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12. MODELING OF PLANE STRESS STATE USING FEM SOFT-
WARE SYSTEMS. MODELING, ANALYSIS OF PROBLEM 
EVALUATION 

12.1 Finite element solution of plane problems 
In the application of the finite element method we divide the plane domain of the whole 
structure into discrete elements as it is illustrated in Fig.12.1 [1].  
 

 

Fig.12.1. The basic concept of the finite element method in the case of plane elements. 

In the FE method we apply the minimum principle of the total potential energy to develop 
the finite element equilibrium equations. For a single plane element the total potential en-
ergy is [2]: 
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  (12.1) 
where σ is the vector of stress components, ε is the vector strain components, respectively: 
 [ ]xyyx

T γεεε ,,= , (12.2) 

 [ ]xyyx
T τσσσ ,,= , 

moreover u = u⋅i + v⋅j is the displacement vector field, p is the density vector of surface 
forces, q is the density vector of volume (or body) forces, Fi is the vector of concentrated 
forces acting on the plane element with coordinates of point of action, xi and yi, Ape is that 
part of the boundary curves, which is loaded by surfaces forces, Ve is the volume of the 
element, respectively. We provide the displacement vector field by interpolation: 
 euyxNyxu ),(),( = , (12.3) 
where N is the matrix of interpolation functions, its dimension depends on the degrees of 
freedom of the plane element, ue is vector of nodal displacements. Referring to the basic 
equations of elasticity, the relationship between the strain and displacement fields in matrix 
form is:  
 u∂=ε ,  (12.4) 
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where∂ is the matrix of differential operators, it can be obtained by Eqs.(11.10) and 
(11.13): 
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The combination of the latter relations gives: 
 ee uBuNu =∂=∂=ε ,  (12.6) 
where B is the strain-displacement matrix. The stress field can be obtained by: 
 εσ C= , euBC=σ ,  (12.7) 
whereC  is the constitutive matrix − its calculation has already been made in section 11 for 
plane stress and plane strain states. The strain energy for a single finite element is: 
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where
e

K is the element stiffness matrix,  
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,  (12.9) 

its dimension depends on the degrees of freedom of the element. For plane elements the 
differential volume is written in the form of: vdxdyvdAdV == , where v is the thickness of 
element. The work of external forces acting on the element by the help of Eq.(12.3) be-
comes: 
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   (12.10) 
where ecF is the vector of concentrated forces acting in the nodes of element. Thus, the 
total potential energy can be written as: 
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where: 
 ecepebec
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T
e FFFFdVqNdApNF
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is the vector forces acting on the element. We can formulate the equilibrium equation in 
the element level by means of the minimum principle of the total potential energy: 
 0=− eee

FuK .  (12.13) 
The assembly of element stiffness matrices, vector of nodal displacements and forces leads 
to the structural equilibrium equation: 
 0=− FUK , (12.14) 
where K is structural stiffness matrix,U is the structural vector of nodal displacements, F  
is the structural vector of nodal forces, respectively. That is, the finite element equilibrium 
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equation is a system of algebraic equations for which the solutions are the values of nodal 
displacements. In terms of the nodal displacements we can calculate the nodal forces and 
stresses. 
For the solution of plane problems there exist many types of plane elements. In the sequel 
we review the simplest element types. 

12.2 Linear three node triangle element 
The linear triangle element (Turner triangle) [1,3], which is often called the triangle mem-
brane element or constant strain triangle (CST) element is  depicted in Fig.12.2. At each 
node there are two degrees of freedom. Consequently the degrees of freedom are equal to 
six for the whole element. The arrow in the center point of the element refers to the orien-
tation of the element, i.e. for each element we have a direction, which means how the 
nodes are followed by each other. 

12.2.1 Interpolation of the displacement field 
We collect the nodal x, y coordinates and displacement components in vectors: 
 [ ]332211 yxyxyxxT

e = , (12.15) 

 [ ]332211 vuvuvuuT
e = . 

 

Fig.12.2. Linear triangle element. Nodal coordinates and displacements. 

The triangle area can be expressed as a determinant: 
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   (12.16) 
The u and v components of the displacement field are formulated as the linear function of x 
and y: 
 yaxaayxu 210),( ++= ,  (12.17) 
 ybxbbyxv 210),( ++= , 
where a0, a1, a2, b0, b1 and b2 are unknown constants. The vector of strain components is: 

 [ ]xyyx
T γεεε ,,= ,  (12.18) 
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where using Eqs.(11.10) and (11.13) we have: 
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The nodal displacements must be obtained if we take back the nodal coordinates into the 
u(x,y) and v(x,y) functions given by Eq.(12.17), i.e.: 
 121101 yaxaau ++= , 121101 ybxbbv ++= ,  (12.20) 
 222102 yaxaau ++= , 222102 ybxbbv ++= , 
 323103 yaxaau ++= , 323103 ybxbbv ++= .  
The solution of the system of equations above results in: 
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   (12.21) 
where: 
 23321 yxyx −=α , 321 yy −=β , 231 xx −=γ , (12.22) 

 31132 yxyx −=α , 132 yy −=β , 312 xx −=γ , 
 12213 yxyx −=α , 213 yy −=β , 123 xx −=γ . 

Substituting the solution above back into the components of displacement field 
(Eq.(12.17)) we obtain: 
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  (12.23) 
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Considering the fact that for the triangle element we have three interpolation functions 
(see. Eq.(12.3)), we can write that: 
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In accordance with Eq.(12.21) the interpolation functions can be derived in the following 
form:  
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Based on the relation of euyxNyxu ),(),( =  the matrix of interpolation functions becomes: 
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The parameter lines of the interpolation function are shown in Fig.12.3, which implies the 
following properties: 
- at the nodes ),,( 321 NNN : )0,0,1( , )0,1,0( , )1,0,0( , 
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- at the midpoints of the triangle sides ),,( 321 NNN : )0,2/1,2/1( , )2/1,0,2/1( , )2/1,2/1,0( , 
- at the centroid ),,( 321 NNN : )3/1,3/1,3/1( , 
- i.e., it is seen that at every point: 1321 =++ NNN , 
- finally:   

e
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e

2
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!!!
321 +++

=∫ . (12.27) 

 

Fig.12.3. Parameter lines of the interpolation functions of linear triangle element. 

12.2.2 Calculation of the stiffness matrix 
According to Eq.(12.9) the definition of the element stiffness matrix is: 
 vdxdyBCBK TT

e ∫ ∫= ,  (12.28) 

where the previously mentioned strain-displacement matrix using Eqs.(12.5) and (12.26) 
becomes: 
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  (12.29) 
This formulation implies that the elements of matrix B are independent of the x and y vari-
ables, they depend only on the nodal coordinates. Therefore, the stiffness matrix can be 
written as: 
 e

TT
e

TT
e

VBCBvABCBK == ,  (12.30) 
where Ae is the element area, Ve = Aev is the element volume, respectively. As a conse-
quence, the stiffness matrix of the linear triangle element can be computed in a relatively 
simple way and in closed form. 
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12.2.3 Definition of the loads 
Body force or volume force. Let the vector of body forces be equal to: 
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from which we have: 
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  (12.32) 
Utilizing the special properties of the interpolation functions given by Eq.(12.27), e.g. if i = 
1, j = 0 and k = 0, we have: 
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Consequently we have: 

 [ ]yxyxyxe
T
eb qqqqqqvAF

3
1

= .  (12.34) 

As an explanation, the body force acting on the element (e.g. the whole weight and the 
resulting resultant force) is divided into three equal parts and put into the nodes. The body 
force can be originated from gravitation or acceleration (inertia force). 
 
Distributed force along element edges. For the calculation of force vectors as a result of 
line loads along element edges we should take the 1-2 edge of the element shown in 
Fig.12.4 into consideration. We define a dimensionless parameter, ξ along the element 
edge. The arc length along the element edge is then: 
 ξ12ls =  and ξdlds 12= . (12.35) 

 

Fig.12.4. Linear triangle element with line load in direction x along element edge 1-2. 
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The linearly distributed load in direction x can be described by the following function: 
 ξξξ 21 )1()( xxx ppp +−= . (12.36) 
Similarly, the displacement function in direction x along element edge 1-2 can be written 
as: 
 ξξξ 21 )1()( uuu +−= . (12.37) 
The work of the distributed load is generally the integration of the load function multiplied 
by displacement function between the corresponding nodes: 
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  (12.38) 
That is, the force vector from a linearly distributed line load becomes: 

 



 ++= 000

2
10

2
1

3 2121
12

xxxx
T
ep ppppvlF . (12.39) 

If the line load is constant along the element edge, then px1 = px2 = px which implies: 

 [ ]0000
2

12
xx

T
ep ppvlF = . (12.40) 

The form of the vector of forces in the finite element equation is similar in the case of a 
linearly distributed load in direction y. 
 
Concentrated forces. Concentrated forces can act only at nodes. The force vector can be 
simply formulated based on the nodes: 
 [ ]332211 yxyxyx

T
ec FFFFFFF = . (12.41) 

The total force vector is the sum of the vectors detailed in the previous points, i.e.: 
 ecepebe FFFF ++= .  (12.42) 
We demonstrate the solution of the finite element equation and the construction of the 
stiffness matrix and force vector through an example. 

12.3 Example for the linear triangle element – plane stress state 
The model shown in Fig.12.5a is loaded by distributed forces. Calculate the nodal dis-
placements and forces in that case when we built-up the plate using two linear triangle el-
ements! Calculate the strain and stress components [4]!  
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Fig.12.5. Plane model loaded by distributed forces (a), finite element model made by two linear 
triangle elements (b). 

Given: 
px = 0,12 MPa, E = 150 GPa, a = 20 mm, c = 10 mm, py = 0,06 MPa, ν = 0,25, b = 30 mm 
v = 5 mm 

  
In the course of the computation we calculate the distances in [mm] and the force in [N]. 
Following Fig.12.5b, we see that the model is constructed by two triangle elements. The 
nodal coordinates are: 

node x [mm] y [mm] 
1 0 0 
2 20 0 
3 20 30 
4 10 30 

 
The so-called element-node table is: 
 

element nodes 
1 1 2 4 
2 2 3 4 

 
The finite element equilibrium equation to be solved is: 
 FUK = , (12.43) 
where: 
 [ ]44332211 vuvuvuvuU T = , (12.44) 
is the structural vector of nodal displacements. Because of the boundary conditions (v1 = v2 
= u2 = u3 = 0) we have: 
 [ ]4431 0000 vuvuU T = . (12.45) 
In order to calculate the stiffness matrix we need the constitutive matrix for plane stress 
state (see section 11.23): 
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The coefficients of the interpolation functions for the first element are: 
 mm30421 −=−= yyβ , mm10241 −=−= xxγ ,  (12.47) 

 mm30142 =−= yyβ , mm10412 −=−= xxγ , 
 mm0213 =−= yyβ , mm20123 =−= xxγ , 
and for the second element, respectively: 
 mm0431 =−= yyβ , mm10341 −=−= xxγ , (12.48) 
 mm30242 =−= yyβ , mm10422 =−= xxγ , 
 mm30323 −=−= yyβ , mm0233 =−= xxγ . 
The triangle areas are: 
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Matrix B for the first element is: 
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   (12.50) 
For the second element it is: 
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   (12.51) 
Based on Eq.(12.30) the element stiffness matrices are: 
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mm
N10
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where Ve1 = Ae1⋅v = 300⋅5 = 1500 mm3 and Ve2 = Ae2⋅v = 150⋅5 = 750 mm3 are the element 
volumes. For the construction of the structural stiffness matrix we complete the element 
matrices with empty rows and columns corresponding to the missing degrees of freedom. 
On the base of Fig.12.5 and the element-node table, it is seen, that the first element in-
cludes only nodes 1, 2 and 4. Consequently those rows and columns, which belong to node 
3, should be filled up with zeros: 

 

































=

1
66

1
65

1
64

1
63

1
62

1
61

1
56

1
55

1
54

1
53

1
52

1
51

1
46

1
45

1
44

1
43

1
42

1
41

1
36

1
35

1
34

1
33

1
32

1
31

1
26

1
25

1
24

1
23

1
22

1
21

1
16

1
15

1
14

1
13

1
12

1
11

1

00
00

00000000
00000000

00
00
00
00

eeeeee

eeeeee

eeeeee

eeeeee

eeeeee

eeeeee

kkkkkk
kkkkkk

kkkkkk
kkkkkk
kkkkkk
kkkkkk

K . (12.53) 

In contrast, for the second element the rows and columns corresponding with the first node 
must be completed by the placement of zeros: 
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The structural stiffness matrix is calculated as the sum of the two former matrices: 
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   (12.55) 
The force vector related to the distributed load is calculated by Eq.(12.39): 
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where m10003010 22
14 =+=l  and l34 = 10 mm are the element edge lengths between 

the nodes indicated in the subscript. By completing the element vectors with zeros at the 
positions of the proper degrees of freedom, we get the structural force vectors: 
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   (12.57) 
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We consider the reaction forces as concentrated forces at the constrained nodes: 
 [ ]44332211 yxyxyxyx

T
c FFFFFFFFF = .  (12.58) 

Taking it into account, that at node 4 there is no external force and that the surfaces are 
frictionless, i.e.: Fx1 = Fy3 = 0, we have: 
 [ ]0000 3221 xyxy

T
c FFFFF = .  (12.59) 

The structural force vector is: 
 cpp FFFF ++= 21 .  (12.60) 
The finite element equilibrium equation is FUK = , i.e. we have: 
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   (12.61) 
The nodal displacements can be determined from the system of equations constructed by 
the 1st, 6th, 7th and 8th component equations of the matrix equation: 
 1035,025,6 441 =−− vuu ,  (12.62) 
 5,15,46/35 443 −=−− vuv , 

 103135,0 431 =+−− uvu , 
 5,16/435,4 431 −=+−− vvu . 

The equations above, in fact were obtained by the condensation of Eq.(12.61). When we 
perform the matrix condensation only those component equations remain, which contain 
unknowns with respect to the displacements only. On the right hand side, in the force vec-
tor there are no unknowns. The solutions are: 
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 mm10557,1 5
1

−⋅=u , mm1022997,0 5
3

−⋅−=v ,  (12.63) 
 mm10771983,0 5

4
−⋅=u , mm1013633,0 5

4
−⋅−=v . 

Taking the nodal displacements back into the 2nd, 3rd, 4th and 5th rows of the matrix equa-
tion, we can determine the nodal forces: 
 1441 3/425,125,1 yFvuu =−− ,  (12.64) 
 24431 5,25,05,175,5 xFvuvu =+−−− , 

 24431 3/45,23/425,0 yFvuvu =−+−− , 
 3443 5,1125,2 yFvuv =−−  

The solutions are: 
 N971095,01 =yF , N339434,92 −=xF , (12.65) 

 N0289,22 =yF , N63423,93 −=xF . 
Using Eq.(12.19) we calculate now the strain components: 

1a
x
u

x =
∂
∂

=ε , 2b
y
v

y =
∂
∂

=ε , 12 ba
x
v

y
u

xy +=
∂
∂

+
∂
∂

=γ .  (12.66) 

For the first element we obtain: 

 71

1

432211
1 107892,7

3002
30

2
−⋅−=

⋅
−

=
++

=
u

A
uuu

a
e

βββ
  (12.67) 

 0
2 1

432211
1 =

++
=

eA
vvv

b
βββ

, 

 941

1

432211
2 103121,2

3002
2010

2
−⋅−=

⋅
+−

=
++

=
uu

A
uuu

a
e

γγγ
, 

 84

1

432211
2 1054435,4

3002
20

2
−⋅−=

⋅
=

++
=

v
A

vvv
b

e

γγγ
. 

The vector of strain components fro the first element is: 

 9

1

1

1

1 10
3121,2
4435,45

92,778
−⋅

















−
−
−

=
















=

xy

y

x

γ
ε
ε

ε   (12.68) 

For the second element we can write: 

 74

2

433221
1 107198,7

1502
30

2
−⋅−=

⋅
=

++
=

u
A

uuu
a

e

βββ
,  (12.69) 

 843

2

433221
1 1036416,9

1502
3030

2
−⋅−=

⋅
−

=
++

=
vv

A
vvv

b
e

βββ
, 

 0
2 2

433221
2 =

++
=

eA
uuu

a
γγγ

, 

 83

1

433221
2 106657,7

1502
10

2
−⋅−=

⋅
=

++
=

v
A

vvv
b

e

γγγ
, 

from which we have: 
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 9

2

2

2

2 10
6416,93
657,76
98,771

−⋅
















−
−
−

=
















=

xy

y

x

γ
ε
ε

ε .  (12.70) 

Since the plate is under plane stress state we can write based on Eq.(11.19) that: 

 9
111 10787,274)(

1
−⋅=+

−
−= yxz εε

ν
νε ,  (12.71) 

 9
222 1088,282)(

1
−⋅=+

−
−= yxz εε

ν
νε . 

The normal and shear strains are, accordingly constants within the individual elements, we 
referred to this fact in the introduction of the triangle element. Incorporating the constitu-
tive matrix we can determine the stress components too based on Eq.(12.46): 

 εσ strC= .  (12.72) 
This equation gives the stresses of the elements, which is in general referred to as „element 
stress” in the commercial finite element packages. For the first element we have: 
 MPa12644,010)4,06,1( 5

111 −=⋅+= yxx εεσ ,  (12.73) 

 MPa038428,010)6,14,0( 5
111 −=⋅+= yxy εεσ ,  

 MPa1013873,0106,0 35
11

−⋅−=⋅= xyxy γτ . 
Similarly, for the second element the stresses are: 
 MPa12658,010)4,06,1( 5

222 −=⋅+= yxx εεσ ,  (12.74)  

 MPa043145,010)6,14,0( 5
222 −=⋅+= yxy εεσ , 

 MPa1056185,0106,0 25
22

−⋅−=⋅= xyxy γτ . 
Considering the stresses it is possible to produce nodal stress solution. By computing the 
average stresses in the mutual nodes we obtain the so-called „nodal stress” or „average 
stress” solution: 
 
Node 1: MPa12644,0−=xσ , MPa038428,0−=yσ , MPa1013873,0 3−⋅−=xyτ , 
   (12.75) 

Node 2:   MPa12651,0)(
2
1

21 −=+= xxx σσσ ,  

MPa0407865,0)(
2
1

21 −=+= yyy σσσ , 

MPa1028786,0)(
2
1 2

21
−⋅−=+= xyxyxy τττ . 

Node 3: MPa12658,0−=xσ , MPa043145,0−=yσ , MPa1056185,0 3−⋅−=xyτ . 

Node 4:  MPa12651,0)(
2
1

21 −=+= xxx σσσ ,  

MPa0407865,0)(
2
1

21 −=+= yyy σσσ , 

MPa1028786,0)(
2
1 2

21
−⋅−=+= xyxyxy τττ . 
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The problem presented in section 12.3 was verified by the finite element code ANSYS 12, 
resulting in the same results. The solution with the above applied low mesh resolution is 
naturally very inaccurate. 

12.4 Quadratic six node triangle element  
The more advanced version of the linear triangle element is the six node quadratic triangle 
element, in which there are additional nodes in the midpoints of the element sides [2,5]. 
Because of the additional nodes we need displacement functions including six unknowns, 
which are: 
 2

5
2

43210),( yaxaxyayaxaayxu +++++= , (12.76) 
 2

5
2

43210),( ybxbxybybxbbyxv +++++= . 
The calculation of the stiffness matrix and force vector can be performed in the same fash-
ion as it was done in the linear triangle element. Within the individual elements the strain 
and stress components vary linearly. As a consequence, using identical mesh resolution, 
the quadratic triangle element provides a better approximation of the problem than the lin-
ear one.  

12.5 Isoparametric four node quadrilateral 
The isoparametric quadrilateral (see Fig.12.6a) is one of the most important finite element 
type for plane problems [2,4,5]. An element is called isoparametric if we formulate the 
local geometry and displacement field by the same set of functions.  

12.5.1 Interpolation of the geometry 
For the sake of simplicity we map the quadrilateral element to a regular square into the ξ-η 
natural coordinate system, as it is shown in Fig 12.6b. We give the functions of the x and y 
coordinates of element edges in the following form: 

xNxNxNxNxNx T ),(),(),(),(),(),( 44332211 ηξηξηξηξηξηξ =+++= , 
  (12.77) 

yNyNyNyNyNy T ),(),(),(),(),(),( 44332211 ηξηξηξηξηξηξ =+++= , 
where: 
 [ ]4321 xxxxxT = , [ ]4321 yyyyyT = . (12.78) 
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Fig.12.6. Isoparametric quadrilateral in the global (a) and natural (b) coordinate systems. 

Due to the fact that we have four nodes, the interpolation function may contain to a maxi-
mum four unknowns: 

 APaaaax T=+++= ξηηξηξ 3210),( , (12.79)  
where A  is the vector of coefficients, P  is the vector of basis polynomials, respectively: 

 [ ]3210 aaaaAT = , [ ]ξηηξ1=TP . (12.80)  
The function given by Eq.(12.79) must satisfy the following conditions: 
 13210)1,1( xaaaax =+−−=−− , (12.81) 
 23210)1,1( xaaaax =−−+=− ,   
 33210)1,1( xaaaax =+++= , 
 43210)1,1( xaaaax =−+−=− . 
In matrix form it is: 
 xAM = ,  (12.82) 
where: 

 



















−−

−−
−−

=

1111
1111
1111

1111

M .  (12.83) 

Then the coefficients can be determined by using Eq.(12.82): 
 xMA 1−=  and: xMPAPx TT 1),( −==ηξ . (12.84) 
The solutions for the coefficients are: 

 )(
4
1

43210 xxxxa +++= , )(
4
1

43211 xxxxa −++−= , (12.85) 

 )(
4
1

43212 xxxxa ++−−= , )(
4
1

43213 xxxxa −+−= . 

Taking them back into Eq.(12.79) we get: 

.)1(
4
1)1(

4
1)1(

4
1)1(

4
1

)(
4
1)(

4
1

)(
4
1)(

4
1),(

4321

43214321

43214321

xxxx

xxxxxxxx

xxxxxxxxx

ξηηξξηηξξηηξξηηξ

ξηη

ξηξ

−+−+++++−−+++−−

=−+−+++−−+

+−++−++++=

 

  (12.86) 
The interpolation polynomials on the base of Eq.(12.86) are: 

 )1)(1(
4
1),(1 ηξηξ −−=N , )1)(1(

4
1),(2 ηξηξ −+=N , (12.87) 

 )1)(1(
4
1),(3 ηξηξ ++=N , )1)(1(

4
1),(4 ηξηξ +−=N . 

Performing the same computation for coordinate y we obtain the same interpolation func-
tions. The three dimensional plot of the Ni(ξ,η) interpolation functions represents line sur-
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faces, of which value in the location of the ith node is equal to unity, while in the location 
of the other nodes it is equal to zero, as it is demonstrated in Fig.12.7. 
 

  

  

Fig.12.7. Interpolation functions of the isoparametric quadrilateral element. 

The summary of the geometry is given by the formulae below: 

 eRN
y
x

),(
),(
),(

ηξ
ηξ
ηξ

=







, (12.88) 

where:  
 [ ]44332211 yxyxyxyxRT

e = ,  (12.89) 
is the vector of nodal coordinates, and: 

 







=

4321

4321

0000
0000

),(
NNNN

NNNN
N ηξ . 

The compact form of the interpolation functions is: 

 )1)(1(
4
1),( iiiN ηηξξηξ ++= ,  (12.90) 
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where ξi and ηi are the corner node coordinates according to Fig.12.6b. 

12.5.2 Interpolation of the displacement field 
The displacement vector field of the isoparametric quadrilateral element can be written as: 

 euN
v
u

u ),(
),(
),(

),( ηξ
ηξ
ηξ

ηξ =







= ,  (12.91) 

where: 
 44332211 ),(),(),(),(),( uNuNuNuNu ηξηξηξηξηξ +++= ,  
  (12.92) 

44332211 ),(),(),(),(),( vNvNvNvNv ηξηξηξηξηξ +++= , 
moreover, the matrix of interpolation functions and the vector of nodal displacements are: 









=

4321

4321

0000
0000

),(
NNNN

NNNN
N ηξ ,  (12.93) 

 [ ]44332211 vuvuvuvuuT
e = . 

The displacement field must result in the nodal displacements if we substitute the coordi-
nates of the proper nodes back, i.e. it must satisfy the following conditions: 
 1)1,1( uu =−− , 2)1,1( uu =− , 3)1,1( uu = , 4)1,1( uu =−  (12.94) 
Mathematically this is the same set of conditions for the displacements as that formulated 
in the case of the geometrical parameters. Consequently the computation leads to the same 
interpolation functions as those given by Eq.(12.87). The quadrilateral element is called 
isoparametric element because of the fact, that the same interpolation functions are applied 
for the displacement field and local geometry. 

12.5.3 Calculation of strain components, Jacobi matrix and Jacobi determinant 
The vector of strain components using Eq.(12.2) is the following: 

 ee

xy

y

x

xy

y

x

uBuNu
vu

v
u

=∂=∂=
















+
=

















=

,,

,

,

γ
ε
ε

ε , (12.95) 

where u,x is the partial derivative of u with respect to x, v,y is the partial derivative of v with 
respect to y. Moreover: 

.0000

0000

0000
0000

0

0
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4321

4321

4321

4321

























∂
∂

∂
∂
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∂
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∂
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  (12.96) 
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Apparently, matrix B contains the first derivatives of the interpolation functions with re-
spect to x and y. it can be elaborated based on Eq.(12.87) that the Ni interpolation functions 
are known in terms of ξ and η. We refer to the chain rule of differentiation: 

 
xxx ∂
η∂

η∂
∂

+
∂
ξ∂

ξ∂
∂

=
∂
∂ ,

yyy ∂
η∂

η∂
∂

+
∂
ξ∂

ξ∂
∂

=
∂
∂ , (12.97) 

 
ξ∂
∂

∂
∂

+
ξ∂
∂

∂
∂

=
ξ∂
∂ y

y
x

x
, 

η∂
∂

∂
∂

+
η∂
∂

∂
∂

=
η∂
∂ y

y
x

x
. 

Utilizing Eq.(12.77) the local geometry and the first derivative of the functions with re-
spect to ξ and η are: 

∑
=

=
4

1
),(),(

i
ii xNx ηξηξ , ∑

= ∂
∂

=
∂
∂ 4

1i
i

i xNx
ξξ

, ∑
= ∂
∂

=
∂
∂ 4

1i
i

i xNx
ηη

, (12.98) 

∑
=

=
4

1
),(),(

i
ii yNy ηξηξ , ∑

= ∂
∂

=
∂
∂ 4

1i
i

i yNy
ξξ

, ∑
= ∂
∂

=
∂
∂ 4

1i
i

i yNy
ηη

. 

Writing it in matrix form we have: 
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xJ

y

x
yx

yx

ηη

ξξ

η

ξ , (12.99)  

where J is the so-called Jacobi matrix: 

 







=



















η∂
∂

η∂
∂

ξ∂
∂

ξ∂
∂

=
2221

1211

JJ
JJ

yx

yx

J . (12.100) 

The Jacobi determinant is: 

 
η∂
∂

ξ∂
∂

−
η∂
∂

ξ∂
∂

=−=
xyyxJJJJJ 21122211 . (12.101) 

The derivatives with respect to x and y are provided by the help of the inverse Jacobi ma-
trix: 
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−
=



















∂
∂

∂
∂

−

∂
∂

−
∂
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=−

1121

12221 11
JJ
JJ

Jxx
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J
J

ξη

ξη , (12.102) 

furthermore: 

 



















∂
∂
∂
∂

=



















∂
∂
∂
∂

−

η

ξ1J

y

x , (12.103) 

From which we obtain the followings: 

 )(1
1222 η∂

∂
−

ξ∂
∂

=
∂
∂ JJ

Jx
, (12.104) 
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 )(1
1121 η∂

∂
+

ξ∂
∂

−=
∂
∂ JJ

Jy
. 

With the aid of the former matrix B becomes: 
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J
B

  (12.105) 
We need the derivatives of the interpolations functions and the elements of the Jacobi ma-
trix, which are: 

 )1(
4
11 η

ξ
−−=

∂
∂N

, )1(
4
12 η

ξ
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∂
∂N

, )1(
4
13 η

ξ
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∂
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4
14 η

ξ
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∂
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  (12.106) 

 )1(
4
11 ξ

η
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∂
∂N

, )1(
4
12 ξ

η
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∂
∂N

, )1(
4
13 ξ

η
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∂
∂N

, )1(
4
14 ξ

η
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∂
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, 

respectively, and: 
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∂
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=
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4
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  (12.107) 
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=
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ξξ

, 

{ }∑
=

−++++−−−=
∂
∂

=
∂
∂

=
4

1
432121 )1()1()1()1(

4
1

i
i
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=
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1
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i yyyyy
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. 

Based on the former equations we can formulate the Jacobi matrix either in the following 
form: 

 



























=








=

44

33

22

11

,4,3,2,1

,4,3,2,1

2221

1211

yx
yx
yx
yx

NNNN
NNNN

JJ
JJ

J
ηηηη

ξξξξ . (12.108) 

12.5.4  The importance of the Jacobi determinant, example 
Calculate the elements of the Jacobi matrix for the quadrilateral shown in Fig.12.8! The 
nodal coordinates are: 

 01 =x , 01 =y , ax =2 , 02 =y , ax =3 , ay =3 , ax
3
2

4 = , ay
3
1

4 = .  

  (12.109) 
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Fig.12.8. Isoparametric quadrilateral element with excessive distortion. 

The elements of the Jacobi matrix based on Eq.(12.107) are: 

ηηηηη aaaaaJ
6
1

3
1

3
2)1()1()1(0)1(

4
1

11 −=






 +−++−+−−= ,  

  (12.110) 

ηηηηη aaaaJ
6
1

6
1

3
1)1()1(0)1(0)1(

4
1

12 +=






 +−++−+−−= , 

ξξξξξ aaaaaJ
6
1

6
1

3
2)1()1()1(0)1(

4
1

21 −=






 −++++−−−= , 

ξξξξξ aaaaJ
6
1

3
1

3
1)1()1(0)1(0)1(

4
1

22 +=






 −++++−−−= , 

from which the Jacobi determinant is: 

 )1(
12
1 2

21122211 ηξ −+=−= aJJJJJ .  (12.111) 

The Jacobi determinant is 0, if e.g. ξ = -1 and η = 0, or ξ = 0 and η = -1. This case is said 
to be excessive distortion, it means that we have degenerate element. If J = 0, then the in-
verse Jacobi matrix does not exist at the point under consideration. Moreover, the parame-
ter lines intersect each other outside the domain of the quadrilateral. That is why the sum 
of the inner angles of quadrilateral must be less than 180°, in other words the quadrilateral 
can not be concave.  

12.5.5 Calculation of the stress field 
The vector of stress components can be obtained from Eq.(12.7): 
 euBCC == εσ ,  (12.112) 

where strCC = for plane stress and stnCC = for plane strain (see section 11.) 

12.5.6 Calculation of the stiffness matrix 
The stiffness matrix for plane problems is calculated by Eq.(12.9): 
 vdxdyBCBK TT

e ∫ ∫= .  (12.113) 
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In the case of the isoparametric quadrilateral the elements of matrix B contains the deriva-
tives of the interpolation functions. Consequently, for the stiffness matrix calculation the 
transformation of surface integrals must be performed. The vectors and parameters, which 
are required for the analysis, are shown in Fig.12.9. The ranges of parameters c1 and c2 are: 

 11 1 ≤≤− c , 11 2 ≤≤− c . (12.114) 

 

Fig.12.9. Transformation of surface integral in the isoparametric quadrilateral. 

The differential vectors written by lowercase letters, can be formulated by utilizing Eq. 
(12.100): 

 ξ
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  (12.115) 
and similarly: 
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=
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The definition of the elementary area is: 

dxdyddJJJJ
dJdJ
dJdJ

kji
absrdrddA =−==×= ηξ

ηη
ξξ )()

0
0( 21122211

2221

121121 , 

  (12.117) 
this yields: 

 ηξdJddxdydA ==  and: ∫ ∫∫
− −

=
1

1

1

1

ηξdJddxdy
A

. (12.118) 

The stiffness matrix becomes: 
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 ∫ ∫∫
− −

==
1

1

1

1

ηξdvJdBCBvdxdyBCBK TT

A

TT
e

, (12.119) 

i.e., the stiffness matrix can be computed by the help of an area integral. For the calculation 
we can apply analytical or numerical method. The commercial finite element packages, in 
general, implement the Gaussian quadrature to perform the integration. This method will 
be presented in section 12.6. 

12.5.7 Calculation of the force vector 
Distributed load along the element edge. The force vector resulting from the distributed 
load along element edge 1-2 shown in Fig.12.10 can be defined as:   

 ∫= dspNvF T
ep 12

,  (12.120) 

where: 

 ξ122
1 ls =  and ξdlds 122

1
= ,  (12.121) 

where l12 is the element edge length between nodes 1 and 2.  

 

Fig.12.10. Distributed load along the element edge of an isoparametric quadrilateral element. 

Moreover, we know that along edge 1-2 η = −1 and −1 ≤ ξ ≤ 1 (see. Fig.12.6). We can 
write after all, that: 
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   (12.122) 
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For further calculation we must evaluate the interpolation functions along the parameter 
line, for which η = -1: 

 )1(
2
1)1)(1(

4
1

1
11 ξηξ

η
η

−=−−=
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−=
N , (12.123) 
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yyyyy pppdpdNp =
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By taking the results back into the force vector we obtain: 

 [ ]0000
2
1

12 yxyx
T
ep ppppvlF = . (12.125) 

The resultant of the uniformly distributed load is divided into two parts and (similarly to 
the beam and linear triangle elements) put into the nodes of element edge. The calculation 
can be made also in the case of linearly distributed load; naturally it results in a different 
force vector. 
 
Body force. The force vector calculated from the body force is: 

 ∫ ∫
− −

=
1

1

1

1

ηξdJdqNvF T
eb , (12.126) 

for which we need again the evaluation of surface integral. Similarly to the stiffness ma-
trix, the Gaussian quadrature will be applied to evaluate the integral. 
 
Concentrated loads. For plane problems there are concentrated forces acting in the nodes 
and there are no moments. The x and y components of the concentrated forces are collected 
in a vector: 
 [ ]44332211 yxyxyxyx

T
ec FFFFFFFFF = . (12.127) 

The total vector of forces is the sum of vectors presented in the last three points: 
 ecebepe FFFF ++= .  (12.128) 

12.6 Numerical integration, the Gauss rule 
For the calculation of the element stiffness matrix and the body force vector of 
isoparametric quadrilaterals there are numerical integration schemes implemented in the 
finite element packages. Commonly, the Gauss rule is applied because it uses minimal 
number of sample points and it is relatively accurate [1,2,6]. 
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12.6.1 One dimensional Gauss rule 
The main aim is the approximate but relatively accurate calculation of the area under the 
curve shown by Fig.12.11 using the one dimensional rule.  

 

Fig.12.11. Sample points of the one dimensional Gauss rule. 

The approximate area under the curve is calculated by: 

 ∑∫
=−

≅
p

i
ii FwdF

1

1

1

)()( ξξξ .  (12.129) 

The sample (or integration) point coordinates, ξi and the integration weights, wi are listed 
in table 12.1. The one dimensional rule provides the exact solution for a polynomial up to 
the order of 2p-1. 
 

p ξi wi 
1 0 2 

2 
3/1−  

3/1  
1 
1 

3 
5/3−  

0 
5/3  

5/9 
8/9 
5/9 

4 

7/)5/623( −−  

7/)5/623( +−  
ξ3 = -ξ2 

ξ4 = -ξ1 

6/)6/5(2/1 −  

6/)6/5(2/1 +  
w3 = w2 
w4 = w1 

Table 12.1. Parameters of the one dimensional Gauss rule. 

Let us solve an example for the application of the Gauss rule! Calculate the exact value of 
the integral: 

  ∫=
3

1

1 dx
x

I    (12.130) 
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as well as its approximate value using one, two and three integration points! 
Exact solution:  

 [ ] 098612,11ln3lnln 3
1 =−== xI .  (12.131) 

Gauss rule, p = 1. Let ξ = x-2. If x = 3, then ξ = 1, on the other hand if x = 1, then ξ = -1, 
consequently: 

 ∫∫
− +

==
1

1

3

1 2
11 ξ

ξ
ddx

x
I , and:

2
1)(
+

=
ξ

ξF .  (12.132) 

The approximate value of the integral is: 

 1
2
12)0(11 ==≅ FwI .   (12.133) 

That means an error of 9,9% compared to the exact solution. 
Gauss rule, p = 2. In this case: 

090909,1

23
1
11

23
1

11)
3

1()
3

1( 212 =

+

+

+
−

=+−≅ FwFwI .  

  (12.134) 
The value of the integral differs with 0,7 % from the exact solution. 
Gauss rule, p = 3. 

0980387,1
2

5
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9
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2
1

9
8

2
5
3
1

9
5)

5
3()0()

5
3( 3213 =

+
++

+−
=++−≅ FwFwFwI . 

  (12.135) 
The error of approximation is only 0,052%. 

12.6.2  Two dimensional Gauss rule 
The two dimensional Gauss rule makes it possible to evaluate the approximate value of 
surface integrals. The integral is approximated by the expression below: 

 ∑∑∫ ∫∫ ∫
= =− −

≅=
n

j
ji

n

i
jiji

b

a

d

c

JfwwdJdfdxdyyxf
1 1

1

1

1

1

),(),(),(),( ηξηξηξηξ ,  

  (12.136) 
where wi and wj are the integration weights, ξi and ηj are the integration point coordinates, 
moreover, the ranges are -1 ≤ ξi ≤ 1, -1 ≤ ηj ≤ 1, respectively. Depending on the number of 
integration points we can define different Gaussian quadratures, as it is demonstrated in 
Fig.12.12.  
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Fig.12.12. Integration points of the 1x1, 2x2, 3x3 and 4x4 Gaussian quadratures. 

For the 1x1 quadrature there is only a single integration point, for the 2x2 we have 4, etc. 
The parameters of the 1x1, 2x2 and 3x3 Gaussian quadratures are summarized in Table 
12.2.  
 

1x1 2x2 3x3 
 3/1=a  5/3=b  wi wj 

ξ1 = 0 ξ1 = -a η1 = -a ξ1 = -b η1 = -b 5/9 5/9 
η1 = 0 ξ2 = a η2 = -a ξ2 = b η2 = -b 5/9 5/9 
w1 = 2 ξ3 = a η3 = a ξ3 = b η3 = b 5/9 5/9 

 ξ4 = -a η4 = a ξ4 = -b η4 = b 5/9 5/9 
   ξ5 = 0 η5 = -b 8/9 5/9 
 w1 = 1 w2 = 1 ξ6 = b η6 = 0 5/9 8/9 
 w3 = 1 w4 = 1 ξ7 = 0 η7 = b 8/9 5/9 
   ξ8 = -b η8 = 0 5/9 8/9 
   ξ9 = 0 η9 = 0 8/9 8/9 

Table 12.2. Parameters of the Gaussian quadratures. 

Example for the application of Gaussian quadrature. Calculate the approximate value of 
the integral: 

 ∫=
A

xydAI   (12.137) 

using the 2x2 Gauss quadrature for the domain of parallelogram depicted in Fig.12.13! 
Compare the result to that of the exact integration [4]!  
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Fig.12.13. Example for the application of Gaussian quadrature. 

The nodal coordinates are: 
 x1 = 1, x2 = 3, x3 = 4, x4 = 2, y1 = 1, y2 = 2, y3 = 4, y4 = 3. (12.138) 
Based on the approximate expression of the 2x2 Gaussian quadrature we can write: 

 ∑∑∫
= =

≅=
2

1

2

1
),(),(

i j
jijiji

A

JfwwxydAI ηξηξ . (12.139) 

The calculation requires the elements of the Jacobi matrix. We need the nodal coordinates 
and also the derivatives of the interpolation functions (see Eq.(12.110)): 

{ } 12)1(4)1(3)1(1)1(
4
1

11 =+−++−+−−= ηηηηJ , (12.140) 

{ }
2
13)1(4)1(2)1(1)1(

4
1

12 =+−++−+−−= ηηηηJ , 

{ }
2
12)1(4)1(3)1(1)1(

4
1

21 =−++++−−−= ξξξξJ , 

{ } 13)1(4)1(2)1(1)1(
4
1

22 =−++++−−−= ξξξξJ . 

The Jacobi matrix is: 

 
















=







=

1
2
1

2
11

2221

1211

JJ
JJ

J , (12.141) 

and the Jacobi determinant is: 

 const
4
3

2
1

2
111 ==⋅−⋅=J .  (12.142) 

The x and y parameters utilizing the interpolated form given by Eq.(12.77) are: 

{

},2)1)(1(4)1)(1(
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}.3)1)(1(4)1)(1(

2)1)(1(1)1)(1(
4
1),(

4

1

ηξηξ

ηξηξηξ

+−++++

+−++−−== ∑
=i

ii yNy
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The function, f(ξ,η) is: 

 { })25()25(
4
1),( ηξηξηξ ++⋅++== xyf . (12.144) 

We can calculate the approximate value of the integral based on the figure and table above: 

 75,19
4
3)],(),(),(),([ =+−+−+−−= aafaafaafaafI .  

  (12.145) 
The exact value of the integral is: 

{ } 75,19
4

79
4
3)25()25(

4
1),(

1

1

1

1

1

1

1

1

==++⋅++=== ∫ ∫∫ ∫
− −− −

ηξηξηξηξηξ ddxyddfI . 

  (12.146) 
It is shown apparently, that the Gaussian quadrature provides the exact value in this case. 
Most of the commercial finite element packages implements 2x2 quadrature. 

12.7 Example for the isoparametric quadrilateral 
Solve the example presented in section 12.3 using one isoparametric quadrilateral element! 
The data are the same as those given in the linear triangle element. Apply a single finite 
element by following Fig.12.14 [4]. Determine the nodal displacements and the reactions! 

 

Fig.12.14. Example for the application of the isoparametric quadrilateral element. 

The finite element equilibrium equation to be solved is: 
 FUK = . (12.147) 
Since we have only a single element, in this case Eq.(12.147) corresponds to the equilibri-
um equation in the element level: 
 eee

FuK = , (12.148) 
where: 
 [ ]44332211 vuvuvuvuU T =  (12.149) 
is the vector of nodal displacements. Due to the boundary conditions (v1 = v2 = u2 = u3 = 0) 
we have: 
 [ ]4431 0000 vuvuU T = . (12.150) 
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Similarly to the linear triangle element, we have a system of equations including four un-
knowns. The element stiffness matrix is calculated by the Gaussian quadrature, i.e. we can 
write, that: 

 ∑∑∫ ∫
= =− −

≅=
p

i

p

j
jiji

T
ji

T
ji

TT
e

JBCBwwvdvJdBCBK
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  (12.151) 
The elements of the Jacobi matrix are equally required: 

{ }

{ } ,
2
5

2
1510)1(20)1(20)1(0)1(

4
1

)1()1()1()1(
4
14

1
432111

ηηηηη

ηηηη
ξξ

−=+−++−+−−=

=+−++−+−−=
∂
∂

=
∂
∂

= ∑
=i

i
i xxxxx

NxJ
  

  (12.152) 

{ }

{ } ,030)1(30)1(0)1(0)1(
4
1

)1()1()1()1(
4
14

1
432112

=+−++−+−−=

=+−++−+−−=
∂
∂

=
∂
∂

= ∑
=

ηηηη

ηηηη
ξξ i

i
i yyyyy

NyJ
 

{ }

{ } ,
2
5

2
510)1(20)1(20)1(0)1(

4
1

)1()1()1()1(
4
14

1
432121

ξξξξξ

ξξξξ
ηη

−=−++++−−−=

=−++++−−−=
∂
∂

=
∂
∂

= ∑
=i

i
i xxxxx

NxJ
 

{ }

{ } .1530)1(30)1(0)1(0)1(
4
1

)1()1()1()1(
4
14

1
432122

=−++++−−−=

=−++++−−−=
∂
∂

=
∂
∂

= ∑
=

ξξξξ

ξξξξ
ηη i

i
i yyyyy

NyJ
 

Constructing the Jacobi matrix we have: 

 
















−

−
=








=

15
2
5

2
5

0
2
5

2
15

2221

1211

η

η

JJ
JJ

J , (12.153) 

and the Jacobi determinant is: 

 η
2
75

2
225

−=J . (12.154) 

It can be seen, that if 11 ≤≤− η , then J > 0 for each case, consequently the element is not 
degenerate, which is obviously seen based on Fig.12.5. The inverse Jacobi matrix is: 
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As a next step, we calculate matrix B (see Eq.(12.96)), where referring to Eq.(12.105) we 
have: 
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, (12.156) 
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Matrix B becomes: 
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  (12.157) 
We calculate the element [1,1] of the stiffness matrix by the Gaussian quadrature. For that, 
let us calculate the following: 
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and:
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where v = 5 mm is the thickness of the plate. We carry out the calculation in three ways, by 
using the 2x2, 3x3 Gaussian quadratures and the exact integration, respectively. 
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I. 2x2 Gaussian quadrature: 
[ ]
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   (12.160) 
II. 3x3 Gaussian quadrature: 
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  (12.161) 
III. Exact integration: 

 [ ]
mm
N108666,4 5

1,1 ⋅=eK .  (12.162) 

Calculating all of the components of the element stiffness matrix we obtain: 
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   (12.163) 
The vector of forces can be constructed in a similar way to that shown in the triangle ele-
ment: 

[ ] [ ]N010300000103000000
2

14
1 == xx

T
p ppvlF , 

   (12.164) 

[ ] [ ]N5,105,100000000000
2

34
2 −−== yy

T
p pp

vl
F . 

We consider the reactions as concentrated forces in the kinematically constrained nodes: 
 [ ]44332211 yxyxyxyx

T
c FFFFFFFFF = . (12.165) 

Considering the fact that the surfaces are frictionless and that at node 4 there is no external 
force, we have Fx1 = Fy3 = Fx4 = Fy4 = 0, which leads to: 
 [ ]0000 3221 xyxy

T
c FFFFF = . (12.166) 

The structural force vector becomes: 
 cpp FFFF ++= 21 .  (12.167) 
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The construction of the finite element equilibrium equation results in: 
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   (12.168) 
In the stiffness matrix we eliminate those rows and columns, for which the corresponding 
displacement component is a prescribed (here constrained) value. This way we obtain the 
so-called condensed stiffness matrix, which is used to expand the system of equations, of 
which solutions are the nodal displacements: 
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  (12.169) 
The solutions are: 
 mm105078,1 5

1
−⋅=u , mm1029199,0 5

3
−⋅−=v , (12.170) 

 mm10822016,0 5
4

−⋅=u , mm1010532,0 5
4

−⋅−=v . 
Then, the reactions are calculated by the 2nd, 3rd, 4th and 5th component equations of Eq. 
(12.168). The solutions are: 
 N0678,11 =yF , N27494,92 −=xF , (12.171) 

 N93216,12 =yF , N6987,93 −=xF . 
The strain and stress components of the element can be expressed in parametric form (as 
the function of ξ and η) from Eqs.(12.95) and (12.105). Taking the coordinates of the cor-
responding node back, the strain and stress components can be calculated. The example 
above was verified by the finite element code ANSYS 12. 

12.8  Quadratic isoparametric quadrilateral 
The advanced version of the linear quadrilateral is the quadratic quadrilateral, in which the 
curves of the element sides as well as the displacements are approximated by a second or-
der function of the ξ and η coordinates [2,7]. On each element edge we provide a midside 
node, as it is shown in Fig.12.15, implying 8 nodes and 8 unknown coefficients in the ap-
proximate function of e.g. the x coordinate: 
 2

7
2

6
2

5
2

43210 ,),( ξηηξηξξηηξηξ aaaaaaaax +++++++= .  
  (12.172) 
Using the nodal conditions we can derive the interpolation functions of the quadratic ele-
ment in a similar way to that shown in the four node quadrilateral. The interpolation func-
tions become:  
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 )1)(1)(1(
4
1),(1 ηξηξηξ ++−−−=N , )1)(1(

2
1),( 2

2 ηξηξ −−=N , 

  (12.173)

 )1)(1)(1(
4
1),(3 ηξηξηξ +−−+−=N , )1)(1(

2
1),( 2

4 ηξηξ −+=N , 

   

 )1)(1)(1(
4
1),(5 ξηηξηξ −−++−=N , )1)(1(

2
1),( 2

6 ηξηξ +−=N , 

 )1)(1)(1(
4
1),(7 ηξηξηξ −++−−=N , )1)(1(

2
1),( 2

8 ηξηξ −−=N . 

 

 

Fig.12.15. Quadratic isoparametric quadrilateral. 

The interpolation functions can be formulated also in compact from: 

 )1)(1)(1(
4
1

−+++= iiiiiN ηηξξηηξξ , i = 1, 3, 5, 7, (12.174) 

 )1)(1(
2
1)1)(1(

2
1 2222 ξηηηηξξξ −++−+= iiiiiN , i = 2, 4, 6, 8. 

where ξi and ηi are the coordinates of the nodes. Fig.12.16 shows the function plot of the 
interpolation functions N5 and N8.  
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Fig.12.16. interpolation functions of the quadratic isoparametric quadrilateral. 

The value of Ni corresponding to the ith node is equal to unity, in the other nodes it is zero. 
The calculation of the stiffness matrix and the vector of forces can be made in the same 
way as that shown in the quadrilateral with straight edges. The Jacobi determinant and the 
Gaussian quadrature is equally required. 
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