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ABSTRACT

This study presents models, based on simple beam theory and the Winkler
foundation analysis through the DCB test method. The main goal of this study is to
characterize the fiber-bridging phenomen. The bridging fibers were modeled by tensile
beams. Finite element models were also constructed, the bridging fibers were
represented by TRUSS2D elements, the strain energy release rate was evaluated using
the J-integral and the VCCT technique. The results of the models were compared with
experimental ones taken from literature. It can be concluded that the bridging fibers
are necessary to be considered to eliminate the overpredictions in the mode-I fracture
toughness.

1. INTRODUCTION

The standard DCB method is suitable to measure the mode-I interlaminar
fracture toughness of laminated composite materials. The arms of the DCB specimen
can be modeled as homogeneous beams. In literature several authors occupy with the
construction of more sophisticated models (advanced beam models). Olsson
summarized these models, including the Saint-Venant effects, transverse shear, and
crack-tip rotation using the Winkler foundation model [1]. Ozdil and Carlsson also
used the Winkler model for unidirectional and angle-ply DCB specimens [2]. However
these models can provide the desired accuracy, no theoretical and FE models were
constructed which account for the fiber-bridging phenomen until now.

2. BEAM ANALYSIS OF THE DCB SPECIMEN

Considering the DCB specimen in Fig.1.a including one bridging the deflection
function is governed by the differential equation shown below:
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The DCB specimen in Fig.1.b, including the Winkler foundation in the uncracked
region (wl3(x), wu3(x)) is governed by the following equation (Eq.1 is still valid) :
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For the lower arm of the specimen in the delaminated region the deflection functions
can be expressed as follows:
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In the uncracked region (Fig.1.b) Eq.2 can be solved by combining the homogeneous
generalized Krulov-functions ( )(1 xV , )(2 xV , )(3 xV , )(4 xV ), which can be found
elsewhere, hence he deflection in the uncracked region:

( ) )(8)(7)(6)(5 43213 xVcxVcxVcxVcxwl ⋅+⋅+⋅+⋅= , cx ≤≤0 . (5)

It was assumed that the bridging fiber is connected to the arms with pins. According to
this the elongation in the bridging fiber:
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where L01=L1-L2 is the initial length of the bridging. The tensile force in the bridging:
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Fig.1.
Two formulation of the fiber-bridging phenomen. Model based on simple beam theory

(a), model based on the Winkler foundation analysis (b).
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where s1 is the stiffness, A1 is the cross-section of the bridging bundle. The next step is
to express the off-axis angle between the fiber and the x-axis:
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Hence the force P1 which loads the DCB specimen, according to Fig.:

111 sinαFP = . (9)

The deflection functions can be expressed using the proper boundary and matcing
conditions, for the model in Fig.1.a: wl1(0)=w’l1(0)=0, for the model in Fig.1.b:
wl2(0)=wl3(0), w’l2(0)=w’l3(0), w’’l3(c)=w’’’l3(c) and for both models: wl1(-L1)=wl2(-
L1), w’l1(-L1)=w’l2(-L1), and similarly also for the upper arms. Substituting Eq.6, Eq.7
and Eq.8 into the expression of P1 (Eq.9) and substituting the displacements wl1(x=-L1)
and wu1(x=-L2) into the formula of α1 in Eq.8 yields a transcendent equation, which
can be solved for P1 by a numerical procedure. In fact in the case of fiber-bridging
several debonded fiber bundles can be observed as reported and photographed by
several authors [3,4]. The procedure can be generalized for ’i’ number of bridgings. In
this case an equation system is resulted, which should be solved numerically for the
disinct Pi forces. After the equation system has been solved for the forces, the
compliance (C=δ/P) of the DCB specimen can be obtained by expressing and
subtracting wl1(x=-a) from wu1(x=-a) and dividing by force P. The compliance of the
specimen based on simple the model in Fig.1.a:
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The fracture toughness can be obtained by using the Irwin-Kies expression:
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hence the fracture toughness:
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Considering the model in Fig.1.b and assuming that the length of the uncracked region
(c) is much larger than the specimen thickness (h), after some simplifications the
following equations can be derived for the compliance:
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where the term 0
DCBC  is the specimen compliance based on the Winkler foundation

model, which was referred by Olsson [1]. The term FB
DCBC  accounts for fiber-bridging in

the delaminated region. Based on the current beam analysis the fracture toughness can
be obtained by differentiation using Eq.(11):
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Again the term 0
IG  is derived by Olsson, the term FB

IG  exists if fiber-bridging is
observable in the cracked region. In Eq.13 and Eq.15 β=2 for symmetric, β=1 for
asymmetric arrangements of the bridging fibers, and n is the number of distinct forces
due to fiber-bridging.

3. FINITE ELEMENT MODELS

Fig.2.
3D finite element model, including crack-tip details and bridgings

crack tip details
bridging fibers



In the current study two and three-dimensional FE models were constructed
using the commercial finite element code COSMOS/M 2.0. The 2D model utilizes
PLANE2D elements in plain strain, while in the 3D analysis eight-noded, layered
composite SOLIDL elements were used. The strain energy release rate was calculated
using the J-integral in the 2D and the virtual crack closure technique (VCCT) in the
3D model. The bridging fibers were represented by TRUSS2D elements. The 3D
models were used to investigate the effect of fiber-bridging on the strain energy
distribution along the crack front. The 3D finite element model is illustrated in Fig.2
including the crack tip details and the fiber-bridgings, the 2D model is very similar.

4. RESULTS AND DISCUSSION

The compliance and fracture toughness obtained from the models was
compared with the experiments presented by Morais et al. [5]. Load-displacement data
was used as input in the models. Considering the compliance curves in Fig.3 it can be

seen that the experimental values are slightly lower than the values from the FE and
model predictions. The models including fiber-bridging gives closer values in
comparison with the models without them, however there is not any significant
difference in the two analytically obtained curves. The difference in the fracture
toughness can be seen in the R-curves of the FE analysis. In Fig.3 the J-integral
significantly overestimates the fracture toughness in the final stage of the delamination
process if the assumed bridging fibers are missing. Since the J-integral gives

Fig.3.
Compliance and R-curves for the carbon/epoxy DCB specimens.

Experiments according to Morais et al. [�], 2D FE model without [∆] and with fiber-bridgings [ ],
simple beam model without [◊] and with fiber-bridgings [♦] (Eq.10 and 12), Winkler model without

[O] (Eq.14 and 16) and with fiber-bridgings [•] (Eq.13 and 15).
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reasonably good results until the crack length of a=65 mm it was assumed, that the
fiber-bridging is the main cause of the former overpredictions. The corrected values
are also depicted in Fig.3. In all the specimens it was estimated that the bridging
bundles consist of 50-100 single fibers. The fiber-bridging form used was symmetrical
arrangements and the number of bridging pairs was increased until 4-5 pieces until the
final crack length. Considering the results of the simple beam theory without fiber-

bridging no steady-state toughness
can be determined. The beam
theory with bridging bundles
partially eliminates this effect. The
best results were obtained in the
case, including fiber-bridging and
the elastic foundation. The effect of
the fiber-bridging on the
distribution of the fracture
toughness along the specimen
width is depicted in Fig.4. The
bridgings (symmetric arrangements
were applied) decrease the width-
wise average and also eliminates
the overpredictions. The fracture
energy was normalized by the

width-wise maximum.

5. CONCLUSIONS

The fiber-bridging phenomen in unidirectional carbon/epoxy DCB specimens
was analysed based on simple beam theory, the Winkler foundation model and the
finite element method. Results show, the bridging fibers are necessary to be considered
for accurate predictions of the specimen compliance and the mode-I fracture toughness
in comparison with experiments. The fracture toughness was predicted fully
analitically and very good predictions were made based on the current models.
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Fig.4 The effect of fiber-bridging in the
distribution of the fracture toughness,

without fiber-bridging [♦], including bridging
fibers [g]
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