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13.  ANALYTICAL AND FINITE ELEMENT SOLUTION OF A PLATE 
WITH CENTRAL HOLE 

Calculate the stress field in the in-plane loaded plate with central hole shown in Fig.13.1 
 a. analytically by the help of the basic equations of elasticity, 
 b. by finite element method using the code ANSYS, 
moreover, compare the results obtained from the two different calculations! The material 
of the plate is linear elastic, homogeneous and isotropic.  
 

 

Fig.13.1. Plate with central hole subjected to normal load in direction x and tangential load along 
the boundaries. 

13.1 Analytical solution 
The governing equation of plane problems has already been derived in cylindrical coordi-
nate system in section 11 (see Eq.(11.74)): 
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  (13.1) 
which is a partial differential equation involving dynamic boundary conditions (formulated 
for the stress field). Accordingly, a boundary value problem should be solved. The stresses 
are expressed by the following equations (refer to section 11): 
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The problem can be solved by the method of Fourier, i.e. it is assumed that the solution 
function is separable with respect to the variables [1]: 
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Taking it back into the governing equation given by Eq.(13.1) we obtain: 
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  (13.4) 
The solution in terms of variable r is searched in the form of a power function: 
 nrrR =)( . (13.5) 
Taking it back into Eq.(13.4) the following is obtained: 
 0])2[()2( 2222 =Φ+Φ+−+Φ− IVIInnnn . (13.6) 
a. Let us assume that: 
 IVII Φ=Φ , (13.7) 
which is possible only if Φ is the sum of constant and linear terms: 
 ϑϑ 21)( CC +=Φ , (13.8) 
where C1 and C2 are constants. As a consequence Eq.(13.6) reduces to: 
 0)2( 22 =Φ−nn , (13.9) 
which is satisfied if n = 0 or 2, however each root is a double root due to the second power. 
The differential equation to be solved based on Eq.(13.4) is: 
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We integrate the equation with respect to r: 
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As a next step we divide the equation by r and integrate again with respect to r: 
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Now we multiply the equation by r and integrate it third time: 
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The partial integration of the first term on the right hand side yields: 
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We divide the result by r and integrate it even fourth time: 
 DrCrrBArrR +++= lnln)( 22 , (13.15) 
where A, B, C and D are constants. Summarizing the results of case a. the elements of the 
basic function system are: 
 { }1,ln,ln, 22 rrrr  and { }1,ln,ln, 22 rrrrϑ . (13.16) 
These function, however are not periodic functions. It may be assumed that the solution 
function is periodic, i.e. it contains trigonometric functions. 
b. Because of the even derivatives we assume that the solution is the combination of trigo-
nometric functions: 
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accordingly: 
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From Eq.(13.6) we obtain: 
 0])2[()2( 422222 =++−+− inninn . (13.19) 
Let us investigate the possible values of parameter i! Eq.(13.19) is a second order equation 
for i2 of which solutions are: 
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viz.: 
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If n = 1 then for both cases the result is i2 = 1, i.e. for n = 1 we have double roots. The solu-
tion in terms of r is R(r) = r, and the elements of the basic function system become: 
 { }ϑϑϑϑϑϑ sin,cos,sin,cos rrrr . (13.22) 
From Eq.(13.21) we express the value of n in terms of i: 
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Let us investigate that in which cases we have double roots! If i = 1 then n = 1, -1, 3, 1, 
accordingly there exists one double root, and so the elements of the basic function system 
utilizing R(r) = rn are: 
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where the last term is the fourth independent element due to the double root. If i = 2 then n 
= 2, -2, 4, 0, accordingly there is not any double root and the elements of the basic function 
system are: 
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It can be seen based on Eq.(13.23) that if i > 1 then there is no double root, i.e. the solution 
can be presented in reduced form if i > 1. Let us summarize the solution function [1]! 
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where the 1st, 6th and 7th rows contain the non-periodic solutions, rows 2nd-5th contain the 
periodic solutions when i = 1 and i = 2..∞. In the 7th row we included the missing terms 
due to the double roots for n = 1, finally the last term is the function of particular solution. 
Eventually, Eq.(13.26) can be applied to any plane problem on condition that we use cy-
lindrical coordinate system. Let us get back now to the original problem! The stress tensor 
in a point sufficiently far from the hole is: 
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We transform the stresses into the r-ϑ cylindrical coordinate system. The unit basis vectors 
of the cylindrical coordinate system are: 
 jier ϑϑ sincos +=  and jie ϑϑϑ cossin +−= . (13.28) 
The radial stress based on the stress transformation expression is: 
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where c = cosϑ and s = sinϑ. Utilizing that cos2ϑ = 1/2⋅(cos(2ϑ)+1) and sin2ϑ = 
2⋅cosϑ⋅sinϑ we obtain: 
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The tangential stress and the shear stress are calculated in a similar fashion: 
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Comparing Eqs.(13.30)-(13.31) to the solution of Airy’s stress function in Eq.(13.26) the 
following terms remain: 
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which contains all in all twelve constants. Let us investigate the terms in the 1st row! The 
stress components become independent of ϑ, from Eq.(13.2) we obtain: 
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The strain components are calculated using Hooke’s law for plane stress state based on 
Eq.(11.68): 
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Moreover, the shear strain is zero. The relationship between the displacement field and the 
strain components is given by Eq.(11.66): 
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We express the radial displacement, u from both equations: 
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Comparing the results it is elaborated that the term after a04 leads to an incompatible dis-
placement field. This contradiction can be resolved only if: 
 004 =a . (13.37) 
In the case of the other terms there are no compatibility problems. Next, we calculate the 
stresses considering all of the terms in Eq.(13.32):  
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where we can notice that the terms a23 and b23 vanish, which can be explained mathemati-
cally by the fact that for r = ∞ finite stresses are required. There are still eight unknown 
constants in the stress formulae. These eight constants can be obtained based on the 
boundary conditions of the problem. We incorporate Eqs.(13.30) and (13.31), which give 
the stress state at any point, which is located at an infinitely far r distance from the hole:  
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and this yields: 
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Further five constants can be calculated based on the dynamic boundary conditions. If r = 
R then the hole is free to load independently of the angle coordinate ϑ, consequently: 
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The solutions of the system of equations are: 
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Taking the constants back into the stress formulae we obtain: 
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To plot the functions of stress field let us perform the function analysis of the solution! 
I. ϑ = 90°, this leads to: 
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II. ϑ = 0°, cos(2ϑ) = 1, sin(2ϑ) = 0, i.e: 

 )341(
2

)1(
2

)( 4

4

2

2

2

2

r
R

r
Rf

r
Rfrr +−+−=σ ,  (13.45) 

 moreover, if r = R then σr(r) = 0, which is also a dynamic boundary condition. Let 
us search the extreme value of σr(r): 
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 from which we obtain Rr 2,1= . Taking it back and calculating the extreme value 
we have: 
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   (13.47) 
 Let us calculate the root of the function: 
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 which yields Rr 5,1= . Finally, if ∞⇒r  then fr =σ . 
III. Along the circumference of the hole there is a uniaxial stress state, which is justified 

by the followings: 
 0),( =ϑσ Rr  and 0),( =ϑτ ϑ Rr due to the dynamic boundary conditions, further-

more: 

 ϑϑϑσϑ 2cos22cos)31(
22

),( ffffR −=++= , (13.49) 

 and based on 02cos21 =− ϑ  the root of this function is calculated 
from: 302/12cos =⇒= ϑϑ .  

IV. If f = 0 and there is only tangential load t, then at r = R we have 
0),(),( == ϑτϑσ ϑ RR rr and ϑϑσϑ 2sin4),( tR −= . 

The results are presented in Figs.13.2 and 13.3. We note that the problem of plate with 
central hole can be solved also by complex variable functions, see e.g. [2,3]. 
 

 

Fig.13.2.Tangential stresses if ϑ = 90° and radial stresses if ϑ = 0° in a plate with central hole. 
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Fig.13.3.Tangential stresses in a plate with circular hole subjected to uniaxial tension in direction 
x (a) and tangential load along the boundaries (b). 

13.2 Finite element solution 
Solve the problem of the plate with central hole shown in Fig.13.4 by the finite element 
method! Prepare the finite element model of the plate depicted in the figure; calculate the 
nodal displacements and stresses! Plot the distribution of normal and shear stresses along 
the symmetry lines! 
 

 

Fig.13.4. Finite dimension plate with central hole subjected to uniaxial tension and tangential 
load. 

Given:  
A = 80 mm, R = 8 mm, f = 1 MPa, t = 1 MPa, E = 200 GPa, ν = 0,3, v = 1 mm 
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The finite element solution is presented by using the code ANSYS 12. The actual com-
mands are available in the left hand side and upper vertical menus [4]. The distances are 
defined in [mm], the force is given in [N]. 
 

File menu / Change Title / Title: “Modeling of a plate with hole under plane stress state” 
Printing the problem title on the screen 

- refresh the screen by the mouse roller 
 

PREFERENCES – STRUCTURAL 
Analysis type definition 

 

PREPROCESSOR / ELEMENT TYPES / ADD/EDIT/DELETE /ADD / SOLID / QUAD  
Element type definition – 4 node isoparametric plane element (PLANE42) 

4NODE 42 / OK / 
PREPROCESSOR / OPTIONS / ELEMENT BEHAVIOR K3 – PLANE STRS W/THK /  

OK / CLOSE 
PREPROCESSOR / REAL CONSTANTS / ADD/EDIT/DELETE / ADD / OK / THK=1 /  

OK / CLOSE – definition of the thickness 
 

PREPROCESSOR / MATERIAL PROPS / MATERIAL MODELS / STRUCTURAL /  
Material properties definition 

LINEAR / ELASTIC / ISOTROPIC / EX = 200e3, PRXY = 0.3 / OK 
 
Exit: Material menu / Exit 

 

PREPROCESSOR / MODELING / CREATE / AREAS / RECTANGLES / BY 2 COR-
NERS / WPX = 0, WPY = 0, WIDTH = 20, HEIGHT = 20 

Geometry preparation 

- definition of the coordinates in the opening window 
 
Click the 9th icon on the right entitled „Fit View”, it fits the screen to the actual object size. 
 
PREPROCESSOR / MODELING / CREATE / AREAS / RECTANGLES / BY 2 COR-
NERS / WPX = 0, WPY = 0, WIDTH = 80, HEIGHT = 80 / APPLY 
 
Creation of a further square 
PREPROCESSOR / MODELING / CREATE / AREAS / RECTANGLES / BY 2 COR-
NERS / WPX = 20, WPY = 20, WIDTH = 60, HEIGHT = 60 / OK 
 
Elimination of the overlapping areas 
PREPROCESSOR / MODELING / OPERATE / BOOLEANS / OVERLAP / AREAS / 
PICK ALL 
 
Creation of the hole 
PREPROCESSOR / MODELING / CREATE / AREAS / CIRCLE / SOLID CIRCLE /  

WPX = 0, WPY = 0, RADIUS = 8 / OK 
 
Subtraction of the hole from the smaller square 
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PREPROCESSOR / MODELING / OPERATE / BOOLEANS / SUBTRACT / AREAS  
- selection of the smaller square by the mouse / OK 
- selection of the circle by the mouse / OK 

 
Bisection of the quarter arc of the hole 
PREPROCESSOR / MODELING / OPERATE / BOOLEANS / DIVIDE / LINE 
W/OPTIONS / OK / 

- selection of the arc / OK 
 
Connection of the quarter arc midpoint with the corner of the smaller square by a straight 
line 
PREPROCESSOR / MODELING / CREATE / LINES / LINES / STRAIGHT LINE –  

- selection of the points by the mouse / OK 
 
Division of the smaller area by the line with inclination of 45° 
PREPROCESSOR / MODELING / OPERATE / BOOLEANS / DIVIDE / AREA BY 
LINE   - selection of the smallest area / OK 
   - selection of the line with inclination angle of 45°/ OK 
 
Fig.13.5 shows the process of creating the areas. 
 

 

Fig.13.5. Preparation of the geometrical model of a plate with central hole. 

Reflection of the model with respect to axis x 
PREPROCESSOR / MODELING / REFLECT / AREAS / PICK ALL / X-Z PLANE Y / 
OK 
 
Glue the areas to each other 
PREPROCESSOR / MODELING / OPERATE / BOOLEANS / GLUE / AREAS / PICK 
ALL 
 

Element number definition along the lines based on Fig.13.6 
Meshing 

PREPROCESSOR / MESHING / SIZE CNTRLS / MANUALSIZE / LINES / PICKED  
LINES / PICK / NO. OF ELEMENT DIVISIONS = typing in the proper 
number, repetition of the command 

 
PREPROCESSOR / MESHING / MESH / AREAS / MAPPED / 3 OR 4 SIDED / PICK 
ALL 
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Plot menu / Multi-Plots – display the elements and nodes 
 

 

Fig.13.6. Details of the finite element model of the plate with central hole. 

Reflection of the model with respect to axis y 
PREPROCESSOR / MODELING / REFLECT / AREAS / PICK ALL / Y-Z PLANE X / 
OK 
 
Glue the areas to each other 
PREPROCESSOR / MODELING / OPERATE / BOOLEANS / GLUE / AREAS / PICK 
ALL 
 
Elimination of the overlapping nodes along the vertical symmetry line 
PREPROCESSOR / NUMBERING CTRLS / MERGE ITEMS / TOLER Range of coinci-
dence = 0.05 / OK 
 

Load case 1: f = 1 MPa distributed load in direction x 
Loading definition, load cases 

Kinematic constraints 
PREPROCESSOR / LOADS / DEFINE LOADS / APPLY / STUCTURAL /  

DISPLACEMENT / ON NODES 
- selection of the lowest point on the vertical symmetry line / OK / 
UX, UY / APPLY 
- selection of the highest point on the vertical symmetry line / OK / 
UX / OK 
 

Definition of f = 1 MPa 
PREPROCESSOR / LOADS / DEFINE LOADS / APPLY / STUCTURAL / PRESSURE /  
ON LINES / 
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- selection of the lines with coordinate x = 40 and -40 mm by the 
mouse, intensity, VALUE Load PRES Value = -1 

 
Read the load case as load step 1 (LS1) 
PREPROCESSOR / LOADS / LOAD STEP OPTS / WRITE LS FILES / LSNUM = 1 
 
Deletion of the load and kinematic constraints 
PREPROCESSOR / LOADS / DEFINE LOADS / DELETE / STUCTURAL / PRESSURE 
/ ON LINES / PICK ALL 
 
PREPROCESSOR / LOADS / DEFINE LOADS / DELETE / STUCTURAL / DIS-
PLACEMENT / ON NODES / PICK ALL / ALL DOF / OK 
 
Load case 2: t = 1 MPa tangentially distributed load 
PREPROCESSOR / LOADS / DEFINE LOADS / APPLY / STUCTURAL / PRESSURE /  

ON ELEMENTS 
- activation of the „box”, selection of elements on the right side on the upper 
longer horizontal boundary by the box / OK 
LKEY = 4, VALUE LOAD PRES VALUE = 1 / APPLY 
- activation of the „box”, selection of elements on the right side on the upper 
smaller horizontal boundary by the box / OK 
LKEY = 1, VALUE LOAD PRES VALUE = 1 / APPLY 
- activation of the „box”, selection of elements on the right side on the lower 
smaller horizontal boundary by the box / OK 
LKEY = 3, VALUE LOAD PRES VALUE = 1 / APPLY 
- activation of the „box”, selection of elements on the right side on the lower 
longer horizontal boundary by the box / OK 
LKEY = 3, VALUE LOAD PRES VALUE = 1 / APPLY 

 
Along the other boundaries the load should be defined according to Fig.13.7a, where we 
gave the values of LKEY for all of the boundary lines. The load is equal to unity on each 
boundary line. 
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Fig.13.7. Definition of the LKEY parameter for the boundary lines of finite element model of the 
plate with central hole (a), definition of the boundary conditions by rotating the model (b). 

Kinematic constraint, we create a local coordinate system, see Fig.13.7b. 
PREPROCESSOR / MODELING / CREATE / KEYPOINT / IN ACTIVE CS / 
   x = 0, y = 0, z = 0 / OK 
 
Workplane menu / Local Coordinate Systems / Create Local CS / By 3 Keypoints + 

- selection of the point with coordinates x = 40 mm, y = 40 mm  
- selection of the point with coordinates x = 0, y = 0 
- selection of the point with coordinates x = -40 mm, y = 40 mm / 
OK 

 
Display the model in coordinate system 11 
Workplane menu / Change Display CS to / Specified Coord Sys / KCN = 11 / OK 
  (refresh the screen by the mouse roller) 
 
PREPROCESSOR / LOADS / DEFINE LOADS / APPLY / STUCTURAL / DIS-
PLACEMENT / ON NODES 

- select the node with coordinates x = 0, y = 0 / OK / UX, UY / AP-
PLY 
- select the node with coordinate 802 ⋅=x mm, y = 0 / OK / UY / 
OK 

 
Read the load case as load step 2 (LS2) 
PREPROCESSOR / LOADS / LOAD STEP OPTS / WRITE LS FILES / LSNUM = 2 
 

SOLUTION / SOLVE / FROM LS FILES / 1 – 2 
Solution 

„SOLUTION IS DONE!” 
 
Set the active and display coordinate system 
Workplane menu / Change Active CS to / Global Cartesian 
Workplane menu / Change Display CS to / Global Cartesian 
  (refresh the screen by the mouse roller) 
 

GENERAL POSTPROC / LOAD CASE / CREATE LOAD CASE / from Results file/ OK 
Creation of load cases, read and multiplication 

  LCNO = 1, LSTEP = 1, SBSTEP = Last / APPLY / OK 
  LCNO = 2, LSTEP = 2, SBSTEP = Last / OK 
 
Read load cases 
GENERAL POSTPROC / LOAD CASE / READ LOAD CASE 1 – normal load (f) 
GENERAL POSTPROC / LOAD CASE / READ LOAD CASE 2 – tangential load (t) 
 

GENERAL POSTPROC / PLOT RESULTS / DEFORMED SHAPE / select DEF + 
UNDEF EDGE / OK 

Plotting and listing of the results 

http://www.tankonyvtar.hu/�


Alfejezetcím    15 

 Dr. András Szekrényes, BME   www.tankonyvtar.hu 

 
PlotCtrls menu / Animate / Deformed Shape - animation 
 
Nodal displacements, stresses and strains with color scale 
GENERAL POSTPROC / PLOT RESULTS / CONTOUR PLOT / NODAL SOLU /  
 
NODAL SOLUTION:   nodal displacements  
DOF SOLUTION: UX, UY, USUM  displacements with color scale 
STRESS:  normal and shear stresses, principal stresses, 

equivalent stresses 
ELASTIC STRAIN: strains and shear strains, principal strains 

equivalent strains 
 
Stresses, strains, element solutions with color scale 
GENERAL POSTPROC / PLOT RESULTS / CONTOUR PLOT / ELEMENT SOLU /  
 
ELEMENT SOLUTION:   element solutions  
STRESS:  normal and shear, principal stresses, equiva-

lent stresses 
ELASTIC STRAIN: strains and shear strains, principal strains, 

equivalent strains 
 
Display the results in cylindrical coordinate system 
GENERAL POSTPROC / OPTIONS FOR OUTP / RSYS Results coord system / Global 
cylindrical 
 
The stress distributions are demonstrated in Fig.13.8 for the load case with uniaxial ten-
sion in x. The model is symmetric, therefore we present only the one half of it. 
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Fig.13.8. Stresses in the finite element model of the plate with hole in [MPa], σx (a) and σy (b) in 
the x-y coordinate system and σϑ (c) in cylindrical coordinate system. 

Displacements, stresses, strains along a predefined path 
GENERAL POSTPROC / PATH OPERATIONS / DEFINE PATH / BY NODES 

- selection of the starting and ending nodes of the vertical symmetry 
axis / OK / 
- Name: ST90 

 
GENERAL POSTPROC / PATH OPERATIONS / MAP ONTO PATH  

- STRESS / X-DIRECTION, SX - selection of the normal stress in x 
 

GENERAL POSTPROC / PATH OPERATIONS / PLOT PATH 
- display the path by white line 

 
GENERAL POSTPROC / PATH OPERATIONS / PLOT PATH ITEM / ON GRAPH 

- display the distribution 
 
Changing the setup of diagram 
PlotCtrls menu / Style / Graphs / Modify Axes 
(The other stress components can be plotted in a same way) 
 
Similarly to Figs.13.2 and 13.3 we show the stresses calculated by the finite element meth-
od. The results are shown in Figs.13.9 and 13.10a. 
 

 

Fig.13.9. Tangential stresses in the plate for ϑ = 90°and radial stresses for ϑ = 0° obtained by the 
finite element solution. 

The results for load case 2 can be processed by repeating the commands above. The results 
can also be listed. As an example let us see how to list the stresses along the central hole if 
the plate is subjected to “t” tangential load only. 
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Read the load case 
GENERAL POSTPROC / LOAD CASE / READ LOAD CASE 2 – tangential load (t) 
 
Select menu / Entities / Lines / By Numpick / From Full / OK / 

- select the arcs of the hole / OK 
Select menu / Entities / Nodes / Attached to / Lines, all / Reselect / OK / 

- the nodes attached to the arcs are automatically selected 
 
Display the results in cylindrical coordinate system 
GENERAL POSTPROC / OPTIONS FOR OUTP / RSYS Results coord system / Global 
cylindrical 
 
Listing the results 
List menu / Results / Nodal solution / DOF solution / selection of the component 
     / Stress / selection of the stress component, 

SX = σr, SY = σϑ, SXY = τrϑ 
     / Elastic strain / selection of the strain component 
           / Element solution – element solutions 
           / Reaction solution – listing the reactions 
 
The distribution of the tangential stress, σϑ along the boundary of the hole of is shown by 
Fig.13.10b. 
 

 

Fig.13.10. Tangential stresses along the hole of the plate with central hole under uniaxial tension 
in x (a) and tangential load (b) in accordance with the finite element solution. 

Identification of the results by the mouse 
GENERAL POSTPROC / QUERY RESULTS / SUBGRID SOLU – selection of the com-
ponent 
In a separated window 
GENERAL POSTPROC / RESULTS VIEWER – selection of the component 
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13.3 Comparison of the results by analytical and finite element solutions 
The stress distributions obtained from the two different solutions agree very well. Consid-
ering the finite element results in Fig.13.2 and the analytical results in Fig.13.9, respective-
ly, there are only small differences in the stress distributions. The radial stress changes its 
sign if Rr 5,1= in accordance with the analytical solution (see Fig.13.2). On the contrary, 
there is no change in the sign according to the finite element solution (see Fig.13.9), which 
can be explained by the fact that the resolution of the finite element mesh is not fine 
enough in the corresponding part. The stress distributions along the circumference of the 
hole are presented in Figs.13.3 and 13.9 obtained from analysis and finite element calcula-
tion, respectively. The analytical and finite element solutions provide the same intersection 
points, where the stresses are equal to zero. Considering the maximum and minimum val-
ues of the stresses there are some differences, but these are not significant discrepancies.  
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