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11.  INTRODUCTION TO PLANE PROBLEMS SUBJECT. APPLICA-
TION OF PLANE STRESS, PLANE STRAIN AND REVOLUTION 
SYMMETRIC (AXISYMMETRIC) MODELS 

11.1 Basic types of plane problems 
In the case of plane problems we have two-dimensional or two-variable problems; 

the basic equations of elasticity can be significantly simplified compared to spatial prob-
lems. There are two major categories of plane problems [1]: 

- plane stress – a thin structure with constant thickness under in-plane loading, 
(Fig.11.1a), 

- plane strain – a long structure with constant cross section under constant loads 
along the length (Fig.11.1b). 

We note that the generalized plane stress state belongs also to the two-variable problems, if 
we relate the mechanical quantities to their average values.  
 

 

Fig.11.1. Demonstration of plane stress (a) and plane strain (b) states. 

For plane problems the displacement vector field is the function of x and y only: 
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Consequently, even the strain and stress fields depend upon x and y: 
 ),( yxεε = , ),( yxσσ = . (11.2) 
In the followings we develop the relationship among the former mechanical quantities. 

11.2 Equilibrium equation, displacement and deformation 
The equilibrium equation represents the internal equilibrium of a differential plane ele-
ment. Based on Fig.11.2 it is possible to express the equilibrium of the forces in directions 
x and y as [1,2]: 

0))()( =+−++−+ dxdyqdxddxddydyd xyxyxyxxxx τττσσσ ,  
  (11.3) 

0))()( =+−++−+ dxdyqdyddyddxdxd yxyxyxyyyy τττσσσ , 
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where σ is the normal, τ is the shear stress, qx and qy are the components of density vector 
of volume forces. The simplification of Eq.(11.3) leads to the following equations: 
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Fig.11.2. Equilibrium of a differential plane element. 

 The equilibrium equation can be formulated also in vector form [1,2]: 
 0=+∇⋅ qσ , (11.5) 
where q = q(x,y) is the density vector of volume forces, ∇ is the Hamiltonian differential 
operator (vector operator) in two dimensions: 
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In order to establish the relationship between the strain and displacement fields we investi-
gate the displacement and deformation of some points of the differential plane element 
depicted in Fig.11.3. The normal and shear strains in direction x of distance AB, and in 
direction y of distance AD of the element are: 
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  (11.7) 
By the help of the figure we can write the following: 
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from which we obtain: 
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The expression above is applicable to calculate the normal strain in direction x in the case 
of the so-called large displacement. After all, within the scope of elasticity, in most of the 
cases we obtain reasonably accurate results by the linearization of the expression above. 
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The normal strain in direction y is derived similarly. Neglecting the higher order terms we 
obtain the linearized formulae: 
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Utilizing Fig.11. 3 we calculate the angle denoted by θ : 
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Fig.11.3. Displacement and deformation of a differential plane element. 

Assuming that there are only small angles, we can write: 
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Based on Eq.(11.7) we obtain: 
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We obtain the so-called strain-displacement equation by summarizing Eqs.(11.10) and 
(11.13) in tensorial form. The strain-displacement equation is valid also for spatial prob-
lems [1,2]: 

 )(
2
1 uu  ∇+∇=ε ,  (11.14) 

where the circle means dyadic product. 

11.3 Constitutive equations 
The material behavior, in other words the stress-strain relationship of a homogeneous, line-
ar elastic, isotropic body is given by Hooke’s law [3]: 
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where ν is Poisson’s ratio, E is the modulus of elasticity, G = E/(2(1+ν)) is the shear mod-
ulus, E  is the identity tensor, σI and εI are the first scalar invariants, respectively. 

11.3.1 Plane stress state 
The stress components under plane stress state are: 
 ),( yxxx σσ = , ),( yxyy σσ = , ),( yxxyxy ττ =  and 0=== zyzxz σττ ,  
  (11.16) 
i.e. the normal stress perpendicular to the x-y plane and the shear stresses acting on the 
plane with outward normal in direction z are zero. The stress and strain tensors have the 
following forms:  
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From the first of Eq.(11.15) we obtain: 
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The normal strain in direction z is: 
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  (11.19) 
We note, that although εz is not included in the equations, it can always be calculated by 
using the strains in the other two directions. Using the former equations we can express 
even the stresses: 
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An alternative formulation of the stress-strain relationship is that we collect the compo-
nents in vectors: 
 [ ]xyyx

T γεεε ,,= , [ ]xyyx
T τσσσ ,,= . (11.21) 

As a result, the relationship is established through a matrix: 
 εσ C= .  (11.22) 
where C  is the constitutive matrix. On the base of Eqs.(11.20)-(11.22) under plane stress 
state matrix C becomes: 
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The inverse and the determinant of the matrix is: 
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The latter form of the stress-strain relationship is applied in finite element calculations. 

11.3.2 Plane strain state 
Under plane strain state the condition is: εz = 0, i.e. the normal strain perpendicular to the 
x-y plane is zero. In this case the stress and strain tensors are: 
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According to Hooke’s law we obtain: 





 +

−
+

+
= )(

211 yxxx
E εε

ν
νε

ν
σ , 



 +

−
+

+
= )(

211 yxyy
E εε

ν
νε

ν
σ ,  

  (11.26) 
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Developing the stress-strain relationship from εσ C= we get: 
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and: 























−

−
−

−
−

−
=−

ν

ν
ν

ν
ν

ν

1
200

01
1

0
1

1

1)(
2

1

E
C stn , 3

3

)1)(21(2
det

νν +−
=

EC stn .   

  (11.28) 

11.4 Basic equations of plane elasticity 

The number of unknowns in case of plane problems is always eight: σx, σy, τxy, εx, εy, γxy, u 
and v. Under plane stress εz, under plane strain σz component can always be calculated by 
the help of the components in directions x and y.  

11.4.1 Compatibility equation 
The combination of Eqs.(11.10) and (11.13) leads to the so-called compatibility equation 
[1,2]: 
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The equation above is equally true for plane stress and plane strain states. It is possible to 
formulate the compatibility equation in terms of stresses. Let us express Eq.(11.29) in 
terms of stresses for plane stress state by utilizing Eq.(11.19): 
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We express the mixed derivative of the shear stress from Eq.(11.4): 
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The combination of the two former equations results in: 
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where: 
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In a similar way we can develop the following equation for plane strain state:  
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It can be seen, that if there is no volume force, then the compatibility equation has the 
same form under plane stress as that under plane strain. In that case, when the force field is 
conservative, then a potential function, U exists, of which gradient gives the components of 
the density vector of volume force, i.e.: 
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11.4.2  Airy’s stress function 
The equilibrium and the compatibility equations can be reduced to one equation by intro-
ducing the Airy’s stress function. Let χ = χ(x,y) be the Airy’s stress function, which is de-
fined in the following way [1,2]: 
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Taking them back into the equilibrium equations given by Eq.(11.4), it is seen that the 
equations are identically satisfied. The stress function can be derived for every stress field, 
which satisfies the equilibrium equations and the body force field is conservative. In terms 
of the stresses the compatibility equation given by Eq.(11.34) becomes: 
 U24 )1( ∇−=∇ νχ ,  (11.37) 
where: 
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is called the biharmonic operator. Eq.(11.37) is the governing field equation for plane 
stress problems in which the body forces are conservative. If a function χ = χ(x,y) is found 
such that it satisfies Eq.(11.37) and the proper prescribed boundary conditions, then it rep-
resents the solution of the problem. The corresponding stresses and strains may be deter-
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mined from Eqs.(11.36) and (11.19), respectively. If the body forces are constant, or if U is 
a harmonic function, then the governing equation is: 
 04 =∇ χ ,  (11.39) 
which is a partial differential equation called biharmonic equation. 
 

11.4.3 Navier’s equation 
Now let us formulate the governing equations in terms of displacement field for plane 
stress state! The combination of Eqs.(11.10), (11.13) and (11.19) provides the followings 
[1,2]: 
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After a simple rearrangement we obtain: 
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  (11.41) 
Substitution of the above stresses into the equilibrium equation given by Eq.(11.4) gives 
the Navier’s equation: 
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We can develop Navier’s equation for plane strain state in a similar way, the result is: 
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Under plane stress state the first scalar invariant of the stress tensor is: 
 χσσσ 2∇=+= yxI . (11.44) 

11.4.4 Boundary value problems 
It can be shown that for plates under symmetrically distributed external forces with respect 
to the plane z = 0, the exact solution satisfying all of the equilibrium and compatibility 
equations is [2]: 

 2
0

2
0 )(

12
1 zχ

ν
νχχ ∇
+

−= , (11.45) 

where: 
 ),(00 yxχχ = ,  (11.46) 
which satisfies  
 00

4 =∇ χ . (11.47) 
The second term in Eq.(11.45), however, depends on z and may be neglected for thin 
plates, in which case we have: 
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 00
44 =∇≅∇ χχ .  (11.48) 

That is, for thin plates, solutions by Eq.(11.48) very closely approximate the stress distri-
butions by Eq.(11.45).  
Let us summarize what kind of requirements should be met of plane stress state! The actual 
elastic body must be a thin plate, the two z surfaces of the plate must be free from load, the 
external forces can have only x and y components, the external forces should be distributed 
symmetrically with respect to the x and y axes. 
The governing equation system of plane problems is a system of partial differential equa-
tions (equilibrium equation, strain-displacement equation and material law) with corre-
sponding boundary conditions. The dynamic boundary condition is the relationship be-
tween the stress tensor and the vector of external load at certain points of the lateral bound-
ary curve: 
 pn =σ ,  (11.49)  
where p is traction vector of the corresponding boundary surface, n is the outward normal 
of the boundary surface or the outward normal of a certain part of it, which is parallel to 
the x-y plane. The kinematic boundary condition represents the imposed displacement of a 
point (or certain points): 
 buyxu =),( 00 ,  (11.50) 
where ub is the imposed displacements vector, x0 and y0 are the coordinates of the actual 
point. The system of governing partial differential equations together with relevant dynam-
ic and kinematic boundary conditions built a boundary value problem. 
We note that closed form solutions of the governing partial differential equations of plane 
problems with prescribed boundary conditions which occur in elasticity problems are very 
difficult to obtain directly, and they are frequently impossible to achieve. Because of this 
fact the inverse and semi-inverse methods may be attempted in the solution of certain prob-
lems [1]. In the inverse method we select a specific solution which satisfies the governing 
equations, and then search for the boundary conditions which can be satisfied by this solu-
tion, i.e., we have the solution first and then ask what problem it can solve. In the semi-
inverse method, we assume a partial solution to a given problem. A partial solution con-
sists of an assumed form for each dependent variable in terms of known and unknown 
functions. The assumed partial solution is then substituted into the original set of governing 
equations. As a result, these equations will be reduced to a set of simplified differential 
equations, which govern the remaining unknown functions. This simplified set of equa-
tions, together with proper boundary conditions, is then solved by direct methods. 

11.5 Examples for plane stress 

11.5.1 Determination of the traction on the boundaries of a square shape plate 
For the square shape plate shown in Fig.11.4 we know the Airy’s stress function in the x-y 
coordinate system [3]: 
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where p0 is the intensity of the distributed line load. The body force is negligible; we as-
sume that the plate is in plane stress state. 
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Fig.11.4. Square shape plate under plane stress. 

What kind of system of forces loads the boundary curves of the plate?  
 

First, we produce the stress field: 
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The traction vectors can be calculated by the help of the definition of dynamic boundary 
condition and the localization of it into the boundary curves. Therefore, we need the out-
ward normal of each boundary curve: 
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Furthermore, we need Eqs.(11.49) and (11.52). We obtain the traction vectors by applying 
the former equations: 
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The system of forces acting on the boundary curves can be obtained by plotting the com-
ponents of the vectors above along the corresponding boundary curve. Fig.11.5 demon-
strates the function plots, where Fig.11.5a depicts the loads in the normal direction (per-
pendicularly to the boundary curve), Fig.11.5b represents the tangential (with respect to the 
boundary curve) stress distributions. 
 

 

Fig.11.5. Normal (a) and tangential (b) loads on the boundary curves of a square plate under 
plane stress state. 

11.5.2 Analysis of a tangentially loaded plate 

For the plate shown in Fig.11.6 with dimensions of 2h⋅L the body force is negligible, we 
can assume plane stress state. The form of the Airy’s stress function for the load shown in 
Fig. 11.6 is [3]: 
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Fig.11.6. Thin plate loaded by tangentially distributed force under plane stress state.  

Is the given χ(x,y) function an exact solution of the problem above? 
 
A function, χ(x,y) is the exact solution of the problem if it satisfies the governing partial 
differential equation of plane problems and the dynamic boundary conditions. Based on the 
given χ(x,y) function it is seen that Eq.(11.39) is satisfied in this case, since the governing 
equation is a fourth order partial differential equation, while the functions contains to a 
maximum the third power of y. Let us investigate the dynamic boundary conditions! Simi-
larly to the former example we calculate the stress field first: 

 





 −
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=
∂
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= y
h

xL
h

xLp
y tx 22

2 )(3
2
1χσ , 02

2
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∂

=
xy
χσ , (11.55) 
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Based on the stresses, the loads on the boundary curves are: 

 x = L: 0=xσ , 







−−−= 2

2321
4
1

h
y

h
yptyxτ , (11.56) 

 y = h: 0=yσ , txy p=τ , 
 y = -h: 0yσ = , 0=xyτ . 
Finally, independently of Eq.(11.56) we formulate the dynamic boundary conditions by the 
help of Fig. 11.6. In accordance with the dynamic boundary condition definition the stress 
components acting on the actual boundary curve should be equal to the corresponding 
(normal or tangential) components of the traction vector. That means: 
 x = L: 0=xσ , 0=yxτ , (11.57) 
 y = h: 0=yσ , txy p=τ , 
 y = -h: 0yσ = , 0=xyτ . 
Comparing the boundary conditions to the boundary loads it is seen, that one condition is 
not satisfied, namely the shear stress, τyx on the boundary at x = L is not zero, i.e. one of the 
conditions is violated. Nevertheless, there are two points, where in accordance with the 
formula: 
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  (11.58) 
with solutions of y1 = 1/3⋅h and y2 = −h, i.e. at two points the dynamic boundary condition 
is satisfied. As a final word, the given χ(x,y) function is not the exact solution of the prob-
lem in Fig.11.6, because one of the dynamic boundary conditions is violated. After all, it is 
acceptable, since together with Eq.(11.39) the given function satisfies eight from the total 
ten conditions. It should be highlighted, that the boundary at x = 0 is a fixed boundary, 
which involves kinematic boundary condition, that is why we did not investigated this 
boundary curve in the example. 

11.6 The governing equation of plane problems using polar coordinates 
The solutions of many elasticity problems are conveniently formulated in terms of cylin-
drical coordinates. On the base of Fig.11.7 we have the functional relations [1]: 
 ϑcosrx = , ϑsinry = , (11.59) 

 
x
yarctan=ϑ , 222 yxr += . 

 

Fig.11.7. Parameters of a polar coordinate system. 

The derivatives of the polar coordinates with respect to x and y using the last of Eq.(11.59) 
are: 
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Again, the derivatives with respect to x and y can be formulated based on the chain rule: 
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To derive the governing equations in terms of polar coordinates we incorporate the stress 
transformation expressions [1]. The normal and shear stresses are transformed to a coordi-
nate system given by rotation about axis z by an angle ϑ: 
 nnT

n σσ = , T
mn m nτ σ= , (11.62) 

where: 
 [ ]0sincos ϑϑ=Tn , [ ]0cossin ϑϑ−=Tm , (11.63) 
which leads to: 
 ϑτϑσϑσσ ϑϑ 2sinsincos 22

rrx ++= , (11.64) 
 ϑτϑσϑσσ ϑϑ 2sincossin 22

rry −+= ,  

 )sin(coscossin)( 22 ϑϑτϑϑσστ ϑϑ −+−= rrxy , 
The strain components (εx, εy, γxy) can be transformed similarly. Taking Eq.(11.64) back 
into the equilibrium equations given by Eq.(11.4), moreover by assuming that there are 
also body forces, we have [1,2]: 

 01
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rrr
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τσ ,  (11.65) 
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where the former is the equation in the radial, the latter is the equation in the tangential 
direction. By a similar technique, the strain-displacement equations may be transformed 
into: 
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1 , (11.66) 

where ur and uϑ are the radial and tangential displacements. Eliminating the displacement 
components we obtain the compatibility equation: 
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In the case of Hooke’s law there is no need to perform the transformation, due to the fact 
that the polar coordinate system is an orthogonal system. Therefore, e.g. in Eq.(11.20) re-
ferring to plane stress state, we have to substitute x by r, and y byϑ: 

 )(1
ϑνσσε −= rr E

, )(1
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  (11.68) 
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The formulation incorporating plane strain state based on Eq.(11.26) leads to: 
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The first scalar invariant of the strain tensor (plane dilatation) under plane strain state is: 

 
ϑ

εεε ϑ
ϑ ∂
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rr
ru

r
r
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1)(1 .  (11.70) 

Substituting the stress and strain components into the equilibrium equation given by 
Eq.(11.65) (plane strain) and incorporating the first scalar invariant we obtain the Navier’s 
equation in terms of polar coordinates [1,2]: 
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where 
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is the rotation about axis z, λ is the Lamé-constant: 

 
)21)(1( νν

νλ
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=
E .  (11.73) 

The governing equation of plane problems in terms of polar coordinates can be formulated 
by using the Hamilton operator. Based on Eqs.(11.48) and (11.61) we get: 
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  (11.74) 
The stresses may be obtained by using the differential quotients given by Eq.(11.61) and 
the transformation expressions given by Eq.(11.64): 
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The last three formulae are equally valid under plane stress and plane strain states. The 
equilibrium equations, strain-displacement relationship can also be formulated by using 
infinitesimal elements in polar coordinate system [1].   

11.7 Axisymmetric plane problems 
The use of polar coordinates is particularly convenient in the solution of revolution sym-
metric or in other words axisymmetric problems. In this case displacement field, stresses 
are independent of the angle coordinate (ϑ), consequently the derivates with respect to ϑ 
vanish everywhere. In accordance with Eq.(11.74) the governing equation of plane prob-
lems becomes: 
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By introducing a new independent variable, ξ, this equation can be reduced to a differential 
equation with constant coefficients: 
 ξer = .  (11.77) 
As a result, Eq.(11.76) becomes: 
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for which the general solution is: 
 DCBeeA +++= ξξχ ξξ 22 .  (11.79) 
Taking back eξ we have: 
 DrCBrrAr +++= lnln 22χ ,  (11.80) 
where A, B, C and D are constants. The stresses based on Eq.(11.75) are: 

 
rrr ∂

∂
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χσ 1 , 2

2

r∂
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=
χσϑ , 0=ϑτ r . (11.81) 

Taking the solution function back we see that: 

 BA
r
CrAr 2ln2 2 +++=σ , 22 ln 3 2CA r A B

rϑσ = − + + , 0=ϑτ r .  

  (11.82) 

11.7.1 Solid circular cylinder and thick-walled tube 
Let us see some examples for the application of the equations and formulae above [1]! For 
a solid circular cylinder the stresses at r = 0 can not be infinitely high, therefore:  
 0== CA . (11.83) 
The stresses in a solid circular cylinder are: 
 Br 2== ϑσσ , 0=ϑτ r .  (11.84) 
This is the solution of a circular cylinder loaded by external pressure with magnitude of 2B 
on the outer surface. In the case of a hollow circular cylinder or a thick-walled tube 
(Fig.11.8a) it is not sufficient to investigate only the dynamic boundary conditions, we 
need to impose also kinematic boundary conditions. 

 

Fig.11.8. Hollow circular cylinder with imposed displacement at the inner boundary (a), thick-
walled rotating disk (b). 

The strain components by using Eq.(11.66) become: 

 
dr

dur
r =ε ,

r
ur=ϑε , 0=ϑγ r . (11.85) 

Using the stress-strain relationship given by Eq.(11.68) we obtain the equations below: 
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where: 
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for plane stress, and 

 
E

K
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= , ν=2K ,  (11.88) 

for plane strain. Next, we express the strain components: 
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  (11.89) 
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Integrating the former equation we get: 

 ))2ln2(2ln2( 21 H
r
CBrArrArK

r
CBrArrArKur ++++−−+−= ,  

  (11.90) 
where H is an integration constant. Dividing the formulae above by r and equating it to the 
second of Eq.(11.89) gives the following: 
 04 =− HAr . (11.91) 
Since the equation must be satisfied for all values of r in the region, we must consider the 
trivial solution: 
 0== HA . (11.92) 
The remaining constants, B and C, are to be determined from the boundary conditions im-
posed on the inner and outer boundary surfaces. Therefore, the general solution is: 

 ))1()1(2()( 221 K
r
CKBrKrur +−−= .  (11.93) 

The problem of hollow circular cylinder can also be solved by Navier’s equation. If the 
displacement field is independent of coordinate ϑ, then ω = 0, i.e. from Eqs.(11.70)-
(11.71) we obtain: 
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for which the general solution is: 
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It is seen that it is mathematically identical to (11.93). For a circular cylinder with fixed 
outer surface and with internal pressure the kinematic boundary conditions are: 
 0)( uru br = , 0)( =kr ru . (11.96) 
Based on the solution function the constants are: 
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and the solution is: 
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The strain components are to be determined by Eq.(11.85), the stresses by Eq.(11.68). 

11.7.2  Rotating disks 
If the thickness of the circular cylinder is small, then it is said to be a disk (Fig.11.8b). If 
the disk rotates, then there is a body force in the reference coordinate system. The equilib-
rium equation in the radial direction (see Eq.(11.65)) becomes [2]: 

 0=+
−

+ r
rr q

rdr
d ϑσσσ  and 2ωρrqr = , (11.99) 

where ω is the angular velocity of the disk, ρ is the density of the disk material. Rearrang-
ing the equation we obtain: 

 0)( 22 =+− ωρσσ ϑ rr
dr
d

r . (11.100) 

This equation can be satisfied by introducing the stress function, F, in accordance with the 
following: 

   Fr r =σ , 22ωρσϑ r
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+= . (11.101) 

The strain components have already been derived for a hollow circular cylinder, eliminat-
ing ur from Eq.(11.85) we obtain: 
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Assuming plane stress state and utilizing Eq.(11.68) we have: 
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Taking it back into Eq.(11.101) yields the following: 
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i.e. we have a second order differential equation for the stress function, which involves the 
following solution: 
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The stress components based on Eq.(11.101) are: 
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    (11.106) 
where A and B are integration constants, which can be determined by the boundary condi-
tions. To calculate the displacement field we incorporate Eq.(11.85), from which we have: 
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and the integration of it yields: 
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The basic equations of the rotating disk are then: 
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where: 

 2
1 8

3 ρων+
−=C , 2

2 8
31 ρων+

−=C , (11.110) 

 
E

Aa )1( ν−
= ,

E
Bb )1( ν+

= , 2
2

8
)1( ρων

E
c −

−= . (11.111) 

Let us solve an example using the equations above! The elastic disk shown in Fig.11.9 is 
fixed to the shaft with an overlap of δ [3].  

 

Fig.11.9. Rotating disk on a rigid shaft. 

Given: 
rb = 0,02 m, rk = 0,2 m, h = 0,04 m, δ = 0,02⋅10-3 m, ρ = 7800 kg/m3, E = 200 GPa, 
ν = 0,3. 

 
a. How large can be the maximum angular velocity if we want the disk not to get 

loose? 
b. Calculate the contact pressure between the shaft and disk, when the structure does 

not rotate! 
 
For point a. first we formulate the boundary conditions. A kinematic boundary condition 
is, that he radial displacement on the inner surface of the disk must be equal to the value of 
overlap: 

 δδ =+−⇒= 31)( b
b

bbr cr
r

barru .  (11.112) 
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The outer surface of the disk is free to load, therefore in accordance with the dynamic 
boundary condition, the radial stress perpendicular to the outer surface is zero: 

 010)( 2
12 =++⇒= k

k
kr rC

r
BArσ .  (11.113) 

If the disk gets loose, then a free surface is created, that is why the radial stress should be 
equal to zero, i.e.: 
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b
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r
BArσ .  (11.114) 

The system of equations contains three unknowns: A, B and ω, since a and b are not inde-
pendent of A and B. We now subtract Eq.(11.113) from Eq.(11.114) and we obtain: 
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The back substitution into Eq.(11.114) gives: 
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consequently: 
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Taking the constants back into the kinematic boundary condition equation yields: 
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  (11.118) 
Incorporating the constant C1, and rearranging the resulting equation the maximum angular 
velocity becomes: 
 maxs/rad5,880 ωω == . (11.119) 
In terms of the angular velocity the constants can be determined: 
 Pa10008,1 8⋅=A , N39915−=B , 49

1 m/N10495,2 ⋅−=C , 
  (11.120) 

49
2 m/N10436,1 ⋅−=C , 41053,3 −⋅=a , 27 m1059,2 −⋅=b , 23 m/110439,3 −⋅−=c . 

For point b. we find out that if the disk does not rotate then ω = 0 and this way: C1 = C2 = c 
= 0. Under these circumstances the radial displacement on the inner surface must be equal 
to the value of overlap: 

 δδ =+−⇒= 31)( b
b

bbr cr
r

barru . (11.121) 

The outer surface of the disk is still free to load, i.e.: 

 010)( 2
12 =++⇒= k

k
kr rC

r
BArσ .  (11.122) 

The solution is: 
 Pa10530,1 6⋅=A , N9,61208−=B , (11.123) 
 610356,5 −⋅=a , 27 m10978,3 −⋅=b . 
The distribution of the radial and tangential stresses under two different conditions are 
demonstrated in Fig.11.10. 
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Fig.11.10. Distribution of the radial and tangential stresses in the disk structure when the structure 
rotates (a) and when there is no rotation (b). 
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