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15. MODELING OF IN-PLANE THIN-WALLED SHELLS UNDER IN-
PLANE AND TRANSVERSE LOAD BY FINITE ELELEMT 
METHOD BASED SOFTWARE SYSTEMS 

15.1 Plate elements subjected to bending 
Flat plate elements are suitable to determine the internal forces, stress resultants and stress 
couples in plate shape structures. The plate element is the extension of beam elements so 
that bending, shear and torsion take place in two orthogonal planes involving some interac-
tions. Similarly to the plane membrane elements, the triangle and quadrilateral shape ele-
ments are available for the modeling of shells. The application of general triangle shape 
elements is reasonable when the shape of the structure is irregular, triangular or similar to 
the triangle. In this section we overview primarily the plate elements subjected to trans-
verse load. In that case when the plate is loaded in-plane and also transversely we can 
solve the problem by combining the plane membrane and plate bending elements. We have 
already seen by Eq.(14.3) that due to neglecting the transverse shear forces the rotations in 
an actual point of the plate are: 
 xw,−=β  and yw,=α .  (15.1) 
The curvatures related to the bending deformation are: 
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For thin plates we assume plane stress state, i.e.: 
 [ ]xyyx

T γεεε ,,= . (15.3)  
In the course of the introduction of Kirchhoff plate theory we have observed that the de-
flection surface is given by a two-variable w(x,y) function, with that both the curvatures 
and strain components can be calculated. For plate bending problems this w(x,y) function 
must be produced by interpolation polynomials, and then we can provide the element stiff-
ness matrix and force vector. In the followings we give the details of few element types for 
plate bending. 

15.2 Triangular plate bending element or Tocher triangle element 
In the course of the finite element discretization of plate shape structures we approximate 
the transverse deflection by a third order polynomial in terms of the x and y coordinates 
[1,2]: 
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  (15.4) 
This approximation was one of the first triangular finite elements, which was published by 
Tocher [1]. The element is shown in Fig.15.1. The deflection surface in vector form is: 
 λTAyxw =),( ,  (15.5) 
where A is the vector unknown coefficients, λ is the vector of basis polynomials, respec-
tively: 
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 [ ]876543210 aaaaaaaaaAT = ,  (15.6) 

 [ ]322322 )(1 yxyyxxyxyxyxT +=λ . 
 

 

 

Fig.15.1. The nine degrees of freedom Tocher triangular plate element. 

The unknown coefficients can be calculated based on the nodal conditions. Namely, the 
displacement function must give back the actual nodal displacement if we substitute the 
nodal coordinates of the same node. Therefore, in Eq.(15.4) the number of terms is always 
equal to the number of degrees of freedom. For the Tocher triangle element the eighth term 
contains the sum of x2y and xy2. Actually, in vector A there is nine unknown coefficients. 
Following Fig.15.1 the vector of nodal degrees of freedom for a single element is: 

 [ ]333222111 βαβαβα wwwuT
e = ,  (15.7) 

where wi is the transverse displacement perpendicularly to the midplane, αi and βi are the 
rotations about axes x and y, respectively. Accordingly, the Tocher plate element has nine 
degrees of freedom. The nodal conditions for the calculation of the coefficients are [1,2]: 
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We need the derivatives of the w(x,y) function with respect to x and y to calculate both the 
coefficients and the strain components, i.e we can write using Eq. (15.4): 

 )2(32 2
7

2
6431 yxyaxayaxaa

x
w

+++++=
∂
∂ , (15.9) 

 2
8

2
7542 3)2(2 yaxyxayaxaa

y
w

+++++=
∂
∂ , 



4 Modeling of in-plane thin-walled shells under in-plane and transverse load by finite 
elelemt method based software systems  

 www.tankonyvtar.hu   Dr. András Szekrényes, BME 

 yaxaa
x
w

7632

2

262 ++=
∂
∂ , 

 yaxaa
y
w

8752

2

622 ++=
∂
∂ , 

 )(2 74

2

yxaa
yx

w
++=

∂∂
∂ . 

The substitution of the derivatives above into Eq.(15.7) leads to the following system of 
equation reduced to matrix form [1]: 
 AMue = ,  (15.10) 
where: 
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  (15.11) 
The coefficients of the interpolation function are the solutions of the system of equation 
given by Eq.(15.10): 
 euMA 1−= .  (15.12) 
The expressions of the coefficients are extremely complicated; hence they are not detailed 
here. The vector of strain components based on Eqs.(14.5) and (15.5) are: 

 AR
w

w
w

z

xy

yy

xx

xy

y

x

=
















⋅
−=

















=

,

,

,

2γ
ε
ε

ε ,  (15.13) 

where matrix R is: 
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Taking back Eq.(15.12) into Eq.(15.13) the strain-displacement matrix can be derived: 
 ee uBuMRAR === −1ε .  (15.15) 
For thin plates we assume plane stress state, consequently we can write: 
 εσ strC= , e

str uBC=σ ,  (15.16) 

where matrix strC refers to plane stress state. According to Eq.(14.43) the definition of the 
element stiffness matrix is: 
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Incorporating Eq.(15.15) we obtain: 
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The middle term in the expression above is [1]: 
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  (15.19) 
where I1 = t3/12 and E1 = E/(1-ν2). To calculate the stiffness matrix the inverse of matrix 
M is required. Since it is very complicated, it is not detailed here. In Eq.(15.19) it is possi-
ble to simplify the components by the surface integral transformations given below [1]: 
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where Ae is the triangle area, xi and yi, i = 1, 2, 3 are the nodal coordinates, respectively. In 
most of the cases the force vector is composed by two terms. The force vector related to 
the distributed force can be derived by expressing the work of external force: 
 ep

T
e

A
e FudAyxpwW

pe

== ∫ ),( .  (15.21) 

The calculation of Fep is difficult, we need the inverse of matrix M and the simplification 
of surface integrals, respectively. The concentrated forces and moments are collected in a 
vector in accordance with the nodal degrees of freedom: 
 [ ]333222111 yxzyxzyxz

T
ec MMFMMFMMFF = ,  

  (15.22) 
where Fzi is the concentrated force perpendicularly to the midplane of plate, Mxi and Myi 
are the concentrated moments acting in the x and y directions. In the sequel we present a 
detailed example. 

15.3 Example for the application of the Tocher triangle plate element  
Determine the displacement and the reactions of the built-in plate depicted in Fig.15.2 [1]!  
 

 

Fig.15.2. Triangle shape built-in plate loaded by concentrated force. 

Given: 
E = 200 GPa, ν = 0,3, t = 5 mm, F = 1 kN, a = 200 mm, b = 75 mm. 
  
The nodal coordinates are: 

http://www.tankonyvtar.hu/�


Alfejezetcím    7 

 Dr. András Szekrényes, BME   www.tankonyvtar.hu 

 
node x y 

1 0 -b/2 
2 a 0 
3 0 b/2 

 
In the sequel the distances are calculated in [mm], the force is given in [N]. Because of the 
kinematic constraints (built-in nodes) the vector of nodal displacements becomes: 
 [ ]000000 222 βαwuT

e = .  (15.23) 
For the calculation of stiffness matrix we need the constitutive matrix, which is: 
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  (15.24) 
Utilizing the nodal coordinates we calculate matrix M based on Eq.(15.11): 
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  (15.25) 
The determinant of matrix M is −4,86⋅1012, i.e. the matrix is not singular, its inverse exists. 
The stiffness matrix is obtained by calculating matrix R  (see Eq.(15.14)) and computing 
the surface integrals: 
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In Eq.(15.26) only the independent components are indicated, the reason for that is the 
stiffness matrix is always symmetric. The force vector based on the concentrated loads is: 

[ ]333111 00 yxzyxz
T
ec MMFFMMFF −= .  (15.27) 

The condensed stiffness matrix and the resulting matrix equation for the calculation of 
nodal displacements is the following: 

 














−
=

































0
0

1000

0,17170335,697543,17170
5,697541,17169492,4829
3,171702,48696,257

2

2

2

β
α
w

.  (15.28) 

The nodal solutions are: 
 mm1764,132 −=w , rad03176,02 =α , rad130477,02 =β . (15.29) 
It is seen that although the problem is symmetric with respect to axis x for both the geome-
try and load, the deformation of the triangle element is not symmetric. Taking the nodal 
displacements back to original equation we can determine the reactions: 
 N5,5541 =zF , Nmm5,407841 =xM , Nmm6,660681 −=yM . 
  (15.30) 
Using Eq.(15.15) the vectors of strain and stress components are: 
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The strain and stress components can be obtained at any point of the triangle element by 
taking back the coordinates in [mm]. The example above was verified by a finite element 
code developed in Matlab [3] and we obtained the same results. In general the accuracy of 
the Tocher plate element is not satisfactory and even the convergence of the results is bad. 
To reduce the deficiencies of the Tocher triangle the so-called reduced triangle element 
was developed, where area coordinates are introduced [4]. Apart from the Tocher triangu-
lar plate element there are several more element types, e.g.: Adini or Cowper triangle ele-
ment, Adini-Clough-Melosh, Bogner-Fox-Scmit rectangle element, etc [1]. In the sequel 
we present some rectangle shape plate elements. 

15.4 Incompatible rectangular shape plate element 
Fig.15.3 presents one of the first rectangle shape elements in a global, local and natural 
coordinate system.  
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Fig.15.3. Incompatible rectangle shape plate element in a global (a), local (b) and natural (c) co-
ordinate system. 

The dimensionless local ξ and η coordinates are: 

 
a
x

=ξ , 
b
y

=η , and: dx
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d 1
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b
d 1

=η . (15.32) 

The following differential quotients are also required: 

 
ξd
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= . (15.33) 

According to Fig.15.3b we consider three degrees of freedom in the local coordinate sys-
tem at each node, which are the displacement w perpendicularly to the midplane of plate 
and the rotations about the x and y axes, respectively. The vector of nodal displacements 
for a single element is: 
 [ ]444333222111 βαβαβαβα wwwwuT

e = ,  
  (15.34) 
i.e. totally the element has 12 degrees of freedom, where the rotations can be determined 
by means of Eq.(15.1) and the Kirchhoff-Love hypothesis. The displacement in direction z 
and the rotations are not independent of each other and there can only be to a maximum of 
12 unknown parameters in the interpolation function. Along the element edges the expres-
sion of w should be a third order function, and accordingly the derivative in the normal 
direction should vary linearly [2]. A complete third order function contains 10 terms, but in 
accordance with the number of nodal parameters we need two additional terms in the inter-
polated function. We can choose from the three possibilities below: 
 ηξ 3  and 3ξη , or: 23ηξ and 32ηξ , or: 22ηξ  and 33ηξ . (15.35) 
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Any of the above possibilities is chosen, we obtain a cubic change in the derivatives in the 
normal direction instead of the expected linear one [1,2]. Therefore this element is not 
compatible, in other words it is incompatible. Choosing the first alternative we have: 
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The nodal conditions for the determination of the unknown coefficients are: 
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Taking back the coefficients into the function given by Eq.(15.36), moreover by utilizing 
the fact that the displacement function can be formulated as the product of interpolation 
functions and nodal parameters it is possible to obtain: 
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from which we obtain the mathematical form of the interpolation functions: 
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and: 
 e

T uNw =),( ηξ , (15.40) 
where: 
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 [ ]121110987654321 NNNNNNNNNNNNN T = , 
  (15.41) 
is the vector of interpolation polynomials. As a next step we express the vector of strain 
components using Eq.(14.5): 
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where: 
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where N,xx, N,yy and N,xy are vectors containing the second order derivatives of the interpo-
lation functions by Eq.(15.40) with respect to the corresponding subscript. Hence, the vec-
tor of strain components and the vector of stress components become: 
 euzκε −= , (15.44) 
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The vector of bending and twisting moments can be given in vector form; they are calcu-
lated based on Eqs.(14.7) and (15.43): 

 e
T
xy

T
xx

T
yy

T
yy

T
xx

xy

y

x

u
N
NN
NN

EI
M
M
M

M
















−
+
+

−=
















=

,

,,

,,

11

)1( ν
ν
ν

.  (15.45) 

Taking the previously calculated vectors back into the total potential energy we obtain: 
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We transform the volume integral over the element by integration with respect to the pa-
rameters x, y and z. Moreover, we assume that in the second term the intensity of the dis-
tributed load is constant. Consequently we can write: 

ep
T
eee

T
e

T
ee

TstrTT
ee FuuKuddNabpuuddCabtu −=⋅−









⋅=Π ∫ ∫∫ ∫ 2
1

122
1 1

0

1

0

1

0

1

0

3

ξηξηκκ , 

  (15.47) 
where the element stiffness matrix is: 
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and the force vector from the uniformly distributed load is:  
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  (15.49) 
that is, similarly to the beam element subjected to bending the distributed load is represent-
ed by concentrated forces and moments at the nodes referring  to the discretization proce-
dure. It is also necessary to consider that there can be concentrated loads in the nodes, viz.: 

[ ]444333222111 yxzyxzyxzyxz
T
ec MMFMMFMMFMMFF = , 

   (15.50) 
and: 
 epece FFF += .  (15.51) 
The application of the minimum principle yields the element equilibrium equation: 
 eee

FuK = ,  (15.52) 
which can be used only if the structure consists of a single element. For multi-element 
structures we obtain the structural equation by summing the potential energies of the ele-
ments: 
 FUK = . (15.53) 
Let us solve an example for the incompatible rectangle shape element! 
 

15.5 Example for the application of the incompatible rectangle shape element 
Calculate the nodal displacements and the reactions of the built-in plate shown in Fig.15.4!  
 

 

Fig.15.4. Example for the application of incompatible plate element. 

Given: 
E = 200 GPa, ν = 0,3, t = 1 mm, F = 5 N, a = 600 mm, b = 400 mm. 

 
In the sequel the distances are substituted in [m], the force is given in [N]. The nodal coor-
dinates are: 
 

node x y 
1 0 0 
2 a 0 
3 a b 
4 0 b 
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Considering the kinematic constraints in the construction of the vector of nodal displace-
ment we obtain: 

[ ]000000 333222 βαβα wwuT
e = . (15.54) 

The force vector considering the external force and the reactions is: 
 [ ]414111 00000 yxzyxz

T
ec MMFFMMFF −= .  

  (15.55) 
For plane stress state the constitutive matrix is: 

 GPa
7000
020060
060200

2
100

01
01

1 2
















=



















−−
=

ν
ν

ν

ν
EC str . (15.56) 

Next we calculate matrixκ which is required for the stiffness matrix: 
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  (15.57) 
The dimension of the stiffness matrix is 12x12; therefore it is not detailed here. Instead of 
the stiffness matrix we give the resulting finite element equilibrium equation system from 
Eq.(15.52): 

1333222 6912615845196874228502711 zFβ,-α,w,-β,-α,w, =++ , 
  (15.58) 

 13322 8,8558,61-14,5950,28 xMww =++ αα , 
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 13322 4,8712,696,2442,87 yMww =+++ ββ , 
519,0128,89741,05-55,37137,22926,23 333222 −=++++ βαβα ww , 

016,15128,89-5,0035,41137,22 33222 =+++ αβα ww , 
 02,740,1919,485,0055,37 33222 =++++ ββα ww , 
 055,37137,22926,230,19128,89741,05- 333222 =+−++− βαβα ww , 

05,0-5,413137,22-16,15128,89 33322 =++ βαα ww , 
 019,485,0055,372,740,19 33322 =+−++ βαβ ww , 
 4333222 42,87-50,2811,2712,69-58,61196,45- zFww =−+− βαβα , 
 43322 14,5950,28-8,8558,61 xMww =++ αα , 
 43322 6,2442,874,8712,69 yMww =+++ ββ . 
Calculating the nodal displacements from the 4th, 5th, 6th, 7th, 8th and 9th equations of 
Eq.(15.56) we have: 
 m0655,02 −=w , rad 039,02 =α , rad159,02 =β , (15.59) 
 m0448,03 −=w , rad0645,03 =α , rad122,03 =β . 
From the 1st, 2nd, 3rd and 10th, 11th, 12th equations of Eq.(15.56) we can determine the reac-
tions: 
 N42,51 =zF , Nm47,01 =xM , Nm79,11 −=yM , (15.60) 
 N42,04 −=zF , Nm30,04 −=xM , Nm21,14 −=yM . 
The bending and twisting moments can be obtained from Eq.(15.45), the stresses can be 
determined from Eq.(15.44) by taking back the nodal coordinates. Example 15.5 was veri-
fied by the finite element code ANSYS 12 and we obtained the same results. 

15.6 Compatible rectangular shape plate element 
In that case when we want to develop a compatible plate element the interpolation function 
given by Eq.(15.36) has to be modified in accordance with the followings [2]: 

.

),(
33
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32
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2
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2
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ηξηξηξηξξηηξη

ξηηξξηξηξηξηξ

aaaaaaa
aaaaaaaaaw

+++++++

+++++++++=
 

  (15.61) 
However, this formulation implies 16 unknown nodal parameters. That is, at each node we 
must consider the mixed derivative w,xy. The vector of nodal displacement becomes: 

[ ].4,4443,3332,2221,111 xyxyxyxy
T
e wwwwwwwwu βαβαβαβα=   

  (15.62) 
The conditions for the determination of the unknown parameters are: 

 1)0,0( ww = , 1)0,0(1 α
η

=
∂
∂w

b
, 1)0,0(1 β

ξ
=

∂
∂

−
w

a
, 1,

2

)0,0(1
xyww

ab
=

∂∂
∂

ηξ
, 

  (15.63) 

 2)0,1( ww = , 2)0,1(1 α
η

=
∂
∂w

b
, 2)0,1(1 β

ξ
=

∂
∂

−
w

a
, 2,

2

)0,1(1
xyww

ab
=

∂∂
∂

ηξ
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 3)1,1( ww = , 3)1,1(1 α
η
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∂w
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, 3)1,1(1 β

ξ
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−
w

a
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2

)1,1(1
xyww
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ηξ
, 
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 4)1,0( ww = , 4)1,0(1 α
η

=
∂
∂w

b
, 4)1,0(1 β

ξ
=

∂
∂

−
w

a
. 4,

2

)1,0(1
xyww

ab
=

∂∂
∂

ηξ
. 

The deflection surface is approximated by using 16 interpolation functions: 

.

),(

4,164154144133,1231131039

2,82726251,4131211

xyxy

xyxy

wNNNwNwNNNwN
wNNNwNwNNNwNw

++++++++

+++++++=

βαβα

βαβαηξ
 

   (15.64) 
The interpolation functions can be written by the help of the Hermitian polynomials, which 
are presented in the beam finite elements (see Fig.15.5) [2]: 
 132)( 23

1 +−= λλλf , 23
2 32)( λλλ +−=f ,  (15.65) 

 λλλλ +−= 23
3 2)(f , 23

4 )( λλλ −=f , 
with that the 16 interpolation functions become: 
 )()( 111 ηξ ffN ⋅= , )()( 229 ηξ ffN ⋅= , (15.66) 

 )()( 312 ηξ ffbN ⋅⋅= , )()( 4210 ηξ ffbN ⋅⋅= , 
 )()( 133 ηξ ffaN ⋅⋅−= , )()( 2411 ηξ ffaN ⋅⋅−= , 
 )()( 334 ηξ ffbaN ⋅⋅⋅= , )()( 4412 ηξ ffbaN ⋅⋅⋅= , 

 )()( 125 ηξ ffN ⋅= , )()( 2113 ηξ ffN ⋅= , 
 )()( 326 ηξ ffbN ⋅⋅= , )()( 4114 ηξ ffbN ⋅⋅= , 
 )()( 147 ηξ ffaN ⋅⋅−= , )()( 2315 ηξ ffaN ⋅⋅−= , 
 )()( 348 ηξ ffbaN ⋅⋅⋅= , )()( 4316 ηξ ffbaN ⋅⋅⋅= . 

 

 

Fig.15.5. Function plot of the Hermitian interpolation polynomials. 

By using the interpolation polynomials the stiffness matrix can be built-up by the same 
methodology as that presented in the incompatible plate element. The only difference is 
that we obtain a matrix with dimension of 16x16. Assuming a constant distributed force, 
the relevant term in the force vector is:  
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 −−−−−−=

=⋅= ∫ ∫ ξη
 

  (15.67) 
i.e., similarly to the plane beam element subjected to bending the distributed load is repre-
sented by concentrated forces and moments in the nodes. As usual, we have to consider the 
case of concentrated loads, the relevant vector term is: 

 
[

]........

........

44443333

22221111

xyyxzxyyxz

xyyxzxyyxz
T
ec

MMMFMMMF
MMMFMMMFF =

 

  (15.68) 
Example 15.5 was solved by using the compatible plate element too. In this case the nodal 
displacements are: 

m0658,02 −=w , rad062,02 =α , rad165,02 =β ,
m
rad2414,02, =xyw , 

  (15.69) 

m0450,03 −=w , rad043,03 =α , rad128,03 =β ,
m
rad0415,02, −=xyw . 

The reactions are given below: 
 N512,51 =zF , Nm676,01 =xM , Nm84,11 −=yM , 2

1 Nm138,0=xyM . 
  (15.70) 
 N512,04 −=zF , Nm471,04 −=xM , Nm155,14 −=yM , 2

4 Nm115,0=xyM . 
It is seen, that the difference between the results of the two solutions is not significant. 

15.7 Plates under in-plane and transverse load 
If the plate is loaded by in-plane and transverse forces simultaneously, then we have to 
produce an element by having both in-plane and bending load-carrying capability, i.e. it 
means the superposition of plane membrane and plate bending elements. This problem can 
be solved based on sections 12 and 15 in a relatively simple way. First we collect the cor-
responding nodal displacements into a vector. Second, we create the stiffness matrix of the 
combined element by placing the stiffness matrix components corresponding to the mem-
brane and bending deformation into the right positions. The vector of forces is obtained by 
a similar combination of the element vectors. This technique is suitable to model in-plane 
plate structures too. However, if we connect the elements by containing an angle differing 
from 180° among the surfaces, then it is possible to approximate curved surfaces. In other 
words the combined membrane-plate element is suitable to model spatial shells and shell 
structures too. Since in the modeling of plane and spatial shells similar steps are required, 
these issues will be detailed in section 16. 
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