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Abstract. Controlled structures are often required to keep desired contaes forc
between some of its elements. A classical example isotiteotled interaction of
a robot with its environment when the control of the contact foeted®n the
robotic actuator and the work-piece is prescribed. Experimetds cfill the
attention to the destabilizing digital effects, like samplinghese systems. In this
paper the stability of a newly developed force based teachingeimonh is
analysed. The method is applied in rehabilitation robotics. Himlist limits are
presented in the parameter space of the sampling time, cortimd @nd
mechanical parameters of the robot. The least force antthe fastest settling
force signal are calculated. The influence of the elastid the force sensor is
analysed as well as the possible bifurcations. Real panaoaste study confirms
the analytical predictions.

Key words: Nonlinear control, Sampling effect, Stability, Rehabilitatiohotics,
Biomechanics.

1 Introduction

One of a recently started research project of the Europesamn REHAROB
IST-1999-13109) aims to provide personalised, three-dimensional upper li
motion therapy for the disabled and for patients suffering from ispast
hemiparesis, which mostly arises as a consequence of strokther brain
injuries.

Similar research projects have developed physiotherapy maduanepper
limb rehabilitation after a stroke in North-America [1]],[B], and there are also
some commercial applications [4] and patents [5] there.c®hmmercialisation of
the laboratory results of European researches [6], [7], [8}ipadly failed due to
the unique production requirements of the elements of the corresgondi
physiotherapy machines. The medical certification of theséimax is one of the
major obstacles of commercialisation.

The REHAROB project declares that the key to the success of

commercialisation is the use of commercial sub-systemshisnproject — and
later in the commercialised REHAROB cell — the therapy lvé driven by two

* This e-mail address is available for all probleamsl questions.
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co-operating industrial robots, using force/torque (F/T) measurement f
programming by demonstration (teaching-in). For safety, cetiific, and
economic reasons, standard industrial robots are used with staixddedree-of-
freedom (DOF) F/T transducers at each orthosis (a devitbdlus the upper and
lower arms during therapy).

In order to provide adequate safety, the REHAROB cell wilude 6 DOF
F/T transducers mounted between the outer shell of the ortmakitsanner shell
attached to the patient’s arm (see F/T transducer#1 in Figuf@d primary task
of this F/T sensor is to record the reference force/torque svdluing teaching-in,
which will serve as a threshold value to trig the emergestoy signal during
physiotherapy.

Robat — ‘
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Figure 1 Structure of the REHAROB engineered oithos

Another 6 DOF F/T transducer has to be used to get the figmeal $or the
digital force control, i.e. to achieve that the end effeofdhe robot always move
in a way that the desired force and torque are zero at Thadfsducer#2 (see
Figure 1). In other words, the position and orientation dataeofdhot is to be
recorded during the exercises carried out by the physiotherapisg thkilF/T
transducers are continuously relaxed by the robots’ movementspmordasy to
an appropriate force control-law.
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Due to the application of commercial elements in the above system
overall sampling time and the corresponding time delay is grése the usual
values in case of a single position controlled industrial robot.l@lesampling
rate in the outer force control loop of this hierarchic contratastly causes
serious stability problems. The specialist literature ofi@fs the attention to the
destabilising digital effects in force control either quélitly (see, for example,
Raibert and Craig [9], Craig [10]), or in analytical form fbDOF mechanical
models (see Whitney [11], [12]). In this paper, we give aizaltresults
presented in the form of stability charts. These charts sufiodevelopment of
these robots at the design stage where both mechanical and conodiess can
still be varied.

The subsequent sections of this paper describe the basicptarfca
simplified, 2 DOF model of the teaching-in device (see magterhents of the
engineered orthosis in Figure 1), and the stability analysis of sereti
mathematical model of the above described digital force @ofthen a stability
chart is presented in the plane of mechanical and control pamsnaetd also the
nature of the loss of stability is investigated. At the endeal parameter case
study confirms the analytical predictions.

2 Mechanical models of force control

A uni-directional model of the robotic structure is presentedis gection. The
first approach gives a continuous model for the force control, whdemore
sophisticated model involves the digital effects, too.

2.1 Continuous model

To construct an appropriate control strategy, and also for ther hgtysical
understanding of the technical phenomenon, we consider a simplified one-
dimensional model of the coupled human-machine system, whitasilthree
mechanical degree-of-freedom. The following subsystems areeciuhin a
serial way in the single dimension described in the magel Figure 2).

X3 X5 X
S3 170] <
TR ; Q)
/ ms; WNL m, WWWM m,

Figure 2 The 3 DOF model of the human-machine @xlipystem
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The spring, the dashpot and the block with subscripts 3 model theislastic
damping and the inertial effects of the upper arm; the seconll b&iween two
springs refers to the inertia of the outer shell of thlaosis, that of the quick
changer and the electromechanical safety relaxer betweentwe F/T
transducers; the third block with subscript 1 represents theairtdrthe robotic

arm itself. The forceslf(t) and Q(t) denote the forces applied by the

physiotherapist and the unknown control force commanded by the standard robot
controller, respectively.

From the viewpoint of the force control, the effect of the human laodly
other elements between the arm and the outer shell of theisrédnesegligible,
since the force applied by the therapist at the outer shekh®forthosis
compensates the patient’s resistance. Thus, it is enough sligate a 2 DOF
oscillatory system to construct a proper control-law that provitesiésired zero
force and torque at the tool-centre-point (TCP) of the robot dedtef.

T PEREE x x
'¢- i b 'hb T L | -
E, ----- i i i g. - ( )
robot F(t) Xl t
F changer relaxer transducer
—
handle s

Figure 3 The mechanical model of the robot teachingroblem

Figure 3 presents a simplified model of the teaching-in deviseritbed in
the previous paragraph, wheare denotes the total mass of the handle, the quick
changer and a portion of the safety relaxer, whilends, denote the stiffness of
the F/T transducer and the compliant safety relaxer, respictivhe excitation
force F means the force that has to be exerted by the therapist to ptbeide
desired motion of the teaching-in device during programming by deratiostin

addition to the forceF — F applied for the patient's arm. In an ideal case, this
additional forceF is very small compared to the regular forces used during the
therapy. The position of the TCP is denotedxpy while %, is its velocity. This

velocity is determined through a kinematic constraint as propos8tepan and
Haller [13].

The control law envisaged here considers that the stiffnesisechpplied
industrial F/T transducer is higher with three orders of magnithde the
stiffness of the compliant safety relaxer. Thus, thpldcemeni of the common
joint of the springs; ands, can be estimated by, and the resultant stiffness of
the serially connected springs is approximatgely The control law and the
equation of motion of the teaching-in device yield the continuous meeahanic
model, as follows:
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X = _kpSZ(Xl = X)X, (1)
Mm%, =s,(% =%) +F(t) . (2

Clearly, this provides asymptotic stability for tferce errors,(x, —x,) for any
positive proportional control gaky in analogue control systems. While this linear
model provides global stability properties, the unmliedehon-linear effects —
like saturation at the actuators or non-linear spring charsiitsriat the force
sensors or round-off errors at the processors — maylt rigs local stability
properties in practical cases [14].

2.2 Discrete model

In the REHAROB project, a standard industrial robot aidler with digital
position/velocity control will be used. The digital sem of the control presented
as the kinematic constraint (1) is modelled with periodromg and a zero-
order-holder (ZOH) as shown in Figure 4. The digitaktpesor samples the force
signal at the time instants = jz, j=012,..., wherer stands for the sampling
time and the ZOH transforms the impulse sequence of Sieedeselocities into a
piecewise constant excitation.

4
FS
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P VR
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Figure 4The sampled kinematic constraint

Thus, the commanded velocity — determined through the dsmmtekinematic
constraint — is calculated from the force signal sampleteabéginning of the
previous sampling interval:
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%) =k s (X -1) =%t -0)+ %t -7), tO[t,t+71). (3
The equation of motion of the teaching-in device hasaire:
Mm%, (1) =5, (X,(t) = %, (1) + F (1) - (4)

Introducing a new convenient state vectorcol( x, —X, X,), equations (3)
and (4) can be arranged in matrix form:

-,

n

0 1 -k 1 0
y(t)+( : OJy(t){ o OJy(tj—r){F(t)J, oL, 8, +7) L)

wherew, =,/s,/m, is the natural angular frequency of the uncorgobystem.

3 Forceerror of therobot

To estimate the force error (“resistance”) of thkat, a constant force(t) = F,

is applied which leads to a constant accelerati@ifter the transient motion. In
this case, the mean time delgy with respect to the velocityk, is 1.5r (see
Figure 5).

4 time delay
2T+
3721 --———/f/j/—i//f ------ Tm
2! «

iyt ot

1+1
Figure 5 The mean time delay

The force error, which inevitably loads the thesapiwill be the constant
AF =s,(x —x,) after a transient. For the stationary case, egpst(3) and (4)
yield:

at=-k,AF +a(t-3r/2) and ma=F,+AF (6)

from which, the force error ratio is:
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AF
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== 7
2k,m, +3r @

The greater the proportional gain is, the smalber force error becomes. When
the proportional gain is zero, i.e. the controbvwgtched off, the robot does not
move at all. This means that the robot arm staysquilibrium and so the force
error is just equal and opposite to the force applby the physiotherapist.
Negative gain values have no practical meaningesitiee robot will move
opposite to the direction the therapist would lize@chieve.

4 Stability analysis

It is well known that force controlled robots tetm lose robustness or even
stability depending on the environment they arecamtact with. Experiments
often call the attention to the destabilizing digieffects, like sampling, in these
systems. A discrete mathematical model is congiduend analysed in order to
obtain a clear picture about the stability promsrtof the above mechanical
model.

4.1 Discrete mapping

For the stability analysis, we consider constantyithout loss of generality, zero
external force:F (t) = F, =0. Referring to Stépan [15], the stability investiga

of the trivial solution of the piecewise continuaystem (5) is carried out via the
analytical construction of a discrete mapping. Tlum-homogeneous ordinary
differential equation (5) has a piecewise constagtit-hand side; the general
solution for each sampling interval can be consgdiérom the sum of the general
solution of the homogeneous part and a particaletug@lly, constant) solution of
the non-homogeneous part:

0 = cosw,t sinwt A N 0 L0t ®)
Y= w,singt -w,coswt \B) (v, )’ e
where
Vi = _kpSZyl(tj -I)+ yZ(tj -7) )

is the constant velocity of the TCP during tite sampling interval, and the
parametersA and B depend on the initial conditions for the same damgp
interval. Thus, the substitution of the initial citions y(t; ) in Eq. (8) determine

the linear system of algebraic equations:
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(cosa)ntj sinayt, J(A] ( yi(t)) J
_ - _ (10)
w,sinyt, —w,coswt; | B Y.(t) -V,
The solution
A=cos@yt;)y(t;) + sine,) (yz(tj) _Vj) ! (11)
B:sin(a)ntj)yl(tj)—%()@(ﬁ)‘vj) (12)

n

give the unknown coefficientd andB in Eg. (8). Clearly, the elements of the
state variabley can be calculated at the end of flle sampling interval by
substitutingt =t; + 7 into Eq. (8). After some trigonometric transforioat the

substitution of (11) and (12) results

Wt +1) = COS@NN() - —SIN@DY,() +—sn@v, . (13)

n n

Y,(t, +7) = @, sin@,7) i (t;) + cos@, 1)y, (t,) + L-cos@,r) v, . (14)

This can also be arranged in matrix form if tharehsional discrete state vector

AC)
Z; = yz(tj) N (15)

Vi

is introduced. The coefficient matrix of the three dimensional linear mapping
Z,,=Az, (16)

can be constructed from the coefficients of theezponding terms of formulae
(13), (14) and (9) as follows:
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cosw.r) - isin(a)nr) isin(a)nr)
wn wn
A =| w,sin(w,7) cos@,T) 1-cosw,r) | . 17)
-k.s, 1 0

4.2 Convergence

The map (17) describes the connection betweentéte wariables at consecutive
sampling instants. The trivial solution of thisdar mapping corresponds to the
constant (or zero) force error in our model (3) &hd or (5). Referring to Kuo
[16], the trivial solution is stable, if and onlyall the eigenvaluegs » 3 of the
principal matrixA in Eq. (17) are located in the unit disc of thenptex plane.

Substitution of the usual exponential trial solntio
z2(t) =K e, K OR® (18)
into the three dimensional linear mapping (16)dsethe characteristic equation:
(1-Ae )K =0, K0 = det(l -Ae*)=0 (19)

where the characteristic roof, k=12,... have to be located in the left half of

the complex plane to provide stability as it folowrom Eq. (18). Then,
introducing a new complex variable, the so-calledracteristic multiplieys by

p=e'" = {Rel <0, j=12.. o |U,,l<1} (20)

the stability condition| z,,,|< lyields. This is just the condition quoted above

from Kuo [16]. Thus, the stability of the triviabkition of the map (16) can be
investigated by means the characteristic equafidimeoprincipal matriXA:

det(u1 -A) =0 . (21)

This can be factorised. The free translation of sgstem is described by the
characteristic rool =0, i.e., £ =1 is the corresponding characteristic multiplier

that always satisfies the above equation — asds,dmdeed. Introduce the new
dimensionless gain and frequency parameters
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p=k,s/a, and y=a,r , (22)

whereycan also be thought of as a dimensionless deltheisystem. With these,
the characteristic equation of the coefficient mar assumes the simple form of

(4=1) bu* = (u-1)( >+ @-2cosy) p+1-cosy+ psiny)=0 . (23)

lij]

Figure 6 Transformations for stability analysis

The second-degree factor of the polynomial in {28)vestigated by the so-called
Moebius transformation

[EEN

ﬂ:ﬂ_ﬂ' or n=
,7_

+
'L[_

=

(24)

[EEN
=

This transforms the unit disc into the left halftbé complex plane as shown in
Figure 6. Then the stability condition can be cleecky the well-known Routh-
Hurwitz criterion applied to the transformed polymal equation

an°+an+a;=0. (25)

The coefficientsy can easily be calculated directly from toefficientsby of the
Eqg. (23) as:
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a, 1 1 1)hb 3-3cosy + psiny
al|=|2 0 -2|b|=]| 2(cosy-psiny) |, (26)
a, 1 -1 1)b 1+ cosy + psiny

where the transformation matrix is derived from ttiefinition (24) of the
Moebius transformation. The above described armallystability investigation is
also referred to as Jury’s criterion (see Kuo [1@]hus, the necessary and
sufficient condition of stability is that all theoefficients (26) in Eq. (25) are
positive (see Farkas [17]).

4.3 Sability chart

The positiveness of the coefficientg, k= 0,1,2 in (26) depends on the two

parametersp and y only. This provides the possibility to constructtwo-
dimensional stability chart that shows all the eliént kinds of possible vibrations
in a single parameter plane of the dimensionlesaas.

Considering formulae (26) of the coefficients, thalowing stability
conditions are obtained:

>0 >—3+3005y
% siny
>0 o pe——, (27)
% tany
1+cosy
>0 o >—-——"
% P siny

Figure 7 shows the corresponding stable domain énprameter plane, and
presents also the bifurcations, which may occurgatbe boundaries.
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Figure 7 Stability chart: the stability boundarg=s0 and the shaded stable domain

5 Dynamic properties

In the above stability chart, the frequency of Wigrations occurring along the
secondary Hopf bifurcation can be estimated, andl #ls strongest exponential
decay, the fastest settling signal, can be cakedlat

5.1 Bifurcations

The stability chart shown in Figure 7 has differgyges of stability boundaries
where different kinds of bifurcations occur. Althdygall the three possible
bifurcations of discrete systems can be found atbegstability limits, the typical

one is the Neimark-Sacker bifurcation in practicabes. This bifurcation is
topologically equivalent to the Hopf bifurcation afitonomous systems. Thus, it
occurs when the roots of Eqg. (23) have the complexjugate form

U,3 =cosa xisina, a(0,/1) along the corresponding stability limit. As it

follows from the characteristic multipliers

_1-2cosy

=1 and p,,= 2

;J4cosy2 —4psiny -3 (28)

calculated from Eq. (23), the Neimark-Sacker biftian occurs along the
stability limit a;=0 if the condition
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2 —
S 4cosy 3 (29)
4siny

is also satisfied (see Figure 8).

The other two kinds of bifurcation are the periaaibling (flip) and the fold
(saddle-node) bifurcations along the stability tsvd,=0 anda,=0, respectively.
In these cases the proportional gain is smallem #texo, and the system moves
opposite to the desired direction. These kinds aftions have theoretical
importance only. When the period doubling bifurcatioccurs, the arising
oscillation has the periodr2.e., double of the sampling time. In case of thie f
bifurcation, the arising vibration has the frequentthe sampling.

5.2 Vibration frequencies
In case of the Neimark-Sacker bifurcation, the Isifeequency of the oscillation
arising at the loss of stability can be calculatediosed form. The substitution of

the corresponding transformed complex variabjes+if into Eq. (25) results
the linear system of equations

af =2(cosy — psiny)=0, (30)

-a,° +a, =—(3-3cosy + psiny) f° +1+cosy + psiny =0 . (31)

1+2cos
g= |Frecoy (32)
3-2cosy
Thus, dimensionless vibration frequengyis obtained via the transformation of
this result back to the critical characteristictsoo

The elimination op results

A =iia)=$lnii’lg—ti'=ii(rr— 2atng) . (33)

These frequencies are shown in Figure 8, and tiresmonding frequency in Hz
can be calculated a$ =« /(27r). This means that the frequency of the self-

excited vibration is between one sixth and one bfalhe sampling frequency 4/
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Figure 8 Complex characteristic multipliers and ¢beresponding vibration frequencies

5.3 Exponential decay

There are several viewpoints the engineer shoutdider during the design of a
force-controlled structure. In the case of the bditation robot, the minimum
force error, that is, the less resistance agahestthierapist’s action, requires as
high gains within the stability limit, as possibl€his force error can be zero
theoretically, as the gaip can be increased without any upper limit in cale o
arbitrarily smally, that is, for arbitrarily small sampling tinreor for ideally soft
safety relaxer withe, — (Q(see Figure 7 and Eq. (7)). The other importamtpo

of view in the design work could be to have shamsient vibrations.

According to Figure 6, it is obvious that the fastgettling force signal can be
calculated by searching the minimum of the spec#diusp of the characteristic
multipliers /& 3. Thus,

-

7+
n-1

“=pd, H=

= {lul<p = |HI<1 = Rej<0} (34)

and the same algorithm described in secfi@results the polynomial in Eq. (25)
with the following coefficients:
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a, 1 1 1\ p% 0%+ (1-2cosy)p+1-cosy + psiny

a|=]2 0 -2| pb |= 2(p” —1+cosy - psiny) .(35)

3, 1 -1 1) b 0°—(1—-2cosy)p+1-cosy+ psiny
When p decreases, the stable domain borderedapy 0, j = ehgnks. It

shrinks to a point, when the spectral radiugis 0, i.e., when the characteristic

multipliers arets 3 = 0. Thus, the dimensionless gain and frequenayiging the
shortest transient are obtained from Eq. (28):

p=0 < W,;=0 = y=—, p=—ﬁ- (36)

Physically, it means that the mapping (17) yielts desired zero force at the F/T
transducers in two sampling steps only (deadbeatra@. Still, this parameter

setting has no practical meaning because of theativegess of the gain

parameter.

6 Real parameter case study

The physical parameter values of the mechanicaletnak taken from the real
robotic structure:

s = 37010° [N/m] m, = 3[Kg] @)
s, =1200[N/m] r=003[s]

According to the stability limie;=0 in Figure 7, the necessary condition for the
stiffness is satisfied:

1200[N/m] =s, =5, =22 <m, :: _ =8200[N/m] . (38)

S ts

Thus, for the control gain, we have the criterion:

0<k, <% =0024[s/kg , (39)
stany

while the force error ratio can be estimated fratoly by:
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3r

‘ﬁ > _oa4 (40)
2k, m, +3r

Fo

Choosing an appropriate control g&ip = Cdxicording to the criterion (39) and
applying the constant forcd=, =5[N], the force error ratio from (7) is
|AF/FO| = 06. The calculated ‘resistance’ of the robot duriegching-in and

also its predicted stability behaviour are confidmigy the simulation results
shown in Figure 9. Simulation tool was developed LiabVIEW® for the

numerical solution of equations (3) and (4) wilit) = F, .

As the result in Figure 9 shows, the force errmdgeto — 0.6F, = -3 [N ],

and it goes back to zero when the external forsepiears. Physically, this means
that the physiotherapist tries to accelerate thigosrs and the teaching-in device
by 5 [N], but only 2 [N] will actually acceleratbe structure, while 3 [N] will act

against the resistance of the robotic arm. Thekeegaare tolerable compared to

the total forceF (see Figure 2) up to the range of 100 [N], whicbederates the
total arm of the patient.

B.D—E Dai

o my = 3 [lkg]
2IZI— 5 =1200 [Mim]
EI.I:I—E T =003 [S]
I kp = 0.01 [sfkg]
-4.0-

£0- t[5]

000 025 050 075 100 1.25 150
Figure 9 Numerical simulation results at specifiedameters

Figure 10 presents the simulated self excited titmaof the robot at the loss
of stability when the same dimensionless frequepey0.6 is used as above, but
the proportional gairk, is just higher than the stability limit in (39)igkre 8
gives the dimensionless frequengy=1.239, which gives a vibration frequency

f =a/(2m) = 6575[Hz] . (41)

This corresponds perfectly to the time peridd=1/f =0.152[s] of the
simulated self-excited oscillation shown in Figafe
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10.0<

: Data:
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259 gy L L2 0-1506] | 1=0.03[s]
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o, t [s]
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000 025 050 0% L.o0 1.ES 0 LS50 1.5 200

Figure 10 Numerical simulation of the Neimark-Sadbiéurcation

7 Conclusions

This paper described a simplified model for thech&ag-in process of standard
industrial robots with standard F/T sensors. In plimnce with other authors
Lange and Hirzinger [18], Dessen, F. and Balchén [19] it was observed that a
low stiffness spring in the teaching-in device nsak®e control stable. In contrast
with other approaches, there is no need here tadacmew or alter elements in
the system as the electromechanical safety refaesents very low stiffness.

The results clearly show the strong limitationssealiby the relatively low
sampling rate of the industrial robot, and the ssitg of the delicate design of the
mechanical and control parameters to achieve théajahe REHAROB project
— or the goal of any teaching-in method via foroatml. The results also explain
why the robots oscillate with low frequency relatio the sampling frequency of
the digital control in case of unstable paramed¢iirgys.

Before the control strategy is applied and extenidedeal industrial ABB
robots, we checked the performance of the systemubyerical simulation. The
numerical results confirmed the predicted stabiishaviour and the estimated
resistance of the robot during teaching-in via tdigiorce control (see Figure 9
and 10).

Further research is required to extend the teclgyoioto 6 DOF, and to
implement the control algorithm in RAPID programiienvironment of ABB
industrial robots.
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