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1. Introduction

Chatter is a form of self-excited, unstable vibration during
metal cutting. When the cutting force creates a relative displace-
ment between flexible tool and work-piece at the cutting point, the
chip thickness experiences waves on its inner and outer surfaces
due to present and past vibrations. The dynamics of the cutting
system are defined by coupled, delayed differential equations.
Depending on the gain of the system and the phase between the
inner and outer waves, the dynamics of the cutting system can be
unstable, leading to exponentially growing chips, hence large
forces and vibrations until the tool jumps out of the cut or machine
tool set up is damaged. It has been the objective of researchers to
model the dynamics of the metal cutting system and predict
relationships between work material, structural dynamics of the
machine, tool geometry and cutting conditions. The mathematical
model of the stability leads to better machine tool and cutting tool
design, as well as prediction of the most productive cutting
conditions ahead of costly machining trials.

[2 1 _ TD $ D IF F ]Koenigsberger and Tlusty [1] and Tobias [2] were the
leading pioneers in formulating the mechanisms behind the
chip regeneration and one-dimensional chatter stability formula-
tion. They assumed that the direction of the cutting force as well
as the projected vibrations along the chip thickness are constant,
which is true for single point cutting operations like turning,
boring and broaching. Tlusty presented a simple relationship
between the maximum depth of cut, stiffness of the structure and
specific cutting coefficient of the process. His equation gives the
maximum depth of cut as being linearly proportional to dynamic
stiffness and inversely proportional to the cutting coefficient.
Higher dynamic stiffness and a lower material cutting coefficient
(i.e. hardness) lead to high material removal rates. Tobias
proposed a similar model, but included the influence of the phase
between the inner and outer waves left on the chip surface, and
invented stability lobes [2]. The stability lobes led to the high
material removal rates in milling aluminum alloys at high spindle
speeds [3].

Unlike single point metal cutting, milling is conducted with a
rotating cutter having multiple teeth. The directions of the forces
vary as the cutter rotates, and the system is periodic at tooth
passing intervals when the cutter has a uniform pitch or at spindle
intervals if the tooth spacing is variable. Tlusty and co-workers
presented the numerical simulation of the milling dynamics
including saturations such as the tool jumping out of cut [4,5]. The
closed form dynamic of the milling system was formulated by
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Sridhar et al. [6], but its analytical solution was first successfully
accomplished by Minis et al. [7], who used Floquet theory to assess
the stability for given cutting conditions. Altintas and Budak [8]
presented the first analytical solution that led to the prediction of
stability lobes directly in the frequency domain. Budak and Altintas
[9] also demonstrate a higher order solution which provides
improved prediction when the process is highly intermittent at
small radial immersions. Stépán and co-workers [10–12] and Bayly
et al. [13] solved the stability in discrete time domain, which
allowed for inclusion of periodically varying system parameters
directly. The remaining research efforts mainly extended applica-
tion of the frequency and discrete time domain solutions presented
in this paper.

This paper presents frequency and semi-discrete time domain
solutions of the chatter stability proposed by the authors. The zero
order and multi-frequency solutions of milling stability presented
by Altintas and Budak [8] and Budak and Altintas [9] are
summarized. A semi-discrete time domain solution of the milling
stability of Stépán and co-workers [10–12] is also presented. A
comparison of the two models and their advantages at different
cutting conditions is presented with simple examples. The paper is
concluded with a summary of the applications of each technique. It
is hoped that the paper provides a comprehensive theoretical
insight into the milling chatter stability to metal cutting
researchers.

2. Dynamics of milling

A milling cutter with N teeth is considered to have flexibility in
two orthogonal directions (x,y) as shown in Fig. 1. The vibrations
are projected to rotating tooth number j in the radial or chip
thickness direction at instantaneous angular immersion fj of tooth
j measured clockwise from the normal (y) axis. If the spindle
rotates at an angular speed of V (rad/s), the resulting regenerative,

dynamic chip thickness caused by vibrations is [8]

h jðtÞ ¼ ðDxðtÞ sin f jðtÞ þDyðtÞ cosf jðtÞÞgðf jðtÞÞ; (1)

where the differenced vibrations are Dx(t) = x(t) � x(t � T),
Dy(t) = y(t) � y(t � T), and T is the tooth passing interval. The
function g(fj) is used to indicate whether the tooth is in or out of
the cut

gðf jÞ ¼
1; if fst <f j <fex;

0; otherwise;

�
(2)

where fst and fex are the start and exit immersion angles of the
cutter to and from the cut, respectively. The tangential (Ftj) and
radial (Frj) cutting forces acting on the tooth j are proportional to
the axial depth of the cut (a) and chip thickness (h):

Ft jðtÞ ¼ Kta h jðtÞ; Fr jðtÞ ¼ KrFt jðtÞ; (3)

where cutting coefficients Kt and Kr are constant. Resolving the
cutting forces in the x and y directions

Fx j ¼ �Ft j cos f j � Fr j sin f j;

Fy j ¼ þFt j sin f j � Fr j cos f j;
(4)

and summing the cutting forces contributed by all teeth, the total
dynamic milling forces acting on the cutter become

Fx ¼
XN�1

j¼0

Fx j; Fy ¼
XN�1

j¼0

Fy j; (5)

where fj = f + jfp and cutter pitch angle is fp = 2p/N. Substituting
the chip thickness (1) and tooth forces (3) into (4) and rearranging
the resulting expressions in matrix form yields

Fx

Fy

� �
¼ 1

2
aKt

axx axy

ayx ayy

� �
Dx
Dy

� �
; (6)

where time-varying directional dynamic milling force coefficients
are given by

Fig. 1. Dynamic milling system.

½AðtÞ� ¼
axxðtÞ axyðtÞ
ayxðtÞ ayyðtÞ

� �
¼

XN�1

j¼0

� g jðtÞ½sin 2f jðtÞ þ Krð1� cos 2f jðtÞÞ�
XN�1

j¼0

� g jðtÞ½ð1þ cos 2f jðtÞÞ þ Kr sin 2f jðtÞ�

XN�1

j¼0

g jðtÞ½ð1� cos 2f jðtÞÞ � Kr sin 2f jðtÞ�
XN�1

j¼0

g jðtÞ½sin 2f jðtÞ � Krð1þ cos 2f jðtÞÞ�

2
666664

3
777775: (7)
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Considering that the angular position of the cutter changes with
time and angular velocity, we can express (6) in a matrix form as

fFðtÞg ¼ 1

2
aKt½AðtÞ�fDðtÞg; (8)

where fDðtÞg ¼ ½DxðtÞ DyðtÞ �T. As the cutter rotates, the direc-
tional factors vary with time, and [A(t)] is periodic at tooth passing
frequency vT = NV or tooth period T = 2p/vT. For the purposes of
mathematical illustration, assume that the machine has the
following two orthogonal frequency response functions (FRFs)
reflected at the cutter

The structural dynamics of the work-piece can be added to the
FRF. The resulting dynamics of the milling process are expressed by
the following coupled, delayed differential equations:

ẍðtÞ þ 2&xvnxẋðtÞ þv2
nxxðtÞ

ÿðtÞ þ 2&xvnxẏðtÞ þv2
nxyðtÞ

( )

¼ 1

2
aKt

v2
nx

kx
0

0
v2

ny

ky

2
6664

3
7775 axxðtÞ axyðtÞ

ayxðtÞ ayyðtÞ

� �
xðtÞ � xðt � TÞ
yðtÞ � yðt � TÞ

� �
: (10)

The chatter stability problem is defined by the prediction of
critical axial depth of cut (a) and the tooth period or delay term (T).
The delay terms bring both coupling and complexity to the solution
of the differential equations. The stability of the system has been
solved by Budak and Altintas in frequency domain [8,9] and
Insperger and Stépán [10,11], in discrete time domain as
summarized below.

3. Frequency domain solution of chatter stability in milling

Altintas and Budak [8] and Budak and Altintas [9] presented the
following frequency domain solution for the milling stability
problem. If the dynamic milling system is critically stable at a fre-
quency v, the vibrations fQðvÞg ¼ f xðvÞ yðvÞ gT are expressed as

fQðvÞg ¼ ½FðvÞ�fFðvÞg: (11)

The dynamic force is converted from time (8) to frequency
domain:

fFðvÞg ¼ 1

2
aKtfAðvÞg � fDðvÞg; (12)

where the * denotes the convolution integral. The differenced
vibrations {D(v)} have the following form in frequency domain
according to (11):

fDðvÞg ¼ ð1� e�ivTÞ½FðvÞ�fFðvÞg:

Substituting {D(v)} into the dynamic milling equation gives

fFðvÞg ¼ 1

2
aKt½AðvÞ� � ðð1� e�ivTÞ½FðvÞ�fFðvÞgÞ: (13)

The periodic directional matrix can be expanded into a Fourier

series:

½AðvÞ� ¼
X1

r¼�1
½Ar�dðv� rvTÞ ¼ F½AðtÞ� ¼

X1
r¼�1

½Ar� eirvTt

 !

½Ar � ¼
1

T

Z T

0
½AðtÞ� e�irvTt dt

9>>>>=
>>>>;

(14)

where d and F denote the Dirac delta function and the Fourier

transformation, respectively. The directional matrix [A(t)] is
periodic at tooth passing frequency vT or at cutter pitch angle
fp, and it has zero value when the tooth is out of cut, i.e.
fst � f � fex! [A(t)] 6¼ 0.

½Ar � ¼
1

T

XN�1

j¼0

Z T

0

axx; jðtÞ axy; jðtÞ
ayx; jðtÞ ayy; jðtÞ

� �
e�irvTt dt: (15)

By introducing a change of variable, fj(t) = V(t + jT), the pitch
angle of the cutter fp(t) = VT, and considering that the directional

matrix elements are non-zero only within the immersion interval
hfst, fexi

½Ar � ¼
N

2p

Z fex

fst

axx; jðfÞ axy; jðfÞ
ayx; jðfÞ ayy; jðfÞ

" #
e�irf df

¼ N

2p

aðrÞxx aðrÞxy

aðrÞyx aðrÞyy

" #
; (16)

where each term is dependent on the harmonic counter (r) as

aðrÞxx ¼
i

2
½�c0Kr e�irNf þ c1 e�i p1f � c2 ei p2f�jfex

fst
;

aðrÞxy ¼
1

2
½�c0Kr e�irNf þ c1 e�i p1f þ c2 ei p2f�jfex

fst
;

aðrÞyx ¼
1

2
½c0Kr e�irNf þ c1 e�i p1f þ c2 ei p2f�jfex

fst
;

aðrÞyx ¼
i

2
½�c0Kr e�irNf � c1 e�i p1f þ c2 ei p2f�jfex

fst
;

where p1 = 2 + Nr, p2 = 2 � Nr, c0 = 2/(Nr), c1 = (Kr � i)/p1 and
c2 = (Kr + i)/p2. The number of harmonics (r) of the tooth passing
frequency (vT) to be considered for an accurate reconstruction of
[A(t)] depends on the immersion conditions and on the number
of teeth in the cut. Altintas and Budak [8] and Budak and Altintas
[9] proposed zero order and multi-frequency solutions, where the
number of harmonics is r = 0 and r � 1, respectively. While the zero
order solution is solved directly and analytically, and proven to be
practical in most milling operations, the multi-frequency solution
leads to improved accuracy when the radial immersion is small.

3.1. Zero order solution

In the most simplistic approximation, the average component
of the Fourier series expansion is considered (i.e. r = 0) then

½A0� ¼
1

T

Z T

0
½AðtÞ�dt ¼ 1

fp

Z fex

fst

½AðfÞ�df ¼ N

2p
axx axy

ayx ayy

� �
; (17)

where the integrated functions are given as

axx ¼
1

2
½cos 2f� 2Krfþ Kr sin 2f�fex

fst
;

axy ¼
1

2
½�sin 2f� 2fþ Kr cos 2f�fex

fst
;

ayx ¼
1

2
½�sin 2fþ 2fþ Kr cos 2f�fex

fst
;

ayy ¼
1

2
½�cos 2f� 2Krf� Kr sin 2f�fex

fst
:

When the time dependant terms are neglected, the system loses
its periodic variation, thus it becomes a time invariant system.

FxxðvÞ ¼
v2

nx=kx

v2
nx �v2 þ i2&xvnxv

! ẍðtÞ þ 2&xvnxẋðtÞ þv2
nxxðtÞ ¼ v2

nx

kxFxðtÞ

FyyðvÞ ¼
v2

ny=ky

v2
ny �v2 þ i2&yvnyv

! ÿðtÞ þ 2&xvnxẏðtÞ þv2
nxyðtÞ ¼

v2
ny

kyFyðtÞ

9>>>>=
>>>>;
: (9)
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Then, the cutting force expression holds the following form at the
critical stability border with vibration frequency vc

fFðvÞg ¼ fP0gdðv�vcÞ ¼ FðfP0g eivctÞ; (18)

which is substituted into the dynamic force Eq. (13)

fFðvÞg ¼ 1

2
aKt½A0�dðvÞ�ðð1� e�ivTÞ½FðvÞ�fP0gdðv�vcÞÞ;

fP0gdðv�vcÞ ¼
1

2
aKtð1� e�ivcTÞ½A0�½FðvcÞ�fP0gðdðvÞ�dðv�vcÞÞ:

(19)

by applying the shifting theorem dðv� aÞ�dðv� bÞ ¼ dðv�
ðaþ bÞÞ

fP0g ¼
1

2
aKtð1� e�ivcTÞ½A0�½FðvcÞ�fP0g;

where vcT is the phase delay between the vibrations at successive
tooth periods T. The average directional factors are now [A0] time
independent, but dependent on the radial cutting constant (Kr) and
the cutter immersion boundaries (fst, fex). The stability of the
dynamic milling is reduced to the following simple eigenvalue
problem, which leads to a second order characteristic equation
with coefficients dependant on the directional coefficients and the
transfer functions:

detð½I� þL½A0�½FðvcÞ�Þ ¼ 0!L ¼ � N

4p
aKtð1� e�ivcTÞ;

a0L
2 þ a1Lþ 1 ¼ 0!L ¼LR þ iLI: (20)

Finally, the critical axial depth of cut (alim) and spindle speeds
(n [rpm]) are analytically calculated as

alim ¼ �
2pLR

NKt
ð1þ k2Þ;  k ¼ LI

LR

T ¼ 1

vc
½ð2kþ 1ÞpÞ � 2 tan�1 k�; !n ¼ 60

NT

9>>=
>>;: (21)

The details of the derivations and the procedure to construct
stability lobes can be found in [8]. The zero order solution has been
applied to the stability of variable pitch cutters [14], ball end mills
[15] and three-dimensional regenerative milling [16]. Altintas
et al. [15] explained that the zero order solution is sufficient in
most cases, because most of the vibration energy remains in the
vicinity of modal frequencies, and the harmonics are low pass
filtered by the structural modes.

3.2. Multi-frequency solution of chatter stability in milling

When the radial immersion of the cut is small, the milling
process will exhibit highly intermittent directional factors which
will lead to force waveforms with high frequency content. In such
cases, the average directional factor [A0] may not be sufficient to
predict the stability lobes at high spindle speeds with small radial
immersions.

Due to the periodicity of the directional matrix ([A(t)]) the
Floquet theory states that the periodic force has the following
solution at the stability border where the tool vibrates with an
additional vibration frequency vc

fFðtÞg ¼ eivcfPðtÞg; fPðtÞg ¼
X1

r¼�1
fPrg eirvTt; (22)

where {P(t)} is periodic at tooth passing frequency vT. The force has
the form according to the modulation theorem

fFðvÞg ¼
X1

r¼�1
fPrgdðv� ðvc þ rvTÞÞ: (23)

Substituting (23) into (13):

fFðvÞg ¼ 1

2
aKt½AðvÞ�

� ð1� e�ivTÞ½FðvÞ�
X1

r¼�1
fPrgdðv� ðvc þ rvTÞÞ

 !
: (24)

From the definition of Dirac delta function, the dynamic cutting
force in frequency domain becomes

fFðvÞg ¼ 1

2
aKt½AðvÞ�

�
X1

r¼�1
ð1� e�iðvcþrvTÞTÞ½Fðvc þ rvTÞ�fPrgdðv� ðvc þ rvTÞÞ

 !
:

Since r vTT = r2p the delay term becomes independent on r

fFðvÞg ¼ 1

2
aKtð1� e�ivcTÞ½AðvÞ�

�
X1

r¼�1
½Fðvc þ rvTÞ�fPrgdðv� ðvc þ rvTÞÞ

 !
: (25)

The frequency domain solution can be used to include higher
order harmonics at the expense of computational complexity as
follows [17]:

½AðvÞ� ¼ � � � þ
að�1Þ

xx að�1Þ
xy

að�1Þ
yx að�1Þ

yy

" #
dðvþvTÞ þ

að0Þxx að0Þxy

að0Þyx að0Þyy

" #
dðvÞ

þ
aðþ1Þ

xx aðþ1Þ
xy

aðþ1Þ
yx aðþ1Þ

yy

" #
dðv�vTÞ þ � � � : (26)

The directional matrix [A(t)] is a periodic function at tooth
passing frequency vT, and by substituting it into the dynamic
cutting force (25)

fFðvÞg ¼ 1

2
aKtð1� e�ivcTÞ

X1
r¼�1

½Ar�dðv� rvTÞ
 !

�
X1

l¼�1
½Fðvc þ lvTÞ�fPlgdðv� ðvc þ lvTÞÞ

 !
: (27)

According to the Cauchy product

fFðvÞg ¼ 1

2
aKtð1� e�ivcTÞ

X1
r¼�1

  X1
l¼�1
½Ar�l�½Fðvc þ lvTÞ�fPlg

� ðdðv� ðr � lÞvTÞ � dðv� ðvc þ lvTÞÞ
!!

(28)

and the shifting theorem, the dynamic force becomes

fFðvÞg ¼
X1

r¼�1

 
1

2
aKtð1� e�ivcTÞ

X1
l¼�1
½Ar�l�½Fðvc þ lvTÞ�fPlg

 !

� dðv� ðvc þ rvTÞ
!
:

Fourier coefficients of the force can be expressed from (23)

fPrg ¼
1

2
aKtð1� e�ivcTÞ

X1
l¼�1
½Ar�l�½Fðvc þ lvTÞ�fPlg

 !
; (29)

where r is an integer number and varies between minus and plus
infinity. By collecting the terms {P}, the stability of the system is
defined by the following eigenvalue problem:

detð½I� �L½Gðvc;vTÞ�Þ ¼ 0; (30)

Y. Altintas et al. / CIRP Journal of Manufacturing Science and Technology 1 (2008) 35–4438
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where the eigenvalue (L), eigenvector {P} and oriented frequency
response functions [G(vc,vT)] with periodic directional factors
[Ar�l] are

If we take r number of tooth passing frequency harmonics into
account, the dimension of the eigenvalue matrix becomes
M = ndof(2r + 1) where ndof is the number of orthogonal flexibility
directions considered in chatter. For example, if r = 1, and
flexibility in (x, y) directions are considered (ndof = 2), the matrix
dimension becomes M = 6. The number of eigenvalues obtained
from the solution would be equal to the size of the matrix (M). By
noting that e�ivcT ¼ cos vcT � i sin vcT; the eigenvalue number q

can be represented by

Lq ¼LR;q þ iLI;q ¼
1

2
aKtð1� e�ivcTÞ

¼ 1

2
aKt½1� cos vcT þ i sin vcT�;

a ¼ ½LR;qð1� cos vcTÞ þLI;q sin vcT�
Ktð1� cosvcTÞ

þ i
½LI;qð1� cos vcTÞ �LR;qsin vcT�

Ktð1� cos vcTÞ : (32)

Since the depth of a cut is a physical quantity, the imaginary
part of the depth of the cut (a) must be zero, which leads to the
following

LI;qð1� cos vcTÞ ¼LR;q sin vcT! LI;q

LR;q
¼ sin vcT

1� cos vcT
;

vcT ¼ eþ 2kp; e ¼ p� 2c; c ¼ tan�1 LI;q

LR;q
;

aq ¼
½LR;qð1� cos vcTÞ þLI;q sin vcT�

Ktð1� cos vcTÞ : (33)

The spindle speed can be found as

n ¼ 60

NT
¼ 60vc

Nðeþ 2klpÞ
; kl ¼ 1;2; . . . ;

aq ¼
LR;q

Kt
1þ LI;q

LR;q

� �2
" #

: (34)

However, the evaluation of the phase shift (e) between the waves
requires the solution of eigenvalues Lq, which is dependent on the
evaluation of frequency response functions (F(vc 	 lvT)) at the
harmonics of tooth passing frequencies. Hence, unlike in the zero order
solution, there is no direct solution to the depth of the cut. Instead, a
range of spindle speeds must be scanned for each chatter frequency in
order to find the eigenvalues. For a given speed, the eigenvalues and the
corresponding value of depth of cut are evaluated using (32). The
computational load is significantly higher in the multi-frequency
solution in comparison to the zero frequency solution. There will be M

number of eigenvalues, and at each iteration the most conservative and
positive depth of cut must be considered as a final solution. However,
the zero order solution, which considers only the average of directional
factors [A0], gives the stability lobes directly within few seconds.

4. Semi-discrete time domain solution

Insperger and Stépán [10] presented an analytical solution of
chatter stability in a discrete time domain. The periodic milling

dynamics with time varying, self-excitation and delay terms
expressed in (10) are organized as first order equations as

ðq̇ðtÞÞ ¼ ½LðtÞ�ðqðtÞÞ þ ½RðtÞ�fqðt � TÞg; (35)

where

½LðtÞ� ¼
½0� ½I�

d½M��1½AðtÞ� � ½v2
n� �½2zvn�

" #
;

½RðtÞ� ¼
½0� ½0�

�d½M��1ðAðtÞÞ ½0�

" #
; fqðtÞg ¼

xðtÞ
yðtÞ
ẋðtÞ
ẏðtÞ

8>>><
>>>:

9>>>=
>>>;
;

½AðtÞ� ¼
axxðtÞ axyðtÞ
ayxðtÞ ayyðtÞ

� �
; d ¼ 1

2
a Kt; ½M��1 ¼

v2
nx

kx
0

0
v2

ny

ky

2
6664

3
7775;

½2zvn� ¼
2&xvnx 0

0 2&yvny

" #
; ½v2

n� ¼
v2

nx 0

0 v2
ny

" #
:½J1�

The delay period T is divided into m number of discrete time
intervals Dt, i.e. T = m Dt, as shown in Fig. 2. Let the value of {q(ti)}
at the current time ti simply be expressed as {qi} and at time ti � T

as {q(ti � T)} = {q[(i �m)Dt]} = {qi�m}. When the sampling interval
Dt is considerably smaller, the value of {q(ti � T)} can be
approximated by averaging the values at two consecutive
sampling intervals as

fqðt � TÞg 
 q ti þ
Dt

2
� T

� �� �


 fqðti � T þDtÞg þ fqðti � TÞg
2

¼ fqi�mþ1g þ fqi�mg
2

! t 2 ½ti; tiþ1Þ (36)

The dynamics of the system represented in (35) is re-written at
discrete time intervals as

fq̇iðtÞg ¼ ½Li�fqiðtÞg þ
1

2
½Ri�ðfqi�mþ1g þ fqi�mgÞ (37)

The differential equation fq̇ðtÞg has homogenous {qHi(t)} and
particular {qPi(t)} solutions at the small time interval Dt as

fqiðtÞg ¼ fqHiðtÞg þ fqPiðtÞg: (38)

The homogeneous solution is obtained as

fq̇HiðtÞg ¼ ½Li�fqHiðtÞg!fqHiðtÞg ¼ e½Li �ðt�tiÞfC0g; (39)

where {C0} depends on the initial conditions. The particular
solution is given by

fq̇PiðtÞg ¼ ½Li�fqPiðtÞg þ
1

2
½Ri�ðfqi�mþ1g þ fqi�mgÞ;

fqPiðtÞg ¼ e½Li �ðt�tiÞfuðtÞg ¼ �1

2
½Li��1½Ri�ðfqi�mþ1g þ fqi�mgÞ: (40)

The complete solution of the system is

fqiðtÞg ¼ fqHiðtÞg þ fqPiðtÞg

¼ e½Li �ðt�tiÞfC0g �
1

2
½Li��1½Ri�ðfqi�mþ1g þ fqi�mgÞ (41)

L ¼ 1

2
aKtð1� e�ivcTÞ; fPg ¼

fP0g
fP�1g
fP1g

..

.

2
66664

3
77775; ½Gðvc; vTÞ� ¼

½A0�½FðvcÞ� ½A1�½Fðvc �vTÞ� ½A�1�½Fðvc þvTÞ� � � �
½A�1�½FðvcÞ� ½A0�½Fðvc �vTÞ� ½A�2�½Fðvc þvTÞ� � � �
½A1�½FðvcÞ� ½A2�½Fðvc �vTÞ� ½A0�½Fðvc þvTÞ� � � �

..

. ..
. ..

.
}

2
66664

3
77775:(31)
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when the system is at t = ti.

fqig ¼ fC0g �
1

2
½Li��1½Ri�ðfqi�mþ1g þ fqi�mgÞ!fC0g

¼ fqig þ
1

2
½Li��1½Ri�ðfqi�mþ1g þ fqi�mgÞ: (42)

Since the solution is valid at discrete time intervals Dt = ti+1 � ti,
the states at time t = ti+1 are

fqiþ1g ¼ e½Li �Dtfqig þ
1

2
ðe½Li �Dt � ½I�Þ½Li��1½Ri�ðfqi�mþ1g

þ fqi�mgÞ: (43)

The solution requires the previous value {qi} and values a delay
before ({qi�m},{qi�m+1}). The series of equations are expressed at
discrete time intervals:

fziþ1g ¼ ½Bi�fzig; (44)

where

Note that the directional matrix [A(t)] varies at each sampling
time interval, as do the state matrixes [L(t)] and [R(t)] which are
dependent on [A(t)]The time varying milling process can be
simulated by solving the discrete set of recursive Eq. (43) at Dt time
intervals. Since the process is periodic at tooth passing interval T, it
is sufficient to solve the equations at m number of time intervals.

The stability of the system can be evaluated by expressing (44)
at m number of intervals within the tooth period T

fziþmg ¼ ½F�fzig ¼ ½Bm� � � � ½B2�½B1�fzig: (45)

According to Floquet theory, the linear periodic system (35) will
be unstable if any of the eigenvalues of the transition matrix [F]
have a modulus greater than one, critically stable if the modulus is
unity and stable if the moduluses of all the eigenvalues are less
than unity. The zero order frequency domain solution directly

provides the critical stability borders, the lobes; in contrast, the
semi-discrete time domain solution must be searched by scanning
a range of trial spindle speeds and depths of cuts. The semi-discrete
time domain solution considers the time varying, periodic
coefficients [A(t)] described at discrete time intervals Dt; hence
the accuracy of the stability is expected to be higher, especially
when the process is highly interrupted at small radial cutting
depths.

5. Simulations

The proposed stability solutions are validated through numer-
ical simulations and extensive experimentation [14–16,18]. A
sample simulation and experimental results for a cutter with two
circular inserts are shown in Fig. 3. The process was half immersion
down milling with strong periodic excitation. The time domain
simulation results are obtained from a numerical simulation of the
physical process which includes exact cutter geometry, time

varying dynamic forces, and exact chip geometry which considers
the saturation and other nonlinearities in the milling process [19].
The numerical algorithm predicts the history of chip thickness,
vibrations, feed-vibration and run out marks on the finish surface.
The details of the structural dynamic parameters and cutting
conditions can be found in [18]. It can be seen from Fig. 3 that the
zero order solution matches with the numerical solution perfectly,
and took only few seconds to compute. The experimental results
also indicate that the stability is predicted accurately; i.e. the
process is unstable at 9500 rpm with a 4.5 mm depth of cut, but
stable at the same depth when the speed is increased to
14,000 rpm.

When the cutting process is highly intermittent at high spindle
speeds, i.e. low radial immersion and small number of teeth, the
zero order solution cannot predict the lobes as accurately as the

Fig. 2. Discretization of a periodic signal.
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.
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2
ðe½Li �Dt � ½I�Þ½Li��1 1

2
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Fig. 3. Comparison of the zero order solution against numerical and experimental results. Cutter: Bull nosed cutter with two inserts. Cutting conditions: Half immersion down

milling, feed rate 0.050 mm/tooth. See Ref. [18] for the cutting coefficients and structural dynamic parameters.
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Fig. 4. Comparison of the zero order, multi-frequency solution with r = 3 harmonics, and semi-discretization-based solutions. Cutter: three flutes with zero helix. Cutting

condition: Half immersion down milling. Cutting coefficients: Kt = 900 N/nm2, Kr = 270 N/nm2. Structural dynamic parameters: vnx = 510 Hz, vny = 802 Hz; zx = 0.04,

zy = 0.05; kx = 96.2 � 10�6 N/m, ky = 47.5 � 10�6 N/m.
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multi-frequency and semi-discrete solutions which consider the
time varying directional factors. The problem will be most evident
at lobes which start from the lobe where the tooth passing and
natural frequency of the structure matches. A specific example is
created to illustrate the problem as shown in Fig. 4. The cutter has
three flutes with a zero helix, cutting aluminum with half
immersion down milling mode. The structural modes are at
510 Hz and 802 Hz, which corresponds to the highest stability
pockets around 10,200 rpm and 16,040 rpm, respectively. The
process is highly intermittent due to a low immersion and small
number of teeth. The simulations took about 25 min for multi-
frequency solution, and 49 min by the semi-discretization method,
respectively. The computer was Pentium with two 2.4 GHz CPU. It
can be seen that the zero order, multi-frequency and semi-
discretization methods give almost the same stability lobes until
the stability pocket zone around 10,200 rpm, but deviate after-
wards where the zero order solution cannot capture the influence
of time varying directional factors on the stability. The process is
stable at point A where forced vibrations occur at the tooth passing
frequency vT = 750 Hz. The process chatters around the natural
mode of 802 Hz at point B. However, after 16,040 rpm, zero order
solution cannot predict the added lobes which occur at 26,000 rpm
and 35,000 rpm. However, both multi-frequency [17] and semi-
discrete [11] solutions predict the added lobes in perfect
agreement. The multi-frequency solution used three harmonics
of the directional factors, and the semi-discrete solution used a
frequency scale of 40 times the highest natural frequency (i.e.
40 Hz � 802 Hz). The physics of added lobes are explained by
Merdol and Altintas in [17], and briefly discussed here. The higher
harmonics of directional factors flip the frequency response
function G(vc � lvT) from left to right, bringing it to the zone of
modal frequency on the right G(vc). This creates additional
stability lobes. This phenomenon is illustrated at cutting condition
C. For example, at a = 30 mm depth of cut and n = 26,000 rpm, the
process is stable. The tooth passing frequency is vT = 1300 Hz,
which is considered as G[802–1300 Hz] = G(�498 Hz) and G[510–
1300 Hz] = G(�790 Hz) by the multi-frequency solution. Both
results flip the frequency response functions and bring them to
the zones of 510 Hz and 802 Hz, creating a stability pocket at
26,000 rpm. At spindle speed 38,000 rpm (point D), the process
chatters exactly at the half of the tooth passing frequency.
However, as the depth of the cut increases from 30 mm towards
60 mm, the added stability lobe appears due to the same
phenomenon. Readers must be cautioned, however, that this
phenomenon rarely occurs in practice, since the machine is usually
not operated at tooth passing frequencies beyond the natural
modes. Operated at a higher mode, the machine would always
distort the added lobes. If there is no higher mode, the machine can
operate at very high speeds without unbalance issues.

6. Conclusion

The chatter stability is dependent on the cutting force
coefficients, structural dynamic parameters of the machine tool
and work-piece, and cutting conditions. The milling process has
time periodic dynamics which differ from time-invariant single
point cutting operations. This paper presents the two most
commonly used frequency and discrete time domain stability
solutions for milling operations.

The frequency domain solution is proposed by Altintas and
Budak [8] and Budak and Altintas [9]. When the average of periodic
directional factors are used, the stability solution is reduced to
direct evaluation of spindle speed and depth of cut; hence the
stability lobes are calculated directly in a few seconds without any
iterative search. This is called the zero order solution, and can be

used in machining practice where the immersion is larger than a
quarter of the cutter diameter, and tooth passing frequencies are
not beyond the natural modes of the structure.

When the process is highly intermittent, which occurs at low
radial immersions and a small number of teeth, the time variation
of the dynamic process needs to be considered. This is especially
true at tooth passing frequencies beyond the natural modes.
Instead of taking only the average value, higher harmonics of
directional factors need to be considered in the frequency domain,
or multi-frequency, solution of Altintas and co-workers [9,17]. The
frequency domain solution can use raw FRF measurements
directly, without having to identify modal parameters. It also
predicts the stability borders directly.

The semi-discretization method of Insperger and Stépán [10,11]
considers the time variation of directional factors at each discrete
sampling interval; hence, it can predict the stability lobes at any
speed. The accuracy of the semi-discretization method is limited
only by its sampling interval. The computation time depends on
the number of modes in the system and sampling interval.
Complex cutter-part engagements, state dependent delays such as
variable pitch and spindle speed variations can be handled. While
both multi-frequency and semi-discretization methods predict the
milling chatter stability accurately, both require an iterative search
of critically stable lobe borders; therefore, they are computation-
ally more time consuming.

The stability of milling is currently well understood and
predicted at high speeds by the frequency and time domain
solutions as presented in the article. The stability theories are well
established and can handle any cutting process dynamics provided
that the physical models are sound and correct. However, it is still
challenging to model the dynamic cutting process at low speeds
where the spindle rotates at lobes higher than 10. The clearance
face of the tool rubs against the wavy surface finish which adds
unknown process damping to the process, and increases the stable
depth of cuts [20]. The modelling of process damping physics is still
a research challenge, but once modelled current stability laws can
be used to predict the chatter stability lobes at low speeds as well.
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