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Abstract. Controlled structures are often required to keep desired contact forces 
between some of its elements. A classical example is the controlled interaction of 
a robot with its environment when the control of the contact force between the 
robotic actuator and the work-piece is prescribed. Experiments often call the 
attention to the destabilizing digital effects, like sampling, in these systems. In this 
paper the stability of a newly developed force based teaching-in method is 
analysed. The method is applied in rehabilitation robotics. The stability limits are 
presented in the parameter space of the sampling time, control gains and 
mechanical parameters of the robot. The least force error and the fastest settling 
force signal are calculated. The influence of the elasticity of the force sensor is 
analysed as well as the possible bifurcations. Real parameter case study confirms 
the analytical predictions. 
 
Key words: Nonlinear control, Sampling effect, Stability, Rehabilitation robotics, 
Biomechanics. 
 
 
1 Introduction 
 
One of a recently started research project of the European Union (REHAROB 
IST-1999-13109) aims to provide personalised, three-dimensional upper limb 
motion therapy for the disabled and for patients suffering from spastic 
hemiparesis, which mostly arises as a consequence of stroke or other brain 
injuries. 
 

Similar research projects have developed physiotherapy machines for upper 
limb rehabilitation after a stroke in North-America [1], [2], [3], and there are also 
some commercial applications [4] and patents [5] there.  The commercialisation of 
the laboratory results of European researches [6], [7], [8] practically failed due to 
the unique production requirements of the elements of the corresponding 
physiotherapy machines. The medical certification of these machines is one of the 
major obstacles of commercialisation.  

 
The REHAROB project declares that the key to the success of 

commercialisation is the use of commercial sub-systems. In this project – and 
later in the commercialised REHAROB cell – the therapy will be driven by two 
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co-operating industrial robots, using force/torque (F/T) measurement for 
programming by demonstration (teaching-in). For safety, certification, and 
economic reasons, standard industrial robots are used with standard six degree-of-
freedom (DOF) F/T transducers at each orthosis (a device that holds the upper and 
lower arms during therapy). 
 

In order to provide adequate safety, the REHAROB cell will include 6 DOF 
F/T transducers mounted between the outer shell of the orthosis and its inner shell 
attached to the patient’s arm (see F/T transducer#1 in Figure 1). The primary task 
of this F/T sensor is to record the reference force/torque values during teaching-in, 
which will serve as a threshold value to trig the emergency stop signal during 
physiotherapy. 
 

 
Figure 1 Structure of the REHAROB engineered orthosis 

 
Another 6 DOF F/T transducer has to be used to get the force signal for the 

digital force control, i.e. to achieve that the end effector of the robot always move 
in a way that the desired force and torque are zero at the F/T transducer#2 (see 
Figure 1). In other words, the position and orientation data of the robot is to be 
recorded during the exercises carried out by the physiotherapist, while the F/T 
transducers are continuously relaxed by the robots’ movements corresponding to 
an appropriate force control-law. 
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Due to the application of commercial elements in the above system, the 
overall sampling time and the corresponding time delay is greater than the usual 
values in case of a single position controlled industrial robot. The low sampling 
rate in the outer force control loop of this hierarchic control strategy causes 
serious stability problems. The specialist literature often calls the attention to the 
destabilising digital effects in force control either qualitatively (see, for example, 
Raibert and Craig [9], Craig [10]), or in analytical form for 1 DOF mechanical 
models (see Whitney [11], [12]). In this paper, we give analytical results 
presented in the form of stability charts. These charts support the development of 
these robots at the design stage where both mechanical and control parameters can 
still be varied. 
 

The subsequent sections of this paper describe the basic concept of a 
simplified, 2 DOF model of the teaching-in device (see marked elements of the 
engineered orthosis in Figure 1), and the stability analysis of a discrete 
mathematical model of the above described digital force control. Then a stability 
chart is presented in the plane of mechanical and control parameters and also the 
nature of the loss of stability is investigated. At the end, a real parameter case 
study confirms the analytical predictions. 
 
 
2 Mechanical models of force control 
 
A uni-directional model of the robotic structure is presented in this section. The 
first approach gives a continuous model for the force control, while the more 
sophisticated model involves the digital effects, too. 
 

2.1 Continuous model 

 
To construct an appropriate control strategy, and also for the better physical 
understanding of the technical phenomenon, we consider a simplified one-
dimensional model of the coupled human-machine system, which still has three 
mechanical degree-of-freedom. The following subsystems are connected in a 
serial way in the single dimension described in the model (see Figure 2). 
 

 
Figure 2 The 3 DOF model of the human-machine coupled system 
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The spring, the dashpot and the block with subscripts 3 model the elasticity, 
damping and the inertial effects of the upper arm; the second block between two 
springs refers to the inertia of the outer shell of the orthosis, that of the quick 
changer and the electromechanical safety relaxer between the two F/T 
transducers; the third block with subscript 1 represents the inertia of the robotic 

arm itself. The forces )(ˆ tF  and Q(t) denote the forces applied by the 
physiotherapist and the unknown control force commanded by the standard robot 
controller, respectively. 
 

From the viewpoint of the force control, the effect of the human body and 
other elements between the arm and the outer shell of the orthosis are negligible, 
since the force applied by the therapist at the outer shell of the orthosis 
compensates the patient’s resistance. Thus, it is enough to investigate a 2 DOF 
oscillatory system to construct a proper control-law that provides the desired zero 
force and torque at the tool-centre-point (TCP) of the robot end effector. 

 

    
Figure 3 The mechanical model of the robot teaching-in problem 

 
Figure 3 presents a simplified model of the teaching-in device described in 

the previous paragraph, where m2 denotes the total mass of the handle, the quick 
changer and a portion of the safety relaxer, while s1 and s2 denote the stiffness of 
the F/T transducer and the compliant safety relaxer, respectively. The excitation 
force F means the force that has to be exerted by the therapist to provide the 
desired motion of the teaching-in device during programming by demonstration in 
addition to the force FF −ˆ  applied for the patient’s arm. In an ideal case, this 
additional force F is very small compared to the regular forces used during the 
therapy. The position of the TCP is denoted by 1x , while 1x�  is its velocity. This 
velocity is determined through a kinematic constraint as proposed in Stépán and 
Haller [13]. 
 

The control law envisaged here considers that the stiffness of the applied 
industrial F/T transducer is higher with three orders of magnitude than the 
stiffness of the compliant safety relaxer. Thus, the displacement x of the common 
joint of the springs s1 and s2 can be estimated by x1, and the resultant stiffness of 
the serially connected springs is approximately s2. The control law and the 
equation of motion of the teaching-in device yield the continuous mechanical 
model, as follows: 
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 22121 )( xxxskx p �� +−−=  , (1) 

 
 )()( 21222 tFxxsxm +−=��  . (2) 
 
Clearly, this provides asymptotic stability for the force error )( 212 xxs −  for any 
positive proportional control gain kp in analogue control systems. While this linear 
model provides global stability properties, the unmodelled non-linear effects – 
like saturation at the actuators or non-linear spring characteristics at the force 
sensors or round-off errors at the processors – may result in local stability 
properties in practical cases [14]. 
 

2.2 Discrete model 

 
In the REHAROB project, a standard industrial robot controller with digital 
position/velocity control will be used. The digital version of the control presented 
as the kinematic constraint (1) is modelled with periodic sampling and a zero-
order-holder (ZOH) as shown in Figure 4. The digital processor samples the force 
signal at the time instants �,2,1,0, == jjt j τ , where τ stands for the sampling 

time and the ZOH transforms the impulse sequence of the desired velocities into a 
piecewise constant excitation. 
 

 
Figure 4 The sampled kinematic constraint 

 
Thus, the commanded velocity – determined through the discretised kinematic 
constraint – is calculated from the force signal sampled at the beginning of the 
previous sampling interval: 
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 ( ) ),[,)()()()( 22121 ττττ +∈−+−−−−= jjjjjp ttttxtxtxsktx ��  . (3) 

 
The equation of motion of the teaching-in device has the form: 
 
 ( ) )()()()( 21222 tFtxtxstxm +−=��  . (4) 
 
Introducing a new convenient state vector )(col 221 xxx �−=y , equations (3) 
and (4) can be arranged in matrix form: 
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where 22 / msn =ω  is the natural angular frequency of the uncontrolled system. 
 
 
3 Force error of the robot 
 
To estimate the force error (“resistance”) of the robot, a constant force 0)( FtF ≡  
is applied which leads to a constant acceleration a after the transient motion. In 
this case, the mean time delay τm with respect to the velocity 2x�  is 1.5τ  (see 
Figure 5). 
 

 
Figure 5 The mean time delay 

 
The force error, which inevitably loads the therapist, will be the constant 

)( 212 xxsF −=∆  after a transient. For the stationary case, equations (3) and (4) 
yield: 
 
 FFamtaFkat p ∆+=−+∆−= 02and)2/3( τ  (6) 

 
from which, the force error ratio is: 
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The greater the proportional gain is, the smaller the force error becomes. When 
the proportional gain is zero, i.e. the control is switched off, the robot does not 
move at all. This means that the robot arm stays in equilibrium and so the force 
error is just equal and opposite to the force applied by the physiotherapist. 
Negative gain values have no practical meaning since the robot will move 
opposite to the direction the therapist would like to achieve. 
 
 
4 Stability analysis 
 
It is well known that force controlled robots tend to lose robustness or even 
stability depending on the environment they are in contact with. Experiments 
often call the attention to the destabilizing digital effects, like sampling, in these 
systems. A discrete mathematical model is constructed and analysed in order to 
obtain a clear picture about the stability properties of the above mechanical 
model.  
 

4.1 Discrete mapping 

 
For the stability analysis, we consider constant, or without loss of generality, zero 
external force: 0)( 0 =≡ FtF . Referring to Stépán [15], the stability investigation 
of the trivial solution of the piecewise continuous system (5) is carried out via the 
analytical construction of a discrete mapping. The non-homogeneous ordinary 
differential equation (5) has a piecewise constant right-hand side; the general 
solution for each sampling interval can be constructed from the sum of the general 
solution of the homogeneous part and a particular (actually, constant) solution of 
the non-homogeneous part: 
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where 
 )()( 212 ττ −+−−= jjpj tytyskv  (9) 

 
is the constant velocity of the TCP during the jth sampling interval, and the 
parameters A and B depend on the initial conditions for the same sampling 
interval. Thus, the substitution of the initial conditions )( jty  in Eq. (8) determine 

the linear system of algebraic equations: 
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The solution  
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give the unknown coefficients A and B in Eq. (8). Clearly, the elements of the 
state variable y can be calculated at the end of the jth sampling interval by 
substituting τ+= jtt  into Eq. (8). After some trigonometric transformation, the 

substitution of (11) and (12) results 
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This can also be arranged in matrix form if the 3 dimensional discrete state vector 
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is introduced. The coefficient matrix A of the three dimensional linear mapping 
 
 jj zAz =+1  (16) 

 
can be constructed from the coefficients of the corresponding terms of formulae 
(13), (14) and (9) as follows: 
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4.2 Convergence 

 
The map (17) describes the connection between the state variables at consecutive 
sampling instants. The trivial solution of this linear mapping corresponds to the 
constant (or zero) force error in our model (3) and (4), or (5). Referring to Kuo 
[16], the trivial solution is stable, if and only if all the eigenvalues µ1,2,3 of the 
principal matrix A in Eq. (17) are located in the unit disc of the complex plane. 
 

Substitution of the usual exponential trial solution 
 

 3,)( RKKz ∈= tet λ  (18) 
 
into the three dimensional linear mapping (16) yields the characteristic equation: 
 

 0)(det0,0)( =−�≠=− −− λτλτ ee AIKKAI  (19) 
 
where the characteristic roots �,2,1, =kkλ  have to be located in the left half of 
the complex plane to provide stability as it follows from Eq. (18). Then, 
introducing a new complex variable, the so-called characteristic multiplier µ  by 
 

 }1||,2,1,0Re{ 3,2,1 ≤⇔=≤= � µλµ λτ
�je j  (20) 

 
the stability condition 1|| 3,2,1 ≤µ  yields. This is just the condition quoted above 

from Kuo [16]. Thus, the stability of the trivial solution of the map (16) can be 
investigated by means the characteristic equation of the principal matrix A: 
 
 0)(det =− AIµ  . (21) 
 
This can be factorised. The free translation of the system is described by the 
characteristic root 0=λ , i.e., 1=µ  is the corresponding characteristic multiplier 
that always satisfies the above equation – as it does, indeed. Introduce the new 
dimensionless gain and frequency parameters 
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 τωγω nnpskp == and/2  , (22) 

 
where γ can also be thought of as a dimensionless delay in the system. With these, 
the characteristic equation of the coefficient matrix A assumes the simple form of 
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Figure 6 Transformations for stability analysis 

 
The second-degree factor of the polynomial in (23) is investigated by the so-called 
Moebius transformation 
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This transforms the unit disc into the left half of the complex plane as shown in 
Figure 6. Then the stability condition can be checked by the well-known Routh-
Hurwitz criterion applied to the transformed polynomial equation 
 
 001

2
2 =++ aaa ηη  . (25) 

 
The coefficients ak can easily be calculated directly from the coefficients bk of the 
Eq. (23) as: 
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where the transformation matrix is derived from the definition (24) of the 
Moebius transformation. The above described analytical stability investigation is 
also referred to as Jury’s criterion (see Kuo [16]). Thus, the necessary and 
sufficient condition of stability is that all the coefficients (26) in Eq. (25) are 
positive (see Farkas [17]). 
 

4.3 Stability chart 

 
The positiveness of the coefficients 2,1,0, =ka k  in (26) depends on the two 

parameters p and γ only. This provides the possibility to construct a two-
dimensional stability chart that shows all the different kinds of possible vibrations 
in a single parameter plane of the dimensionless variables. 
 

Considering formulae (26) of the coefficients, the following stability 
conditions are obtained: 
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Figure 7 shows the corresponding stable domain in the parameter plane, and 
presents also the bifurcations, which may occur along the boundaries. 
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Figure 7 Stability chart: the stability boundaries ai=0 and the shaded stable domain 

 
 
5 Dynamic properties 
 
In the above stability chart, the frequency of the vibrations occurring along the 
secondary Hopf bifurcation can be estimated, and also the strongest exponential 
decay, the fastest settling signal, can be calculated. 
 

5.1 Bifurcations 

 
The stability chart shown in Figure 7 has different types of stability boundaries 
where different kinds of bifurcations occur. Although, all the three possible 
bifurcations of discrete systems can be found along the stability limits, the typical 
one is the Neimark-Sacker bifurcation in practical cases. This bifurcation is 
topologically equivalent to the Hopf bifurcation of autonomous systems. Thus, it 
occurs when the roots of Eq. (23) have the complex conjugate form 

),0(,sincos3,2 παααµ ∈±= i  along the corresponding stability limit. As it 

follows from the characteristic multipliers 
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calculated from Eq. (23), the Neimark-Sacker bifurcation occurs along the 
stability limit a1=0 if the condition 
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is also satisfied (see Figure 8). 
 

The other two kinds of bifurcation are the period doubling (flip) and the fold 
(saddle-node) bifurcations along the stability limits a0=0 and a2=0, respectively. 
In these cases the proportional gain is smaller than zero, and the system moves 
opposite to the desired direction. These kinds of motions have theoretical 
importance only. When the period doubling bifurcation occurs, the arising 
oscillation has the period 2τ, i.e., double of the sampling time. In case of the fold 
bifurcation, the arising vibration has the frequency of the sampling. 
 

5.2 Vibration frequencies 

 
In case of the Neimark-Sacker bifurcation, the lowest frequency of the oscillation 
arising at the loss of stability can be calculated in closed form. The substitution of 
the corresponding transformed complex variables βη i±=  into Eq. (25) results 
the linear system of equations 
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The elimination of p results 
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Thus, dimensionless vibration frequency ω is obtained via the transformation of 
this result back to the critical characteristic roots: 
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These frequencies are shown in Figure 8, and the corresponding frequency in Hz 
can be calculated as )2/( πτω=f . This means that the frequency of the self-
excited vibration is between one sixth and one half of the sampling frequency 1/τ. 
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Figure 8 Complex characteristic multipliers and the corresponding vibration frequencies 

 

5.3 Exponential decay 

 
There are several viewpoints the engineer should consider during the design of a 
force-controlled structure. In the case of the rehabilitation robot, the minimum 
force error, that is, the less resistance against the therapist’s action, requires as 
high gains within the stability limit, as possible. This force error can be zero 
theoretically, as the gain p can be increased without any upper limit in case of 
arbitrarily small γ, that is, for arbitrarily small sampling time τ or for ideally soft 
safety relaxer with 0→nω  (see Figure 7 and Eq. (7)). The other important point 
of view in the design work could be to have short transient vibrations. 
 

According to Figure 6, it is obvious that the fastest settling force signal can be 
calculated by searching the minimum of the spectral radius ρ of the characteristic 
multipliers µ2,3 . Thus, 
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and the same algorithm described in section 4.2 results the polynomial in Eq. (25) 
with the following coefficients: 
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When ρ decreases, the stable domain bordered by 2,1,0,0~ == ja j  shrinks. It 

shrinks to a point, when the spectral radius is 0=ρ , i.e., when the characteristic 
multipliers are µ2,3 = 0. Thus, the dimensionless gain and frequency providing the 
shortest transient are obtained from Eq. (28): 
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Physically, it means that the mapping (17) yields the desired zero force at the F/T 
transducers in two sampling steps only (deadbeat control). Still, this parameter 
setting has no practical meaning because of the negativeness of the gain 
parameter. 
 
 
6 Real parameter case study 
 
The physical parameter values of the mechanical model are taken from the real 
robotic structure: 
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According to the stability limit a1=0 in Figure 7, the necessary condition for the 
stiffness is satisfied: 
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Thus, for the control gain, we have the criterion: 
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while the force error ratio can be estimated from below by: 
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Choosing an appropriate control gain 01.0=pk  according to the criterion (39) and 

applying the constant force ]N[50 =F , the force error ratio from (7) is 

6.0/ 0 =∆ FF . The calculated ‘resistance’ of the robot during teaching-in and 

also its predicted stability behaviour are confirmed by the simulation results 
shown in Figure 9. Simulation tool was developed in LabVIEW® for the 
numerical solution of equations (3) and (4) with 0)( FtF ≡ . 
 

As the result in Figure 9 shows, the force error tends to ]N[36.0 0 −=− F , 
and it goes back to zero when the external force disappears. Physically, this means 
that the physiotherapist tries to accelerate the orthosis and the teaching-in device 
by 5 [N], but only 2 [N] will actually accelerate the structure, while 3 [N] will act 
against the resistance of the robotic arm. These values are tolerable compared to 
the total force F̂  (see Figure 2) up to the range of 100 [N], which accelerates the 
total arm of the patient. 
 

 
Figure 9 Numerical simulation results at specified parameters 

 
Figure 10 presents the simulated self excited vibration of the robot at the loss 

of stability when the same dimensionless frequency 6.0=γ  is used as above, but 
the proportional gain kp is just higher than the stability limit in (39). Figure 8 
gives the dimensionless frequency 239.1=ω , which gives a vibration frequency  

 
 ]Hz[575.6)2/( == πτωf  . (41) 
 
This corresponds perfectly to the time period ]s[152.0/1 == fT  of the 
simulated self-excited oscillation shown in Figure 10. 
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Figure 10 Numerical simulation of the Neimark-Sacker bifurcation 

 
 
7 Conclusions 
 
This paper described a simplified model for the teaching-in process of standard 
industrial robots with standard F/T sensors. In compliance with other authors 
Lange and Hirzinger [18], Dessen, F. and Balchen J.G. [19] it was observed that a 
low stiffness spring in the teaching-in device makes the control stable. In contrast 
with other approaches, there is no need here to include new or alter elements in 
the system as the electromechanical safety relaxer presents very low stiffness. 

  
The results clearly show the strong limitations caused by the relatively low 

sampling rate of the industrial robot, and the necessity of the delicate design of the 
mechanical and control parameters to achieve the goal of the REHAROB project 
– or the goal of any teaching-in method via force control. The results also explain 
why the robots oscillate with low frequency relative to the sampling frequency of 
the digital control in case of unstable parameter settings. 
 

Before the control strategy is applied and extended for real industrial ABB 
robots, we checked the performance of the system by numerical simulation. The 
numerical results confirmed the predicted stability behaviour and the estimated 
resistance of the robot during teaching-in via digital force control (see Figure 9 
and 10). 
 

Further research is required to extend the technology into 6 DOF, and to 
implement the control algorithm in RAPID programming environment of ABB 
industrial robots. 
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