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Summary

The mixed-mode I/II interlaminar fracture in glass/polyester composite ELS specimens was
investigated analytically and experimentally. Advanced compliance and fracture energy
equations were developed based on higher order beam theories. Quasi-unidirectional
glass/polyester specimens were manufactured and tested. Beam equations were compared
with experimental results in a long crack interval and agreed quite closely.

1 INTRODUCTION

Delamination tests have important
role in the development of composite
structures. The mixed-mode I+II
delamination can be investigated by using
the ELS (end-loaded split) specimen (see
Fig.1). In literature only the result of the
simple beam theory was found. In the
current study beam theories were utilized
to derive compliance and fracture energy
equations for the ELS specimen. The equations incorporate elastic foundation, Saint Venant
effect [1] and crack tip deformation analysis based on [2]. Unidirectional glass/polyester
specimens were manufactured and tested. Experiments were carried out to check the deduced
equations. Results show excellent correspondence between analysis and experiment.

2 BEAM ANALYSIS

2.1 Winkler-Pasternak foundation analysis

The governing ODE system of the two-parameter elastic foundation model depicted in
Fig.1.:
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where β, ψ can be associated to elastic moduli of the specimen:
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Fig.1. Two-parameter elastic foundation model
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The characteristic roots of the ODE system:
42

41 2 ψβ −=m , 42
42 2 ψβ +=m . (3)

The solution functions of the uncracked ( cx ≤≤0 ) part can be formulated as:
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For the upper and lower arms of the specimen the deflection functions are:
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The boundary conditions can be written as: 0)(2 =cwu , 0)(2 =cwl , 0)(2 =′ cwu , 0)(2 =′ cwl . The
matching conditions: )0()0( 21 uu ww = , )0()0( 21 ll ww = , )0()0( 21 uu ww ′=′ , )0()0( 21 ll ww ′=′ ,

)0(4)0( 21 uu ww ′′=′′ , )0(4)0( 21 ll ww ′′=′′ , )0(4)0( 21 uu ww ′′′=′′′ , )0(4)0( 21 ll ww ′′′=′′′ . After some meaningful
simplification we can obtain the compliance of the ELS specimen (C=wl1(-a)/P):
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where L=a+c is the specimen length and:
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2.2 Saint Venant effect

The problem of Saint Venant effect
(illustrated in Fig.2) was analysed by Olsson
[1] for the DCB specimen. According to [1]
the compliance contribution has the following
form in the case of the ELS specimen:
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According to Eq.(8) the Saint Venant effect is independent on the crack length.

2.3 Crack tip deformation analysis

According to Wang et al. [2] the governing ODE of the shear stress field in the
uncracked region and its approximate solution is:
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where λ is the correction due to orthotropy, we choose λ=1. The deflections of the uncracked
(w(x)) and cracked (w0(x)) regions follow by integrating the stress field:
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Boundary and matching conditions are necessary to determine all the four constants: 0)( =Lw ,
0)( =′ Lw , )()(0 awaw = , )()(0 awaw ′=′ . The compliance (again after some simplification) is:

Fig.2. Saint Venant effect at the clamped end
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2.4 Summing the compliance and fracture energy contributions

As the superposition of the derived equations the compliance of the ELS specimen has
the following form (by adding Eq.(6), Eq.(8) and Eq.(11)):
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The fracture energy can be obtained by using the Irwin-Kies expression [1]:
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2.5 Mode-mixity analysis

In order to separate the total strain energy release rate (GI+II) into its individual
components (GI, GII) we use again higher order beam theories. We complete the global [3]
and local [4] methods with foundation effects.

2.5.1 Global method

If we complete the global method [3] with foundation effects (Winkler-Pasternak,
shear deformation of the crack tip) we can obtain the mode-I and mode-II components:
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According to this analysis the Winkler-Pasternak foundation contributes only to the mode-I
component, while crack tip deformation due to shear stresses supports the mode-II fracture
energy. The mode-I and mode-II bending moments according to [3]:

2/)( 21 MMM I −= , 2/)( 21 MMM II += . (16)
For the ELS specimen M1=0, M2=Pa are reduced moments at the crack tip, we obtain by the
help of Eq.(14) and (15)
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2.5.2 Local method

The local method is based on the work of Suo and Hutchinson [4]. The energy release
rate components supposing plane stress conditions:
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where the upper sign is for case of FM>0, and
the lower sign is for FM<0. Eq.(21) incorporates
the effect of elastic foundations.

3 EXPERIMENTS

Experiments were carried out using the
special fixture depicted in Fig.3. The specimen
displacement was measured by the dial gauge
also shown in Fig.3. Specimens with different
crack lengths were used and loaded up to
fracture. The compliance calibration method [3]
was used as data reduction scheme. This
procedure resulted only initiation fracture
energies. The flexural properties: E11=33 GPa,
G13=3 GPa, E33=7.2 GPa.

4 RESULTS AND DISCUSSION

During testing linear load-specimen
displacement curves were recorded for each
specimen as shown by Fig.4. The
compliance and fracture energy curves are
depicted in Fig.5. The advanced beam model
[Eq.(12)] shows excellent correspondence
with the experiments. Fracture energy curves
can also be seen in Fig.5.b. Experiments
produced approximate steady state value of
GI+II=645 J/m2, while beam analysis resulted
GI+II=573 J/m2. The results of mode-mixity
analysis (Fig.5.b) show that the global and
local methods give exactly the same mode
components. Both methods report mode-I dominance. The contributions of the various effects
are collected in Tab.1. The compliance contribution of Winkler-Pasternak foundation has

Fig. 4. Load-specimen displacement
curves up to fracture initiation
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reasonable values only for long crack lengths, while fracture energy is supported mainly in
short crack lengths. The crack tip shear deformation has the same behavior as can be seen in
Tab.1. The Saint Venant effect produces a reasonable constant compliance term, which is
necessary to predict the compliance with more accuracy.

4 CONCLUSIONS

Beam analysis resulted a
full third order polynomial for
the ELS specimen compliance,
fracture energy was also
calculated. Experiment was
carried out on glass/polyester
specimens in order to verify the
new equations and produced
excellent correspondence with
the analysis. Global and local
mode-mixity analysis
incorporating foundation effects
provided the same mode
components and reported mode-I
dominance.
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     a        CSB      CW-P    CSV     CSH    GI+II,SB  GI+II,W-P GI+II,SH

  [mm]        [mm/N]⋅10-3 [J/m2]

     20  102.71 0.16   12.65    0.12   345.79    24.70    19.24
     30 106.80 0.35   12.69    0.27   430.21    19.08    14.84
     40 115.51 0.65   12.72    0.51   475.50    14.81    11.51
     60 146.03 1.40   12.71    1.10   574.48    11.82      9.18
    100 311.37 3.87   12.67    3.00   567.34      6.84      5.31
    140 680.33 7.53   12.62    5.84   552.59      4.72      3.66

  CSB, GI/II,SB     - contribution of simple beam theory
  CW-P, GI/II,W-P - contribution of Winkler-Pasternak elastic foundation
  CSV          - contribution of Saint Venant effect
  CSH, GI/II,SH    - contribution of crack tip  shear deformation

Tab.1. Compliances and fracture energies by beam analysis

Fig. 5. Specimen compliance (a) and critical values of the initiation fracture energy (b)
against the crack length
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