (17), of which result compared to the experimentally determined values
agrees quite closely in the entire crack length interval. As a consequence, in this case the classical elastic
foundation model provides the reasonably accurate description of both the compliance and the energy
release rate.

4.2. Crack propagation tests

A typical load/displacement curve is plotted in Fig. 7a. The crack initiation was observed at P = 86–
90 N, while the peak value of the load was always about 117–122 N. During the testing extensive fiber-
bridging was observed as it is shown by the photographs in Fig. 5, the bridgings appeared under a shallow
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angle. The crack always propagated along the midplane of the specimens. In Fig. 7b the experimental com-
pliance values and the analytical curve [Eq. (15)] are illustrated. The exponent (m) in Eq. (31) was higher
than 3 for all the six specimens. An immediate observation is that the model [Eq. (15)] significantly over-
predicts the experimental compliance values. The values of the energy release rate and the averaged GI–a
data are plotted in Figs. 8a and b. Again, the closed-form solution was obtained by combining Eqs. (15)
and (17). The difference was found to be particularly significant between the analytically and experimentally
determined energy release rate values.

As shown by Fig. 8b, distinct initiation fracture energy values were obtained from the initiation and
propagation tests at the crack length value of a = 30 mm. For both tests the force at crack initiation
was the same (86–90 N) at this point. The difference may be explained by the fact, that the derivative of
the compliance was higher in the case of crack initiation than in the case of crack propagation tests (refer
to Figs. 6 and 7b).
5. Application of the developed beam model

The accuracy of the classical elastic foundation model [Eq. (15)] was proven through the initiation
tests. Thus, we assume that the overpredictions experienced in the propagation tests arise due to the
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2696 A. Szekrényes, J. Uj / Engineering Fracture Mechanics 72 (2005) 2686–2702
fiber-bridging phenomenon. In order to estimate the number of bridging fibers and the bridging force the
experimental data was evaluated by using the model developed in Section 2.
5.1. Compliance calculation

The computation was performed according to the following procedure. Based on the propagation test
data the applied load P, specimen displacements d and d* measured from the tests of six specimens
were averaged with respect to the crack length. The experimental compliance was calculated based on
the averaged P and d values, then the compliance values were fit by Eq. (31). The analytical compliance
expression [Eq. (26)] was computed for the actual crack length. In each step the crack increment was 3–
5 mm, while the number and location of the bridgings were chosen in order to hold the difference between
the analytical and experimental compliance values (Fig. 7b) within ±2–3%. Also, the displacement at the
initial crack tip was considered and the difference between the analytical and experimental values was held
within ±2–3%. Finally, it was assumed that the average bridging stress calculated by the beam model (see
Eq. (32)) is equal to that obtained by Eq. (28). Only symmetrically arranged bridgings were applied with the
same fiber content. If these criterions were satisfied it was considered to be a possible solution of the
problem.
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5.2. Bridging law computation

Two approaches were used to calculate the nonlinear bridging law. The first method (denoted as the
�average stress� method) is based on the average bridging stress:
rðd�Þ ¼ n  nf
Pn

i¼1P i

AðaÞ ; ð32Þ
where n is the number of bridgings, nf is the number of fibers per bridging, Pi are the forces in the bridgings
andA(a) is the area of the bridged zone at the actual crack length. The length of the bridged zone is illustrated
in Fig. 5 at certain crack lengths, where the white arrows show the position of the crack tip. At the beginning
of the delamination process the bridged zone extended over the initial crack tip with several millimeters, but it
reached an approximately constant value (45 mm) during the crack propagation. The area of the bridged zone
is obtained by multiplying the bridged length with the specimen width b. It should be mentioned that the
bridging force is probably not uniformly distributed. Thus, the result of Eq. (32) is only approximate.

For the second approach Eq. (28) was used. Although it is based on the experimentally determined quan-
tities, these may be calculated also by the developed beam model. The compliance values calculated from
Eq. (26) may be fit by Eq. (31). The energy release rate may be obtained by using Eq. (17), then the bridging
law can be determined by the help of Eq. (28). This method was denoted as the J-integral method.

Comparison of the two analytical and the experimental bridging laws is made.
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6. Results and discussion

6.1. Compliance and energy release rate

The compliance values calculated by using the developed beam model are illustrated in Fig. 9a. Com-
paring these values with the experimental values in Fig. 7b we find that the model shows good agreement,
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the mentioned deviation (2–3%) is not perceptible. The coefficient (b) and the exponent (m) of the fit
curves [Eq. (31)] are essentially the same in Fig. 7b and in Fig. 9a. As a consequence, the same energy
release rate values may be determined from the calculated compliance curve in Fig. 9a, as those plotted
in Fig. 8b.
6.2. Bridging force and number of bridging fibers

The total bridging force and the number of bridging fibers are illustrated in Figs. 9b and c as a func-
tion of the displacement at the initial tip. The force reaches a peak value of about 176 N and then it
slightly decreases until the value of 120 N. At the beginning of the delamination the number of bridg-
ing fibers reaches a maximum value and then it decreases significantly as the crack opens (Fig. 9c).
Kaute et al. [8] presented quite similar results. In their work the fiber force was assumed to be constant
after crack initiation, while the number of bridgings decreased in accordance with an exponential
function.
6.3. Bridging law

Fig. 10a shows the GI–d* curves determined from experiment and analysis. As expected, the correla-
tion was found to be excellent, despite the beam model shows a little overestimation. Figs. 10b and c
demonstrate the bridging laws. The result of the average stress method [Eq. (32)] is depicted in Fig. 10c,
in comparison with the J-integral approach the agreement seems to be very good. According to the aver-
age stress method the stress is equal to zero at crack initiation, it reaches a peak value (0.32 MPa, refer
to Fig. 10c) and finally decays notably. At crack initiation the J-integral method indicates 4.92 MPa
value based on beam analysis and 3.94 MPa from experiment (Fig. 10b). For comparison the work by
Tamuzs et al. [11] may be referred to, wherein the presented bridging law follows the same trend as found
by us.
6.4. Matrix cracking and fiber-bridging

According to Eq. (27) the term GI0 from matrix cracking is assumed to be a constant value. The first term
in Eq. (27) is defined by the integral over the total crack opening. Consequently, the term, GI0 may be deter-
mined by subtracting the first term from the total energy release rate. This may be done if the fit curves in
Fig. 10a are known. Based on the experimentally determined bridging law this term is approximately equal
to 160 J/m2, which is identical to the initiation value in Fig. 8b. A reasonable assumption is, that during
crack initiation tests the total energy release rate comes from matrix cracking, and it is a constant value
at any crack length. In spite of this the initiation toughness increases (from 280 to 415 J/m2) with the crack
length (see Fig. 8b). Hashemi et al. [10] experienced similar behavior to that found by us. In fact the depen-
dence of the initiation energy release rate on the initial crack length is not serious in Fig. 8b and we assumed
that for the current material Eq. (26) is valid.

It was mentioned by Lindhagen and Berglund [13] that as the crack advances the steady-state toughness
is equal to the area under the curve of the bridging law. Note that the length of the specimen was not large
enough to reach a plateau value, in other words some fiber-bridging was observed at the end of the delam-
ination process (refer to Fig. 8b). Lindhagen and Berglund investigated short-fiber-reinforced composite
specimens and they have found that in some cases the fracture energy from matrix cracking may be ne-
glected. On the base of our experiments the fracture toughness increases up to 1100 J/m2. At this point
the matrix cracking (160 J/m2) contributes to the total fracture energy with about 15%, which is not
negligible.
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7. Conclusions

The fiber-bridging phenomenon was investigated using linear beam theory and experiments in unidirec-
tional E-glass/polyester DCB coupons. Extensive fiber-bridging was observed during the crack propagation
tests. The objective of the present work was to determine approximately the number of bridging fibers and
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the bridging force. Based on linear beam theory the compliance of the bridged DCB specimen was derived.
The bridging mechanism was simulated by elastic beam elements. Applying the developed model a hyper-
bolic character was found in the case of the number of bridging fibers as a function of the displacement at
the initial crack tip. The bridging force reaches a peak value first, and then it tends to a plateau value of
about 120 N as the crack advances. The bridging law was calculated based on experiments and analysis.
Comparison between them showed good agreement, but it should be kept in mind that in one of the ana-
lytical approaches the average bridging stress was considered.

The obtained results were compared with other ones, previously published on similar systems. Similar
behavior was found, which partly confirms the analytical solution. From other perspectives the present for-
mulation involves several approximations. For instance, local effects (fiber pull-out, fiber breakage, etc.)
were not taken into account.

Although the application of the developed model is slightly time-consuming, the calculation may be per-
formed by the help of few additional properties, namely the fiber diameter df and the elastic modulus of the
fibers Ef.
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Appendix A

The homogeneous, generalized Krylov-functions are [15]
V 1ðxÞ ¼ coshðkxÞ cosðkxÞ; ðA:1Þ

V 2ðxÞ ¼
1

2
½coshðkxÞ sinðkxÞ þ sinhðkxÞ cosðkxÞ�;

V 3ðxÞ ¼
1

2
sinhðkxÞ sinðkxÞ;

V 4ðxÞ ¼
1

4
½coshðkxÞ sinðkxÞ � sinhðkxÞ cosðkxÞ�.
The deflection function of the uncracked region is
wl3ðxÞ ¼ c5  V 1ðxÞ þ c6  V 2ðxÞ þ c7  V 3ðxÞ þ c8  V 4ðxÞ; 0 6 x 6 c; ðA:2Þ

where according to [4]:
k ¼ 61=4

h
E33

E11

� �1=4

; ðA:3Þ
where E33 is the through-thickness modulus of the specimen.
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