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12. MODELING OF PLANE STRESS STATE USING FEM SOFT-
WARE SYSTEMS. MODELING, ANALYSIS OF PROBLEM
EVALUATION

12.1  Finite element solution of plane problems

In the application of the finite element method we divide the plane domain of the whole
structure into discrete elements as it is illustrated in Fig.12.1 [1].

finite element mesh

Fig.12.1. The basic concept of the finite element method in the case of plane elements.

In the FE method we apply the minimum principle of the total potential energy to develop
the finite element equilibrium equations. For a single plane element the total potential en-

ergy is [2]:
I, =U -wW =%IQT§dV — [u" pdA—[u"qdv = > u" (x, v))F,,
Ve V, i=1

A

pe e

(12.1)
where o is the vector of stress components, ¢ is the vector strain components, respectively:
g = [Ex,gy,yxy], (12.2)

T
g =[0'X,0y,rxy,

moreover u = u-i + v-j is the displacement vector field, p is the density vector of surface
forces, q is the density vector of volume (or body) forces, F; is the vector of concentrated
forces acting on the plane element with coordinates of point of action, x; and y;, Ape is that
part of the boundary curves, which is loaded by surfaces forces, V. is the volume of the
element, respectively. We provide the displacement vector field by interpolation:

u(x, y) = N(x, y)u,, (12.3)
where N is the matrix of interpolation functions, its dimension depends on the degrees of
freedom of the plane element, u. is vector of nodal displacements. Referring to the basic

equations of elasticity, the relationship between the strain and displacement fields in matrix
form is:

g=0u, (12.4)
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wheredis the matrix of differential operators, it can be obtained by Egs.(11.10) and
(11.13):

2 o
OX
0
o=/ 0 —|. (12.5)
- oy
o 0
| Oy OX |
The combination of the latter relations gives:
£=0u=0Nu, =Bu,, (12.6)
where B is the strain-displacement matrix. The stress field can be obtained by:
o=C¢, 0 =CBu,, (12.7)

where C is the constitutive matrix — its calculation has already been made in section 11 for
plane stress and plane strain states. The strain energy for a single finite element is:

U, =1IQT§dV =3H92 B'CTBuvdxdy =TulK u,, (12.8)
2] pl)%e2 = = PR

where ie is the element stiffness matrix,

K,=[B'c"Bdv =[[B"C"Budxdy, (12.9)
Ve

its dimension depends on the degrees of freedom of the element. For plane elements the
differential volume is written in the form of: dV =vdA=vdxdy , where v is the thickness of

element. The work of external forces acting on the element by the help of Eq.(12.3) be-
comes:

W, = [u” pdA+ [u"gdV +> u" (x,y,)F, =u; [N pdA+u; [N"qdV +u; F,,
A v, i=1 A v,

(12.10)
where E . is the vector of concentrated forces acting in the nodes of element. Thus, the

total potential energy can be written as:

I :EUZK u, -
gt =e=

pe

u'F,, (12.11)

e -e —=¢€

where:
F.= IMBO'A*IETQO'V +Fe=Fy+F,+F,., (1212)

Ape Ve
is the vector forces acting on the element. We can formulate the equilibrium equation in
the element level by means of the minimum principle of the total potential energy:

K.U.-F.=0. (12.13)

The assembly of element stiffness matrices, vector of nodal displacements and forces leads
to the structural equilibrium equation:
KU -F =0, (12.14)

where K is structural stiffness matrix,U is the structural vector of nodal displacements, F
is the structural vector of nodal forces, respectively. That is, the finite element equilibrium
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equation is a system of algebraic equations for which the solutions are the values of nodal
displacements. In terms of the nodal displacements we can calculate the nodal forces and
stresses.

For the solution of plane problems there exist many types of plane elements. In the sequel
we review the simplest element types.

12.2  Linear three node triangle element

The linear triangle element (Turner triangle) [1,3], which is often called the triangle mem-
brane element or constant strain triangle (CST) element is depicted in Fig.12.2. At each
node there are two degrees of freedom. Consequently the degrees of freedom are equal to
six for the whole element. The arrow in the center point of the element refers to the orien-
tation of the element, i.e. for each element we have a direction, which means how the
nodes are followed by each other.

12.2.1 Interpolation of the displacement field

We collect the nodal x, y coordinates and displacement components in vectors:
T

Xe =% Vi X Yo X Vsl (12.15)

HT:[ul Vi U VU Vs]-

e

A

y

Y3

Y,

Y

X X

Fig.12.2. Linear triangle element. Nodal coordinates and displacements.

The triangle area can be expressed as a determinant:

X Y
2A, = X, Yo = (X5 = XgY,) + (XY, — X Ya) + (XY, =X, ¥,) = o + o, + .
X3 Y

(12.16)
The u and v components of the displacement field are formulated as the linear function of x
andy:
u(x,y)=a, +a,x+a,y, (12.17)
v(X,y)=b, +b,x+b,y,
where ag, a1, az, by, by and b, are unknown constants. The vector of strain components is:
T
& = [gx 'y ;/Xy], (12.18)
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where using Egs.(11.10) and (11.13) we have:
e =Moa e, =Yop, =My Y g h. (1219)
OX oy oy OX

The nodal displacements must be obtained if we take back the nodal coordinates into the
u(x,y) and v(x,y) functions given by Eq.(12.17), i.e.:

U, =a, +a,x +a,y,, v, =b, +bx, +b,y,, (12.20)

U, =a,+a,x, +a,y,, v, =b, +b,x, +b,y,,

U; =8, +a,X; +a,Y5, V; =b, +b,X; +b,Yy,.
The solution of the system of equations above results in:

_ U tapl, +agl q — By + fou, + f3us _ U 75Up +¥5Us
0 2N ' Ay 2A, 1y 2A '
b, = aV; + VY, + a5V, b, = PVi + BV, + BaVs b, = AR AP AF ’
2A, 2A, 2A,
(12.21)
where:
A =X Ys = XY, B =Y, — Y30 V1= X3 — X, (12.22)

Ay =X3Y1 =X Y3s By = Y3 = Y1, V2 =% —Xg,
Ay =X Y, =X Y1y Ba = Y1 = Yo, V3 =X, = X
Substituting the solution above back into the components of displacement field
(Eq.(12.17)) we obtain:
1
u(x,y) = K[(Ofl + BX+ YUy + (@ + ByX+ 7, YU, + (a5 + BeX+ 73 Y)Us ],
(12.23)
1
v(x,y) = K[(al + BX+ 7 YVy + (g + BoX+ 7, YV, + (@ + BoX+ 73 Y)Vs].

Considering the fact that for the triangle element we have three interpolation functions
(see. Eq.(12.3)), we can write that:

3
(X, y) = Nyuy + Nyu, + Naug = DTN (X, y)u; (12.24)
i=1

3
V(X Y) = NV + NV, + Npvy = > Ni(X, )V, .
i=1
In accordance with Eq.(12.21) the interpolation functions can be derived in the following
form:

N, (1) = S5

Based on the relation of u(x,y) = N(X, y)u, the matrix of interpolation functions becomes:
N, 0O N, 0 N, O
0 N, 0O N, 0O N,|

The parameter lines of the interpolation function are shown in Fig.12.3, which implies the
following properties:
- at the nodes (N,,N,,N;): (1,0,0), (0,1,0), (0,0,1),

i=1,2 3. (12.25)

N =

(12.26)

© Dr. Andrés Szekrényes, BME © www.tankonyvtar.hu



6 Modeling of plane stress state using FEM software systems. Modeling, analysis of
problem evaluation

- at the midpoints of the triangle sides(N,,N,,N,):(1/21/2,0), (1/2,01/2), (01/21/2),
- at the centroid (N, N,,N;): (1/31/31/3),

- i.e., it is seen that at every point: N, + N, + N, =1,

- finally:

'[N‘NijdA—&ZAE
N (F B )

Fig.12.3. Parameter lines of the interpolation functions of linear triangle element.

12.2.2 Calculation of the stiffness matrix
According to Eq.(12.9) the definition of the element stiffness matrix is:

K, =[] B"C'Bvdxdy, (12.28)
where the previously mentioned strain-displacement matrix using Egs.(12.5) and (12.26)
becomes:

2 0
o N, 0 N 0 N 0
B=oN=| 0 2| 2 3 -
= = yl0 N 0 N, 0 N,
o 9
oy ox
N, g 0N, o N,
OX N OX N OX N . g 0 p, 0 B O
=| 0 8y1 0 6y2 0 ay3=m0 7 0 y, 0 .|
oN, N, &N, oN, ON, oN, nobBor: Brovs By
Loy ox oy OX oy OX |

(12.29)
This formulation implies that the elements of matrix B are independent of the x and y vari-

ables, they depend only on the nodal coordinates. Therefore, the stiffness matrix can be
written as:

K,=B'C'BvA, =B'C'BV,, (12.30)

=€ =

where A. is the element area, Ve = Agv is the element volume, respectively. As a conse-
quence, the stiffness matrix of the linear triangle element can be computed in a relatively
simple way and in closed form.
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12.2.3 Definition of the loads
Body force or volume force. Let the vector of body forces be equal to:

q= % , (12.31)
from which we have:
N, 0] [N, ]
0 N, N.q,
N 0 N
F., :J.J.NTquxdy:J. ? % vdA:j STy

= - A 0 N,|aq, A N,q,
N, O N,q,
| 0 Ny _quy_

(12.32)
Utilizing the special properties of the interpolation functions given by Eq.(12.27), e.g. if i =
1,j=0andk =0, we have:
[ NdA zlAe . (12.33)
A 3

Consequently we have:
1
El—b =§A%V|:qx qy qx qy qx qy] (1234)

As an explanation, the body force acting on the element (e.g. the whole weight and the
resulting resultant force) is divided into three equal parts and put into the nodes. The body
force can be originated from gravitation or acceleration (inertia force).

Distributed force along element edges. For the calculation of force vectors as a result of
line loads along element edges we should take the 1-2 edge of the element shown in
Fig.12.4 into consideration. We define a dimensionless parameter, £ along the element
edge. The arc length along the element edge is then:

s=I1,& and ds=1,d¢. (12.35)

A

y
g=1

Fig.12.4. Linear triangle element with line load in direction x along element edge 1-2.
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The linearly distributed load in direction x can be described by the following function:

P (6) = Pu(l=S) + P& (12.36)

Similarly, the displacement function in direction x along element edge 1-2 can be written
as:

u(@)=u,(1-5) +u,¢. (12.37)
The work of the distributed load is generally the integration of the load function multiplied
by displacement function between the corresponding nodes:

W, =u; F,, = [ul pvds = j P, (OU(E)l,vd& =

U AP @— ) + P W= EEINAE + U, {p,, (A- £)E + p,o&2 Jvdé =

O e

12V
3

1 1
{ul(pxl +§ Pyo) +U, (E Py + pxz)}-

(12.38)
That is, the force vector from a linearly distributed line load becomes:

El—p = IILV|: pxl +% px2 O % pxl + pxz 0 0 0:| . (1239)

3
If the line load is constant along the element edge, then p,1 = px2 = px Which implies:
(Y
Fo=">[p, 0 p 00 0] (12.40)

The form of the vector of forces in the finite element equation is similar in the case of a
linearly distributed load in direction y.

Concentrated forces. Concentrated forces can act only at nodes. The force vector can be
simply formulated based on the nodes:

FL=[Fs Fu Fo Fo Fo Fal (12.41)
The total force vector is the sum of the vectors detailed in the previous points, i.e.:
Fe=Fgp+Fp+Fe. (12.42)

We demonstrate the solution of the finite element equation and the construction of the
stiffness matrix and force vector through an example.
12.3 Example for the linear triangle element — plane stress state

The model shown in Fig.12.5a is loaded by distributed forces. Calculate the nodal dis-
placements and forces in that case when we built-up the plate using two linear triangle el-
ements! Calculate the strain and stress components [4]!
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a b.
yl\ py yA
I 4 3 4 4 3
D
¢ P @ @
Py o b
<o
<D @ @
<0
800070 Z X 1 2 X 1 2 2
. a

Fig.12.5. Plane model loaded by distributed forces (a), finite element model made by two linear
triangle elements (b).

Given:
px= 0,12 MPa, E = 150 GPa, a = 20 mm, ¢ = 10 mm, py= 0,06 MPa, v= 0,25, b = 30 mm
v=5mm

In the course of the computation we calculate the distances in [mm] and the force in [N].
Following Fig.12.5b, we see that the model is constructed by two triangle elements. The
nodal coordinates are:

node x[mm] | y[mm]
1 0 0
2 20 0
3 20 30
4 10 30

The so-called element-node table is:

element nodes
1 1 2 4
2 2 3 4

The finite element equilibrium equation to be solved is:

KU =F, (12.43)
where:
U'=[u, v, u, v, u, v, u, v,J, (12.44)

is the structural vector of nodal displacements. Because of the boundary conditions (vi = v,
= Uz = uz = 0) we have:

U'=[u, 0000 v, u, v, (12.45)
In order to calculate the stiffness matrix we need the constitutive matrix for plane stress
state (see section 11.23):

© Dr. Andrés Szekrényes, BME © www.tankonyvtar.hu



10 Modeling of plane stress state using FEM software systems. Modeling, analysis of

problem evaluation

c 1 v O 16 04 O
c=Cc™ =77y 1 0 |=|04 16 O :10° MPa.
oo Y o o o6
(12.46)
The coefficients of the interpolation functions for the first element are:
Bi=Y,-Y,=-30mm,y, =X, —X, =-10 mm, (12.47)
Br=Y,—Y,=30mm,y, =X —X, =-10 mm,
La=Y,—Y,=0mm,y, =X, —x =20 mm,
and for the second element, respectively:
Bi=Y;—Y,=0mm, y, =X, —X; =-10 mm, (12.48)
Bo=Y,—Yy,=30mm, y, =X, - X, =10 mm,
Bi=Y,—Y;=-30mm, y, =X; —X, =0mm.
The triangle areas are:
A, =%20-30=300 mm?, A, =%10~30=150 mm?®. (12.49)
Matrix B for the first element is:
0 0 0 -1 0 1 0 00
. By P s . ] ] o 4
B = o »7v¢w 0 y, 0 pl==—0 -= 0 —-= 0 —|—
=t 2A, 20 3 |mm
o Bove Br Vs P 1 1 2
-~ -1 - 1 Z o0
L 3 3 3
(12.50)
For the second element it is:
0 0 0 0O 0 1 0 -1 0
. B 2 s . ] 1 1
B, = O »» 0 y, 0 y,}=— 0 -—= 0 = 0 O0|—
=2 2A, 5 5 5 10 3 3 mm
V1 1 V2 2 73 3 _i 0 l 1 0 -1
L 3 3 i
(12.51)
Based on Eq.(12.30) the element stiffness matrices are:
625 125 -575 -025 -05 -1 |
125 35/12 0,25 -57/36 -15 -4/3
o7 -575 0,25 6,25 -125 -05 1 s N
K =B CBV,= 107 —,
= =1= = -0,25 -57/36 -125 35/12 15 -4/3 mm
-05 -15 -05 15 1 0
-1 -4/3 1 -4/3 0 8/3 |
(12.52)

© www.tankonyvtar.hu
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05 0 -05 -15 0 15
0 4/3 -1 -4/3 1 0
v _|705 -1 125 25 -12 -15 100 N
2°¢2 115 —-4/3 25 35/6 -1 -45 mm’
0 1 -12 -1 12 0
| 15 0 -15 -45 0 45

where Ve = Ae;-v = 300-5 = 1500 mm? and Ve, = Aez'v = 150-5 = 750 mm® are the element
volumes. For the construction of the structural stiffness matrix we complete the element
matrices with empty rows and columns corresponding to the missing degrees of freedom.
On the base of Fig.12.5 and the element-node table, it is seen, that the first element in-
cludes only nodes 1, 2 and 4. Consequently those rows and columns, which belong to node
3, should be filled up with zeros:

k;ll kilZ kilS k;l4
kiZl k;ZZ k223 k324
k;3l kiSZ k333 k;34
I(;41 kg42 k§43 ki44
0 0 0 0
0 0 0 0
k;51 kiSZ k;53 k;54 ki55 k:56
_k;61 kelsz kelea ke164 0 keles kgae_
In contrast, for the second element the rows and columns corresponding with the first node
must be completed by the placement of zeros:

Kas  Kess
Keos Koo
Kess  Kess
Keas Koo
0 0
0 0

(12.53)

I
O O O O O o o o
O O O O O o o

00 O 0 0 0 0 0 |
00 O 0 0 0 0 0
0 0 k8211 kele k6213 k8214 kezlS k8216
— 0 0 keZZl k8222 kezZS k6224 k8225 k6226 (12 54)
=2 0 0 kezs‘l keZBZ k8233 kez34 kezBS kez36 . .
0 0 kez4l k8242 ke243 k6244 kez45 k6246
0 0 kele ke252 k8253 k8254 keZSS k8256
_0 0 kezﬁl k6262 k8263 k€‘264 keZGS kezﬁﬁ _
The structural stiffness matrix is calculated as the sum of the two former matrices:
I kelll ke::LlZ kil’a‘ k§14 O 0 kells k33.16
kiZl k:22 k:ZS k:24 O 0 kiZS k:ZG

k2'.31 k33-32 ki33 + kezll ki34 + kele k6213 kezl4 kiSS + kezlS k:.36 + kezlG
kié‘rl ki.42 k33.43 + k6221 k§44 + k6222 k8223 k€3224 k:45 + k6225 kEJ}.46 + k6226
2 0 0 k8231 keZSZ k6233 kez34 k8235 k63236

0 0 kezéll kez42 kez43 k63244 kez45 k6246
kiSl kiSZ ki53 + k6251 k354 + k6252 k6253 k6254 k255 + k€:255 kG:JLSG + k6256

1 1 1 2 1 2 2 2 1 2 1 2
_ke61 keGZ ke63 + keGl ke64 + keGZ ke63 ke64 ke65 + ke65 ke66 + keGG_
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(12.55)
The force vector related to the distributed load is calculated by Eq.(12.39):
Fop = %V[px 000 p 0] (12.56)

Elpzzls%[o 00 Py 0 py]’

where 1, =+10% +30% =+/1000 m and l3; = 10 mm are the element edge lengths between

the nodes indicated in the subscript. By completing the element vectors with zeros at the
positions of the proper degrees of freedom, we get the structural force vectors:

_T1=%V[px 00000 p, 0]=3i0 0 0 00 0 30 0JN,
(12.57)

F,=Y[o 0 0 0 0 p, 0 pJ=f0 0 0 0 0 15 0 —15]N.

FPre=""57
2
We consider the reaction forces as concentrated forces at the constrained nodes:
EI = [Fxl I:yl FXZ FyZ Fxs FyS Fx4 Fy4 ' (1258)

Taking it into account, that at node 4 there is no external force and that the surfaces are
frictionless, i.e.: Fx1 = Fy3 = 0, we have:

EI = [O I:yl sz F
The structural force vector is:

E:Epl+Ep2+Ec ' (1260)
The finite element equilibrium equation isKU = F , i.e. we have:
0

F, 0 0 0] (12.59)

y2

[ 6,25 1,25 575 -025 0 -05 -1 [u| [3/10
1,25 35/12 025 -57/36 O 0 -125 —-4/3 0 Fo.
-575 025 625 -125 -05 -15 -05 25 0 F,,
-0,25 -57/36 -125 425 -1 —-4/3 25 —4/3 108 0| | F,
0 0 -05 -1 125 25 -12 -15 0 F.,
0 0 -15 -4/3 25 35/6 -1 —45 V, ~15
-05 -15 -05 2,5 -12 -1 13 0 u, | |3v10
| -1 -4/3 25 -4/3 -15 -45 0 43/6| |v,| [-15
(12.61)

The nodal displacements can be determined from the system of equations constructed by
the 1%, 6" 7" and 8" component equations of the matrix equation:

6,25u, —0,5u, —Vv, =310, (12.62)
35/6v, —u, —4,5v, =-15,

—0,5u, —v, +13u, = 3410,
—u, —4,5v, +43/6v, =-15.

The equations above, in fact were obtained by the condensation of Eq.(12.61). When we
perform the matrix condensation only those component equations remain, which contain
unknowns with respect to the displacements only. On the right hand side, in the force vec-
tor there are no unknowns. The solutions are:
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u, =1,557-10° mm,v, =-0,22997-10° mm, (12.63)
u, =0,771983-10° mm,v, =-0,13633-10"° mm.

Taking the nodal displacements back into the 2", 3™ 4™ and 5™ rows of the matrix equa-
tion, we can determine the nodal forces:

1,25u, -1,25u, - 4/3v, = F, (12.64)
-5,75u, =15v, -0,5u, +2,5v, = F,,,
-0,25u, —4/3v; +2,5u, -4/3v, = F,,
2,5v; —12u, -15v, = F,
The solutions are:
F,=0971095 N, F,, =-9,339434 N, (12.65)
F,, =2,0289N,F,, =-9,63423 N .
Using Eq.(12.19) we calculate now the strain components:

ou ov ou ov
(C;X:&:al’gy:a—y:bz,}/xy:—-i-&:az‘l‘bl. (12-66)

oy
For the first element we obtain:
a = ﬂlul +ﬂzuz +ﬁ3u4 _ _30u1

=-7,7892-107  (12.67)

' 2A, ~2-300
b, = PV + PoVy + ByVs 0
h = - 1
2A,
a, = 17Uy Tyl 70U 20U, 5009 600
2A, 2-300
b, = [aa ¥ 72Va sV _ 20Va _ 45443510
2A, 2-300
The vector of strain components fro the first element is:
£y —778,92
& =|¢&, |=|—-454435|-107° (12.68)
o -2,3121

For the second element we can write:

g = Pt s+ Uy 30Us 50198 107 (1260

1 2A,, ~2.150
b, = LV, + BNy + SV, _ 30v, —30v, —-0,36416-10°°,
2A, 2150
a, =Mz T T7l g
2A,,
Vet PVatrVe 10V g geng g0
2A,, 2-150

from which we have:
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Eyr — 771,98
£,=|¢, |=| —76,657 -107°. (12.70)
Y xy2 —93,6416
Since the plate is under plane stress state we can write based on Eq.(11.19) that:
14 _
&y = _E(g“ +¢,)=274,787-10", (12.71)

B 14

1-v
The normal and shear strains are, accordingly constants within the individual elements, we
referred to this fact in the introduction of the triangle element. Incorporating the constitu-
tive matrix we can determine the stress components too based on Eq.(12.46):

c=C"¢. (12.72)

This equation gives the stresses of the elements, which is in general referred to as ,,element
stress” in the commercial finite element packages. For the first element we have:

o =L6¢, +04¢,) -10° = -0,12644 MPa , (12.73)
o, =(04e, +16¢c,) -10° = -0,038428 MPa,
Ty = 0,67, -10° =-0,13873-10"° MPa.

Similarly, for the second element the stresses are:
o, =(L6e,, +0,4¢,,) -10° = -0,12658 MPa, (12.74)

o,, =(04¢,, +16¢,,)-10° = -0,043145 MPa,
7, =0,67,,, 10° =-0,56185-10 MPa.

Considering the stresses it is possible to produce nodal stress solution. By computing the
average stresses in the mutual nodes we obtain the so-called ,,nodal stress” or ,,average
stress” solution:

£, = (£, +£,,) = 282,88-10°°.

Node 1: o, = -012644 MPa, o, = -0,038428 MPa , 7, = -013873-10° MPa,
(12.75)

Node 2: o, = l(0Xl +0,,)=-012651 MPa,
2
1
o, = E(Gyl +0o,,) =-0,0407865 MPa,,

1 )
Ty =5 (T +7,2) = —0,28786-10° MPa.
Node 3: &, =-0,12658 MPa, o, = -0,043145 MPa 7, = -0,56185-10"° MPa.

Node 4: o, = l(0Xl +0,,)=-0,12651 MPa,
2
1
o, = E(Gyl + O'yz) =-0,0407865 MPa ,

Ty = %(rxyl +7,,)=-0,28786-10 MPa.
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The problem presented in section 12.3 was verified by the finite element code ANSYS 12,
resulting in the same results. The solution with the above applied low mesh resolution is
naturally very inaccurate.

12.4 Quadratic six node triangle element

The more advanced version of the linear triangle element is the six node quadratic triangle
element, in which there are additional nodes in the midpoints of the element sides [2,5].
Because of the additional nodes we need displacement functions including six unknowns,
which are:

u(x,y) =a, + ax+a,y+axy+a,x>+ay’, (12.76)

V(X,y) = by +b,x+b,y +bxy +b,x* +b,y>.
The calculation of the stiffness matrix and force vector can be performed in the same fash-
ion as it was done in the linear triangle element. Within the individual elements the strain
and stress components vary linearly. As a consequence, using identical mesh resolution,

the quadratic triangle element provides a better approximation of the problem than the lin-
ear one.

12,5 Isoparametric four node quadrilateral

The isoparametric quadrilateral (see Fig.12.6a) is one of the most important finite element
type for plane problems [2,4,5]. An element is called isoparametric if we formulate the
local geometry and displacement field by the same set of functions.

12.5.1 Interpolation of the geometry

For the sake of simplicity we map the quadrilateral element to a regular square into the &-»
natural coordinate system, as it is shown in Fig 12.6b. We give the functions of the x and y
coordinates of element edges in the following form:

X(&,1) = Ny (&)X + N, (Em)X, + Ny (&,m)%, + N (E,m)x, = N (£,m)X,
(12.77)

Y(€7) = Ny (Em)Y, + Ny (E,m)Y, + Ny (E,m)ys + Ny (Em)y, =N (£,7)y,

where:
.

X'=[ % % %)y =l v, ovs vl (1278)

a. b.

AN

1 ®

A
y parameter lines
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Fig.12.6. Isoparametric quadrilateral in the global (a) and natural (b) coordinate systems.

Due to the fact that we have four nodes, the interpolation function may contain to a maxi-
mum four unknowns:

X&) =a, +ad+ayn+asn=P A, (12.79)
where A is the vector of coefficients, P is the vector of basis polynomials, respectively:
Al=[a, & a, &P =[L ¢ 7 &l (1280
The function given by Eq.(12.79) must satisfy the following conditions:
X(-1-1)=a,—-a —a,+a; =X, (12.81)
X1,-1)=a,+a,—a,—a; =X,,
X1l =a,+a, +a, +a, =X,,
X(-1) =a,—-a, +a,—a, =X,.
In matrix form it is:

MA=x, (12.82)
where:
1 -1 -1 1
1 1 -1 -1
M = : (12.83)
= |1 1 1 1
1 -1 1 -1
Then the coefficients can be determined by using Eq.(12.82):
A=M"xand: x(£,7) =P A=P"M "x. (12.84)

The solutions for the coefficients are:

E :%(X1+X2 +Xs+X,), & :%(_X1+X2 +X3—X,), (12.85)
1 1
a, :Z(_xl_xz +X3+X4)' a, :Z(Xl_xz + X3 _X4)'

Taking them back into Eq.(12.79) we get:

1 1
X(&,m) :Z(Xl + X, + X3+ X4)+Z(_X1 + X, + X3 _X4)§+
1 1
+Z(_X1 — X X3+ X4)77+Z(X1 =X, + X3 —X,)én =

FA U G =G+ M En) 4 A& -

(12.86)
The interpolation polynomials on the base of Eq.(12.86) are:

Nl(é.n)=%(l—f§)(l—n), Nz(é,ﬂ)=%(1+§)(1—77), (12.87)

Ns(é,n)=%(1+§)(1+n), N4(é,n)=§(1—§)(1+n).

Performing the same computation for coordinate y we obtain the same interpolation func-
tions. The three dimensional plot of the Ni(&, #) interpolation functions represents line sur-
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faces, of which value in the location of the i™ node is equal to unity, while in the location
of the other nodes it is equal to zero, as it is demonstrated in Fig.12.7.

N1(§’TI)

0.8

0.6

0.4

0.2

LO

171

Fig.12.7. Interpolation functions of the isoparametric quadrilateral element.

The summary of the geometry is given by the formulae below:

x(&,1)
=N(&,n)R,, 12.88
{ﬂ&nJ R (12:89)
where:
BZ:[XI Yio X2 Yo X Yy X y4]' (12.89)

is the vector of nodal coordinates, and:

N@m:Nlo N, 0 N, 0 N, 0
= 0 N, 0 N, 0O N, 0O N,|

The compact form of the interpolation functions is:

N, (£.7) :§(1+§;)(1+nni). (12.90)
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where & and 7; are the corner node coordinates according to Fig.12.6b.

12.5.2 Interpolation of the displacement field
The displacement vector field of the isoparametric quadrilateral element can be written as:

wen =] o |- Neemu. (1291)

where:

u(&,n) =N, (&, m)u, + N, (&, mu, + N, (&,7)u; + N, (E,7)u,,
(12.92)

V(&,m) = N (&,m)V, + N, (E,m)V, + Ny (E,m)v; + N, (E,7)v,,
moreover, the matrix of interpolation functions and the vector of nodal displacements are:

N(E ) = N, O N, 0 N, 0 N, 0O (12.9)
=7 0 N, 0 N, 0 N, O N,| '
-

Ue z[ul Vi U, VvV, Uz Vg U, V4]'
The displacement field must result in the nodal displacements if we substitute the coordi-
nates of the proper nodes back, i.e. it must satisfy the following conditions:
u(-1-1)=u,,u@-1) =u,,ull)=u;, u-1) =u, (12.94)
Mathematically this is the same set of conditions for the displacements as that formulated
in the case of the geometrical parameters. Consequently the computation leads to the same
interpolation functions as those given by EQ.(12.87). The quadrilateral element is called
isoparametric element because of the fact, that the same interpolation functions are applied
for the displacement field and local geometry.

12.5.3 Calculation of strain components, Jacobi matrix and Jacobi determinant
The vector of strain components using Eq.(12.2) is the following:

X X

e=|e |=| v, |=ou=aNu,=Bu, (12.95)

y Y
Vxy u,+v,

where u,y is the partial derivative of u with respect to x, v,y is the partial derivative of v with
respect to y. Moreover:

2 9
OX
B-oN<| 0 Kl N, 0 N, 0 N, O N, O _
= = oy 0 N, O N, 0 N, O N,
o 9
| Oy  OX |
ON, 0 oN, 0 ON, 0 oN, 0
OX OX OX OX
=1 0 % 0 oN, 0 % 0 oN,
oy oy oy oy
ON, ON, ON, ON, ON, ON, ON, ON,
oy Ox oy oOx oy oOx oy @ OX |

(12.96)
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Apparently, matrix B contains the first derivatives of the interpolation functions with re-

spect to x and y. it can be elaborated based on Eq.(12.87) that the N; interpolation functions
are known in terms of £and 7. We refer to the chain rule of differentiation:
o0 _20 8& o0om o _ 0 ag 0 on (12.97)
OX 8& 6x an OX ay 8&, ay an oy
0 8ax ooy 0 _ 0 86‘y
8&, ox ag oy o0&’ an T an oy on’
Utilizing Eq.(12.77) the local geometry and the first derivative of the functions with re-
spectto £and 7 are
X~ 0N, OX <& ON,
x(&m) = ZN(M) " 5 .186 % o .21:877 X, (12.98)
g Y-

B oy 4 4 ﬂ
Y(§177)—;Ni(ég’77)Yi’6§ .le 87] 2677 i

i=1
Writing it in matrix form we have:

o) [x aTo] [o
5 |_| 05 0S| ox|_ 4 ox
i_ﬂﬂi_ii’ (12.99)
on] |on on oy oy
where J is the so-called Jacobi matrix:
x oy
o¢ 0¢ Ju
J= = : 12.100
Clx oy [Jﬂ I, (12199
on on
The Jacobi determinant is:
J=73,3,-3,3, :%ﬂ—@%. (12.101)
dgon g on

The derivatives with respect to x and y are provided by the help of the inverse Jacobi ma-
trix:

Yy 9%
J -J
l’l:l on o0& :i 22 12 1 (12.102)
o J _ﬁ % J _‘]21 ‘]11
on 0
furthermore:
o] [o
4| 0
% -3 < (12.103)
oy on
From which we obtain the followingsx
0 0
—), 12.104
v (22 e zan) ( )
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o 1 0 o

—=—(— —+ —).
8y ] ( 21 8& 11 81’1)
With the aid of the former matrix B becomes:
1 Jzle,g - J12N1,7; 0 ‘J22N2,§ _‘J12N2,77 0
EZF 0 _J21N1,§ +J11N1,;7 0 ‘J21N2,.»; _‘J11N2,77
- J21N1,§ + JllNl,q ‘J22N1,§ - ‘]12Nl,7] ‘]21N2,.»; - ‘J11N2,77 JzzNz,g - J12N2,77
Jzst,g _‘J12N3,77 0 J22N4,§ _‘]12N4,77 0
0 —J N, +IuN, 0 ~JuN, +IuN

11" VY4,n

_‘]21N3,§+J11N3,q ‘]22N3,§_‘J12N3,q _J21N4,§+‘]11N4,q ‘]22N4,5_J12N4,q

(12.105)
We need the derivatives of the interpolations functions and the elements of the Jacobi ma-
trix, which are:

oN, 1, AN, 1. o 0N, 1 oN, 1

or - 4(1 n), oc 4(1 n), oc 4(1+77), oc 4(1+77),
(12.106)

oN, 1, N, 1 oN; 1 N, 1.

on 4(1 &), on 4(l+§), on 4(l+§), on 4(1 &),

respectively, and:
X _oN; 1

§ o ngi 4{— L=m)X + L=17)%, + L+ 7)X = L+ 7)X, },

(12.107)
_Oy _NON L _ _
Y= o= X =ty oy + W)Yy W)y,
D=y N @ - W O+ -,
on ‘I 0n 4

Sy Ny L gy _
Yo =5, = 2 N =g A - A Y, + (L )ys + A8y}

i=1

Based on the former equations we can formulate the Jacobi matrix either in the following
form:

X Vi
J:|:‘J11 J12}:|:N1,§ NZ.é N3,<f N4|§ X, Yo .(12.108)
- ‘le ‘Jzz Nl,n NZ.n N3n7 N4|77 X3 Y3

Xp Y4

12.5.4 The importance of the Jacobi determinant, example

Calculate the elements of the Jacobi matrix for the quadrilateral shown in Fig.12.8! The
nodal coordinates are:

2 1
=0,y,=0,x=2a,Yy,=0,x=a, y,=4a, X4:§a’ Y4:§a.
(12.109)
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a

< ' o

Fig.12.8. Isoparametric quadrilateral element with excessive distortion.

The elements of the Jacobi matrix based on Eq.(12.107) are:

Iy = 1{ a- )0+(1—77)a+(1+77)a—(1+77)§a}=%a—%an,
(12.110)

1 1 1 1
Jip —Z{— (1—77)0+(1—f7)0+(1+77)a—(1+77)§a}—ga+gaf7,
{ (1-£)0- L+ Ha+ @+ Ha+ (- f)ga}=% —2ac,
{ @1-8€)0-(@1+&5)0+(1+8&a+(@1- 5);a}:% +%a§,

from which the Jacobi determinant is:

J=J3,3, -3,y =%a2(1+§—77). (12.111)

The Jacobi determinant is 0, ife.g. £=-1and =0, or £=0and n = -1. This case is said
to be excessive distortion, it means that we have degenerate element. If J = 0, then the in-
verse Jacobi matrix does not exist at the point under consideration. Moreover, the parame-
ter lines intersect each other outside the domain of the quadrilateral. That is why the sum
of the inner angles of quadrilateral must be less than 180°, in other words the quadrilateral
can not be concave.

12.5.5 Calculation of the stress field
The vector of stress components can be obtained from Eq.(12.7):
o =C¢=CBu,, (12.112)

str stn

whereC = C™ for plane stress and C = C ™ for plane strain (see section 11.)

12.5.6 Calculation of the stiffness matrix
The stiffness matrix for plane problems is calculated by Eq.(12.9):

K, = H B'C' Bvdxdy . (12.113)
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In the case of the isoparametric quadrilateral the elements of matrix B contains the deriva-

tives of the interpolation functions. Consequently, for the stiffness matrix calculation the

transformation of surface integrals must be performed. The vectors and parameters, which

are required for the analysis, are shown in Fig.12.9. The ranges of parameters c; and c; are:
-1<¢, <1, -1<¢, £1. (12.114)

yA

Fig.12.9. Transformation of surface integral in the isoparametric quadrilateral.

The differential vectors written by lowercase letters, can be formulated by utilizing Eq.
(12.100):

OX OX OX
—d&é+—dp —dé&
drl{dx} _lae ™ an _| ¢ :[‘Jn}dg’
dy =konst ﬂd§+ﬂdn %df Jiz
85 877 n=konst aé:
(12.115)
and similarly:
OX
Zdn
d J
d;z{ X} =| 9 { Zl}dn. (12.116)
dy E=konst —Xd77 J22
on

The definition of the elementary area is:
i ik
dA = |d[1 X d£2| =abs(J,,d& J,d& 0)=(I;, —J;,,)dsdn = dxdy,
Judn Jpdn 0
(12.117)
this yields:

11
dA = dxdy = Jd&dn and: [dxdy = [ [Jdédn.  (12.118)
A -1-1
The stiffness matrix becomes:
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11
=[B"C"Bvdxdy= [ [B'C"BWd&n,  (12.119)
A -1-1
i.e., the stiffness matrix can be computed by the help of an area integral. For the calculation
we can apply analytical or numerical method. The commercial finite element packages, in
general, implement the Gaussian quadrature to perform the integration. This method will
be presented in section 12.6.

K

e

12.5.7 Calculation of the force vector
Distributed load along the element edge. The force vector resulting from the distributed
load along element edge 1-2 shown in Fig.12.10 can be defined as:

F. :vjﬁTglzds, (12.120)
where:
1 1
S= Eluf and ds = Ellzdf, (12.121)

where Iy, is the element edge length between nodes 1 and 2.

yA

Fig.12.10. Distributed load along the element edge of an isoparametric quadrilateral element.

Moreover, we know that along edge 1-2 7 = -1 and -1 < £ < 1 (see. Fig.12.6). We can
write after all, that:

_Nl O ] i prlw
0 N, pyN;
N, 0 PN,
1 1 N

Fe zvﬁ[ﬁTngds l:%vl ’\?3 ’\(1)2 {Ejllzdﬂn__l :%VIHJ; EiNj d§|n:_1.

" 0 N, o,N,
N, 0 PN,

0 N,| L pN, |

(12.122)
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For further calculation we must evaluate the interpolation functions along the parameter
line, for which n=-1:

Ny, = =%(1—§), (12.123)
1
N, =Z(1+§)(1— gt

Ny, =5 @+ @+ =0,

N4|77:—1= =0.
This yields: "
1 - S N N A P N
jlprll,, 106 =2 Py I(l g”)df—gp{ ZL—pr[l 5 (-1 2)}—px,

(12.124)

J PN, de=2p, Jar s =2 py{&%} -~ p{l%—(—uﬂ -

By taking the results back into the force vector we obtain:
1
Ey=vlalp. P, PP, 00 00 (12125

The resultant of the uniformly distributed load is divided into two parts and (similarly to
the beam and linear triangle elements) put into the nodes of element edge. The calculation
can be made also in the case of linearly distributed load; naturally it results in a different
force vector.

Body force. The force vector calculated from the body force is:

11
F.,=v[[N"qld&dn, (12.126)
-1-1
for which we need again the evaluation of surface integral. Similarly to the stiffness ma-
trix, the Gaussian quadrature will be applied to evaluate the integral.

Concentrated loads. For plane problems there are concentrated forces acting in the nodes
and there are no moments. The x and y components of the concentrated forces are collected
in a vector:
El—c = [Fxl I:yl Fx2 I:y2 Fx3 Fy3 Fx4 Fy4 . (12127)
The total vector of forces is the sum of vectors presented in the last three points:
F.=Fo+Fg+Fe. (12.128)

12.6 Numerical integration, the Gauss rule

For the calculation of the element stiffness matrix and the body force vector of
isoparametric quadrilaterals there are numerical integration schemes implemented in the
finite element packages. Commonly, the Gauss rule is applied because it uses minimal
number of sample points and it is relatively accurate [1,2,6].
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12.6.1 One dimensional Gauss rule
The main aim is the approximate but relatively accurate calculation of the area under the
curve shown by Fig.12.11 using the one dimensional rule.

4 F(E)
-1 \/ &i 1 R
® p=1
° ° p=2
° ° ° p=3
P ° ° o p=4

Fig.12.11. Sample points of the one dimensional Gauss rule.
The approximate area under the curve is calculated by:
1
| F(é)dézil‘,wilz(é)- (12.129)
The sample (or integratio;) point coolr_dinates, & and the integration weights, w; are listed

in table 12.1. The one dimensional rule provides the exact solution for a polynomial up to
the order of 2p-1.

p g Wi
1 0 2
, ~1/4/3 1
1/43 1
—+/3/5 5/9
3 0 8/9
/3/5 5/9
—\/(3—2\/6/5)/7 1/2-(/5/6)/6
4 —J(3+26/5)/7 1/2+(\/5/6)/6
Es=-& W = W2
Ea=-& Wa =W,

Table 12.1. Parameters of the one dimensional Gauss rule.

Let us solve an example for the application of the Gauss rule! Calculate the exact value of
the integral:

dx (12.130)

I
P — W

X | =
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as well as its approximate value using one, two and three integration points!
Exact solution:

| =[Inx} =In3-1In1=1,098612. (12.131)

Gauss rule, p = 1. Let £=x-2. If x = 3, then &= 1, on the other hand if x = 1, then £ = -
consequently:

21 t 1 1
=|=dx=|——=d&,and: F({) =——. 12.132
!X _fl§+2 3 ©=7 (12.132)
The approximate value of the integral is:
IlzwlF(O):Zézl. (12.133)

That means an error of 9,9% compared to the exact solution.
Gauss rule, p = 2. In this case:

|2;MF(J4+wf( L 1

)1 1 +1 1 =1,090909.

\/§+ 2 \/§ +2
(12.134)

The value of the integral differs with 0,7 % from the exact solution.
Gauss rule, p = 3.

7

3 3, 5 1 81 5
I, =w,F(—[=)+W,FO) +wW,F(,|=) =———r+ —_1,0980387.
3 1(J; ,F(0) 3(J; 5 J;—-gz QJ__
—.|=+2
5
(12.135)

The error of approximation is only 0,052%.

12.6.2 Two dimensional Gauss rule
The two dimensional Gauss rule makes it possible to evaluate the approximate value of
surface integrals. The integral is approximated by the expression below:

jjf(x y)dxdy = Hf(cfn)dedn zzwwf@.,n)\ué.,n)\

11 j=1i=1
(12.136)
where w; and w; are the integration weights, & and 7; are the integration point coordinates,
moreover, the ranges are -1 < & <1, -1 < 7 < 1, respectively. Depending on the number of
integration points we can define different Gaussian quadratures, as it is demonstrated in
Fig.12.12.
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1x1 2x2

N
)

Fig.12.12. Integration points of the 1x1, 2x2, 3x3 and 4x4 Gaussian quadratures.

For the 1x1 quadrature there is only a single integration point, for the 2x2 we have 4, etc.
The parameters of the 1x1, 2x2 and 3x3 Gaussian quadratures are summarized in Table
12.2.

1x1 2X2 3x3
a:1/\/§ b =\/ﬁ Wi Wi
§1=O §1=-a N = -a élz-b 1’]1=-b 5/9 5/9
n1=0 (:,2:& Ny = -a i,z:b 1’]2=-b 5/9 5/9
wp =2 Es=a n=a &H=Db ns="h 5/9 5/9
§4=-a nsa=a §4='b T]4:b 5/9 5/9
5=0 s = b 8/9 5/9
w; =1 w, =1 §5Zb T]5:0 5/9 8/9
ws; =1 w, =1 §7=0 T]7:b 8/9 5/9
fgz-b 118:0 5/9 8/9
£ =0 1o =0 8/9 8/9

Table 12.2. Parameters of the Gaussian quadratures.

Example for the application of Gaussian quadrature. Calculate the approximate value of
the integral:

| = [ xydA (12.137)
A

using the 2x2 Gauss quadrature for the domain of parallelogram depicted in Fig.12.13!
Compare the result to that of the exact integration [4]!
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yA
AN
Y3 ')3 @‘, 1 -‘@
4
Y,
2R\ .
— >
Y, b -1 / 1€
Y
. @ T @
X X XX

Fig.12.13. Example for the application of Gaussian quadrature.

The nodal coordinates are:
X1 = 1, Xo = 3, X3 = 4, Xq = 2, V1= 1, Yo = 2, Y3 = 4, Y4 = 3(12138)
Based on the approximate expression of the 2x2 Gaussian quadrature we can write:

| _jxydA ZZWW f(& ). (12.139)

i=1 j=1
The calculation requwes the elements of the Jacobi matrix. We need the nodal coordinates
and also the derivatives of the interpolation functions (see Eq.(12.110)):

Jy = E{— A-m1+@Q-7)3+@+n)4—1+n)2}=1, (12.140)
Jy = 3 A0 Q-2+ @A @ m3) =,
%1=Z%cfﬁﬂ—a+én+a+éﬂ+af§mi=%

1.

=%{_ (L= O+ 2+ L+ )4+ (-3} =

The Jacobi matrix is:

1

‘]11 ‘]12 . E
J= =11 , (12.141)

= Ja Ja -1

2
and the Jacobi determinant is:
J :1-1—1-£:§:con5t. (12.142)
22 4

The xandy parameters utilizing the interpolated form given by Eq.(12.77) are:
(&) = Z N;X; (1 S)A-ml+1+5)A-n)3+
+a+aa+m4+a—®a+nﬂ}
y(S.m) = ZN yi = (1 S)1-ml+Q+)A-n)2+

+a+aa+m4+a—aa+nﬁ}

(12.143)
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The function, f(&,7) is:
1
f(§,77)=xy=Z{(5+2§+77)~(5+§+277)}. (12.144)
We can calculate the approximate value of the integral based on the figure and table above:

| =[f(-a,—a)+ f(-a,a)+ f(a,—a) + f(a,a)]% =19,75.

(12.145)
The exact value of the integral is:
] 111{ 26 +77)-(5+&+2p)dadn =22 ~10,75
|: f ’ d =Xy = - 5+ + . + <+ = = , .
jljl(cfn)édn yUH( E+n n)}dddn =
(12.146)

It is shown apparently, that the Gaussian quadrature provides the exact value in this case.
Most of the commercial finite element packages implements 2x2 quadrature.

12.7 Example for the isoparametric quadrilateral

Solve the example presented in section 12.3 using one isoparametric quadrilateral element!

The data are the same as those given in the linear triangle element. Apply a single finite

element by following Fig.12.14 [4]. Determine the nodal displacements and the reactions!
A

y P,
4 3 T
c
Px
b
1 2, Y >
X
/
< a »

Fig.12.14. Example for the application of the isoparametric quadrilateral element.

The finite element equilibrium equation to be solved is:
KU =F. (12.147)
Since we have only a single element, in this case Eq.(12.147) corresponds to the equilibri-
um equation in the element level:
K.u.=F,, (12.148)

where:
LlT:[ul Vi Uy Vp U VyoU, V4] (12.149)

is the vector of nodal displacements. Due to the boundary conditions (vi = v, = U; = uz = 0)
we have:

U'=[u, 0000 v, u, v, (12.150)
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Similarly to the linear triangle element, we have a system of equations including four un-
knowns. The element stiffness matrix is calculated by the Gaussian quadrature, i.e. we can
write, that:

K, =“§Tg§wd§dn;y

p
141 i=1

ww; B (&,7,)C" B(&.7,)|(& 7).

(12.151)

p
j=1

The elements of the Jacobi matrix are equally required:
X _&oN 1

Ju =%: ngi 4{_ A=), +L=m)X;, + (L+7)X, _(1+77)X4}=

— @m0+ A= 720+ @Wrn)20- @10} =2,
(12.152)

» :%: é%yi Z%{— (L=1)ys +A=1)Y, + L+ 7)Y — L+ 1)y, | =

:%{_ (L-7)0+(@—7)0+ (L+77)30 - (1+7)30} =0,

OX 0N,
21 == - A
on ‘= 0n

=%{— L-&)0—(1+&)20+ 1+ §)20+(1—§)10}:g_g§,

) K= U — (L % + L %+ 1=K, =

SN L gy oy, )=
e s b el e ) Rl UL ARG PR G Y

= %{— 1-&)0—(1+&)0+ (1+&)30+ (1- &)30) =15.

Constructing the Jacobi matrix we have:
15 5

NI 51 0
i{ " 12}= 2 2 , (12.153)
= Ha Ja -=n 15
2
and the Jacobi determinant is:
225 75
J=—"-———1. 12.154
> 57 ( )

It can be seen, that if —1<7 <1, then J > 0 for each case, consequently the element is not
degenerate, which is obviously seen based on Fig.12.5. The inverse Jacobi matrix is:

2
13, -3  5(-3+7) 0

Jl==| T2 2= 7 . (12.155)
- J[-Jn Ju 1_—5 i
15(n—3) 15

As a next step, we calculate matrix B (see Eq.(12.96)), where referring to Eq.(12.105) we

have:
oN, 1 1-7

=Z(IuN, —J,N, Y=
ox J( 2N 12 1,,;) 10(3—7)

(12.156)
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oN, 1 i
El:_(_leNl,g’J“]“Nl'”) 303-7)
N, 1 7
JaNag =deNay) = =037 5
o0 =3 WaNae = duNay) = =07
N E 2+¢&—
£=—(-3,N,, +I;N Zv)__ﬁ’
5 30(3—-7)
N, 1 1+n
== (JuNgp = JpNg ) = ———,
ax J( 22'V3,¢ 12 3‘”) 10(3_77)
N ) 1+2& -1
ays :_(_J21N3'§ Ji 30)_m,
N, 1 1+n
JooNye =JpNy ) ==
OX J( 2Nae =33,Ny,) 10(3-7n)
N, 1 =
—(= leN +J11N4,n):—§.
53 15(3-17)
Matrix B becomes:
1y /A
10G—7) 10(3-7)
- 1 _2+e-n
B a7 30(3-7)
o1& 1-p 2+&-p  1-p
0@ 10G-n) W@ 108
L/ k0
10G-1) 10(3-7)
+25-n e
0G ) 15(3-7)
1+2&—n 1+n 1-¢& B 1+n
0@-m 06-n 156-n)  106-n]
(12.157)

We calculate the element [1,1] of the stiffness matrix by the Gaussian quadrature. For that

let us calculate the following:
ETQT 511 :1600(1—727)2 200(1—52)2’ (12.158)
D ) 3(3-¢)

and:

[k J=v[[[e"c 8] 300 -
© +11600(1-1n)? 200(1—(5)2 {225 75 }d ; ] d
VH{ A 3(3_5)2} & = vjj (&I m)dédn,

(12.159)_

where v =5 mm is the thickness of the plate. We carry out the calculation in three ways, by
using the 2x2, 3x3 Gaussian quadratures and the exact integration, respectively.
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I. 2x2 Gaussian quadrature:

K, |.2v-{f(-a-a)i(-a-a)|+ f(a-a)d(a-a)+ f (aa)J(aa)|f(-aa)d(-aa)}=

(12.160)

I1. 3x3 Gaussian quadrature:
K, },=v-{f (~b,~b)[3 (=b,~b)|+ f (b,~b)|3 (b,~b)| + f (b,b)]J (b,b)| f (~b,b)|3 (~b, b)|}§g +

+v-{f(0-b) (O, b)|+ £ (6,0)3(b,0)|+ f(0,6)[3(0,b)| f (-b,0)[3 (-b 0)|}——+

+v- £(0,0)(0, 0) ©2 _ (2.6072 +2.5046 + 0.07134 + 0. 2454)— 10° +

+(2.5360+1.0021+ 0.1247 +1.1312)— -10° +1.0417 gi -10° = 4,8660-10° %
(12.161)
I11. Exact integration:
K ],=48666-10° . (12.162)

mm
Calculating all of the components of the element stiffness matrix we obtain:
[4,8666 0,76713 —4,3666 0,23287 -2,7668 —0,9657 2,2668 —0,03426 |

23545 07329 -10211 -09657 -11244 05343 -0,20891

53666 -17329 2,2668 -053426 -3,2668 15343
. . 36878 -0,03426 -0,20891 15343 —2,4578 N
: . . . . 6,9663 05685 —6,4663 0,43147 mm’
35845 093147 —2,2512

7,4663 19315
49178 |

(12.163)
The vector of forces can be constructed in a similar way to that shown in the triangle ele-
ment:

EI,1=%V[pX 00000 p, 0=3i0 00000 310 0N,
(12.164)

|34V[00000py0p]00000—150—15]N

Fl, =

—p2

We consider the reactions as concentrated forces in the kinematically constrained nodes:
EI = [Fxl Fyl F. F Fo F F F ] (12.165)

y2 y3 ya I
Considering the fact that the surfaces are frictionless and that at node 4 there is no external
force, we have Fy; = Fy3 = Fxa = Fya = 0, which leads to:

x4

o F, F, F, F, 0 0 0] (12.166)
The structural force vector becomes:
E:Epl+Ep2+Ec. (12.167)
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The construction of the finite element equilibrium equation results in:

(48666 0,76713 —4,3666 023287 —2,7668 -09657 12,2668 —0,03426] [u,]
23545 07329 -10211 -09657 —11244 05343 —0,20891 0
53666 17329 2,2668 —0,53426 —3,2668 15343 0
36878 —003426 -020891 15343 24578 | ;| 0|
6,9663 05685 —6,4663 043147 0
35845 093147 —2,2512 v,
7,4663 19315 u,
I 49178 | |v,|

(12.168)
In the stiffness matrix we eliminate those rows and columns, for which the corresponding
displacement component is a prescribed (here constrained) value. This way we obtain the
so-called condensed stiffness matrix, which is used to expand the system of equations, of
which solutions are the nodal displacements:

4,8666 —0,9657 2,2668 —0,03426 u, | [3v10
35845 093147 —22512 | |V, | _| ~15
74663 —1,9315 u, | [3v10|
49178 v, | | -15
(12.169)

The solutions are:
u, =1,5078-10"° mm, v, =-0,29199 10 mm,  (12.170)
u, = 0,822016-10"° mm, v, = —-0,10532-10"° mm.
Then, the reactions are calculated by the 2", 3™ 4™ and 5™ component equations of Eq.

(12.168). The solutions are:
F, =10678 N,F,, =-9,27494 N, (12.171)

F,, =193216 N, F,, = -9,6987 N .

The strain and stress components of the element can be expressed in parametric form (as
the function of £ and 7) from Egs.(12.95) and (12.105). Taking the coordinates of the cor-
responding node back, the strain and stress components can be calculated. The example
above was verified by the finite element code ANSYS 12.

12.8  Quadratic isoparametric quadrilateral

The advanced version of the linear quadrilateral is the quadratic quadrilateral, in which the
curves of the element sides as well as the displacements are approximated by a second or-
der function of the &£ and 7 coordinates [2,7]. On each element edge we provide a midside
node, as it is shown in Fig.12.15, implying 8 nodes and 8 unknown coefficients in the ap-
proximate function of e.g. the x coordinate:
x(&m) =a, +a,d+a,n+aén+ a4§2 + a5772 + a6§277 + 3-75772 :
(12.172)

Using the nodal conditions we can derive the interpolation functions of the quadratic ele-

ment in a similar way to that shown in the four node quadrilateral. The interpolation func-
tions become:
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N, (6) =5 A= DAL+ &), Ny(am) =5 0= E9)a-1),
(12.173)
Na(Em) == @+ A== £ 1), Ny(Em) =5 A+ -1,

N(&) = =3 (L W+ A= -8) s No(m) =5 A=) a+1),
N, () = =3 Q= 6L+ A+ & =n). Ny(m) = A= A= 17).

A
y parameter lines

M nel

Ys

Y7

Y;
\Z

Fig.12.15. Quadratic isoparametric quadrilateral.

The interpolation functions can be formulated also in compact from:

N, =5 (@ )@+ )& +nm -1, 1= 1,3,5,7, (12174)

N, =& (@ EE)A-n) + S nE @ )A-67),1=2.4,6,8

where & and 7; are the coordinates of the nodes. Fig.12.16 shows the function plot of the
interpolation functions Ns and Ns.

© www.tankonyvtar.hu © Dr. Andrés Szekrényes, BME



http://www.tankonyvtar.hu/�

Alfejezetcim 35

N8 (?;,11)

Fig.12.16. interpolation functions of the quadratic isoparametric quadrilateral.

The value of N; corresponding to the i node is equal to unity, in the other nodes it is zero.
The calculation of the stiffness matrix and the vector of forces can be made in the same
way as that shown in the quadrilateral with straight edges. The Jacobi determinant and the
Gaussian quadrature is equally required.
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