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Abstract

The mixed-mode I/II delamination problem in composite specimens was investigated using closed-from solutions, the finite ele-

ment technique and experiments. Unidirectional glass/polyester composite laminates were manufactured and tested. The mixed-

mode I/II SLB and ELS specimen configurations were used in order to obtain compliance and fracture energy predictions. Linear

beam theories incorporating transverse shear and elastic foundation effects were utilized to calculate the displacements of both the

SLB and ELS specimens. The compliance and fracture energy was calculated as the superposition of the various contributions. Plane

stress finite element models including some accompanying effects were constructed. The analytical and numerical results were com-

pared with the experiments and very good agreement was found.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Interlaminar fracture tests are carried out on config-

urations in which the specimens behave as slender

beams. The standard double-cantilever beam (DCB)

specimen is a well-established tool for measuring the

mode-I fracture toughness. Advanced beam models of

the DCB specimen were developed based on Winkler

foundation analysis in [1,2]. For mode-II testing the

end-notched flexure (ENF), the four-point bend end-
notched flexure (4ENF) and the mode-II end-loaded

split (ELS) configurations are available. Wang and Wil-

liams [3] provided corrections for the ENF and mode-II

ELS specimens using three numerical schemes and good

agreement was found. The ENF specimen was discussed

in detail by Ozdil et al. [4] and Carlsson et al. [5] incor-
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porating transverse shear and frictional effects. Schuec-

ker and Davidson [6] shown, that if the crack length
and the compliance are measured accurately, the ENF

and 4ENF tests give the same fracture toughness values.

Hashemi et al. [7,8] investigated carbon/PEEK and

polyether-sulphone (PES) fiber composites using the

DCB, mode-II ELS and the mixed-mode I/II ELS spec-

imens. Considering mixed-mode I/II configurations the

most effective one is the standard mixed-mode bending

(MMB), which enables the variation of the mode ratio.
Ozdil and Carlsson [9] used this apparatus for testing

glass/polyester laminates. The compliance and fracture

energy equations based on beam theories can be found

in other works [10,11]. Despite the MMB is widely ac-

cepted for testing unidirectional laminates, a number

of works investigate other type of mixed-mode configu-

rations. Reyes and Cantwell [12] referred to the mixed-

mode I/II ELS specimen as single-cantilever beam
(SCB). The ELS configurations were discussed using

simple beam theory [13] and finite element method [14]

by others. Another mixed-mode I/II test is the
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Fig. 2. Delaminated and uncracked regions of the SLB specimen.
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single-leg bending (SLB), which was proposed by Yoon

and Hong [15] as a modified ENF specimen. A large

number of theoretical and experimental works were per-

formed by Davidson et al. [16–19] about the SLB spec-

imen. Davidson and Koudela [20] examined also the

effect of precracking mode on the fracture toughness us-
ing DCB, ENF and SLB coupons. Later the SLB test

was modified by Tracy et al. [21] and the single leg four

point bend (SLFPB) specimen was introduced. The

mixed-mode flexure (MMF) specimen was applied by

Albertsen et al. [22] and by Korjakin et al. [23]. Finally

the cracked-lap shear (CLS) specimen should be men-

tioned [22,24].

In the present work quasi-unidirectional [0�]14 mixed-
mode I/II SLB and ELS specimens are analysed using

linear beam theories, finite element method and experi-

ments. Although these tests are not as universal as the

MMB, they require more simple experimental equip-

ment. The latter requires complex fixture and steel hinge

tabs. The SLB test may be performed in a simple three-

point bending setup, while the mixed-mode I/II ELS

specimen requires a clamping fixture. The SLB and
ELS tests produce linear load-deflection curve up to

fracture and simple reduction techniques can be applied.

We note that the name ELS is reserved for the mode-II

version of this test, but we still prefer this name and will

refer to the mixed-mode version of this specimen as

ELS. Fig. 1 illustrates the mixed-mode I/II specimen

configurations and geometry parameters.
2. Beam analysis—compliance and fracture energy

2.1. Analysis of the SLB specimen

The SLB geometry is depicted in Fig. 2. The compli-

ance can easily be obtained based on the work of Ozdil

et al. [4], wherein the following expression was derived
for the ENF specimen using Timoshenko beam theory
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Fig. 1. Mixed-mode I/II test configurations: (a) single leg bend
C¼ 2L3d11;2þa3ðd11;1�d11;2Þ
12

þ2La55;2þaða55;1�a55;2Þ
4k

� �
;

ð1Þ
where k=5/6 is the shear correction factor. The fracture

toughness can be expressed by differentiating the com-

pliance with respect to crack length [25]

GI=II ¼
P 2

2b
dC
da

: ð2Þ

Thus we obtain

GI=II ¼
P 2

8b
a2ðd11;1 � d11;2Þ þ

ða55;1 � a55;2Þ
k

� �
: ð3Þ

The differences between the ENF and SLB specimens

are the distinct shear and bending compliances of the

delaminated region. Using the equations in Appendix

A, Eqs. (1) and (3) can be simplified.

2.2. Analysis of the mixed-mode I/II ELS specimen

2.2.1. Winkler foundation analysis

The elastic foundation model (EFM) is illustrated in

Fig. 3. The model consists of two beams, which are con-

nected with the linear springs along the uncracked re-

gion. Four deflection functions are necessary to model

the whole specimen, as shown in Fig. 3. A detailed view

at the crack tip zone is also given at the bottom of Fig. 3.
The deflection functions of the upper and lower arms

are:
End Loaded Split Specimen (ELS)
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Fig. 3. Winkler foundation model for the ELS specimen.
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wu1ðxÞ ¼ c1 þ c2x; �a 6 x 6 0; ð4Þ

wl1ðxÞ ¼
�P

I ly1E11

x3

6
þ ax2

2

� �
þ c3xþ c4; �a 6 x 6 0;

ð5Þ
where Ily1 is the second order moment of inertia of the

lower arm in the cracked region. Based on Fig. 3 the po-

tential energy of the uncracked region can be formulated

as

U ¼ 1

2

Z
Iuy2E11w00

u2ðxÞ
2
dxþ 1

2

Z
I ly2E11w00

l2ðxÞ
2
dx

þ 1

2

Z
ke wu2ðxÞ � wl2ðxÞð Þ2dx; ð6Þ

where Iuy2 and Ily2 are the second order moments of in-

ertia of the upper (wu2(x)) and lower (wl2(x)) sub-beams

in the uncracked region and ke is the extensional modu-

lus. Stationarity of the functional in Eq. (6) involves the

following differential equations for the deflection func-

tions wu2(x), wl2(x):

I ly2E11

d4wl2ðxÞ
dx4

þ kewl2ðxÞ ¼ kewu2ðxÞ; 0 6 x 6 c;

Iuy2E11

d4wu2ðxÞ
dx4

þ kewu2ðxÞ ¼ kewl2ðxÞ; 0 6 x 6 c:

ð7Þ
We first define the foundation moduli ke. The elastic

strain in the transverse direction is (see Fig. 3)

ez ¼
wl2ðxÞ � wu2ðxÞ

h
; ð8Þ

where h=(hu+hl)/2. According to Ozdil and Carlsson [2]

the foundation moduli is
ke ¼
brzðxÞ

wl2ðxÞ � wu2ðxÞ
: ð9Þ

Using the one-dimensional Hooke�s law we obtain

rzðxÞ ¼ E33ez: ð10Þ

Combining Eqs. (8)–(10) yields

ke ¼
bE33

h
: ð11Þ

Substituting Eq. (11) into (7) the governing equations of
the deflections are:

d4wl2ðxÞ
dx4

þ 4b4
l wl2ðxÞ ¼ 4b4

l wu2ðxÞ; 0 6 x 6 c;

d4wu2ðxÞ
dx4

þ 4b4
uwu2ðxÞ ¼ 4b4

uwl2ðxÞ; 0 6 x 6 c;

ð12Þ

where

bl ¼
3

hhlðh2l þ 3h2uÞ

 !1=4

E33

E11

� �1=4

;

bu ¼
3

hhuðh2u þ 3h2l Þ

 !1=4

E33

E11

� �1=4

: ð13Þ

The solution of Eq. (12) can be obtained by combining

the Krulov-functions [26] and adding a third order poly-

nomial, as given in Appendix B. The parameters [c1�c12
in Eqs. (4), (5), (B.2a) and (B.2b)] can be calculated by

using the boundary and matching conditions (also given

in Appendix B). Using Steiner�s theorem the second or-
der moments of inertia are:

Iuy1 ¼
bh3u
12

; Iuy2 ¼
bhuðh2u þ 3h2l Þ

12
;

I ly1 ¼
bh3l
12

; I ly2 ¼
bhlðh2l þ 3h2uÞ

12
:

ð14Þ

Notice that Eq. (13) was obtained by the help of

Eq. (14). The compliance (Cwl1(�a)/P) can be simplified

by assuming that c�h, where h is half of the specimen

thickness. We consider only the case of symmetric speci-

men. When hu=hl=h, then the compliance becomes

CW ¼ 7a3 þ L3

2bh3E11

þ a3

2bh3E11

2:71
h
a

� �
E11

E33

� �1=4
"

þ2:45
h
a

� �2 E11

E33

� �1=2

þ 1:11
h
a

� �3 E11

E33

� �3=4
#
;

ð15Þ

where L=a+c is the full length of the specimen. Com-

bining Eqs. (15) and (2) yields
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GW;I=II ¼
21P 2a2

4b2h3E11

þ P 2a2

4b2h3E11

5:42
h
a

� �
E11

E33

� �1=4
"

þ2:45
h
a

� �2 E11

E33

� �1=2
#
: ð16Þ
2.2.2. Timoshenko beam theory

The application of Timoshenko beam theory [4] re-

sults in the following expressions in the case of the

ELS specimen:

CT ¼ 7a3 þ L3

2bh3E11

þ aþ L
2bhkG13

; ð17Þ

GT;I=II ¼
21P 2a2

4b2h3E11

þ P 2

4b2hkG13

: ð18Þ
2.2.3. Saint Venant effect

The Saint Venant effect was analysed by Olsson [1]

for the DCB specimen. The solution in [1] was originally
provided by Horgan [27]. According to Olsson�s analysis
the compliance contribution has the following form in

the case of the ELS specimen:

CSV ¼ 3

p
L2

bh2E11

E11

G13

� �1=2

: ð19Þ
h
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Fig. 4. Reduction scheme for mixed-mode partitioning.
2.3. Summary of the compliance and fracture energy con-

tributions

Based on Section 2.2.1 similar equations can be de-

rived for the SLB specimen. Superposing the transverse

shear and elastic foundation effects the compliance of

the SLB specimen becomes:

CSLB ¼ 7a3 þ 2L3

8bh3E11

þ aþ 2L
8bhkG13

þ a3

8bh3E11

� 2:71
h
a

� �
E11

E33

� �1=4

þ 2:45
h
a

� �2 E11

E33

� �1=2
"

þ1:11
h
a

� �3 E11

E33

� �3=4
#
: ð20Þ

Note that Eq. (1) was simplified using the equations in
Appendix A and implemented into Eq. (20). The frac-

ture toughness can be calculated by using Eq. (2)

GSLB
I=II ¼ 21P 2a2

16b2h3E11

þ P 2

16b2hkG13

þ P 2a2

16b2h3E11

� 5:42
h
a

� �
E11

E33

� �1=4

þ 2:45
h
a

� �2 E11

E33

� �1=2
" #

:

ð21Þ

As the superposition of Eqs. (15) and (17) the compli-

ance of the ELS specimens is
CELS¼7a3þL3

2bh3E11

þ aþL
2bhkG13

þ3

p
L2

bh2E11

E11

G13

� �1=2

þ a3

2bh3E11

2:71
h
a

� �
E11

E33

� �1=4

þ2:45
h
a

� �2 E11

E33

� �1=2
"

þ1:11
h
a

� �3 E11

E33

� �3=4
#
: ð22Þ

The fracture energy is given by

GELS
I=II ¼ 21P 2a2

4b2h3E11

þ P 2

4b2hkG13

þ P 2a2

4b2h3E11

� 5:42
h
a

� �
E11

E33

� �1=4

þ 2:45
h
a

� �2 E11

E33

� �1=2
" #

:

ð23Þ
2.4. Mode-mixity analysis

In literature several mode-partitioning methods are

available. Ducept et al. [28] appliedWilliams� [29] method
based on simple beam theory and another one based on

the work of Suo and Hutchinson [30]. These methods

give the same results in the case of symmetric specimens.

The former methods were used in other works [24,31].

Sundararaman and Davidson [32,33] applied crack tip

element (CTE) analysis, which is equivalent to themethod

developed by Suo and Hutchinson.

Here Williams� method was adopted and improved
with the effect of transverse shear and Winkler founda-

tion. Only unidirectional specimens with midplane crack

are considered here.

2.4.1. Mode partitioning using beam theories

Let us see the problem in Fig. 4(a). Superposing the

effects of transverse shear and elastic foundation based

on Sections 2.1 and 2.2 the compliance of the upper
(1) and lower (2) arms are:
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C1 ¼
7a3 þ L3

2bh3E11

þ ðL3 � a3ÞP 2

2bh3E11P 1

þ LðP 1 þ P 2Þ þ aðP 1 � P 2Þ
bhkG13P 1

þ a3ðP 1 � P 2Þ
2bh3E11P 1

fW1;

ð24Þ

C2 ¼
7a3 þ L3

2bh3E11

þ ðL3 � a3ÞP 1

2bh3E11P 2

þ LðP 1 þ P 2Þ þ aðP 2 � P 1Þ
bhkG13P 2

þ a3ðP 2 � P 1Þ
2bh3E11P 2

fW1;

ð25Þ

where

fW1 ¼ 2:71
h
a

� �
E11

E33

� �1=4

þ 2:45
h
a

� �2 E11

E33

� �1=2

þ 1:11
h
a

� �3 E11

E33

� �3=4

: ð26Þ

The fracture energies yield by using Eq. (2):

G1 ¼
21P 2

1a
2

4b2h3E11

� 3P 1P 2a2

4b2h3E11

þ P 1ðP 1 � P 2Þ
4b2hkG13

þ P 1ðP 1 � P 2Þa2
4bh3E11

fW2; ð27Þ

G2 ¼
21P 2

2a
2

4b2h3E11

� 3P 1P 2a2

4b2h3E11

þ P 2ðP 2 � P 1Þ
4b2hkG13

þ P 2ðP 2 � P 1Þa2
4bh3E11

fW2; ð28Þ

where

fW2 ¼ 5:42
h
a

� �
E11

E33

� �1=4

þ 2:45
h
a

� �2 E11

E33

� �1=2

: ð29Þ

According to Fig. 4 we reduce problem (a) into problem

(b), where M1=P1a, M2=P2a, and M3=M1+M2 are

bending moments at the crack tip. The sum of Eqs.

(27) and (28) can be transformed as

GT ¼ 21ðM2
1 þM2

2Þ � 6M1M2 þ ðM1 �M2Þ2ðf T þ fW2Þ
4b2h3E11

;

ð30Þ
where

f T ¼ 1

k
E11

G13

h
a

� �2

: ð31Þ

According to Ducept et al. [28] the equivalent bending

moments can be decomposed as:

M1 ¼ M I þM II; M2 ¼ aM I þ uM II: ð32Þ

In the case of pure mode-II the upper and lower speci-
men arms have the same curvature
12M II

bh3E11

¼ 12uM II

bh3E11

: ð33Þ

From which yields that /=1. Substituting Eq. (32) into

(30) allows separation of the term containing the prod-

uct of MIMII

G�
I=II ¼

9M IM IIð1þ aÞ
b2h3E11

: ð34Þ

In order to cancel this term we choose a=�1. Then the

mode-I and mode-II components are:

GI ¼
M2

I ð12þ f T þ fW2Þ
b2h3E11

; ð35Þ

GII ¼
9M2

II

b2h3E11

: ð36Þ

Rearranging Eq. (32) we obtain

M I ¼ ðM1 �M2Þ=2; M II ¼ ðM1 þM2Þ=2: ð37Þ
According to Eqs. (35) and (36) transverse shear and

elastic foundation contributes only to the mode-I com-

ponent. The former can be explained by the fact, that

transverse shear does not change the curvatures of the

unidirectional specimen arms. On the other hand it is

obvious that elastic foundation supports only the

mode-I component, as shown by Ozdil and Carlsson [9].
2.4.2. Application to the SLB and ELS specimens

For the SLB specimen the reduced bending moments

at the crack tip are: M1=0,M2=Pa/2. Using Eqs. (35)

and (36) the energy release rate components are:

GSLB
I ¼ 12P 2a2

16b2h3E11

þ P 2

16b2hkG13

þ P 2a2

16b2h3E11

� 5:42
h
a

� �
E11

E33

� �1=4

þ 2:45
h
a

� �2 E11

E33

� �1=2
" #

;

ð38Þ

GSLB
II ¼ 9P 2a2

16b2h3E11

: ð39Þ

These expressions are, apart from the last term in

Eq. (38), equivalent to those provided by Yoon and

Hong [15]. For the ELS specimen M1=0 and M2=Pa.

Using Eqs. (35) and (36) we obtain:

GELS
I ¼ 12P 2a2

4b2h3E11

þ P 2

4b2hkG13

þ P 2a2

4b2h3E11

� 5:42
h
a

� �
E11

E33

� �1=4

þ 2:45
h
a

� �2 E11

E33

� �1=2
" #

;

ð40Þ

GELS
II ¼ 9P 2a2

4b2h3E11

: ð41Þ
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The sum of Eqs. (40) and (41) results in Eq. (23). The

mode ratio (GI/GII) has the same form in both specimens

GI

GII

� �
¼ 4

3
þ 1

9

1

k
E11

G13

h
a

� �2

þ 5:42
h
a

� �
E11

E33

� �1=4
"

þ2:45
h
a

� �2 E11

E33

� �1=2
#
: ð42Þ

According to Eq. (42) if we let the crack length to ap-
proach infinity, the mode ratio tends to 4/3.
3. Finite element analysis

The FE analysis was carried out under plane stress

condition using the code COSMOS/M 2.0. Through

the experiments some accompanying effects were ob-
served. According to this for both specimens two kinds

of FE models were developed. Only the advanced mod-

els are detailed here. Note that plane stress condition is

consistent only with beam formulation of the problems.

FE analysis under plane strain condition was also per-

formed. Since results showed less than 1% difference be-

tween the results of plane stress and plain strain models

with respect to both the compliance and fracture energy,
we provide only the results of plane stress finite element

analysis.

3.1. SLB specimen

Using the three-point bending fixture, shown in Fig. 5

due to the cylindrical shape of the support blocks the

geometrical parameters (a, L1, L2) of the system change.
The details of the FE model are illustrated also in Fig. 5.
Fig. 5. Length shortening mechanism in the SLB specimen and details

of the FE model.
The surroundings of the contact area between the spec-

imen and the support blocks were meshed with linear

(frictionless) node-to-node GAP elements. In the con-

tact nodes of the blocks all the degrees of freedom were

constrained. It was suitable to simulate the length short-

ening mechanisms. Similar corrections were imple-
mented into Eqs. (20), (21), (38) and (39) based on

simple beam theory and Fig. 5. Since our test fixture is

non-standard this correction is not detailed here.

3.2. ELS specimen

In the case of the ELS specimen the large radius of

the loading head should be considered. Fig. 6(a) shows
that the point of contact between the specimen and the

loading head changes with increasing load. The crack

length was corrected based on the scheme in Fig. 6(a) us-

ing simple beam theory. The details of the correction are

not given here, implementation was made into Eqs. (22),

(23), (40) and (41). The FE models were constructed us-

ing the corrected crack lengths. The Saint Venant effect

was considered. The clamped part had a length of
20 mm. The boundary conditions are shown in Fig.

6(b). Nodes, which are in contact with the clamping

blocks, were constrained in the normal (y) direction.

The center node at the clamped cross section was con-

strained only in the longitudinal (x) direction.

3.3. Energy release rate calculation

Figs. 5 and 6 show the FE mesh around the crack tip

and the transition zone between the cracked and un-

cracked parts. At the crack tip singular elements were

applied, the energy release rate components were calcu-

lated using the VCCT method [28]:
Fig. 6. Length shortening mechanism in the ELS specimen (a), details

of the FE model (b).
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GI ¼
1

2bDa
F yðv1 � v2Þ; ð43Þ

GII ¼
1

2bDa
F xðu1 � u2Þ; ð44Þ

where Fx, Fy are nodal forces at the crack tip, v1, v2, u1,

u2 are nodal displacements from Da distance to the crack

tip and b is the specimen width. Crack tip elements with
Da=0.025 mm were used (Figs. 5 and 6). The fracture

energy was calculated by also the compliance calibration

method.
4. Experiments

4.1. Data reduction

For both specimens we apply the compliance calibra-

tion (CC) method [2]. The compliance for mixed-mode I/

II loading is

C ¼ C0 þ ma3: ð45Þ
The compliance was determined for each specimen at

the point of fracture, and least square fitting was applied

to find the coefficients C0 and m in Eq. (45). The fracture

work was obtained by using Eq. (2) for each crack

length.

4.2. Experimental procedure

Unidirectional [0�]14 glass/polyester laminates were

manufactured in a special pressure block tool with nom-

inal width of 20 mm, thickness of 2h=6 mm and

Vf=43%. A nylon insert with thickness of 0.04 mm

was placed at the midplane. The specimens were cut to
Fig. 7. Experimental setups for
the desired length and have been precracked in opening

mode of about 5–10 mm by using a sharp blade. This in-

volved a crack tip region full of pulled-out fibers but this

effect was ignored. The flexural moduli was determined

from a three-point bending test, which resulted

E11=33 GPa. Other properties were predicted according
to Thamm [34]: G13=3 GPa, E33=7.2 GPa and

m13=0.27. The SLB test was performed in the same

three-point bending fixture (see Fig. 7(a)) with span

length of 2L=151 mm. The special fixture depicted in

Fig. 7(b) was used to carry out the ELS test with full

length of L=150 mm. In order to avoid the effects of fi-

ber-bridgings specimens with different crack lengths

were prepared. SLB coupons with crack lengths from
a=20–75 mm with 5 mm increment were used. For the

ELS specimen the former crack length range was im-

proved from a=80–140 mm with 10 mm increment.

Tests were conducted under displacement control using

an Amsler testing machine. Note that all fixtures were

non-standard. Load-deflection data was recorded, the

deflection was monitored by the dial gauge, shown in

Fig. 7(a)–(b). Crack initiation/propagation was visually
observable in the specimen boundaries.
5. Results and discussion

5.1. Load and deflection

For both tests linear load-deflection curves were re-
corded up to fracture as shown by Fig. 8(a)–(b).

Figs. 9 and 10 illustrate the critical load and the critical

specimen displacement against the crack length. The dis-

placements calculated from the beam and FE model are

also plotted. The critical load shows hyperbolic, while
mixed-mode I/II testing.
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the displacement has parabolic relation for both speci-

mens. Considering the points in Fig. 9(b) both the beam

and FE models overpredict the experimental values over
the interval, however the differences decrease with in-

creasing crack length. No large displacements were ex-
perienced through the SLB test, which indicates that

the chosen crack interval (0.13·2L<a<0.49·2L) is rea-
sonable for fracture investigation using linear beam the-
ories. For comparison Korjakin et al. [23] used glass/

epoxy MMF specimens (2L=76 mm) within the crack
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length range of 0.25·2L<a<0.45·2L. In the case of

the ELS specimen the beam model shows overpredic-

tions until a=60 mm, and after the beam displacements

fall below the experimental ones (Fig. 10(b)). The FE

model slightly overpredicts the experimental values. It

is clear from Fig. 10(b) that large displacements occur.
For a useful crack length interval the lower bound is

a=35 mm, the upper one is a=120 mm (refer to

Fig. 10(b)), writing simply: 0.23L<a<0.8L. Hashemi

et al. [7,8] performed experiments on mixed-mode car-

bon/PEEK and PES ELS specimens with L=135 mm

and L=120 mm, respectively. The relevant crack length

ranges were 0.5L<a<0.8L and 0.2L<a<0.7L, respec-

tively. Our suggested interval agrees well with those re-
ported in their work.

5.2. Compliance and fracture energy

The compliance and fracture resistance curves are il-

lustrated in Fig. 11 for the SLB specimens. The correla-

tion between model (Eqs. (20) and (21)) and experiment
2
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was found to be quite good considering both quantities,

but it should be noted that Eq. (20) slightly overestimates

the experimental points. The results of the ELS test fol-

low similar trends, as shown in Fig. 12. The advanced

beam model overestimates the measured compliance val-

ues (Fig. 12(a)) until a=60 mm, overall Eq. (22) shows
good agreement with the experiments. The fracture

energy values by CC method can be seen in Fig. 12(b)

for the ELS test. The correspondence between model

(Eq. (23)) and experiment was not as good as in the case

of the SLB test. The CC method indicates averaged

steady state value of GI/II,ss,init=645 J/m2 for both tests.

Advanced beam equations give GI/II,ss,init=623 J/m2

plateau value for the SLB and GI/II,ss,init=576 J/m2 for
the ELS specimen (refer to Figs. 11(b) and 12(b)).

Since the MMF specimen is quite similar to the SLB

one, and both produce the same mode ratio (GI/GII=

4/3) based on simple beam theory we provide comparison

between our experimental work and those by Albertsen

et al. [22] and Korjakin et al. [23]. The former work re-

ported GI/II,init=145 J/m2 initiation and GI/II,ss=330 J/
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m2MMF specimens. In the later work the relevant quanti-

tieswereGI/II,init=456 J/m2 andGI/II,ss=525 J/m2 for glass/

epoxy MMF specimens. Similar R-curves were obtained

by Hashemi et al. [7] for the ELS specimen, who deter-

mined (based on propagation tests) GI/II,init=1200 J/m2

initiation toughness and GI/II,ss=1480 J/m2 plateau value
using PES ELS specimens. The same authors reported

GI/II,init=1510 J/m2 and GI/II,ss=1810 J/m2 values for car-

bon/PEEK ELS specimens [8]. Fiber-bridging was ob-

served in all these studies. However the current study

presents only initiation values, the behavior is similar to

results previously published on similar systems.

The compliances calculated from the beam and FE

models of the SLB specimen are listed in Table 1. While
the simple FE model overpredicts the experimental com-

pliance values (refer to Fig. 11(a)), the advanced FE

model partly eliminates the overestimations. The Timo-

shenko beam model and elastic foundation show negligi-

ble compliance contributions. The fracture energy

values are summarized also in Table 1. The simple FE

model seems to be again inaccurate, the advanced model

shows better correlation with the values obtained from
CC method (refer to Fig. 11). The Timoshenko beam

model supports the fracture energy with very small

value. The contribution of elastic foundation decays

subsequently, but provides reasonable values at each

crack length (last column in Table 1).

Table 2 presents the compliances obtained from the

ELS test. The simple FE model shows higher compliance

values in comparison with the experimental points until
the crack length of a=60 mm, and has lower values be-

yond this crack length (Table 2, second column). The

FEmodel including Saint Venant effect shows similar be-

havior with more significant overpredictions at shorter

crack lengths. The various contributions from beam the-

ories are collected in the last three columns of Table 2.

Transverse shear can be neglected. In contrast the Saint

Venant effect is a somewhat larger contribution. The
small deviation in Table 2 is due to crack length correc-

tion. The contribution of the EFM to the full compliance

shows increasing values as the crack length increases.

The fracture energy by FE and beam analysis is presented

in Table 3 for the ELS specimen. The simple FE model

and the one including Saint Venant effect give essentially

the same results with steady-state fracture energy value

of GI/II,ss,init=606 J/m2. The effect of transverse shear
on the specimen�s strain energy release rate can be ne-

glected, as demonstrated in Table 3. The EFM shows

meaningful values at the beginning phase (a=20–50

mm), as shown by the last column.

5.3. Mode-mixity results

The mode-I, mode-II energy release rate components
and the mode ratio were calculated using Eqs. (38)–(42).

Comparison was made with the results of the VCCT



Table 2

Compliances by finite element and beam analysis (ELS specimen)

a* (mm) CFem (mm/N·10�3) CFem–SV (mm/N·10�3) CSB (mm/N·10�3) CTIM (mm/N·10�3) CSV (mm/N·10�3) CW (mm/N·10�3)

20 104.82 118.68 102.71 0.58 12.65 0.15

30 109.21 123.06 106.80 0.62 12.69 0.33

40 119.15 133.08 115.51 0.66 12.72 0.62

50 131.69 145.54 126.90 0.69 12.72 0.91

60 154.30 168.24 146.03 0.72 12.71 1.32

70 183.33 197.27 172.37 0.76 12.70 1.79

80 218.97 232.76 206.33 0.79 12.68 2.32

90 267.62 281.48 251.77 0.83 12.68 2.93

100 332.02 345.95 311.37 0.86 12.67 3.65

110 402.09 415.94 377.31 0.90 12.65 4.37

120 490.60 504.46 465.54 0.93 12.65 5.24

130 595.05 608.91 564.79 0.97 12.63 6.14

140 716.67 730.57 680.33 1.00 12.62 7.11

CFem – plane stress FE model; CFem–SV – plane stress FE model including Saint Venant effect; CSB – contribution of the simple beam model; CTIM –

contribution of the Timoshenko beam model; CSV – contribution of the Saint Venant effect; CW – contribution of the Winkler foundation model.

Table 3

Fracture energy values by finite element and beam analysis (ELS specimen)

a* (mm) GI/II,Fem (J/m2) GI/II,Fem–SV (J/m2) GI/II,SB (J/m2) GI/II,TIM (J/m2) GI/II,W (J/m2)

20 365.71 365.70 345.79 5.61 23.22

30 455.00 454.98 430.21 2.90 17.97

40 502.90 502.88 475.50 1.64 13.96

50 576.29 576.27 544.90 1.25 12.90

60 607.57 607.56 574.48 0.89 11.15

70 608.19 608.17 575.06 0.65 9.50

80 609.36 609.35 576.17 0.50 8.31

90 609.50 609.48 576.30 0.40 7.35

100 600.02 600.00 567.34 0.31 6.45

110 614.59 614.57 581.11 0.27 6.02

120 597.86 597.84 565.29 0.21 5.33

130 618.89 618.87 585.18 0.19 5.09

140 584.43 584.41 552.59 0.15 4.46

GI/II,Fem – plane stress FE model, CC method; GI/II,Fem–SV – plane stress FE model including Saint Venant effect, CC method; GI/II,SB – contribution

of the simple beam model; GI/II,TIM – contribution of the Timoshenko beam model; GI/II,W – contribution of the Winkler foundation model.

Table 4

Mode partitioning by finite element and beam analysis (SLB specimen)

a* (mm) GI,FE (J/m2) GII,FE (J/m2) (GI/GII)FE (�) GI,B (J/m2) GII,B (J/m2) (GI/GII)B (�)

20 263.74 219.57 1.201 271.69 178.84 1.519

25 319.45 283.79 1.126 319.77 216.70 1.476

30 329.12 296.53 1.110 332.43 229.94 1.446

35 349.05 326.77 1.068 352.28 247.05 1.426

40 354.35 342.95 1.033 358.23 253.70 1.412

45 352.02 341.32 1.031 358.32 255.69 1.401

50 358.67 358.29 1.001 369.19 264.84 1.394

55 366.94 357.47 1.027 366.71 264.35 1.387

60 355.77 359.57 0.989 364.99 264.03 1.382

65 365.40 357.40 1.022 360.41 261.55 1.378

70 333.53 334.11 0.998 366.84 266.90 1.374

75 293.07 317.79 0.922 352.68 257.11 1.372

GI,FE – mode-I component, FE model, VCCT method; GII,FE – mode-II component, FE model, VCCT method; (GI/GII)FE – mode ratio, FE analysis;

GI,B – mode-I component, beam model; GII,B – mode-II component, beam model; (GI/GII)B – mode ratio, beam model.
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method. In Tables 4 and 5 the mode-I, mode-II compo-

nents and the mode ratio are collected for each crack

length. The VCCT method indicates that the mode ratio
gradually decreases from 1.2 to 0.92 in the SLB
(Table 4), and from 1.19 to 0.95 in the case of the

ELS specimen (Table 5). The beam model shows that

in the case of the SLB the mode ratio decreases from
1.52 to 1.37, while in the case of the ELS specimen it de-



Table 5

Mode partitioning by finite element and beam analysis (ELS specimen)

a* (mm) GI,FE (J/m2) GII,FE (J/m2) (GI/GII)FE (�) GI,B (J/m2) GII,B (J/m2) (GI/GII)B (�)

20 297.86 250.72 1.188 226.42 148.19 1.528

30 311.26 293.41 1.061 266.70 184.38 1.447

40 310.95 303.77 1.024 287.32 203.79 1.410

50 354.07 353.30 1.002 325.52 233.53 1.394

60 371.67 371.54 1.000 340.32 246.20 1.382

70 368.74 369.45 0.998 338.75 246.45 1.375

80 355.12 367.12 0.967 338.05 246.93 1.369

90 353.31 365.62 0.966 337.06 246.99 1.365

100 346.86 358.63 0.967 330.96 243.14 1.361

110 354.75 367.27 0.966 338.35 249.05 1.359

120 340.97 353.48 0.965 328.57 242.27 1.356

130 351.91 365.76 0.962 339.66 250.79 1.354

140 327.65 344.97 0.950 320.38 236.83 1.353

GI,FE – mode-I component, FE model, VCCT method; GII,FE – mode-II component, FE model, VCCT method; (GI/GII)FE – mode ratio, FE analysis;

GI,B – mode-I component, beam model; GII,B – mode-II component, beam model; (GI/GII)B – mode ratio, beam model.
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creases from 1.53 to 1.35. This feature is mainly caused

by elastic foundation, since the effect of transverse shear

is negligible. The FE and beam models indicate similar

crack length dependence. Due to the mixed-mode condi-

tion similar effect related to elastic foundation can arise

from the mode-II component. Further work is required

to investigate this problem. The VCCT method gives
higher fracture energy values in comparison with the

beam model at each crack length (Tables 4 and 5), as ex-

perienced by even Ducept et al. [28] in MMB specimens.
V 1ðxÞ ¼ coshðfxÞ cosðfxÞ; ðB:1aÞ
6. Conclusions

A set of equations was developed based on Timo-
shenko beam theory and Winkler foundation analysis.

The beam analysis showed that the compliance of both

specimens follows a full third order polynomial. FE

models were constructed using plane stress elements.

The results of the theoretical models were compared

with the relevant experimental data. The agreement be-

tween them was quite good. In the case of the SLB the

correlation was found to be better than in the case of
the ELS specimen. The SLB and ELS configurations

prove very similar fracture behavior in the chosen crack

intervals. The Winkler foundation model seems to be

useful tool to obtain improved solution for mixed-mode

delamination specimens. The mode-mixity was also in-

vestigated incorporating transverse shear, elastic foun-

dation effects and the VCCT method. The crack length

dependence of the mode ratio was found to be similar
in both specimens.

Based on our experiments the steady-state value of

GI/II,ss,init=645 J/m2 was obtained for the initiation frac-

ture energy from both tests. Our experimental fracture

toughness data was compared with previous ones car-

ried out on MMF and ELS specimens. Similar behavior

was found. During the SLB test no large displacements
were observed. This indicates that the used crack inter-

val is reasonable for fracture testing, linear beam theo-

ries can be applied for analysis. In contrast the ELS

test showed relatively large displacements if the crack

length was outside the range of 0.23L<a<0.8L.
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Appendix A. Bending and shear compliances, SLB

specimen

The bending and shear compliances of the cracked (1)

and uncracked (2) portions of unidirectional symmetric

SLB specimens are:

d11;1 ¼
12

bh3E11

; a55;1 ¼
1

bhG13

; ðA:1aÞ

d11;2 ¼
3

2bh3E11

; a55;2 ¼
1

2bhG13

: ðA:1bÞ
Appendix B. Displacement functions, boundary and

matching conditions, ELS specimen

The generalized Krulov-functions are [26]:
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V 2ðxÞ ¼
1

2
coshðfxÞ sinðfxÞ þ sinhðfxÞ cosðfxÞ½ �; ðB:1bÞ

V 3ðxÞ ¼
1

2
sinhðfxÞ sinðfxÞ; ðB:1cÞ

V 4ðxÞ ¼
1

4
coshðfxÞ sinðfxÞ � sinhðfxÞ cosðfxÞ½ �: ðB:1dÞ

The complete deflection functions of the upper and low-

er sub-beams of the uncracked region (06x6c) are:

wu2ðxÞ ¼ c5 þ c6xþ c7x2 þ c8x3 �
bu

bl

� �4

c9V 1ðxÞ½

þc10V 2ðxÞ þ c11V 3ðxÞ þ c12V 4ðxÞ�; ðB:2aÞ

wl2ðxÞ ¼ c5 þ c6xþ c7x2 þ c8x3

þ c9V 1ðxÞ þ c10V 2ðxÞ þ c11V 3ðxÞ þ c12V 4ðxÞ½ �;
ðB:2bÞ

where

f ¼ b4
u þ b4

l

� �1=4
: ðB:2cÞ

The boundary conditions can be written as:

wu2ðcÞ ¼ 0; wl2ðcÞ ¼ 0; ðB:3aÞ

w0
u2ðcÞ ¼ 0; w0

l2ðcÞ ¼ 0: ðB:3bÞ

The matching conditions considering Eq. (14) are:

wu1ð0Þ ¼ wu2ð0Þ; wl1ð0Þ ¼ wl2ð0Þ; ðB:4aÞ

w0
u1ð0Þ ¼ w0

u2ð0Þ; w0
l1ð0Þ ¼ w0

l2ð0Þ; ðB:4bÞ

w00
u1ð0Þ ¼

h2u þ 3h2l
h2u

 !
w00

u2ð0Þ;

w00
l1ð0Þ ¼

h2l þ 3h2u
h2l

 !
w00

l2ð0Þ; ðB:4cÞ

w000
u1ð0Þ ¼

h2u þ 3h2l
h2u

 !
w000

u2ð0Þ;

w000
l1ð0Þ ¼

h2l þ 3h2u
h2l

 !
w000

l2ð0Þ: ðB:4dÞ
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2406 A. Szekrényes, J. Uj / Composites Science and Technology 64 (2004) 2393–2406
[25] Broek D. Elementary engineering fracture mechanics. The Ha-

uge: Martinus Nijhoff Publishers; 1982.
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