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13. MODELING OF AXISYMMETRIC STATE BY FEM SOFTWARE
SYSTEMS. MODELING, ANALYSIS OF PROBLEM EVALUA-
TION

13.1  Finite element solution of axisymmetric problems

For axisymmetric problems both the geometry and the load are independent of the angle
coordinate, 9. An example is shown in Fig.13.1.
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Fig.13.1. Thick-walled tube under internal pressure (a), axisymmetric model of the tube (b), and
the simplified finite element problem (c).

Plane problems are defined in plane as the meridian section of an actual body; mathemati-
cally they can be solved as two-variable problems. The element types of axisymmetric
problems are actually ring shape elements. That is why there is no concentrated force in
such problems, except for the case when the force coincides with the axis of symmetry. A
line load with constant intensity on the outer surface of the model defined by a radius of r,
looks as a concentrated force. For axisymmetric problems the displacement field has the
following form [1]:

u=u(r,z)e, +w(r,z)e,. (13.1)
The strain-displacement equation is:
g=%(goV+Vog), (13.2)

where V is the Hamilton operator in cylindrical coordinate system (CCS). It can be derived
by the help of Eq.(11.61). Based on Fig.11.7 the radial and tangential unit basis vectors
become [1]:

e, =cosdi+singj, e, =—sinJi +cosJj. (13.3)
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Operator nabla in the x-y-z coordinate system is:
V=£i+ij+ig. (13.4)
oXx~ oy~ oz
Utilizing Eq.(11.61) and substituting it into Eq.(13.4) leads to:

O +2 %+ ¢, (135)
or rop 0z
The strain components in CCS can be written as [2,3] (see Eq.(11.66)):

S G N L.y (13.6)
or r 0z oL or
In vector form:
§T = [8r gt gz 7rz ] (137)
The vector of strain components is written in the following form:
g=20u, (13.8)

where, based on Eq.(13.6) the matrix of differential operators is completed with an addi-
tional element compared to the plane stress or plane strain states:

2
or
1
o=| " .(13.9)
=" K
0z
9 9
L0z or |
The vector of stress components is:
o =lo, o o, 7,] (13.10)
Independently of the coordinate system we have Hooke’s law in the form below:
o= 26{5 Y e E] (13.11)
= = 1-2v =
c. 0 7, [ e, 0 1/2.y,
c=/0 o 0|¢g= 0 £, 0 . (13.12)
7z, 0 o, 11/2-y, O g,
from which we have:
E v | E
o, = g + (6, +¢& +¢&,) |=————[c,A-V)+ev+e,v],
1+v 1-2v 1 Q+v)1-2v)
(13.13)
o, = E [gt +—Y (&, + ¢ +gz)}=#[5rv+gt(l—v)+gzv],
1+v 1-2v @+v)@-2v)
o, = E {32 Y (&, + ¢, +gz)}:#[8,v+gtv+gz(l—v)],
1+v 1-2v @+v)d-2v)
. __E
rz 1+ ]/ 7rz *

Accordingly, the constitutive matrix based ong =Ce is [2,3]:
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1-v 1% 1% 0
E 1% 1-v 1% 0
C=Tina 2y v v 1-v 0 (13.14)
0 0 o0 _2V

The calculation of the element stiffness matrix is possible tﬁrough the following definition
[4]:
K,=[B'c'Bdv (13.15)
Ve

where the dimension of matrix B depends on the degrees of freedom of the element. The

vector of forces can be determined in the same way as it was shown for plane problems.
The domain of axisymmetric bodies can be meshed by ring shape elements. Elements can
be defined in the meridian section, i.e. in plane. In the finite element softwares the same
element types are available as those for plane problems; however the axisymmetric behav-
ior should be set. In the course of the finite element analysis the same interpolation func-
tions are applied as those presented for plane stress and plane strain states. In most of the
finite element codes the plane model should be prepared in the x-y plane, where y is the
axis of revolution (see Fig.13.1c). In the sequel we review the application of the linear tri-
angle and the isoparametric quadrilateral elements.

13.2  Axisymmetric linear triangle element

The steps of the finite element discretization using linear triangle element have already
been presented in section 12.2. Some modification is required considering the axisymmet-
ric application of the triangle element. In the displacement field we change the x and y pa-
rameters to r and z, respectively [1]:

u(r,z) = {”( )} N(r, 2)u, (13.16)
w(r,z)| =
where the displacement components can be provided by changing the coordinate x to r and
coordinate y to z in Eq.(12.24), respectively:
u(r,z) = N,(r,z)u, + N, (r,2)u, + N,(r,z)u,, (13.17)
w(r,z) = N,(r,z)w, + N, (r,z)w, + N, (r, z)w;,,
moreover, the matrix of interpolation functions and the vector of nodal displacements be-

come:
N, 0 N, 0 N, O
N(r,z)=| ' ? ’ , (13.18)
= 0 N, 0 N, 0 N,
;

Ue :[ul W U W, U Ws]-
The calculation of the strain components is made in a similar fashion to that presented in
plane problems:

&=0u=0Nu, =Bu,, (13.19)

where the strain-displacement matrix using Eqgs.(13.9) and (13.18) is:
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9
or
1 0
r N, 0O N, 0 N, O
= — |g 90 N, 0O N, 0 N
01
J 0
Loz or. ~ (13.20)
ON, 0 oN, 0 ON, 0
or or or
Ny N Ny
_|r r r ,
0 ON, 0 ON, 0 ON,
0z 0z 0z
ON, ON, ON, ON, ON, 0N,
0z or 0z or 0z or

where in the second row the term Ni/r appears. Considering the axisymmetric nature of the

problem we can write that:
K, =27[B"C" BrdA=2z[ [B'C" Brdrdz (13.21)
A

The vector of forces consists of three different terms even in axisymmetric problems. For a
distributed load the formula is:

o =27[N prds, (13.22)
where p is the vector of pressures in the radial and axial directions:
D= { pf} . (13.23)
N
In the case of body force the force vector becomes:
F, =27 j j N'grdrdz, (13.24)
where:
a,
q= (13.25)
- 1%
is the density vector of volume forces. Finally, the vector of concentrated forces is:
Elc = [Flr l:1z I:Zr F22 I:3r F3Z ] ) (1326)
The total force vector is the sum the following three vectors:
Ee = Eep + Eeb + Eec ' (1327)

The problem solution involves the composition of the element and structural stiffness ma-
trices. We calculate first the nodal displacements from the structural equation, then the
reactions and strain and stress components, respectively. Let us see an example for the ap-
plication of the element.
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13.3 Example for the application of axisymmetric triangle element

Fig.13.2 shows a hollow disk with triangular cross section under internal pressure. The
angular velocity of the disk is @ =5 rad/s. Consider also the own weight of the disk! Cal-
culate the nodal displacements and reactions!

ZA

<[ 3° 5 3 lg
P,

d
D

Y

P

Fig.13.2. Finite element model of a hollow disk with triangular cross section.

Given:
pr=20 KPa, E=200GPa,d=6m, D=8m,g=9,81m/s?>, v=0,3,h=1m

Solve the problem using a single axisymmetric triangular element [1]! The distances are
given in [m], the force is given in [N]. The nodal coordinates are:

node rm]j Z[m]
1 3 0
2 4 0
3 3 1

Since we have only a single element, the element equilibrium equation is the same as the
structural equation:
ieue

=F., (13.28)

where:

T

He:[ul Wi Uy W, U Ws]- (13.29)

Because of the boundary conditions only four unknowns remain, i.e.:
ul =fu, 0 u, 0 u, wl. (13.30)

The constitutive matrix based on Eq.(13.14) is:
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C=— -
=" @+v)(1-2v)

1% 0
1-v v 0
v 1-v 0 |7
0 1-2v
2

269,2 11538 115,38
11538 2692 11538
115,38 115,38 269,2

0 0 0

0
-10° Pa

76,9
(13.31)

The coefficients of the interpolation functions using Eq.(12.22) and Fig.13.2 are:
o, =02,—1z2,=4m", a,=12 -1z, =-3m*, a, =rz,-1,2, =0,

(13.32)
Pi=2,-23=-1m, p,=2,-7,=1m, B, =12,-2, =0,
n=L-L=-1m,y,=r-=0, y,=r-r=1m.
The area of the triangle is:
Ab:%(a1+a3+a3):%(4—3+0):%mz. (13.33)
The interpolation functions can be calculated as:
N, (r,z) = S22 TN w‘r”‘z, (13.34)
2A,
which yields:
N,(r,z)=4-r—z, N,(r,z) =-3+r, Ny(r,z)=z. (13.35)
Matrix N becomes:
N, 0 N 0 N, O 4-r-12 0 -3+ 0
N(r,z)=| * 2 ’ =
= 0 N, 0 N, 0 N, 0 4-r-z 0 -3+
(13.36)
Accordingly, the strain-displacement matrix B is:
[ON, oN, N, ]
or or or _
N, 0 N, 0 N, 0 4—rl—z 0 —31+r 0
B=0N = T T i = r 0 r 0
= = 0 oN, oN, N, 0 -1 0 0
0z 0z 0z _ _
ON, oN, oN, oN, oN, oN, 1 -t 0 1
Loz or 0z or 0z or |
(13.37)

The stiffness matrix is given by:
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(343 180 -279 -081 -090 -109]
189 364 -133 081 -093 -282
=e:2”4ﬁ B'C Brdrdz = _2’22 _;'3831 3’;0 0(2)31 g’z 1’23 10°
0 3 R e ' ' m
~090 -093 014 08L 085 012
~109 -282 133 0 012 282
) (13.38)

where all of the elements were calculated by exact integration (using the code Maple). The
upper range of the first integration is the equation of the hypotenuse of the triangle: z = 4-r.
The vector of forces is constructed as the sum of three vectors. The first one is related to
distributed load along element edge 1-3, based on Eq.(13.21) it is:

p.]_[20
Feo :ZﬁjﬁTBrds’ B=|:pj:{0:|KPa.

Obviously, the radius is r = 3 m constant along element edge 1-3, furthermore the coordi-
nate of integration is z, leading to:

(13.39)

67
0
0
0
67
0

1 1
Eepzzzzejggdz:znej 10 N.
0 0

20000
{ }dz =
0

O N O O O

(13.40)
The force vectors related to the revolution and own weight requires vector g, which is cal-
culated using g and w:

2
_ {q} _ {pm’ } (13.41)
- qz _pg
After this, we calculate Fep, using Eq.(13.23):
[(4-r—z 0
0 4—-r-2
4-r 4 4-rd| _ 3 r 0 2
Feo = 27zJ. IMT rdrdz =2 j I " {pl’a) }rdrdz,
03 0 3 0 —3+r -9
Z 0
- O Z -
(13.42)
i.e., we have:
Elb = [6,89 -0,829 7995 -0,893 6,89 —0,829]7r~105 N.
(13.43)

Finally, the unknown reactions are collected in vector Fe.. Considering the boundary con-
ditions we obtain:

(13.44)
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Thus, the finite element equilibrium equation becomes:

(343 189 -279 -081 -090 -1,09] u, 7,497 -10°
189 364 -133 -081 -093 -282 0| |-08297-10° +F,
280 -133 310 0 014 133 | || | 79957.10°
~081 -081 0 081 081 0 0| | —0893-10°+F,,
~090 -093 014 081 085 012 u, 7,497 -10°
-109 -282 133 0 012 28 | |w]| | -08297-10°
(13.45)

The solution can be obtained by the 1%, 3" 5" and 6™ component equations. The other
possibility is the application of the matrix equation using the condensed stiffness matrix,
which has already been presented in section 12. The solutions are:
u, =3,701-10° m, u, =3,400-10° m, u, =3,675-10° m,w, = -0,3424-10° m.
(13.46)

The reactions utilizing the 2" and 4™ component equations of the finite element equilibri-
um equation are:

F,=7272-10° N, F,, =74144 N. (13.47)
The example was verified by the finite element code ANSYS 12. We note that similarly to
the examples of section 12 we considered the reactions in the vector of external forces.
The term Ni/r appearing in the second row of matrix B can cause trouble in the course of
integration if one of the element edges lies on the axis of revolution (where r = 0). To
avoid this problem a local coordinate system is introduced for each element, or the integra-
tion is made by approaching r to zero by constructing a hole with very small diameter [1].

13.4 Axisymmetric isoparametric quadrilateral element

The isoparametric quadrilateral element for plane problems has been presented in section
12. The element is applicable to solve axisymmetric problems too. The functions of the
local r and z coordinates of element edges are [4]:

r(&,m) =Ny (&mr + N, (&mr, + Ny (&,m)r, + N, (&,m)r, :NT & mr,
(13.48)

2(&,m) =Ny (&,m)z, + N, (&,m)z, + Ny (&,m)z5 + N, (&E,m)z, :HT (& mz,

where in Eq.(12.77) coordinate x was changed to r, coordinate y was changed to z. Conse-
quently the same interpolation functions can be used:

Nl(é,n)=%(1—§)(1—77), Nz(é,n):%mé)a—n), (13.49)

1 1
No(§m) =5 W+ O)A+n), Ny(§m) = A=) (A+n).
The displacement is formulated in the usual way:

W) {“(‘f’ﬂ _ N, (1350)
w(¢&,m)
where:
u(&,m) = Ny (&,mu, + N, (&,mu, + Ny (E,m7)u; + N, (&, m)uy,,

(13.51)
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W(&,77) = N (&)W, + N, (S,m)W, + N (S,m)w; + N, (S, m)w,,
with that the matrix of interpolation functions and the vector of nodal displacements are,
respectively:

N, 0 N, 0 N, O N, O
N(Emn) = : (13.52)
= 0 N, 0 N, 0 N; O N,
ul =fu, ow,ou, ow, ugow, U, W, (13.53)
The well-known strain-displacement matrix is used to calculate the strain components as:
£=0u=0Nu, =Bu,, (13.54)
where:
2
or
L 0
T [Nl 0 N, 0 N, 0 N, O}
= — |og 20 N, O N, O N, 0O N,
0z
o 2
L0z oOr |
[ ON, o MNo o Ny o N,
or or or or
Neog N Noo g Neo g
_|r r r r
0 ON, 0 oN, 0 ON, 0 ON,
0z 0z 0z 0z
ON, ON, ON, ON, ON, ON; ON, ON,
| 0z or 0z or oz or 0z or |

(13.55)
As it is shown, we need the derivatives of the interpolation functions with respect to r and
z. Due to the fact that the functions N; are known in terms of the natural coordinates & and
n, we need again the Jacobi matrix and its determinant, referring to Eq.(12.104) we have
[4]:
0 0

1
==, —-J,—), 13.56
- J(zzag 12877) (13.56)
izi(_‘]Zli-i_‘]lli)’
oz J o0& on
where:
or < oN, 1
Ja= 0= 2 = e @+ Q) ~ @)

(13.57)
o 22_2 — Z%_l\:;z‘ :%{— A-mz,+A-n)z, +Q+n)z, —(1+77)Z4},

_O N L ey -
du= g =2 = O - O+ L O (-8,
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07 0N, 1
Jy = % = ;EZ‘ = Z{_ -8z, -1+ 85z, + 1+ &)z, + (1_5)24}'
Matrix B can be produced in a similar way as it was shown by Eq.(12.105), except for the

fact that we must consider the term N;/r appearing in the second row of the matrix. The
calculation of the new terms is possible incorporating Egs.(13.48)-(13.49). Coordinate r in
terms of & and » parameters is given by Eq.(13.48). The formula of the stiffness matrix is:

11
K, =2z[[B"C"Briday. (13.58)
-1-1
To provide the vector of forces we need three vectors, the first one is:

1 1
Fo=2z[N' pridé F,, =27 [N" pridy, (13.59)
1 ]

depending on the fact that which one of the element edges is loaded by the line load, more-
over the second and third vectors are:

11
Fo=27[[N"qridédn, (13.60)
-1-1
EZC = [Ffl l:Zl FI’Z FZZ I:r3 Fz3 I:r4 FZ4]' (1361)
Finally the total force vector is:
Ee = Eep + Eeb + Eec . (1362)

In the sequel we present an example for the application of the element.

13.5 Example for the application of axisymmetric isoparametric quadrilateral ele-
ment

Solve the problem of the rotating disk of which analytical solution has been presented in
section 11.6.2 using two isoparametric quadrilateral elements! The finite element model of
the disk is shown in Fig.13.3.
a. The angular velocity of the disk is @ = 880,5 rad/s, verifiy if the disk gets loose!
b. Calculate the stresses in that case when there is no revolution, i.e.: @ = 0, but there
is an overlap of 5= 0,02-10° m!

S)“:/e(;],bz m, re=0,2 m, h =0,04 m, p= 7800 kg/m®, E = 200 GPa, v=0,3.
AZ
w(j
4 6
@ @ h
1 3, 5.

o
=y
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Fig.13.3. A simple finite element model of a rotating disk.

We give the distances in [m] and the force in [N]. The nodal coordinates are:

node rim] | z[m] node rimj | z[m]
1 0,02 0 4 0,11 0,04
2 0,02 0,04 5 0,2 0
3 0,11 0 6 0,2 0,04

The element-node table becomes:

element node
1 11342
2 315|614

In the knowledge of the boundary conditions the structural vector of nodal displacements

(13.63)
The constitutive matrix using Eq.(13.14) is:
269,2 11538 11538 O
11538 269,2 11538 O o
C= -10° Pa. (13.64)

11538 11538 269,2 O
0 0 0 76,9

The elements of the Jacobi matrix must be produced for both elements based on
Eq.(13.57):
1

‘Jl(i) = Z{_ Q-+ Q=) + QL +m)r, - (1+77)I’2}= 0,045,
(13.65)
0 =l @omz @z, + @z, - @)z} =0,

1

I = =R - O + L+ Or + (L= =0,

09 = -8 - W+ 97, + 1+ 7, + (- )7} = 002.
and:
3 =3 @ + Q) + L r, - @)= 0,045,
(13.66)

3 = @z, A0z + @ )7 - @ )7} =0,

09 =T — @+ O+ @+ O + (- D)} =0,
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I =3 092, - M Oz + L+ Oz, + U 9z,}=002.

The elements of the Jacobi matrix, and so the determinant is constant and identical for both
elements:

JO =3®=73=0,0009. (13.67)
Continuing the calculation we compute the derivatives of interpolation functions with re-
spect to r and z in accordance with Eq.(13.56). Due to the identical Jacobi determinants of

the elements, the derivatives of the interpolation functions will be identical too. Therefore,
we can omit the superscripts of the elements of Jacobi matrix:

(3] (2)
N N1 Ny Ny 5565654555555,
or or J o0& on

(13.68)
(@) (2)
N = _ N, _ Ly My 5 MNay_ 556555555555,
o or 3 g on
@ (2)
N 7N, ™ _ Ly MNs ) —3) 5555565 + 5,5555517
or o J §
@ (2)
N, = N, ™ _ Ly Moy MNay_ 5555555556550,
o o 3 g on
()] (2)
NN Ly Ny Ny o5 105,
a2 a3 Pae Mg
(13.69)
() (2)
ON, ™ _ ON, :l(_Jm%Jr 311%):_12,5_12,551
a1 e Moy
() (2)
N7 N, _ Ly Ny Jn—) 125+12,5¢,
0z 0z J o0&

() (2
N, _ 0N, _1(_321%”118_7;):12,5—12,55,

oz oz o&
Coordinate r should be given for both elements separately based on Eq.(13.48):
r® =N,n + N, + Nyr, + N,r, =

=0,005(1-7)(L- &) +0,0275(L—77)(L+ &) + 0,0275(L + 77)(L + &) + 0,005(L + 1) (L - &),

(13.70)

r® =N,r,+ N,r, + Nor, + N,r, =
=0,0275(1—-7)(1-<&) +0,005(1—77)(1+ &) + 0,005(2+ 7)(L+ &) + 0,0275(1 + 1) (L - &),

where we considered also the element orientation (the local numbering of the nodes of el-

ement). As a next step, we provide the strain-displacement matrix for each element using

Eq.(13.55). The elements of matrices are the functions of & and 7, which are extremely

complicated, therefore we do not give them here. The element stiffness matrices can be
calculated using the B matrices:
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K

K

11
. =27[[BTCTB M dedn -

-1-1
40,62 4,23 134 302 -17,00 -1510
5857 —483 3658 —2417 -—4356
65,83 -3504 -1466 1571
115,67 -15,71 -108,69
65,84 35,04
115,67
11
K,,=27[[B?"CTB?r®udadn -
-1-1
(82,40 31,42 -853 846 —4641 -—42,29
179,20 -10,27 87,23 -51,35 -103,87
116,71 -62,23 -3816 2115
236,30 —2115 -219,65
116,71 62,23
236,30

—-17,00

785 ]
51,59
2417
4356
483 |
36,58
— 4,23
5857 |
(13.71)

-2,80
—-7,85

15,10
1,34
-3,02
40,62

2,42 |
~162,56
51,35
-103,88
10,23
87,23
-31,42
179,20

~30,85
—2,42
— 46,40
42,29
~8,53
8,46
82,40

-10° N

As the node numbering does not correspond to the element orientations we need to rear-
range the element stiffness matrices in accordance with the numerals of degrees of free-
dom. Let the vector of nodal displacements be equal to:

(13.72)

Corresponding to the former, the original element stiffness matrices are rearranged as:

1
ke15
1
keZS

1
ke75

Keas
Kezs
Kero
Kegs
Kess
Keass

1
keSS

1
ke86
1
ke36
1
ke46

1
ke56

T
Uy = [ul w,oou, W, u; W; u, W4],
T
Ug, = [Us W; U, W, Us Wz Ug We]-
1 1 1 1 1 1
kell kelZ ke17 ke18 kelS ke14
1 1 1 1 1 1
ke 21 ke22 ke 27 ke 28 ke 23 ke 24
1 1 1 1 1 1
ke7l ke72 ke 77 ke 78 ke 73 ke 74
1 1 1 1 1 1
K _ ke81 k882 ke87 k688 ke83 ke84
=el |1 1 1 1 1 1
k k k k k k
e31 e32 e37 e38 €33 e34
1 1 1 1 1 1
ke 41 ke 42 ke47 ke 48 ke 43 ke 44
1 1 1 1 1 1
ke51 ke52 ke57 ke58 ke53 keSA
1 1 1 1 1 1
L ke6l keGZ ke 67 ke 68 ke 63 ke 64

1 1
ke65 keG6 a

(13.73)

Based on the nodes of the second element the rearrangement is made as:

© www.tankonyvtar.hu
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2 2 2 2 2 2 2 2 ]
kell kelz kel7 ke18 k913 kel4 kelS kelG
2 2 2 2 2 2 2 2
keZl ke22 I(927 keZB keZ3 keZ4 ke25 ke26
2 2 2 2 2 2 2 2
ke7l k6372 ke77 ke78 ke73 ke74 ke75 k¢=376
2 2 2 2 2 2 2 2
_ keSl keBZ ke87 ke88 ke83 ke84 ke85 keBG (13 74)
—e2 kz kz kz k2 kz kz kz kz ' '

e31 e32 e37 e38 e33 e34 e35 e36
2 2 2 2 2 2 2 2
ke41 ke42 ke47 ke48 ke43 ke44 ke45 ke46
2 2 2 2 2 2 2 2
keSl k6352 ke57 ke58 ke53 keS4 ke55 ke56
2 2 2 2 2 2 2 2
L ke61 ke 62 keG7 ke68 ke63 ke64 ke65 ke 66 _|
Now, we can construct the structural stiffness matrix. The mutual nodes are the third and
fourth ones. Accordingly, the combination of the two matrices results in:

1 1 1 1 1 1 1 1 T
kell kelZ ke17 ke18 kelS ke14 ke15 kelG 0 O O O
1 1 1 1 1 1 1 1
ke21 ke22 k927 ke28 k923 k924 ke25 keZG O O O O
1 1 1 1 1 1 1 1
ke?l ke72 ke77 ke78 ke73 ke74 ke75 ke76 0 O 0 O
1 1 1 1 1 1 1 1
keBl keBZ keS7 ke88 k883 k984 keSS k986 0 0 0 0
1 1 1 1 1 2 1 2 1 2 1 2 2 2 2 2
Kear Koo Koo Kesg  Kegg tKayr  Keay t Koy Keos +Ker  Kegs T Kag Kaiz Kaw Kas Kegg
1 1 1 1 1 2 1 2 1 2 1 2 2 2 2 2
K = Keaw Koz Kesr Keag Kesg Koy Keag 7 Kep  Koas +Keyr Kogs +Kog Kepg Koy Kos Koz
=" kl kl kl kl kl k2 kl k2 kl kZ kl k2 k2 kZ k2 kZ '
e51 e52 e57 €58 e53 + e7l e54 + e72 e55 + e77 e56 + e78 e73 e74 e75 e76
1 1 1 1 1 2 1 2 1 2 1 2 2 2 2 2
keGl keGZ ke67 keGS ke63 + I(981 ke64 + I(982 ke65 + ke87 ke66 + I(e88 ke83 ke84 ke85 ke86
2 2 2 2 2 2 2 2
0 O O 0 ke31 ke32 ke37 ke38 ke33 ke34 ke35 ke36
2 2 2 2 2 2 2 2
0 O O 0 ke4l ke42 ke47 ke48 ke43 ke44 ke45 ke46
2 2 2 2 2 2 2 2
0 O 0 O keSl keSZ ke57 keSS keS3 ke54 ke55 keSS
2 2 2 2 2 2 2 2
L 0 0 0 O keGl keBZ keG7 k868 k963 keB4 keBS ke66_
(13.75)

We note that the finite element codes provide the structural stiffness matrix using the ele-
ment-node table. The numerical values can be obtained using Eq.(13.71). The force vector
consists of the vectors of body and concentrated forces. The density vector of the body
force is:

ar pro’ Cqo | et o [ prPe’
= = , and: = ) = )

(13.76)
from which we have:

11
EQ=27[[N"q"r®Jdédn =[L01 0 234 0 234 0 101 O] -10°N,
1a

(13.77)
11
FQ =27[[N"q“r®Jdadn=[686 0 1004 0 1004 0 686 0] -10° N.

11
Similarly to the stiffness matrices, the rearrangement is required also in the force vectors
according to the local node numbering:

© Dr. Andrés Szekrényes, BME © www.tankonyvtar.hu



16 Modeling of axisymmetric state by FEM software systems. Modeling, analysis of
problem evaluation

FOT [1,01] F?] [686]
Faoa| | O For | | O
F9 1 | 101 F@| | 686
FY 0 F& 0
Fo=| o= 10°N and Fg) =| 0 |= -10° N,
FO 1 |234 F@ | |10,04
Fo| | o Rl | o
FO | 2,34 F2 | |10,04
LU Fee] L 0]

(13.78)
The structural force vector is calculated as the sum the two former vectors:
FT _ F (l) F (1) F (l) F (l) Fe(;g) + Fe(bll)l + Fe(bl% + Fe(blg +
b ™ ebl eb2 eb7 eb8 (2) (2) 2) 2)
+ I:ebl + Febz + Feb? + FebS
= [1,01 0 101 0 920 0 920 0 10,04 0 10,04 0]~1O5 N.
(13.79)

(2) (2) (2) (2| _
Feb3 Feb4 l:ebS l:ebG -

The vector containing the reaction is:
Fl=[o F, 0 00 00 0O0O0 O 0] (13.80)
The structural force vector is:
F=F,+F,. (13.81)
Finally, the structural equation is:
KU =F. (13.82)
The system of equations consists of twelve equations. From the 1% and 3"-12" equations
we determine the nodal displacements. The solutions are:
u, =u, =0,0168-10° m,w, =0,w, =-0,0149-10° m
(13.83)
u, =u, =0,0368-10"° m,w, =-0,00365-10"° m,w, = -0,0113-10° m,
U; = U, =0,0440-10° m,w, =-0,0051-10° m,w, =—0,0098-10° m
It is seen that if the disk rotates with maximal angular velocity, then in accordance with the
finite element model we do not reach the overlap value of 0,02-10° m calculated from the
analytical model, i.e. the disk will not get loose. This disagreement can be explained by the
coarse mesh of the finite element model, which consists of only two elements. The de-

formed shape of the structure compared to the original state is shown in Fig.13.4. Based on

the displacement solutions we construct the nodal displacement vectors of the elements:

up=Mu 0 u w,ou, ow, U, W], (13.84)

T
Ue, = [Ua W Us Wy Ug Wg U, W4]'

In the former two vectors we followed the original order of the local node numbering, be-
cause matrix B was constructed in accordance with this fact. The vectors of strain compo-

nents for both elements are calculated using matrix B :

é(1) — E(l) ge]-, §(2) — E(Z)HEZ . (1385)
The vector of stress components are:
oW = ggm L o® = gg(z). (13.86)
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Fig.13.4. Deformed shape of the finite element model of rotating disk.

The results are summarized in Tables 13.1 and 13.2. In the tables we listed the nodal solu-
tions. Element solutions are possible to calculate only at mutual nodes 3 and 4 by averag-
ing the nodal solution. According to Table 13.2 it is seen that the dynamic boundary condi-
tions are violated, concretely speaking the radial stress at nodes 1, 2, 5 and 6 is not zero.
The reason for that is the low resolution of the mesh and the linear interpolation. On the
contrary, the tangential stress agrees quite well at the inner and outer boundaries with the
results presented in Fig.11.10a. The example was verified by the code ANSYS 12.

element node & [107] &[107] & [107] %, [-107]
1 0,222 0,840 -0,373 -0,041
1 2 0,222 0,840 -0,373 0,041
3 0,222 0,335 -0,191 -0,041
4 0,222 0,335 -0,191 0,041
3 0,080 0,335 -0,191 -0,016
2 4 0,080 0,335 -0,191 0,016
5 0,080 0,220 -0,118 -0,016
6 0,080 0,220 -0,118 0,016

Table 13.1. Strain components in the rotating disk in the case of @ = 880,5 rad/s.
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element node o; [MPa] o [MPa] o, [MPa] %, [MPa]
1 113,7 208,7 22,1 -3,1
1 2 113,7 208,7 22,1 31
3 76,4 93,7 12,9 -3,1
4 76,4 93,7 12,9 31
3 38,1 77,3 -3,5 -1,25
5 4 38,1 77,3 -3,53 1,25
5 33,4 54,9 2,97 -1,25
6 33,4 54,9 2,97 1,25

Table 13.2. Stresses in the rotating disk in the case of @ = 880,5 rad/s.

In that case, when there is no rotation the structural vector of nodal displacements be-
comes:

U'=[6 0 6 w, u, w, u, w, uy wy Uug W]

13.87
The stiffness matrix remains the same, the vector of forces is: ( :
Fi=[F, F, F, 0 0 0 0 0 0 0 0 0]. (13.88)

The solutions are:
u,=u,=002-10°m,w, =0,w, =-0,0049-10° m, (13.89)

u, =u, =0,0055-10"° m,w, = 0,0056-10"° m,w, =—0,0020-10° m,
U, = U, =0,0038-10° m,w, = -0,0022-10° m,w, = -0,0027-10° m.

Table 13.3 contains the stresses in the disk when there is no rotation. Compared to the re-
sults of the analytical solution the differences are quite large, which can be explained again

by the low resolution finite element mesh and the linear interpolation.

element node o; [MPa] o [MPa] o, [MPa] 7, [MPa]
1 58,1 236,6 63,9 -2,5
1 2 58,1 236,6 63,9 2,5
3 -34,8 -2,3 -6,7 -2,5
4 -34,8 -2,3 6,7 2,5
3 3,2 13,9 9,6 0,6
5 4 3,2 13,9 9,6 -0,6
5 -4,5 1,4 -3,6 0,6
6 -4,5 1,4 -3,6 -0,6

Table 13.3. Stresses in the disk in the case of = 0.
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