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16. MODELING OF SPATIAL THIN-WALLED SHELLS BY FINITE
ELEMENT METHOD-BASED SOFTWARE SYSTEMS

16.1 Simple flat shell elements

The stiffness matrix of flat shell elements are easily calculated using the stiffness matrices
of the membrane and plate bending elements. Accordingly, it is possible to derive the dif-
ferent version of flat shell finite elements by combining the available triangle and rectangle
shape elements [1,2]. The approximation of a curved surface by flat shell elements is
shown by Fig.16.1. This kind of approximation is another source of error apart from the
displacement field interpolation. By increasing the number of elements we can decrease
the geometrical inaccuracies. The application of flat shell elements is justified, when the
advantage of the higher order elements — namely the larger element size — can not be ex-
ploited. In the sequel we demonstrate the combination of the linear (membrane) triangle
and the Tocher plate (bending) elements.
/’

parameter lines of
shell midsurface

Fig.16.1. Triangular shape flat shell element in the global and local coordinate systems.

16.2  Superposition of the linear triangle and Tocher bending plate elements

The element mentioned above is not conform because of the discontinuity of displacements
at the element boundaries [1,2]. However, due to its simplicity we use this combination to
demonstrate the application of flat shell elements. The linear triangular membrane element
(see Fig.12.2) has two degrees of freedom at each node, the stiffness matrix in the local
element coordinate system is:
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(16.1)
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where the submatrices (I'Zijm ) correspond to the stiffness matrix components associated with

nodes i and j. The tilde over the matrix indicates the local coordinate system; the super-
script (m) refers to the membrane action. The finite element equation is:

K'ar=F,, (16.2)
6x1

E@ 6x1
where the vector of nodal displacements and concentrated forces of the membrane element
are:
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where u is the displacement in the local x, v is the displacement in the local y direction. In
the displacement vector we refer to the local parameters by using the tilde. In the force
vector we identify the local parameters by lowercase x, y and z in the subscript of compo-
nents. A distinction like that was not necessary until now, which can be explained by the
fact that in all of the previous examples the local and global coordinate systems coincided.

At each node of the Tocher triangular plate element (see Fig.15.1) there are three degrees
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of freedom:; therefore the stiffness matrix has nine rows and nine columns:

(16.4)

|

where the superscript b indicates bending action. In the local coordinate system the dis-
placement and concentrated force vectors of the Tocher triangular plate element are:
W & A W, & B W & B (65

~nT
Qe -
9Ix1

= [le M x1 M
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F
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The degrees of freedom of the combined element are shown by Fig.16.2. The membrane
and bending stiffness matrices have to be combined in accordance with the following ob-
servations [2]:

a. for small displacement s the membrane and bending stiffnesses are uncoupled
(independent),
the in-plane rotationy in the local x-y plane is not necessary for a single

F22 M X2 M I:23 M x3 M y3 1"

yl y2

b.
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element, however,  and its conjugate moment M, have to be considered in the
analysis by including the appropriate number of zeros to obtain the element
stiffness matrix for the purpose of assembling several elements or assembling
the flat shell element with different type of elements.

% x

Fig.16.2. Combination of the linear membrane triangle element and the Tocher triangular plate
bending element.

The nodal displacement vector of the combined element in the local coordinate system is:

~m+b T ~ ~ ~ .
Qe - [
18x1

(16.6)
The vector of concentrated forces becomes:
~m+b T
o —[F. F. Fu My M, M, F, F, Fpun
............... M, M, M, F, F, F; M, M, M,]
(16.7)
Accordingly, the stiffness matrix is shown below [1,2]
k| [ooofo | kil [ooo|o|[ki]l |ooo]o
2% 2 0 0O0fO 2% 2 0 0O0fO 2% 2 0 0O0fO
00 kb 0 |0 O 0 [0 O Kb 0
R 00 {“}0 00 {1}0 00 {13}0
s 00 3<3) o [0 0 3%3) o 0 0 3x3) |0
00 0 00[O0 0O 0 0O0[O0 |O0O 0000
ka | [0 00|00 |Jks| |OOOfO |]ks| [00O]O
2% 2 0 0O0fO 2% 2 0 0O0fO 2% 2 0 0O0fO
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The stiffness matrix above is valid in the local coordinate system. We highlight again, that
the tilde over the matrices and vectors refers to the local system. In the analysis of three-
dimensional structures in which different finite elements have different orientations, it is
necessary to transform the local stiffness matrices to a common set of global coordinates.
In the quantities of global coordinate system there is no tilde indicated. The transformation
of the element stiffness matrix is given by the expression below:

K="k 2, (16.9)
18x18 18x18
Where/=1 is the transformation matrix with dimension of 18 x 18:
L 000 0 0
0 L0000
00 LO0O0YO
ZloooLoof uen
0 000LYO
0 0000L
and: ) _
0 0O
0=(0 0 0. (16.11)
0 0O

Matrix L contains the unit basis vectors of the local coordinate system, e, e, and es, (see
Fig.16.1) in the form of column vectors formulated in the global coordinate system:
elX e2X e3X
L =8y Cy By | (16.12)
elZ e3Z eSZ
Eventually matrix L contains the direction cosines of the angles between the local and

global axes. The definition of the direction cosines for an optional A vector based on
Fig.16.3 is [4]:

A
| =cosa = X (16.13)

JAZ+ A2+ AZ
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m=cosf =

Ay
JAZ A2 LA
AZ
JAZ+ A+ AZ

A

kK
ZA

w
A
A

—Y

n=cosy =

Fig.16.3. Direction cosines of vector A.

Since the basis vectors e1, e, and e; are unit vectors it is not easy to see, that their compo-
nents are eventually the direction cosines. To construct the structural stiffness matrix the
local quantities have to be transformed into the global system. The vector of nodal dis-
placement and vector of forces in the global system are:

um+b — iT QLTH-D , (16,14)

=e

F m+b ﬂ,T I'fm*b

—e - e '
For shell structures the most common load type is the constant pressure perpendicularly to
the shell surface, i.e. in direction of the local z axis. It is a reasonable assumption, that there
is membrane stress state, under these assumptions the force vector is: [2]:

~m+b

EM-p2o 0100000200000100 0]
3

(16.15)
where A is the triangular area. If the pressure on the shell surface is not constant, but its
change over the element area is insignificant, then we can still use the vector above, but we
use the pressure averaged by the nodal loads instead of p:

1
ng(pl"' p, + p3)- (16-16)

Finally we summarize the finite element equations. In the local x, y, z system the quantities
indicated by the tilde are used, i.e.:

~ m+b —mip ~ m+b

KoM =F,". (16.17)
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Transforming Eq.(16.17) into the global X,Y,Z system by using the transformation matrix,
we have:

£21+b!m+b =E;n+b, (1618)

e

where the quantities in the global coordinate system are calculated based on Egs.(16.9) and
(16.14). For the whole structure the finite element equation is:

K m+bum+b _ Em+b , (1619)

of which solutions are the components of vector U™® which are the nodal displacements
in the global coordinate system. From that we can calculate the global element displace-
ment vectors, u"*?, and then we can transform them into the local system by the following
expression:

Jm+b =£Tilum+b , (16,20)

The transformation matrix is orthogonal, therefore we can write that: A~ :/=1T and

iT_liT =E, viz.:

ngrb ziggl+b ) (16,21)

e
Using the local displacements in the nodes we can calculate the membrane and bending
stresses.
A significant advantage of the flat shell elements is a novel software can be easily con-
structed by combining the softwares of the existing membrane and plate elements, which
can be used for engineering calculations [2,3]. This computation requires only the
knowledge of matrix L. The accuracy of the results depends on the element size. Higher

mesh resolution is necessary, where the curvature of the surface is larger, or the change in
stresses is expected to be more significant. The expected error of the calculation is higher
in the vicinity of the sides, notches and the connection of different surfaces. Let us solve an
example to understand the application of the method!

16.3 Example for the combination of the linear triangle and Tocher triangle ele-
ments

Solve the shell problem given in Fig.16.4! Calculate the nodal displacements, reactions in
the local coordinate system, and transform the results into the global coordinate system!
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8 Modeling of spatial thin-walled shells by finite element method-based software sys-
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Fig.16.4. Flat triangular shell element in the local and global coordinate systems (a), application
example for the flat shell element (b).

Given:
a=0,8m,b=0,5m,t=3mm,E =200 GPa, v=0,3, F, = 6000 kN, F, = 8000 kN,
p = 1200 N/m?

The distances are substituted in [m], the force is interpreted in [N]. The nodal coordinates
in the local coordinate system are:

node X y z
1 0 -b/2 0
2 a 0 0
3 0 b/2 0

We give the nodal coordinates also in the global coordinate system. We note that the global
coordinates depend on how the element is built-in the actual structure.

node X [m] Y [m] Z[m]
1 0,6795 0,57 0,2
2 0,4 1,225 0,5
3 0,5004 0,6 0,4

The vectors of nodal displacements and concentrated forces in the local coordinate system
are:

—mibT - = - - - = - - - = -

nglb :[O 00 a B wv U VvV, 0 a B, v, 0 Vv, 0 a; B ‘//3]'
(16.22)

~mib T

F." =[F, F, F, 01 00O F, 00000 F, F

18x1
The terms in. the force vector related to the distributed load can be calculated based on the
integral transformation formulae presented in section 15. We can construct the force vector
of the Tocher triangle from distributed load by formulating the work of the distributed
load:

F, 0 0 0]

y

W, = [ pw(x,y)dA=T;F,,. (16.23)
A

Based on Eq.(16.23) and the integral transformation expressions given by Eq.(15.20) we
have:
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7/40ba-1/800%> | [ 0,0669 |
1/120ab? —1/ 40ba® ~0,0063
1/30ab® —1/480b° 0,0064
3/20ba 0,060
F.=p 1/30ba’ —pl 00107 |.  (16.24)
> ~1/120b* ~0,0010
7/40ba +1/80b> 0,0731
—1/120ab? —1/40ba> ~0,0007
~1/30ab® -1/480b | | —0,0069 |

We note that in the Tocher triangle the distributed load is divided into three parts and put
into the nodes; however the division is made in unequal degree, as it is seen in the vector
of forces. On the other hand, by summing the forces in direction z and the moments about x
and y we obtain:

~b ~b ~b 1

[EEPl + [EGPL + [Eep]7 = pA, :E pab, (16.25)
~ ~ ~ 2
[E:PL+[E:pL+E:pL:_E :_pab,

30 15

=b =b ~b b? pab®
R
[—P +—p +—p 40aAe 20

which are the resultant forces in direction z and the resultant moments about axes x and y.
The force vector of the 18 degrees of freedom flat shell element in the local coordinate
system is:

© Dr. Andrés Szekrényes, BME © www.tankonyvtar.hu
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i Fxl_ I O ] i I:xl ]
F, 0 F,
F,. 0.0069 F,, —80,25
0 —0.0063 7,6
0 0.0064 — 17,6875
0 0 0
F, 0 6000000
0 0 0
E;\HbT :E$+bT+:2;+bT _ F,, p 0.0600 _ F,,-720
18x1 18x1 18x1 0 0.0107 -12,8
0 —-0.0010 1,25
0 0 0
Fe 0 Fe
F, 0 8000000
F., 0.0731 F,,—87,75
0 —-0.0097 11,6
0 —0.0069 8,3125
0 0 0
I - (16.26)
The stiffness matrix of the linear (membrane) triangle element based on the calculations of
section 15 is:
248 144 -126 -115 -122 -0,29
6,64 -173 -036 029 -6,28
~m : . 2,52 0 -126 173 10° N
: 072 115 -0,36 m’
2,48 -144

K =
. . 6,64 |
(16.27)

where due to symmetry of the matrix only the independent components are indicated. The
stiffness matrix of the Tocher triangular element in the local coordinate system is:
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(12,90 2,28 -091 -099 0,88 -388 1190 305 051 |
09 010 -0338 -009 -005 -195 019 -032
059 053 -017 0,16 038 -0,26 -0,32
. . . 290 015 0,77 -190 040 101
K =] . . . . 0,29 -0,0007 -1,03 0,28 0,29 |-10°

s . . . . . 031 -038 005 015
1380 -—345 -152

115 0,53

0,97
) (16.28) )

The combination of the membrane and bending stiffness matrices based on Eq.(16.8) lead s
to:

~ m+b

=e

18x18

2,48 144 0 0 0 o| -126 -115 0 0 0 -122 -0,29 0 0 0 0
144 6,64 0 0 0 |o|-173 —036 0 0 0 0l 029 -s28| o 0o o o
108 108 108
0 o 129 228 -091 |, 0 o -099 088 -38 | 0 o -119 305 051 |
o 0 228 09 010 |o 0 o0 -033 -0,09 -005 |o 0 0 -195 019 -032 |0
0 o0 -091 010 059 |0 U 052 -017 016 0 (U 038 -026 -032 [0
10° 10° -10°
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
-126 -173 0 0 0 0 252 0 0 0 0 of| -1L26 173 0 0 0 0
-115 -0,36 0 0 O 0 0 072 0 0 o0 0| 115 -036 0o 0 0 0
108 108 108
0 0 -099 -033 052 | 0 0 290 015 0,77 0 0 0 -190 040 101 |,
0 0 088 -009 -017 |0 0 o0 015 029 -0,0007 |0 0 0 -103 028 029 |0
0 0 -388 -005 016 [0 0 0 0,77 -0,0007 0,31 0 0 0 -038 005 015 |O
-10° -10° -10°
0 0 0 0 O 0 0 0 0 0 O 0 0 0 0 0 O 0
-122 0,29 0 0 0 0| -126 115 0 0 0 0| 248 -144 0 0 0 0
-0,29 -6,28 0 0 0 0| 173 -036 0 0 0 0| -144 6,64 0 0 0 0
108 108 108
0 0 -119 -195 038 | 0 0 -1,90 -1,03 0,38 0 0o o 138 -345 -152 |,
0 0 305 019 -026 |0 0 o0 040 0,28 0,05 0 0 0 -345 115 053 |0
0 0 051 -032 -032 |0 0 0 1,01 029 015 0 0o 0 -152 053 097 |0
10° 10° 10°
0 0 0 0 0 0 0 o0 0 0 0 0 0 0 0 0 0 0
(16.29)

The next step is the construction of the finite element equation using EcL.(16.17). The nodal
displacements are calculated from the 4™, 5™, 7" 8" 10™ 11" 14" 16" and 17" equations
of the system of equations. The solutions are:

&, =0,00406 rad , 3, = —0,02278 rad,, (16.30)
i, =0,0187 m, ¥, = 0,00368 m, &, = —0,0948 rad , 3, = 0,00319 rad,
¥,=0,00737 m, &, = 0,01833 rad , 3, = 0,01994 rad..
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In the knowledge of the displacements we can determine the reactions utilizing the 1%, 2",
3 9" 13" and 15" equations:
F,, =—3000000 N, F, =-8000000 N, F, =9188 N, (16.31)
F,,=7434N, F,,=-3000000N,F,, =73,78 N.

We note that the results by Eq.(16.31) are the components of the vector of concentrated
forces, which is the first term in Eq.(16.26). Moreover the 6™, 12" and 18" component
equations were not utilized here, which is explained by the fact that these equations are
associated to the local rotations about axis z, and their values are zero in the local system.
The total force vector by using Eq.(16.31) and Eq.(16.26) becomes:

3000000 |
8000000
11.629
7,6
—7,6876
0
6000000
0
E;mb T 2,344
184 -12,8
1,25
0
—3000000
8000000
-13,973
11,6
8,3125
0

In the sequel, we transform the results into the_global X,Y,Z coordinate system. The global
position vectors of the nodes based on the global coordinates are:

(16.32)

0,6795 0,57 0,2
R,=| 04 m,R,=|1225m,R;=|0,5|m. (16.33)
0,5004 0,6 0,4

The position vector of the origin of local coordinate system can be given in the global sys-
tem as:

0,43975
R, = %(R1 +R,)=| 045 |m. (16.34)
0,4502

We determine the unit basis vectors based on the position vectors in the global system us-
ing Fig.16.4:
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5 R 0,162825 |
e, =—2—=%—| 096875 |. (16.35)
Rz = Rq| 018725 |
Similarly, the unit vectors e, and ez are
—0,959 ]
e, = Bs=Ro | 02 |, (16.36)
R =Ro |_ 0,2008 |
—— 0,23197
g, =—>——"=|-014688 |.
R, R, 0,96159

Based on the unit basis vectors and Eq.(16.12) matrix L becomes:

0,162825 -0,959 -0,23197
L=[e, e, e,]=| 096875 0,2 -0,14688 | . (16.37)
0,18725 -0,2008 0,96159
With that it is possible to construct matrix 4 with dimension of 18x18. Using Eqgs.(16.10),
(16.22) and (16.30) the nodal displacements in the global coordinate system are:
u =0,v,=0,w, =0, (16.38)
a, =-0,02141rad, p, =—-0,00845 rad , w, = 0,002405 rad,
u, =0,00662 m,v, =—-0,017215m,w, =—0,004883 m ,
a, =-0,012352 rad, S, =0,091582 rad ,w, = 0,02153 rad,
u, =0,0071365 m,v, =0,0014733 m, w, =—-0,001082 m,
a, =0,0223rad, g, =—0,013587 rad , , = —0,0071797 rad .

It is seen that although in the local coordinate system the rotations about z are zero, in the
global system as a result of the transformation even rotations about Z exist. The nodal
forces are the followings:

F,, =-8238600 N, F,, =1277000 N , F,, =1871000 N, (16.39)

M,, =—-6,21Nm,M,, =-88259 Nm,M,, =-0,6338 Nm,
F., =976920 N, F,, =—-5754000 N, F,, = —1391800 N,
M,, =-08732 Nm,M,, =12,525 Nm, M, = 2,7856 Nm,
F., = 7261500 N, F,, = 4477000 N, F,, =—479100 N,

M,, =9,9414 Nm,M,, =—9,4615 Nm,M,, = -3,9118 Nm.

Accordingly, in the global system there are bending moments about axis Z, which are in
fact the projections of the moments about local x and y axes with respect to Z. The solution
method is applicable also for rectangle shape elements.
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