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Preface

This book is based on the author’s research work in the last ten years. In the
Research Gréup on Mechanics of the Hungarian Academy of Sciences, a lot of practical |
problems have been investigated which required a general and efficient method to analyse
the stability of trivial and periodic solutions of dynamical systems with memory. In
the literature, the great number of the analytical, numerical and geometrical stability
criteria for linear autonomous systems show that none of these criteria can be used
generally in a simple way. For example, the Pontryagin criterion is preferred in theoretical
mathematics, the Nyquist criterion and D-subdivision method in control theory, the tau-

decomposition method in mechanics and there exist a lot of other special methods for

particular problems.

In the design work of engineers, stability charts h:ve a significant role. For
the investigation of oscillatory systems with delay effects, with more delays than one or
with an integral over the past, an alternative stability criterion was needed in order to
construct these stability charts. This analytical stability criterion is more general for

retarded systems than the existing ones.

The first chapter gives a short survey of the existing methods. The stability
criterion for linear autonomous retarded functional differential equations is presented in
the second chapter. The detailed proof of the criterion, the manner of its generalization to
a class of neutral systems and the basis of the investigation of non-linear systems are also
given there. The third chapter contains basic stability charts. They are constructed with
the help of a series of theorems deduced from the stability criterion. In the fourth chapter,
the bioecological examples are chosen from the specialist literature, but the problems
of man-machine systems, robotics and machine tool vibrations have been formed from

practical examples. These results were often investigated and verified experimentally by



the author at the Department of Engineering Mechanics of the Technical University of
Budapest and at the Mechanical Engineering Department of the University of Newcastle
upon Tyne. This fact guarantees that ‘the examples are not artificial, although the
booit has a mathematical character and does not deal with the practical validity of the

mathematical models in question.
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1. Introduction and Survey

A lot of analogue expressions are used which cover more or less the same idea:
retarded dynamical systems, hereditary systems, systems with delayed feedback, systems
with memory, with aftereffect or time lag, etc. The expressions delayed self-excitation,
'regenerative or reproductive vibrations can also be found in the specialist literature
referring to these systems. These ideas are not defined exactly, but experts working on
different fields of applications understand themn well. However, mathematics has had the
exact definitions and terminology since these systems have been described by functional
differential equations. It became clear a long time ago, that these systems could be
handled as infirite dimensional problems, but only the paper [39] of Myshkis gave the

first correct m=~:hematical formulation of the initial value problem in 1949.

A retarded functional differential equation (RFDE) describes a system where
the rate of change of state is determined by the present and past states of the system.
If the rate of change of state depends on its own past values as well, the system can be
governed by a neutral functional differential equation (NFDE). In the special case, when
only discrete values of the past have influence om the present rate of change of state,
the corresponding mathematical equations can be either retarded or neutral differential-
difference equations (RDDE or NDDE respectively). These are special cases of the func-
tional differential equations (FDE), as the ordinary differential equations are the special
cases of the DDEs. The basic theory of ordinary differential equations has been gener-
alized for these infinite dimensional problems. The theorems about the local existence
and uniqueness of a solution and its continuous dependence on the initial data are not
presented in this book. The formulation of the initial value problem for RFDEs and
some basic definitions will be given in order to call the reader’s attention to the basic

differences between ordinary and functional differential equations and to introduce the



notation used throughout the book.

The basic theory for DDEs can be found in the béok [3] of Bellman and Cooke.
The theory of FDEs with bounded delay is presented in the basic work [25] of Hale. The
applied mathematical book [35] of Kolmanovskii and Nosov gives a good summary of the
most important theorems for FDEs without proofs but with an extensive reference list.
To generalize the Hopf bifurcation method for the investigation of non-linear RFDEs, it
is necessary to formulate the problem as an operator differential equation. This can, for

example, be found in the book [27].

In this chapter, the most important results about the zeros of characteristic
functions as well as a brief survey of the basic methods of stability investigations of

linear a:1;onomous FDEs will be given. i

1.1. Initial value problem and stability definitions

Suppose that 2 > 0 is a given number with understanding that k may be +oo,
and R" is an n-dimensional linear vectorspace over the reals with norm |.1. Let B denote
the vector space of continuous and bounded functions mapping the interval [—h, 0] into

R™. With the norm |} .|| given by
ligll = sup |¢(6)], ¢#€B, (1.1)
€ [—h,0]
B is a Banach space.
Definition 1.1. The relation
He) = f(t, ) (1.2)

is called RFDE where f:RxB — R" is a given function, the overdot represents the

2



right-hand derivative with respect to t and the function z: € B is defined by

ze(0) = z(t +6), 6 €[~h,0]. (1.3)

From now on, t is assumed to be the time, and h is the length of retarda-
tion. If h is finite, that is the delay is bounded., then the norm in (1.1) is equivalent to
maxge(_p o] [${6)]. If h = +oo then the delay is unbounded. In this case the choice of
the phase space has an important role in the qualitative theory of FDEs since z; contains
all the past hisf:ory, in accordance with {1.3}). As a matter of fact, a lot of spaces are
presented and used in the literature [10,24,26,35,40,51,66] for systems with infinite delay,
which are often more general than the space B used here. The publications of Schu-
macher [48] and Naito |41} give some details of the problem of finding weak assumpticns

on the phase space whun A = +o0.

Definition 1.2. The function z: R — R™ is a solution of the RFDE (1.2} with

the initial condition
z,=¢; c€R, B (1.4)
if there exists a scalar § > O such that z, € B and z satisfies (1.2) and (1.4) for all

t€ oo+ 6.

The notation z(t;0,¢) also refers to the solution of (1.2) and (1.4}, and the

function z;{0, ¢} is defined according to (1.3):
(0, #){8) = z(t + 6;0,4), € [—h,0].

If the function f in (1.2) is continuous and f (t, $) satisfies a local Lipschitz condition in
¢ then the local existence and uniqueness of the solution of (1.2) and {1.4) can be proved

as well as its continuous dependence on the initial data [25,35].

Definition 1.8. Let us suppose that f(¢,0) =0 for all£ € R in the RFDE (1.2).

The trivial solution z = 0 of (1.2) is stable in the Lyapunov sense if for every o € R and

3



€ > 0 there exists a § = §(0, ¢) such that lize(o, ¢} < € for any ¢t > o and for any initial
function ¢ satisfying ||¢|| < 6. The trivial solution is called asymptotically stable if it is
stable and for every o € R there exists'a A = A(o) such that lim,_, o, ||z, (o,8)ll =0
for any ¢ satisfying [|4|] < A

In exactly the same way, the standard definitions of uniform and exponential
stability can also be extended for infinite dimensional problems. The idea of orbital
stability will also be used when periodic solutions of autonorﬁnus RFDEs are investigated.

For autonomous systems, the stability of a trivial solution yields its uniform stability [35].

The general form of a linear autonomous (and homogeneous) RFDE is
(t) = L(z,) _ (1.5)

where the functional L : B — R” is continuous and linear. According to the Riesz

Representation Theorem, (1.5) can be represented as

0= [ n(o)ste+9), (L6)

where 7 is an n x n matrix of functions of bounded variation on {—oo, 0] and the integral

is a Riemann-Stiltjes one. Let C denote the set of complex numbers.

Definition 1.4. The function given by

D(A) = det{A\] — / ’ ()}, recC (1.7)

— o0

is called the characteristic function corresponding to the linear autonomous RFDE {1.6)

where [ is the n X n unit matrix.

The characteristic function can be obtained either by the substitution of non-
trivial solutions z(t) = Ke*, K € R" into (1.6) or by means of the application of a

Laplace transformation to (1.6).

4



The theory of NFDEs is more complicated than that of the RFDEs. However,
the linear autonomous NFDEs have also a simple form:

0= [ @i+ + [ lno@jste+ o (18)

where 7o and M1 are n X n matrices of functions of bounded variation. Its characteristic

function D is defined by

D(A) = det(AT ~ A / ’ e dn, (6) - / ’ e*dno(8)) . (1.9)

— o0 —-0

Definition 1.5. The characteristic function D of a RFDE or a NFDE is called
stable if

{A€C:ReA>0,D())=0}=48

where D is given by (1.7) or {1.9) respectively.

The kinear equations (1.6) or {1.8) can, of course, represent the cases of finite
delays as well. The delay has a finite length h when 5, or 5, and 71, are constants in
(—o0,—h). Thus, all the results obtained for unbounded delays are valid for the special
case of finite delays. However, we shall often present theorems for finite delays only {for

example in Theorems 1.7, 1.8 and 1.9 of the following section) since we know much more

about them.

In the case of ordinary differential equations, the stability of the characteristic
polynomial is equivalent to the exponential stability of the trivial solution. The situation
is much more complicated for FDEs. Some results of the literature about the zeros of
characteristic functions and about the stability of solutions are presented in the following

sectlon.



1.2. Zeros of characteristic functions and stability

The following theorem is given in {24] as a conclusion for linear autonomous

RFDEs with unbounded delay, but it can also be deduced from Theorem 2.3 (p.53) of
(35].

Theorem 1.8. Suppose that there exists a scalar v > 0 such that
. ,
/ e dn(6)] < +o0, jk=1,....n (1.10)
- o0

in the characteristic function (1.7). If this characteristic function is stable then the trivial

solution of the linear KFDE (1.6) is exponentially asymptotically stable. A

As a matter cf fact, condition (1.10) guarantees that there does not exisi a
sequence {Ax}, k= 1,2 .. of the zeros of (1.7) such that Re A, tends to a non-negat’ve
number as k — +co. When n{6) is constant for § € {—o0,—h], that is the length h of

the retardation is finite, condition (1.10) automatically holds, and we know even more

about the zeros of (1.7) [25]:

Theorem 1.7. Let us suppose that n({f) is constant for 8 € (~oo, —hi, ie. the

delay is finite. If there is a sequence {1} of the zeros of the characteristic function (L.7)

such that [Ag| — +o00 as k — +oc then Re Ay — —o0 as k — +00. A

Reference {17 presents an example where (1.10) is fulfilled, the delay is un-
bounded, the characteristic function is stable and there does exist a sequence {A;} such
that Re A; converges to a finite {but negative] number. In [42], an example is investi-
gated where {1.10) is not fulfilled, the characteristic function is stable and the asymptotic

stability of the trivial solution of the linear system is not exponential.

Similar, but even more complicated results can be found for NFDEs (see [35] and

the references in it). For example, the trivial solution may be stable or unstable if the real

6



parts of a sequence of multiple zeros of (1.9) converge to zero through negative numbers
It is easy to show that the characteristic function (1.9) may have seros of infinite number
on the right half of the complex plane even in the case of a single discrete delay. The
following theorems (from [25,35]) are presented for the case when 71 and no in the NFDE
(1.8) are piece-wise constant on (—o0,0], i.e. they are step functions with a finite number

of discontinuities. This means that (1.8} is a NDDE.

Theorem 1.8. Suppose that there are only discrete time lags of finite number

in (1.8), i.e.
P q
Bt) =) Cii(t - ry;) + Z Biz{t — roi)
i=1 k=0

where 0 < 1 < ... < Tip, C=r0<...< T0q; CJ' (]'“—: 1,...,}‘3) and B; (k = 0,...,q)
¢12 n-dimensional constant matrices. The trivial solution of tlv« NDDE is exponentially
asymptotically stable if there exists a scalar € > 0 such that R« Arx < —¢ for all the zeros

Ax of the corresponding characteristic function. A

Theorem 1.9. Suppose that there is only one discrete time lag in the NDDE,
le. p=g=1and 1y, = 19; = 7. If at least one of the eigenvalues of €} is not zero
then there exist real scalars a and B such that # < Re A\x < « for all the zeros Ax of the
characteristic function. Moreover, if there exists a sequence {A;} of the zeros such that

|Ak| = 400 as k — +oco then there also exists a sequence {A}} of the seros of
d(A) = det{I — C1e7*")

such that (Ax ~AL) > 0as k — 400, If d(A) has a sequence of zeros {/\'} such that
|A%| — +00 as k — +co then the characteristic function of the NDDE also has a sequence

{Ax} of zeros such that (A, — A\y) =0 as k — 400, A

As these theorems and the cited examples show, the stability of the characteristic
function is only a necessary condition of the exponential asymptotic stability of trivial

solutions in linear autonomous FDEs. However, for the class of RFDEz defined by

7



condition (1.10), the stability of the characteristic function is a necessary and sufficient
condition of exponential asymptotical stability as this follows from Theorem 1.6 and
from the fact that the trivial solution is not asymptotically stable 1f ReAx > 0O for at

least one zero of the characteristic function.

1.3. Stability criteria

Lyapunov’s direct method has been generalized for FDEs. Since the investigation
of the transcendental characteristic functions is difficult, the construction of Lyapunov
functionals may be a reasonable way of stability investigation even in the case of linear
autonomous FDEs [6,7,23,25,35]. How:ver, only those stability criteria are discussed
briefly in this section which are based on the stability analysis of characteristic functions.

Let us examine, first, the analytical criteria.

The Pontryagin criterion investigates the quasi-polynomials

P(A e*) = }:Za xAT R . (1.11)

=0 k=0

All the characteristic equations of RDDEs and NDDEs can be transformed into the form
P(/\,c)‘} = 0 if there is a single discrete delay or all the ratios of the discrete delays
of finite number are rational numbers. Pontryagin’s paper [44], published first in 1942,
gave necessary and sufficient conditions for the stability of (1.11). Although this method
has strong limitations and it may become very complicated for systems with more delays
than one, the Pontryagin criterion is widely used in mathematics, vibration and control
theory to construct analytical stability conditions and stability charts [3,5,25,34]. As a

matter of fact, this is one of the most general analytical criteria.

The Yesipovich-Svirskii criterion [65] can be used for quasi-polynomials {1.11)



in the special form
P q
P(Aed) =3 aMet + 3 bak. (1.12)
'=0 k=0

As (1.12) shows, DDEs with one discrete delay can be investigated in this way. The
method needs a further transformation A = iz (i =v-1,z€ C) of P(A,e*) = 0 into

F(z) = 0 where

F(z) = E(ITJ +(z). (1.13)

The function ¢(z) does not contain transcendental terms. The necessary and sufficient
condition of the stability of (1.12) is given by means of the expression

dIm F(ug
ngn(Re;(uk) du( )) _ (1.14)

k

where the values u; are the real roots of Im¢(z) = 0. In spite of the fact that this

method seems to be effective in special applications, it is not used ir. the literature.

The r-decomposition method [32] requires the transformation of the character-

1stic equation into the form
e™ = Dy() (1.15)

where Do) is a ratio of two polynomials. Thus, this method is to be used for RDDEs
with one discrete delay. The criterion is based on the analysis of the contour Dy{iu),
(4 € R.) around the unit circle in the complex plane. It can be used as an analytical
criterion but its long algorithm is preferably used as a numerical method. By means

of the computer program presented in [32], multi-degree of freedom retarded oscillatory

systems were investigated.

The Chebotarev criterion is the most direct generalization of the Routh-Hurwitz
criterion for quasi-polynomials (1.11). However, its application as an analytical criterion
18 not effective practically, since an infinite number of Hurwitz determinants must be
calculated. If there are long delays in the system, determinants of high dimension may

be responsible for stability.



The D-subdivision method helps to construct stability charts in the pa.ra.met;er
space of the FDE. This method is always combined with some other analytical or nu-
merical stability criieria. It becomes very effective when the stability chart of a retarded
system can be presented by means of the combination of this method and the simple

Routh-Hurwitz criterion. However, this trick can be used for specia.l RDDEs only [64].

In control theory, the Nyquist criterion is used most frequently. It is usually

applied a8 a numerical or geomeﬁrical .critéri_c)n for DDEs. The equation
-1 = D;()‘) (1.16)

18 investigated, which can always be rearranged to get back the characteristic function
of the system, but the actual form of Dy(\] depends on the structure of the feed-back
in the control scheme. For analytical investigation, the mathematical form of D, (A) may
be uncomfortable, but this open-loop iran:’er function is determined easily in control
theory. This has advantages when the system is déscribed by transfer functions in the
“frequency domain” instead of differential equations in the “time domain”. On the basis
of the relative positions of the point —1 + 0¢ and the contour D, (fu), (v € Ry) on the

complex plane, the stability properties of the systems can be determined.

As it was noted by Satche [47], a great number of other criteria can be produced

if the characteristic equations are rearranged in the form
Dy(A) = Da(3)

(like (1.15) or (1.16)) and the contours D {iu) and D;(iu) {u € R, ) are plotted in the

complex plane.

The Bode criterion, the Nichols criterion and some others in control theory are
the results of further transformations of the Nyquist criterion and they may be convenient

in some numerical applications.
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In the literature, the Michailov criterion [20] is usually mentioned and used as a

geometrical method. Since it investigates the characteristic function in its original form
D(A)=0,

the contour D(iu} (u € Ry) has to be plotted and an analysis of how it envelops the
origin of the complex plane carried out. This contour is often mentioned as Michailov’s
hodograph or Satche’s diagram [45]. The method is a consequence of the Cauchy Residue |
Theorem in complex analysis, and almost all of the other stability criteria discussed
originate in it. It may generally be used for RFDEs if there exists a scalar v > 0
such that the characteristic function is bounded and analytical in any closed domain in
{*: ReX > —v}. For example, {1.10) yields the satisfaction of this condition. Although
the method may be extended for great classes of NFDEs as well, its aj»lication needs
special attention since the Michailov hodograph may become very comp'icated in these

cases. We shall discuss this problem briefly in Section 2.2.

There are a lot of important but less general criteria for the stability of charac-
teristic functions like those of Eller [13], Barsscs and Olbrot (2], Tsypkin [62], Terjéki
[59], etc. As a matter of fact, there is a wide selection of stability criteria in the Literature.
However, none of these methods can be used generally for FDEs. For actual problems,
it is difficult to find the best one, and the application of any method may need tedious

work.

The following chapter presents the direct stability investigation of the charac-

teristic function of FDEs. This leads to an analytical stability criterion.
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2. Direct Stability Investigation

The stability criterion established for RFDEs in Section 2.1 is based directly
on the investigation of the characteristic function in its oﬁgina.l form. This can be
generalized for a class of NFDEs as well. Sections 2.3 and 2.4 will present some special

necessary or sufficient criteria.

2.1. Retarded functional differential equations

In this section, the characteristic funciim of the linear and autonomous RFDE

(1.6) is investigated when condition {1.10) holds. The main result is given in Theorem

2.19.
Lemma 2.1. Consider the characteristic function D of (1.6) given by
D(X) = det{AI - [ ’ e*dn(8)) = i(—l)kak(k)kn"k, (2.1)
—ee k=0
where |
/0 e Pldn(8)| < +oo0, 7 k=1,...,n (2.2)

for some scalar v > 0, and let D C C be given as
D={A€C:Red>—-v+e,{\|<H}

where € and H are arbitrarily small and large positive scalars respectively. Then the

functions ax (k = 1,...,n) and D are analytic and regular in D.
Proof. For any 7,k =1,...,n and for every A € D, the functions

)= [ Manaie)

-0

12



have no singularities and they are differentiable since
0
1A < [ e ldna(o)] < oo
—o0
follows from Re A > —v (see [9]). The functions o) are formed from the elements of the

matrix [f;x]; for example

0 0
a;(A) = Tr / e*dn(6), ..., au{A) = det / e*?dn(6)
(Tr denotes the trace of a matrix). This implies that aj {k =1,...,n) are analytic and

regular functions in D and this property is inherited by the characteristic function D

according to (2.1). A

Rem vk 2.2. Condition (2.2) is fulfilled, for example, when 5 has di 3 :ontinuities
of finite numb-r at

— T < .. <1 <—15p=0,

it is differentiable elsewhere and there exist v > 0 and K > 0 scalars such that In’(8)| <

Ke¥? . In this case, the corresponding RFDE has the special form
g 0
i{t) = Y Bra(t — )+ / w(8)z(t + 6)do
k=0 e

where the n X n constant matrices Bx (k=0,...,q) and the function w : (-0, 0 = R™
are uniquely determined by the function 5. The function |w| decreases exponentially as

f— —0. A

The following definition of a contour in the complex plane will be used in the

calculation of the number of the characteristic roots with positive real parts.

Definition 2.3. The curve (g) is called a Bromwich contour if

(9) = [J (o) (2.3)

k=1



where {gx) (k= 1,2,3) are given in the complex plane as follows:
(1) : A=He'?, = V=1, HeR,, ¢ ranges from — Z to +§;
(92) : A =iw, where w ranges from H to 0;
(93) : A =1iw, where w ranges from 0 to — K.

- Theorem 2.4. Let the characteristic function (2.1) have no seros on the imag-
mnary axis, and let (2.2) hold. Then the number N of its geros in the rlght half of the

complex plane is determined by

1 1 dD(y)
T ere— h —_— .
V= ama i f(g) DRy dax (24)

where (g) stands for the Bromwich contour.

Proof. According to the Cauchy Residue Theorem, or the principle of arguments
[9], the integral in (2.4) gives (N — P)27i where N and P are the number of zeros and
poles (including their multiplicities) respectively within the closed contour (9). The
contour img . 4 o (g) encircles the whole right half plane and the characteristic fu.nct;ion

has no pole there as it was shown in Lemma 2.1. Formula (2.4) follows from P=0. A

Corollary 2.5. The characteristic function (2.1) with condition (2.2) is stable
if and only if

D(iw) #0, we|0,c0) (2.5a)
and

. 1 dD{})
lim
H—+oo f(g) D(A) dx

where (g} is the Bromwich contour given in Definition 2.3.

= (2.56)

Proof. Condition (2.5a) means that the characteristic function has no zero in

the imaginary axis. Condition (2.58) is equivalent to (2.4) in Theorem 2.4 when N = 0

14



which yields that (2.1) has no sero in the right half plane either. Thus, the characteristic

function is stable according to Definition 1.5. A

Remark 2.6. The formuia (2.53) has a clear geometrical meaning origina.ted in
the argument principle. Let us stick a pin into the origin of the complex plane and lay
a closed loop of thread along the contour D(A)}sg(y)- This closed contour fnay be very
complicated and it may encircle the pin to and fro several times. If wé want to_know
whether the linear system is stable or not, then we have to pull the thre.ad and tb watch
whether the thread can leave the pin or it is obstructed by it. If the thréa.d comes off
from the pin, there is stability. A |

Let us consider the continuous functions

f:nz—*n3, 02,Q3C‘.C

and

z:la, 8] =0, M, cOy
where [a, b] is a2 compact interval. The following notation is used throughout this chapter:
R{w)=Ref(z(w)), S(w)=Imf(z(w}), wels,b]. (2.6)
I R has real zeros of finite number in [a,b] then they are denoted by
Pr2p2=...2p; RBlp)=0, k=1,...,r. (2.74)

If there are zeros with multiplicity two or more, they get two or more subscripts respec-
tively. If r = 0 then R has no zero in [a,b]. Similarly, when S has real zeros of finite

number in [a, b] then these zeros are denoted by
oc1202...20,; Slog)=0, k=1,...,s. (2.78)
The argument of the function f is

¢ = arg f = arctan % . (2.8}

15



Alq,b)¢ denotes the change of ¢(w) = arg f(2(w)) as w decreases from b to a.

The following two lemmas are independent from the characteristic functions, but

they will be applied to the characteristic functions in order to calculate the integrals in

(2.4) or (2.55).

Lemma 2.7. Let the functions R and $ given by (2.6) have zeros of finite

number in an interval [a, b] and let S(a) = §(b) = 0. If

f(z(@)) #0, wela,l] (2.9)

then
Ajapj¢ = wsgn R(py +0) 2?(—1)"th sgn S{px), (2.10)
_ k-1

where the real zeros pg, (k= 1,...,7) of Rin [o,b] are defined in (2.7a).

Proof. Let us take the zeros oy, (=1,..., 3) of § in [a, b] as defined in (2.7%).
Obviously, o, = a and o, = b. Condition (2.9) means that p; = oi{k=1,...,r, =

1,...,s). The change of ¢ will be determined in the following steps:
1. Let R(pl +0) >0,

1.1. Let R have only one zero pzpyy in an interval I; = (6j41,0;). It has an

odd subscript, thus R(pax+1 + 0) > 0 and R{po; — 0) <0.
111 If S{w} >0, w € I, then (2.8) gives the following values of the argument
of f:
v g
{oj) =0; ¢(p2rsr+0) = e G;
r
¢{p2x+1 —0) = Y +0; ¢(oj41) =7,
This means that
Ar¢ = ¢{o41) —g(o5) = 7. {2.11)

i6



1.1.2. ¥f S(w) < 0 in I; then the result is

A,{,-S' = —-x.

1.1.3. The expression

Ar;¢ = nsgn S(par+1)

takes into account the sign of § in I;.

1.2. Let the only zero of R lying in I; have an even subscript: pox € I;. In this

case we get everything in the same way as in 1.1 but with opposite signs:

Aij = —'xsgnS(pgk) .

1.3. If R has only one gero pi in I; then the change /' the argument is given by

Ap¢= {(—1)**'xsgn S(oxk) -

1.4. If R has zeros pg, ppy1,...,pe4 in I; then

H
Ape=m) (~1)**™* g S(prim),

m=0
that is A7.¢ is 47 or —x depending on the fact whether the number of the odd or even

subscripts is more in the zeros of R in I,

1.5. For the interval

a—1

[Uas o'll - U [UJ'-'E-I; GJ'] y
J=1

the results obtained in 1.4 can be summed:
AEU,,allg = WZ(—I)]‘+1 3dn S(pk) .
[ ==31
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2. If R(p; +0) < 0 then we get this result with opposite sign.

3. The formula (2.10) involves the sign of R{p; + 0} and it serves the variation

of the argument generally. A

Lemma 2.8. Let the functions R and S given by (2.6) have zeros of finite
number in the interval [a,}] and let R(a) = R(b) = 0. If

fz(w)} #0, wela,

then

Biays = msgn (o1 +0) 3 (-1)* sgn R(o4), (2.12)
k=1

where the real zeros ok, (k=1,...,s) of § in [a, b] arz defined in (2.78).

Proof. The proof of Lemma 2.7 must be repeated. The basic step (which
resulted in (2.11)) is as follows. Let us take the zeros pi» (7=1,...,7) of Rin [a,b] as
defined in (2.7a), p, = 4, p; = b. If S(o1 + 0) > 0 and S has only one zero og¢4; in an

interval I; = (p,1,, p;) where R is positive then
x
¢(py —0) = 70 ¢{o2k+1) = 0;
s
¢{pijs1 +0) = -5 +0
as 1t is calculated from {2.8). Hence,

Ars = ¢(pir1) —¢lps) = —n.

It is similar to (2.11), but it has a negative sign. All the results of the further steps of
the proof are similar to those of the proof in Lemma 2. 7, but with opposite signs. This

can be seen in the final formulae (2.10) and {2.12) as well. A

Let us return, now, to the investigation of the characteristic function (2.1), more

exactly, to the calculation of the integral in the statement of Theorem 2.4.

18



Lemma 2.9. If (g;) is the part of the Bromwich contour as it i8 in Definition

2.3, and D is the characteristic function (2.1} where (2.2) holds, then

, 1 dD(A) ,
Hml{n;m o) DO) A dA = nxt. (2.13)

Proof. The calculation of the integral gives

- dD(A) = ic{A)y _ ¢
'[(gl) D(A) dA dA = Agy) ID(ID(,\He ) = 'A(gl)s‘

where

¢(A) = arg D(A}.

On the curve (g,), A = He*® holds. If
R{¢) =Re D(He®) and S(¢) = Im D(H%)

then

S(¢) |

A(g,)¢ = arctan ——= .
(91) R{¢) $=—n /2

Lemma 2.1 implies that the functions R and $ can be given as
R(¢) = H" cos{ng) + o H"},

$(4) = Hsin(ng) + o( H").

This means that

and formula (2.13) is proved. A

Remark 2.10. Lemma 2.9 can also be proved by the direct integration of the
left-hand side of (2.13):

[T Tl b o)) ¢
m = 1d¢ = inw,
H—o4+co —1r/2 el‘m + 2%1}1_”_1
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where we recall that the integrand is continuous for ¢ € {(—%,+%) and bounded for
¢ € {—%,+5] and cos ¢ > 0 in this interval. The application of Lemmas 2.7 and 2.8 also
leads to this result since the zeros p; and o; of R and S can easily be determined as

H — +oo. They are just at (px + x/2)/n and (px/n) respectively (p is integer). A

Lemma 2.11. Consider the characteristic function (2.1) with condition {2.2),

let D have no pure imaginary zero, and take the contours (g2) and (ga) given in Definition

2.3. Then

1 dD() .
e 2 0 = 24 Avg s arg Dliw) . 214
/(g,)utg,) D(A)  dA 0.1 27 D{iw) (2:14)

Proof. In the case of the contours {g,) and (93), the functions R and S have

the actual forms

R{w) = ReD(iw); S{w)=ImD(iw). (2.15)

16 is easy to check that R is an even function and S is an odd one, that is
R(-w) = Rw); S(-w)=-5(w).

This fact implies that

|D(iw)| = VR () + §3(w)

is an even function, and

arg D(iw) = arctan Slw)

R(w)

is an odd function. Thus,

/' 1 dD(\)
— =
(ox)uas) DA dA

Aj- g+ ) In |D(Ew)| + Ay +x) arg D(iw) = 2tA[o,fr) arg Diw) ,
where w ranges from H to 0 in [0, H]. The lemma is proved. A

Lemma 2.12. Consider the characteristic function {2.1) where the dimension

n of the corresponding RFDE (1.8) is even and {2.2) holds. Then the number of the real
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zeros of R in (2.15) is finite. If n is odd then the function S in (2.15) has real zeros of

finite number.

Proof. For the pure imaginary values A = iw, the separation of the real and

imaginary parts of the characteristic function (2.1) results in
R(w) = (~1)"w™ + o(w™); S(w)=o{w") if n=2m; (2.16a)
RB{w) =o(w"); S(w)={(-1)"w"+o0(w") fn=2m+1, {2.168)

where m is integer. These formulae can be deduced from Lemma 2.1 and they imply the

statement of the lemma. A

Remark 2.18. It is possible that the function R has no real zero at all. The

functicz S always has at least one zero since it is an odd function, i.~. § (0) =0.

Lemma 2.14. The characteristic function (2.1) is not stabi. if

D(0) < 0.

Proof. If D(0) = 0 then zero is a root of the characteristic equation and D is not
stable. If D(0) < O then there exists at least one positive real root of the characteristic
eguation since

im D(H)=-+co, HeR
H—~++oo

and D is continuous in {0,00). In this case D is not stable either. A

The following two theorems give useful formulae for the calculation of the number

of characteristic roots with positive real parts according to Theorem 2.4.

Theorem 2.15. Let the dimension n of the RFDE (1.6) be even, that is n = 2m.
If the corresponding characteristic function (2.1) has no zero on the imaginary axis, and

(2.2) holds, then the number N of its zeros with positive real parts is given by

r

N=m+ (-1 (-1)**' sgn S(ps) (2.17)
k=1
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where §(w) = Im D{iw) and p; > ... > p, > O are the real positive zeros of R(w) =
Re D(iw).

Proof. Lemma 2.12 implies that the number r of the positive seros of R is finite
(it may also be O as it was noted in Remark 2.13). The following calculation of N is a

consequence of Theorem 2.4, Lemmas 2.9 and 2.11:

3

1 1 dD(A), n 1
N g aa | By @ P T (21
. k=1 (gx
where
¢{w) = arg D(iw) = arctan %%-3—

Since the characteristic function has no pure imaginary zero, the functions R and §
have no common real zero. In the interval [0, p;], let the real zeros of § be denoted by
712 ...2 0,1 2 0, =0, where p; > 0;. Let I be the num :er of the zeros of R which
are greater than oy, that is gy > o) but pj4y < 0;. ¥ 2{w) =4w, f = Dand a = Ty,

b =0y in Lemma 2.7 then
A =A = xsgn R(p; + 0) (—1)** sgn S(ps).
[a,,aﬂg [0,01]§ gn P1 g Pk
k=I+1

In order to determine the variation of ¢ in the interval [61,+00), the same method can

be used as in the proof of Lemma 2.7. Formula (2.16a) of Lemma 2.12 explains that

: o Slw) _
wlll_l{:loo ¢(w) = wiuj}oo arctan 7o) =

Repeating the steps which lead to (2.11), for the interval |o1,00), we obtain the formula

i

Aloy,c0) = wsgn R(py +0) D (—1)** sgn S(py) .
k=1

Obviously,
A[O,m)§ = Afa,,al)f + A[trl,co)g .

22



The expression (2.164) of the function R also shows that

sgn R(p1+0) =sgn lim R(w)=(-1)"

w—+coo

since p; is the greatest zero of R. If all these results are substituted into (2.18) then

{2.17) in the statement of the theorem follows immediate_ly. VAN

Examples for the application of this theorem can be found in Theorem 2.28, 3.31
and 4.7.

Theorem 2.18. Let the dimension n of the RFDE (1.6) be odd, that is n =
2m + 1. If the corresponding characteristic function {2.1) has no zero on the imaginary

axis, and (2.2) holds, then the number N of its seros with positive real part is given by

s—1

1 &
No=mto (; ) sgn R{ow) + ( 1)* sgn R(0)) (2.19)
where R{w) = Re D(iw) and o1 > ... > o, = 0 are the non-negative real zeros of

S(w) = Im D(iw).

Proof. Lemma 2.12 and Remark 2.13 imply that s > 1 and finite. Since
the characteristic function has no pure imaginary zero, the functions R and § have no
common real zero. As in the proof of Theorem 2.15, (2.18) gives N. Now, n/2 = m+1/2
and Ajg,e)¢ Will be determined by means of Lemma 2.8. In the interval [0,0;], let the
real zeros of R be denoted by p1 2 ... > p, > 0, where o; > p;. Let [ be the number of
the zeros of S which are greater than p, , that is a;. > p, and 0743 < p,. The application

of Lemma 2.8 resulits

i
A, 0)¢ = msgn S(oy +0) Z(——l)k sgn R{o})

k=1
in exactly the same way as it was in the proof of Theorem 2.15. However, it needs special

attention to calculate the change of ¢ in the interval {0, p.|:

i
A{O'pr} S. = EA[“IJHP" g
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-1

= %wsgn S{c1 +0) (2 Z (—1)% sgn R(ox) + (~1)* sgn R(a,)) .
k=141

Lemma 2.8 has been applied again when R is an even function, i.e. R(ox) = R{—oy).

Formula {2.165) shows that

sgn S(oy +0) =sgn lim S(w) = (-1)™.

w—+0o0 -
Since
Ajo,c0)¢ = Alop,JS + Ay, 00)¢ s

the formula (2.19) in the statement of the theorem is true. A

Corollary 2.17. Let the dimension n of the RFDE {1.6) be even, i.e. n = 2m,
and let (2.2) hold. The characteristic function (2.1) is stable if and only if

S{px) #0, k=1,...,r and (2.200)
D (-1 sgnS(px) = (-1)"m (2.200)
k=1

where S{w) = Im D(iw) and p; > ... > p, > 0 are the real positive zeros of R(w) =
Re D(iw}.

Proof. Corollary 2.5 and Theorem 2.15 imply the statement. It is trivial that
condition (2.5a) of Corollary 2.5 is equivalent to (2.204). Condition (2.55) can be given
by formula (2.17) in Theorem 2.15 when the number of the zeros of the characteristic

function (2.1} with positive real parts is zero, i.e. N =0. A

Corollary 2.18. Let the dimension n of the RFDE (1.6} be 0odd, i.e. n = 2m+1,
and {2.2) hold. The characteristic function (2.1) is stable if and only if

R{ox) #0, k=1,...,s and (2.214a)
i(wl)"c sgn R{og) + -;—((“1)" sgn R(0) + (-1)™) + (-1)"m =0 (2.218)
k=1
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where R(w) = Re D(iw) and oy > ... > o, = 0 are the non-negative real seros of

S{w) = Im D{iw).

Proof. This is a consequence of Corollary 2.5 and formula (2.19) of Theorem
2.16 when N = 0. A |

With the help of Lemma 2.14, formula (2.215) can be simplified, since
'D(0) = R(0) > 0
is a necessary condition of stability and in this case

sgn R(0) = +1.

Theorem 1.6 means that the stability of the characteristic function and the expo-
nential stability of Lhe trivial solution of the linear autonomous RFDE (1.6) are equivalent
if condition (1.10) holds. However, this is identical to condition (2.2) for the character-
istic function (2.1). If it holds, the necessary and sufficient condition of the stability of
the characteristic function can be given by means of Corollaries 2.17 and 2.18. All these

lead to the main result which is presented in the following theorem.

Theorem 2.19. Consider the n-dimensional linear autonomous RFDE
0
() = [ ldn(0)lale +0)

—

and suppose that there exists a scalar v > 0 such that

0
f e~ “Pldn(8)] < +o0, s k=1,...,n.

The characteristic function assumes the form

D(A) = det(A] - /’0 e‘wdn(ﬁ)) .

— o0
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'L-et;_pl 2...2pr20and 0y 2 ... 2 0, = 0 denote the non-negative real zeros of R

" and § respectively, where

R(w) = Re D(iw) y S(w)=InD(iw).

The trivial solﬁtion z = 0 of the RFDE is exponentially a.symptoticélly stable if

and only if
n=2m,
S(px) #0, k=1,...,r, (2.22a)
{(=1)*sgn S(px) = (—1)™m; - (2.228)
k=1
or
n=2m-+1
R{ok) #0, k=1,...,5~1, (2.23a)
R(0) >0, {2.235)
s—1
> (~1)*sgn R(ox) + = (( 1)° + (-1)™) + (-1)"m=0 (2.23¢)
k=1

where m is integer.

Proof. The stability criterion is an immediate consequence of Theorem 1.6,

Lemma 2.14, Corollaries 2.17 and 2.18. A

For simple, representative applications of this theorem, see Theorems 3.17, 3.24

or 3.28.

With the help of the sign fanction, this criterion gives a complicated system
of inequalities in 2 simple form. Similar mathematical formulation was used in the
Yesipovich-Svirskil criterion {see formula (1.14)) but in a more complicated way, and

for RDDEs only. The direct stability investigation in Theorem 2.19is a more general
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analytical criterion than the Pontyagin criterion since it works in the case of continuous
delays or discrete delays of irrational ratios as well. It is valid for the same class of
RF¥FDEs a..s_Athe geometrical criterion of Michailov, since both criteria are based on the
application of the argument principle for the characteristic fﬁnction directly. However,

as the following section will show, this analytical criterion can be extended for a large

class of NFDEzs as well.

The examples in Chapter 4 will demonstrate that the direct stability investi-
gation is very convenient in the case of holonomic scleronomic dynamical systems of
analytical mechanics, because the dimension of the corresponding RFDE is always even,
and the number m in the stability condition (2.22b) is just the degree of freedom of the

mechanical system.

2.2. Generalization to equations of neutral type

The direct stability investigation presented in Theorem 2.19 is not applicable

generally for the linear autonomous NFDE
0

5(t) = f (dny (9]t + 6) + f (dno(6)]=(¢ + 6).

— o0 —o0

It is not easy to give the “greatest” class of NFDEs where the stability criterion works
without any change in its actual form. In order to avoid extra complications in notation,

this class of NFDEs will be presented step-by-step.

First, let us consider the n-dimensional NFDE

:i:(t):/o w(B)z’(t+9)d9+/0 [dno (8)]z{t + 8) (2.24)

—o0 — oo

and suppose that there exist scalars v > 0 and X > 0 such that
lw(f)| < Ke*?, 6 & {~o0,0] (2.25q)
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and ‘

0
[ e ldno k(8)] < +o0, gk=1,...,n. (2.256)

Theorem 2.20. Suppose that conditions {2.25a-6) hold. Then the characteristic

function
]

D(A) = det (AT - A f

—_00

w(f)erds - /0 c’wdno(ﬂ.)) (2.26)

is stable if and only if condition (2.22) or (2.23) is satisfied in Theorem 2.19.

Proof. All the proofs of the lemmas and theorems in Section 2.1 have to be
repeated for (2.26). Lemma 2.1 and Theorem 2.4 hold trivially. Lemmas 2.7 and 2.8 are
independent from. the actual form of the characteristic functions. However, Lemma 2.9
is not trivial for (2.26). The variation of ¢(¢) = arg D{He*#) has to be calculatel as ¢

ranges from —x/2 to +x/2 and H — +o0. Since

D(X) = A" det (] — fo w(f)e*?ds) + o(A™),

R(¢) = Re D(He'?);  S($) = Im D(He')

and
0
lim w; () e™% <% (cos(HE sin ¢) + i sin(H0 sin $))df = 0

H—too J_ o
for cos¢ > 0 and 7,k =1,...,n, it can be shown that

+n/2

S(¢)

bm A,,)¢= lm arctan —— =n¥
H—+ca (g2) H—+oa R(¢) ip=—mf2

as it was in Lemma 2.9. Lemma 2.11 is valid for (2.26) without any change. In Lemma
2.12, the formulae (2.16} will be true again, since for n = 2m,
0

R(w) = Re D(iw) = (—1)™w™ Re det (1 - /

hand e+

w(8) (cos(wb) + isin(w&))de) + ofw"),

S(w) = Im D(iw) = (—~1)"w" Im det (I — ‘/; w(f) (cos(wh) -+-£sin(w6))d6) +o(w™),
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and the integrals tend to gero as w — +oo. Thus, R has real seros of finite number if n
is even, and in a similar way, S has real seros of finite number if n is odd. Lemma 2.14

remains true trivially. In the proof of Theorem 2.15, the only step which needs special

attention is the calculation of

R

m ¢(w)= lim arctan S{w

w—+-+o00 w400 R

|

=0,

p——

w)

but this follows from the above-mentioned forms of R and §. Thus, formulae (2.17) and
(2.19) give the number of the zeros with positive real parts in the case of the characteristic
function (2.26) as well. The stability conditions (2.22) and (2.23) in Theorem 2.19 mean

that this number has to be zero and there are no pure imaginary zeros of (2.26) either.

A

Definition 2.21. Let C be an n X n constan; matrix. The coefficient cg,
(k=1,...,n) in the polynomial

n

det(A] +C) = ) cpa™*
k=0

is called the kth scalar invariant of C. For example,

Co'—'—"l, C1=’PI'C, reay cn=detC.

Lemma 2.22. If C is an n X n constant matrix and

n

Z("‘l)kck cos(kg) >0, for all ¢ € [0, 2x) | (2.27)
k=0

then the eigenvalues of C are situated in the open unit disc of the compiex plane.

Proof. Let us consider the polynomial

P()) =det(I — AC) = i(-—l)kck/\k

k=0
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and the unit circle given by
Ag) =%, $eo,2n).
Thus,
R(¢) = Redet(I — ¢**C) = > (~1)*c, cos(kg),
k=0
S(¢) = Imdet(I — €*C) = 5 _(~1)*cy sin(k¢)
k=1

$(0) = §(2x) = 0. The function R has no real zero because of (2.27). Lemma 2.7 implies
that the change of the argument of P(c""’), as ¢ ranges from 0 to 2x, is zero, which means
that there is no zero of P in the unit disc. If all the zeros of P are out of the unit disc,

the zeros of the characteristic polynomial det(z] — C), (= € C) lie inside the unit circle.
A

Corollary 2.28. If C is an n X n constant matrix, condition (2.27) holds and

is a positive scalar, then all the zeros Ag, k= (1,2,...} of the function d given by
d(X) = det{I — Ce™ ")
have negative -rea.l parts.
Proof. z; = ¢**", (k=1,2,...}is an eigepvalue of C. Lemma 2.22 implies that
ol = M| < 1
which means that Re Ay <0, (k=1,2,...}. A

Lemma 2.24. If C is an n X n constant matrix and

”
PR (2.28)
k=1

then the eigenvalues of C are situated in the open unit disc of the complex plane.
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Proof. The inequality (2.28) implies that condition (2.27) is satisfied. The -

statement follows from Lemma 2.22. A

Let us consider the n-dimensional NFDE

0

i(t) = Calt — 1) + [ (dno(6)]=(¢ + 0)

il > ]

where the discrete delay 7 is positive and

0 ' :
f e“”sldno,:’_k (9” < +o0, an k= 1: R L

—OoC

for some scalar v > G.
Theorem 2.25. The characteristic function
0
D)) = det(AI — e A — / cmdno((r’})

of the NFDE 2.29) is stable if
Z ]ck| <1
k=1

and condition (2.22) or (2.23) is satisfied in Theorem 2.19.

(2.29)

(2.30)

Proof. As in Theorem 2.20, only the critical steps of the proofs in Section 2.1

will be checked.

In the proof of Lemma 2.9, imy .00 A(g,j¢ does not exist, where ¢(¢) =

arg D{H ¢*#). This fact gives the limitation of Michailov’s geometrical criterion for

NFDEs. To solve this problem, a special sequence {(¢7)}, (7 = 1,2,...) of contours

will be chosen:

(g{) PA= Hie{ds: HJ' = 2{—{: ¢ ranges from — % to + %;

(dz) : A =1iw, w ranges from —2-7;’-'- to 0

(g';} : A =1w, w ranges from 0 to -—-2-'5_.3:,
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where 7 =1,2,... and
3
()= J ()
. . El k=1
as in Definition 2.3. Since

n

D(A) = 2" 3 (~1)Fcre™ 4 o(a%),

the change of its argument along the contour lim,-_++m(g{) s

j—+oo (81
n
,m Ay e d”+ Lm A ere ;} (=1)%ere™.
In this expression, the first term is just nx. If the second term is zero then Lemma 2.9
is proved. This can be shown via the application of Lemma 2.7, since

+nx/2

=0
¢:-—1r/2

for all H; = (297)/7, (7 = 1,2,...) where

R{¢) = Z(—l)"cke“k’Hf €029 cos{kr H,sin ) > 1 — Z lexl > G,
k=0 k=1
i.e. R has no real zero, and

n

5(¢) =~ D (~1)*cxe ¥ Hi* ¢ sin(kr H; sin ¢) ,

=1
l.e.

§(-2)=5(+3) =0.

Lemma 2.12 can also be proved with the help of condition (2.28). If n = 2m, for example,

. then

n

R(w) = Re D(iw) = (—1)™w"™ > _(—1)¥cx cos(kwr) + o(w™},
k=0
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S{w) = Im Dfiw) = Z )*ex sin(kwr) + o(w™),

and im, — 400 R{w) = (—1)™ oo follows from (2.28). Thus, the number of the real seros

of R is finite. This is true for § in a similar way if n = 2m + 1.

The last difficult step is the calculation of imy _, 4o ¢(w) in the proof of Theorem

2.15. This limit exists if w is increased along H; = 25x/r in accordance with the definition

of (¢2):

Iim ¢(H;)= hm arctan SUHy) _ 0
J—++co R(HJ) ’

as it can be seen from the above-mentioned formulae of the functions R and S when
= 2m. In the case of Theorem 2.16, this can be repeated for the odd dimensions

n = 2m+ 1. All these lead to *he stability conditions {2.22} and {2.23) again. A

Remark 2.26. Thecrem 1.9 and Corollary 2.23 show that the characieristic
function (2.30) does not have a sequence of zeros which tends to the imaginary axis if
condition {2.28} holds. In this case, Theorem 1.8 implies the exponential asymptotic
stability of the trivial solution of the NFDE {2.29) when condition (2.22) or {2.23) is
satisfied, since Re Ay < —e < 0 is fulfilled for all the zeros A; of the characteristic

function {2.30). &

¥or representative applications of Theorem 2.25, see Theorems 3.10 and 3.20.

Let us consider the n-dimensional NFDE

r | [\ [0 '
£(t) = 3 Crilt — ) + f w(6)(t + 8)df + [ dno (@)=t +9),  (231)

- 00 -—00

where the functions w and ng satisfy condition (2.25) and all the ratios of the discrete
delays 7, > 0, (k = 1,...,p) are rational numbers. Cy, (k= 1,...,p} are constant n x n

matrices.
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Proposition 2.27. Consider the characteristic function

P (o} 0
D(A) =det(AI— 2 Cre ™ — [ w(8)e*?df — f e*?dno(6)) (2.32)
_ k=1 . Tee —ee

of the NFDE (2.31), where

p
Redet(I— )  Cre™™™) >0  (2.33)
k=1 ‘

for w € R. The characteristic function (2.32) is stable if condition (2.22) or {2.23) in
Theorem 2.19 is satisfied.

Proof. The proposition can be proved if the methods used in the proofs of
Theorems 2.20 and 2.25 are combined. Condition (2.28) (or (2.27)) can be substituted
by the inequality (2.33). Since the discrete delays have rational ratios, it is possible to

construct a sequence {(g7)} which can be used to calculate Im; 4o Agiyarg D. A

It may cause difficulties to check assumption (2.33), but Proposition 2.27 gives
the most general case where the application of the direct stability investigation for NFDEs

is still possible with conditions {2.22) and (2.23) in their original form.

The method can be extended even further when the stab.ility of the function
P
d(A) = det(I — )~ Cre™>™)
k=1

is required instead of (2.33). As Theorem 1.9 shows, this assumption ensures that the
number of characteristic roots with non-negative real parts is finite. However, Theorem
2.19 should be altered, since both the real and imaginary parts (R and S) of the charac-
teristic function {2.32) at A = tw may simultaneously have real zeros of infinite number.
This means that the numbers r or s of these zeros are not finite in the stability criterion.
By means of Theorem 1.9, it is still possible to define finite number of relevant zeros of
the functions R and S, but the method will in practice become too complicated and it

loses its relatively simple form.
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There is one, even theoretically, unsolved problem left. The direct stability
investigation cannot be used for the general NFDE (1.8) when 5, has discontinuities at
r, and 73, and 71/7 18 irrational. In this case, the contour D{(A)|xe() seems to behavé
“chaotically” as H — +oo in the Bromwich contour (g}, so we cannot calculate the limit
of the va.riaiion of the argument of D along (g). However, we think that this is only

. a technical problem. Nevertheless, there are a]so. open questions a’bout the connection
of the stability of the characteristic function and the asymptotic stability of the linear
NFDE i these general cases. '

2.3. Necessary conditions

By means of the theorems of the previous sections, some simple necessary con-

ditions of stability can be constructed for charac:eristic functions.

Theorem 2.28. Consider the characteristic function
0
D()) = det(/\I-—/ *dn(6))
of the RFDE (1.6) where the function n satisfies assumption (2.2). The number of its

zeros with positive real parts is odd if

det(e lim _9(8) - n{0)) <o0.. (2.34)

Proof. Condition (2.2) implies that lmy_, _o, n{f) exists and it is finite. Let

the dimension n of the RFDE be even first, i.e. n = 2m. Condition {2.34) shows that

R(0) = Re D(10) = det (0] — /0 e%dn(8)) <o,

while

w— oo
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comes from the expression {2.16a} of R. Let us apply Theorem 2.15. If m is odd then the
number r of the positive zeros of R is even, and if m is even then r is odd. This means
that m+r is always odd if (2.34) holds. As (2.17) shows in Theorem 2;15, the number of

the gzeros of the characteristic function in the positive half of the complex plane is given

by

r

m+ (—1)™ Z:(—I)"'{Ll sgn S(px). |

k=1
This is a.lways ‘odd, since the number (m + r) of its terms is odd and the terms are just
L or —1. The proof of the theorem is similar when the dimension n = 2m + 1. In this

_cage, Tkeorem *2.16 has to be used when sgn R(0) = ~1 in formula (2.19). A

Reriark 2.29. When n in the characteristic function has a finite support, i.e.

nih) = constat for 0 € (~o0, =k}, h > 0 then condition (2.34} has the simple form

det(n(—h) - n{0}} < 0.

C'c;rbi'iary 2.30. Consider the RFDE

5(t) = / (dn(8)](t + ¢) (2.35)

—_ 0

W sre'y; satishes the usual condition (2.2). Its trivial solution is not asymptotically stable

det(e lim 7(8) - n(0)) < 0. (2.36)

Proof. The statement is a consequence of Theorem 1.6 and Lemma 2.14. If the
detararindat in question is strictly negative, the characteristic function has geros of odd
numbsr, Le. i has at least 1 zero, in the right half of the complex plane, as this follows

from Th@wﬁm 2.28. A

assirk 2.31. Theorem 2.28 and Corollary 2.30 can be proved in the same
, fo-rr:g_"i?oz‘ the. glaracteristic function (2.32) of the NFDE (2.31). A
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The following necessary conditions of stability are based on Tbeorem 2.19.

Theorem 2.32. Consider the n-dlmensxonal RFDE {2. 35) where n satisfies .

(2.2). The trivial solution of the RFDE is unstable if any of the followmg conditions is

true:
s <m; | IR - (2.37a)
n=2m and r<m; . (2.37b)
n=2m+1 and r<m-—1. , (2.37¢)

m is integer, r and s are the numbers of the non-negative real zeros of R and S respectively

as in Theorem 2.19,

1’roof. Let us consider, first, the case when the dimension oi' the RFDE is even,

ie. n=2m. If r < m then (2.22b) in Theorem 2.19 is not fulfilled siuce

IZ sgnSpk) <r<m

on the left-hand side in (2.22b), and the absolute value of the right-hand side is just m.
As formula (2.17) in Theorem 2.15 shows, the characteristic function has at least m — r

zeros with positive real parts, so the trivial solution is unstable and (2.37b) is proved.

If s < m then {2.22b) is not fulfilled again since

li(—l)"ssns(ﬂk)l

izz 1)ksgn5'pk| Zl=s<m
J=1 pr€l;

where I; = [0;,0;-1), (7 = 1,2,...,8), 0g = +o0 and Theorems 2.19 and 2.15 imply
instability. The proof is similar for the case n = 2m+ 1. f s < mor r < m — 1 then

(2.23¢) is not fulfilled in Theorem 2.19. A
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Theorem 2.32 is very useful in applications to prove instability since it is often
very simple to show that the number of the zeros of either R(w) = Re D(iw) or §{w) =

Im D(iw) is not enough to satisfy the conditions of stability.

Remark 2.88. Theorem 2.32 is true for the NFDE (2.31) as well. A

2.4. Construction of sufficient conditions

In this section, the sufficient conditions will be constructed by means of poly-
nomiaE only, instead of the investigation of the functions R and S originating from the
transcendental characteristic function D. In order to understand the:e sufficient criteria
of stability well, it may be useful to recall how the direct stability investigation works in

the case of characteristic polynomials of ordinary differential equationas.

Example 2.34. Let us investigate the stability of the polynomial

)\2+G1A+ag.

In Theorem 2.19, we have n =2, m =1 and
R{w) = —w® + a3, S(w)=aw.

The stability condition (2.225) has the form

r

Z(—-l)k sgn S(px) = —1

k=1

which is satisfied if and only if R has a zero py = /a2, ie. azg > 0 and S{p;) > 0, ie.
ayp > 0. A

This elementary result 18 well known from the Routh-Hurwitz criterion.
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Example 2.35. Let us consider the polynomial
)\3 4 Gl»\2 +02A -+ as .

When Theorem 2.19 is used to investigate the stability of ‘this polynomial then n = 3,

m =1 and

R(w) = ~a10% + a3, S{w) = —w® + agw.

The condition (2.235) gives

R(O) =az > 0.
In order to satisfy condition (2.23¢) as well, S has to have the zeros
oy =+/a; and o2 =0,

thus, ag > 0, s = 2 and (2.!3¢) has the form
1
—sgn R{o;) + 5(1— 1)-1=0,

that is

R(O’l) = —a1ag +az < 0.

The following lemma is also well known in the literature since the Routh-Hurwitz

criterion mmplies it.
Lemma 2.36. The polynomial
PO =3 ad™*, (a0 =1)
k=0

is stable if and only if the polynomials R{w) = Re P{iw) and S{w) = Im P(iw) have real

simple zeros of maximum number, which are alternating, R(0) > 0 and S’(0) > 0.
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Proof. If n= 2m then the condltxons of the theorem result in the satmfactlon

- of {2 22b) in Theorem 2.19, that is

Z )* sgn S(px) = (~1)™"m.
k=1

Conversely, if either r < m (see Theorem 2.32) or R(0) < O (see Theorem 2.28) or

5'(0) £ 0 (i.e. S{pm) < 0) or the zeros of R and S are not alternating, this equation is
not satisfied. The proof is similar if n = 2m+ 1. A | |

Now, let us examine the transcendental characteristic functions again.

Theorem 2.87. Consider the RFDE (2.35) where 75 satisfies (2.2). Suppose
that there exist the polynomials Rt, R~, §* and §~ such that

£ (@) < R(w) = Re Dliw) < B* (), (2.380)

57 (w) £ S(w) = Im Dftw) < ST (w), | (2.38b)

for w € [0,+0c0), where D is the corresponding characteristic function. Suppose that
Rt and R~ have the same numBer of real positive zeros. These zeros are denoted
by o7 > ... > p; > 0and p; 2 ... 2 p, > 0 and they determine the intervals
In; = [min(p;, o), max{p; , o}, (I = 1,...,p). In exactly the same way, the zeros of
S* and S~ define the intervals Is;, {7 = 1,...,q). Furthermore, let all these intervals
be disjoint and let us choose the representative real numbers p) € Ip,, (! = 1,...,p)
and o) € Is;, ( = 1,...,q9 — 1). If either (2.22) or (2.23) in Theorem 2.19 is satisfied
by these numbers then the trivial solution of the RFDE is exponentially asymptotically

stable.

Proof. For the non-negative zeros of R and S, it is true that

D
pkEUIRl: k::]-)'--:r;
=1
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q
akEUISj: 7=1...,q
=1

as follows from (2.38). Moreover, the number of the seros of R or 5 in any of the intervals
Ig; or Is; is odd. The intervals are disjoint which implies that

S (~1*sgnS(pn) = (~1) sgn S(R), 1=1,...,p;

pr€lp;

> (-D*sgnR(oy) = (1) sgnR(D), j=1,...,q.

or€lgy

This means that the conditions {2.225) and (2.23¢) can be rewritien as

> (1) sgn S(60) = (—1)™m;

q—1

D (-1 sgn R(o) + 5 ((-1)* + (~1)™) + (~1)"m = 0,

Jj=1
and Theorem 2.19 implies the stabiiity. A

Corollary 2.38. Consider the n-dimensional RFDE (2.35) where 7 satisfies
(2.2). Suppose that the degrees of the polynomials R*t, R~ and S*, §— in (2.38) are
exactly n and n— 1 respectively if n is even, and they are exactly n—1and n respectively
if n is odd. The trivial solution of the RFDE is exponentially asymptotically stable if
R*, R~ and S, S~ have real zeros of maximum number, the intervals, determined by
them as in Theorem 2.37, are disjoint and alternating, R7(0) > 0 and S~ (w) > O for

w € Ipm (m = int(n/2)).

Proof. This sufficient condition of stability is a consequence of Lemma 2.36 and

Theorem ¥.37. /A

Remark 2.39. It is often easy to construct polynomials R*, R~ and S*t, 8 in

order to apply Corollary 2.38. As it has been shown in Lemma 2.1, the functions ay (A),

(k =1,...,n} in the characteristic function
D) =} (~1)*a(a)a~*
k=0
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are bounded if Re A > —v (v > 0). Thus, there exist positive scalars Ax, (k= 1,...,n)

such that
lar(iw)] < 4e, wE€[0,400), k=1,...,n.

In this way Re D{iw} and Im D(iw) can be estimated by polynomials based on the coef-
ficients Ax. A

Remark 2.40. If the exact form of the above-mentioned ax{A) is known, then
much better estimations can be made. Usually, ax(iw) contains trigonometrical functions.

If these are estimated by means of the inequalities
|cosyl <1, |siny{<1

ther. we may get sufficient conditions of the stability which are iidependent from the
length h of the delay since h (or the discrete delays r;) appear on'y in the argument of
the t:igonometrical functions and they disappear from the formulae after the application
of these estimations. These criteria are similar to those of Tzypkin {62]. If, for example,

the estimation

|siny] <y, ye][0,+0)

is used then the length h of the delay does appear in the stability condition, which usually

gives a critical maximum value of the length of the delay. A

For examples, see Theorems 3.22, 3.23, 4.1 or Corollaries 4.3, 4.5, 4,19.

2.5. The basis of non-linear investigations

In the stability investigation of the trivial solutions of non-linear FDEs, the fun-
damental problem is to give the conditions when the asymptotic stability of a trivial

solution follows from the asymptotic stability of the sero solution of the corresponding
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linear system of first approximation. This problem has been solved by the theory of
stability by first approximation in a similar way as in the case of ordinary differential
equations. We cite an early theorem of Halanay (see {23], -Tﬁwrem 4.8) here for au-
tonomous RFDEs with bounded delay, i.e. we consider finite h in the definition of space

B in Section 1.1.

Theorem 2.41. Consider the RFDE
Z(t} = L(It) + f(It) (239)

with bounded delay, where the functional L : B — RP® is linear and continuocus, and the
functional f : B — R" is continuous with the property that |f(z:)| < x||z¢]|, » being
sufficiently small for |[z:}| < K. If the trivial solution of the first approximation linear

system

is asymptotically stable, then the trivial solution of the system (2.39) is likewise asymp-

totically stable.

Proof. See in [23]. A

There are, of course, a lot of further, more general results in the literature about
the connection of the non-linear and the corresponding first-approximation linear FDEs.
We mention here the publication [46] of Ruiz-Claeyssen for finite delay equations, the
first chapter of Cushing’s book [11] for unbounded delays, and the references in Section
5.4 of the book [35] of Kolmanovskii and Nosov.

When a system is called oscillatory, it usually means that the corresponding
characteristic function at one of its equilibria has a pair of relevant complex conjugate
zeros close to the imaginary axis. The stabilify of the equilibrium is determined by these
relevant zeros. If the parameters of the system are varied, these relevant characteristic

roots may cross the imaginary axis, and the equilibrium will lose or get back its stability.
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In the meantime, a periodic orbit can bifurcate from the equilibrium. This process is

referred to as Hopf bifurcation of the non-linear system.

Formally, the Hopf Bifurcation Theorem for the infinite dimensional problem of
RFDZEs seems to be a straightforward generalization of its finite dimensional version for
ordinary differential equations. But the proof of the theorem needs a special technique
if the delay is not excluded from the bifurcation parameters [26]. As a matter of fact, it
is usually the most interesting case when the length of the delay varies in the non-linear

system since this gives the major difference from the finite dimensional systems.

The Hopf Bifurcation Theorem for RFDEs with delay of finite length is presented
in (25] and, in a more general form, in [26]. Stech {51] gives a theorem for RFDEs with
unbounded delays which involves a method t.» letermine the senses of generic Hopf bifur-
cations as well as those of degenerate ones cf co-dimension 1 (see also the classification
of degenerate Hopf bifurcations in [21]). The book of Hassard et al. [27] also presents
an efficient algorithm to organize the necessary calculations. This algorithm involves the

ready-made formulae published in [1] for the simplest two-dimensional case.

The main point of the Hopf Bifurcation Theorem is to check that a pair of
simple complex conjugate zeros of the characteristic function cross the imaginary axis
with non-zero velocity as the bifurcation parameter ranges, while all the other zeros of the
characteristic function remain in the left half of the complex plane. The D-subdivision
method serves those critical parameters where the characteristic roots are pure imaginary
numbers. But as it is noted in [26], one of the main dificulties always consists of analysing
the characteristic equation, namely proving that all the characteristic roots except the
critical ones have negative reai parts. This is the only step of the long algorithm of the
Hopf bifurcation calculation which needs special investigation in any example. Theorems

2.15, 2.16 and 2.19 support this work, as it will be shown in the examples of Chapter 4.

44



3. Stability Charts

The so-called stability charts are constructed in the plane of two parameters
of a dynamical system. A chart gives those regions in the parameter plane where the
equilibrium of a system is asymptotically stable. These domains can be determined by
means of Theorem 2.19. Theorems 2.15 and 2.16 will help to determine the number of
characteristic roots with positive real paris in those regions where the equilibrium iz un-
stable. This makes it easier to investigate the types of the bifurcations of the equilibrium
at the critical parameters of a nonlinear system. The stability chart provides a simple
geometrical summarization of how the system pa.ra.metérs affect stability. It causes dif-
ficulties, of course, to get a similar clear geor:trical picture when three parameters or
more are to be analysed in a system, but even in these cases we often find a way to
represent stability results geometrically. They are useful guides for engineers in design
work. Moreover, the stability charts of linear FDEs have an important comtribution in

understanding the often peculiar physical behaviour of retarded dynamical systems.

This chapter will present some basic stability charts and stability results in the
case of some mathematical examples related to simplified mechanical or biological models.

However, real mechanical and biological examples will be discussed only in Chapter 4.

3.1. Undamped systems with discrete delays

If there is no viscous damping in a holonomic, scleronomic mechanical system
of finite degree of freedom, the odd derivatives of the gemeral coordinates usually do

not appear in the equations of motion. For example, the linear, conservative oscillatory
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system of m degrees of freedom is described by
¢+ Kq=0

where ¢ € R™ is the vector of general coordinates and K is the product of the inverse of
the genéral mass matrix and the stiffness matrix. The corresponding characteristic poly-
no.mial does not contain any odd power of A. In the case of anholonomic systems without
viscous damping, it is possible that only odd derivatives of the general coordinates ap-
pear in the equations of motion, and the characteristic polynomial does liot involve the
even powers of A. In this section, these undamped systems subjected to retarded forces
are investigated. The characteristic functions analysed here do not contain every second

power of A in their polynomial parts.

Let us consider, first, the scalar RFDE of order 2m when there is one discrete
delay in the system. It has the actual form
m .
d%z(t
E ag_,-—-*f-(—)- = bz(t — 1) (3.1)

de2s
7=0

where z € R, m > 0 and ag,, = 1. The delay is 1, which does not mean the loss of
generality; with the help of a linear transformation with respect to the time ¢, the single

discrete delay can always be transformed into the unity. The following theorem gives the

stability regions of (3.1) in the parameter space (ag,as,..., Gam_2, D).

Theorem 38.1. The trivial solution of the RDDE (3.1) is exponentially asymp-
totically stable if and only if

{i) m is even and there exist integers 0 < k; < kp < k3 << ... < ke < kp,
such that either

>0,
b < (~1Y ag;(2kn_ %)%, (3.2a)
e |
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m

b< =Y (~1) ag;{(2ka—1 + 1)m)%, (3.28)

j=0
b< — Z(—l)’.azj((ka - 1)7)%, (3.2¢)

7=0
b <> (—1) ags(2knum)?, ' (3.2d)
7=0
foralll=1,...,m/2 or
b <0,

b>— i(“ 1) ag;((2kai-1 + 1)7)%,

=0

m

Z (1) az;((2kai--s + 2)7)%,

m

b> Y (—1)ag;(2kur)¥,
=0
b> =3 (1Y ag;((2ka + D)m)¥,
=0

foralll=1,...,m/2 or

(i} m is odd and there exist integers 0 < ky < k2 < ka << ... < kot L ke
such that either

b >0,

b < Z(—l)"aq,'(?‘bzhﬂ”)zf,

§=0

b i(—l)" az;((2kan—1 + 1)7)%,

§=0

b< — Z ag_, 2k21 - 1)1!')23.,

b < Z 2’(}21‘#)2"
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for a.llh=1,...,-'—"—g—-l- and I=1,...,25L or
b <0,

b> = 3 (1Y ags((Zkan-1 + 1)),

=0

b> Z ) az;((2kan- + 2)m)%7,

m

b> ) (—1) az;(2kun)¥,

=0
m
Z ) az;((2k + 1)),

for all h = 1,.. ,ﬂ-*g:landz=1,...,-m7-1-.

Proof. Only the formulae (3.2a-d) will be proved here. The proofs oi the other
inequalities are similar. Theorem 2.19 can be applied since the RDDE (3.1) satisfies

condition {2.2) (see Remark 2.2). When m is even, that is the order of the scalar RDDE

is n=2m=4,8,..., the actual form of the stability condition (2.22b) is as follows

r

> (~1)* sgn S(px) = m, (3.3)

k=1

where the characteristic function of (3.1) is given by

D(A) =) a2 — he™

i=0

and
R(w) = Re D(iw) = Z(—l)’-agjwzj —bcosw,
S{w) =Im D(iw) = bsinw.

If 5 > O then S is positive in the intervals (2px,(2p + 1)x) and it is negative in the

intervals ({2p + 1), (2p + 2)x), (p = 0,1,...}). This means that S is positive in the
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intervals I;” = (2ka—17, (2kar—; + 1)7) and it is negative in I = ((2kz — 1)7, 2kyx),
(I =1,...,m/2). The actual form of R shows that (3.2a-d) are equivalent to

R(2k2,_1n-) > 0, R((2k21_1 + 1)7!') < 0,

R((2ky — 1)}x) <0, R(2kgynr) >0
foralll =1,...,m/2. This means that R has geros of odd number in any of the intervals
If or I; . In addition, R has more zeros of odd subscripts in I, and it has more zeros
of even subscripts in If . This fact, and

im R(w)=+oo

w—+ oo

imply that

Z (”1)k3835(Pk) = Z (-1)*sgn S(px) = 1.

prEI] pLEI]

Since the maximum value of [ is m/2, the number of the intervals ;' and I is just m,

and
m/f2
Z( Z ("I)k sgn S(px) + Z (—-l)k sgnS(pk)) =m.
=1 PkE[;*- Pkejr

Thus, the inequalities {3.2a-d) imply the satisfaction of the stability condition {3.3}.
However, (3.2a-d} are necessary conditions as well. If there do not exist at least m
intervals like 1?' and I, where R changes its sign, then the sum on the left-hand side of
(3.3) will be less than m. If there are m intervals I,+ and I;”, but they are not alternating
as is described by the subscripts ki, ...,k , ther the sum (—1)* sgn S{px) will give —1

in one of them, and (3.3) is not satisfied again. The maximum number of the extremums

of the polynomial

m

S (= 1)7agw?

7=0
is mn in [0, 00). These extremums separate the intervals where the polynomial part of R

is monotonous. The maximum number of these intervals is aiso m. This explains that R
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cannot have zeros of odd number in any other interval except in the alternating I + and
ID (1= 1,. ..ym/2) if (3.3) is satisfied. Thus, (3.2a-d) are the necessary and sufficient
conditions of exponential stability in the case of even m and b > 0. If b < O then S has

opposite sign. This gives an explanation to the further inequalities in the statement (1).

The proof is similar if m is odd. A

The stability conditions are linear inequalities for the parameters ag, ag, ...,

az2m—z and b of the RDDE (3.1). They are linear because the function S is very simple,

and its zeros (px) can be calculated explicitly.

The following theorem investigates the scalar RDDE

d21+ (¢
Z 2J+1W)‘ +oz(t—-1)=0 (3.4)
=0

where m > 0. It contains only the odd derivatives of the scalar z. The coeffic ent G2m+1

1s assumed to be 1.

Theorem 8.2. The trivial solution of the RDDE (3.4) is exponentially asymp-
totically stable if and only if

and either

(i) m is even and there exist integers 0 < k; < ky < ks << ... < kpo1 < kyp

such that
b < Z( 1 ag +1(2k2( 17T+ — )2J+1 (3.60.)
J 2 H
F=0

= 2J+1

b< = (1) agp1((2kat—y + U)r + = ) (3.65)
j=0

b < — Z(— 023+1( 2k21 — 1)7&' + 2)23+1 i {3.66)
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m

b < Z( 1) GQJ+1(2IC2(1I'+ 2)2J+1, (36d}

=0
foralli=1,...,m/2;0r

(1) m is odd and there exist integers 0 < ky < ky < ks << ... < kyey < kypy

such that
b < Z Y azs+1 Zkzh 17+ 2)2”1,.
b < - Z( 1) 021+1((5k2h 1 + 1)7‘. + 2)23+1 ’
=0
b<— Z (12:..’.1 2}52[ — 1)ﬂ'+ _g_)?j+l ’
b < Z(“' a21+1(2k2[ T 4 2)23+1 ’
forallh=1,..., 2 and 1=1,..., 251

Proof. The characteristic function of (3.4) has the form

2) =) agp1AF T b
st

and the functions & and S are as follows

R{w) = Re D(iw) = bcosw,

S(w) =ImD(iw) = > (-1} ag;110¥*! —bsinw.
7=0

Condition (2.235) of Theorem 2.19 means that
R(0)=b>0

which is equivalent to (3.5a). If m is even, that is the order of the RDDE (3.4) is
n=2m-+ 1= 1,59,... then the stability condition (2.23¢) in Theorem 2.19 has the

actual form
s—1

" (~1)* sgn R(ox) + —;-((—1)* +1) +m=0. (3.7

k=1
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The inequalities (3.6a-d) are equivalent to
x T
S(Zkg;._lﬂ'-%- E) >0, S((2k21_1+1)ﬂ’+ —2') <0,

S((2ky — 1) + 32'-) <0, S(2kyr+ %) >0;

(I=1,...,m/2). Since R is positive in the intervals ;" = ((Zkn—1)x+x/2, 2Zkun+x/2)

and it is negative in I;” = (2kai—17+ /2, (2kai—1 + 1)x + x/2), these inequalities result

S (~1FsgnR(ox) = ) (—1)*sgn R{ow) ='_1

o€l ox€l
Hence,
m./2
Z( Z )* sgn R(ox) + Z (~1)F sgn R(ok)) = —m.
=1 dk€f+ agGI:

However, form1 ae (3.6a-d) do not exclude the existence of further zeros o, o7 S outside
the intervals I and I, (! = 1,...,m/2). If inequality (3.5b) holds then &{x/2) > 0.

This means that S may have one more zero at the most, and it is in (0,7 /2). Thus,

i(—l)k sgn R(ok)

m/2
= Z (—1)* sgn R(ox) + Z( Z (—1)* sgn R(o%) + Z (—1)* sgn R(ak)) .
or€(0,x/2) I=1 s.ernt ox€I

If there is a zero o,—; € (0,7/2)} then s is even and

Z (—1)“t sgn R{ox) = (_1)‘—11 = —1.

or€{0,7 /2]

The stability condition (3.7} is satisfied:
1 a
~1—-m+ 5((-1) +1)+m=0.
If there is no zero in (0, r/2) then s is odd and

Z (1) sgn R(oy) = 0.

o €(0,m[2)
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The stability condition (3.7) is satisfied again:
1 L]
0—m+ 5((—-1) +1)+m=0.

Thus, Theorem 2.19 proves that the trivial solution is exponentially stable if (3.54),

(3.5%) and (3.64-d) hold. There are no more regions of stability in the parameter space.
This can be proved analysing the polynomial part of S as it was done in the proof of

Theorem 3.1. The proof is similar when m is odd. A

In Chapter 4, Theorems 3.1 and 3.2 will often be used to solve practical problems.
Moreover, these stability results serve as a good basis for the investigation of systems
with slight damping, i.e. when the terms of every second power of X in the characteristic
function have smali coefficients relative to the others. In the case of first and second order
scalar RDDEs, Theorems 3.1 and 3.2 give some we.l known results of the literature. Let
us see these special cases, and also some further stability charts for third and fourth

order equations.

Corollary 3.3. The trivial solution of the scalar RDDE

z{t) + bz(t — 1) =0 (3.8)
is exponentially asymptotically stable if and only if
0<b< % .

Proof. This is a consequence of (3.5a) and (3.54) in Theorem 3.2 when m = 0
and a; = 1. The conditions (3.64-d) vanish. A

This result has been known for a long time in the literature [26].

Corollary 3.4. The trivial solution of the scalar RDDE

Z(t) + apz{t) = bz(t — 1) {3.9)
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i exponentially asymptotically stable if and only if there exists an integer k; > 0 such
that either

b>0, b<ag—4kin® and b< —ag+ (2k; +1)%x?
or

b<0, b>—ag+(2k+1)°s* and b> ag— (2k; +2)%#>.

Proof. This is a consequence of the conditions in paragraph (i} of Theorem 3.1

whenm=1anda; =1. A

‘év/‘rr2

Fig. 3.1. Stability chart of RDDE (3.9)

The stability chart on the plane of the parameters ap and b is presented in Fig.
3.1. By means of Theorem 2.15, we have also determined the number of the characteristic
roots with positive real parts in the actual regions of the plane {ag,}). Thus, the regions
of stability are denoted by o. They can also be found, for example, in (3,33,53]. The
number of these disjoint stability domains is infinite. The number of the characteristic
roots with positive real parts is odd if b > ag. In this case, there is at least one positive

real characteristic root, as follows from Theorem 2.28 and Corollary 2.30.
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Corollary 8.5. The trivial solution of the scalar RDDE

g;x(t) + Glgt'z(t) +bz(t—1) =0 ' (3.10)

is exponentially asymptotically stable if and only if there exists an integer k; > 0 such

that

b>0, b< al-;—— - (%)3, b < a1 (2k1x+ 12‘:) — (2kym + %)3

and b < —ay(2k %+ -32—') + (2kyx + 3?”)3. '

Proof. This is a consequence of Theorem 3.2 when m =1 and a3 = 1. A

{ b(2/7)3

20 |

2 2

0' ' . ‘ ' ] ' _ “1(2/”)2..
AN = 00 0] 1

Fig. 3.2. Stability chart of RDDE (3.10)
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The stability chart of (3.10) is shown in Fig. 3.2. The regions of stability are
denoted by o, the other numbers present the number of characteristic j‘oot_s with positive
real parts. The number of the disjoint stability regions is infinite, but they exist only in

the positive quadrant of the parameter plane (ay,b).

Corollary 3.8. The trivial solution of the scalar RDDE

é%z(t) + @%z(t) + apz(t) = bz{t — 1) (3.11)

is exponentially asymptotically stable if

0<b<ag b<-—ayg+riag—=xt

and b < ag — 47°%a, + 167*.
Proof. TLis sufficient stability condition is a result of the inequalities (5 2a-d)
in Theorem 3.1 wh-a m = 2, ag = 1 and the integers have the smallest possible value,

that is k; = 0 and k; = 1. In this case, the inequalities (3.2b) and (3.2¢) are identical.
A

| o/

5
4
Y

1
ao/#*
ety

4 3/2
3/2
b/x“

Fig. 3.3. A stability region of RDDE (3.11)

All the stability regions of {3.11) can, of course, be given by means of Theorem

3.1, although they are described by a rather complicated structure of inequalities. In the
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parameter space {ag, az,b), Fig. 3.3 shows the stability domain determined in Corollary
3.6. Fig. 3.4 shows some further regions of stability denoted by + and — in the plane

(ap,az) when b has a small positive or négative value, respectively.

| oo/

10

Fig. 3.4. Stability regions of RDDFE (3.11} for small |b|

Let us examine some simplified mechanical problems where these results can be

applied.

Fig. 3.5. A mechanical system subjected to retarded follower force

Example 3.7. The linearized equation of motion of a single degree of freedom
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mechanical system subjected to a retarded follower force (see Fig. 3.5) is as follows:
mi?G(t) + (s — Fl)q(t) = —Flg{t — ). - (3.12)

The scalar ¢ is the general coordinate, s is the torsional stiffness at the pin, m is the
mass at the énd of the light beam, [ denotes the length of the beam, and F stands for
the constant magnitude of the applied retarded force. The constant delay at the angle
of the force is r. After a linear time transformation with respect to r, the corresponding

characteristic fupction has the form
D(X) =22+ (1- )T? + fT% 2,

where the following notation has been used:

Fl [s
f_:-—, a=\f— T=ar. (3.13)

) ////I AN
R/ aTaae

Fig. 3.6. Stability chart of RDDE {3.12)

ag=(1—f)T? and b=-—fT?
are substituted into the inequalities of Corollary 3.4, we get the stability regions in
the plane of the parameters 7' and f, where T is the dimensionless delay, and [ is

58



the dimensionless load. The g = 0 position of the system in Fig. 3.5 is exponentially
asymptotically stable if and only if there exists a scalar k; > 0 such that either

T? — (2k; + 1)%x2
277

2kyx < T < (2ky + 17 and 0> f>

or

T? — (2k; +1)%x2

{2k1 +1)r < T < {2k; +2)r and 0< f< T3

These domains are shaded in Fig. 3.6. This example presents a simp.le case when
the equilibrium is not asymptotically stable if there is no delay {r = .O), but it can be

asymptotically atable if the delay appears in the system.

ST P

Fig. 3.7. Mechanical model with two degrees of freedom

The linearized equations of motion of the mechanical system shown m Fig. 3.7

has the form
3ml> ml\ (@) | (25— FL s al®)), (0 FI\(alt-7))_,
ml?2  ml? ga(t) —38 s — Fl ¢2(t) 0 Fi gii-ry/
and the corresponding characteristic function is given by

D(A) = 2X* + (7T~ 4/)T2A% + (1= 37 + f2)T* + (22 + (8 — /)T?)fT% 72,
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“where the notation {3.13) has been used again. Unfortunately, Theorem 3.1 or Corollary
3.6 cannot be applied here directly, in spite of the fact that A3 and A! do not appear in
the characteristic function. However, the same method can be used as in the proof of

Theorem 3.1, since the real, non-negative zeros of

S{w) = Im D{iw) = ~ fT?(—2w? + (3 — f)T?) sinw

are known explicitly: they are px, {p = 0,1,...) and T+/(3— f)}/2. A complicated
system of inequalities, like that of (3.2) in Theorem 3.1, serves the stability chart in Fig.
3.8. This stability chart has also been determined by means of the Pontryagin method
in [34], and by the r-decomposition method in [32]. A

e

Fig. 3.8. Stability chart of RDDE (3.14)

kf

) é
10

ON NN

DN NN

SN N N N

TSNS AN S

In mechanical examples, the feed-back force is often proportional to the delayed
values of the general velocities or accelerations. It is possible to construct general theo-
rems, like Theorems 3.1 and 3.2, when the delayed value of a derivative of z appears in

{3.1) or (3.4}, but we mention only two simple cases here.

60



Theorem 3.8. The trivial solution of the scalar RDDE

z(t) + a(_,:r,(t) = bz(t — 1) {3.15)

is exponentially asymptotically stable if and only if

b<0, ap>0 and b>‘2—ao*-£
x 2
or there exists an integer k > 0 such that either
b>0, b< 2 (4k+1)2 and b< S - + (4k+3)2
3 a1 o+ <% - - an - o
(4k+ )x ° ) (4k+3)x © 2
or
<0, b> - +(4k+3)1 and b > 2 (4K 5)=
: (4k+3)r ° 2 (4k+5)x° a3

Proof. The characteristic function has the form

D(A) = A% 4+ ag — bAe™?

¥

thus,

R{w) = Re D(iw) = —w? + ap — bwsinw ,
S(w) = ~bwcosw.

The zeros of S can be determined explicitly. In this way, it is easy to check that the
stability condition (2.22b) in Theorem 2.19 is satisfied if either

b<0, R{0)>0 and R(-;E) <0
or there i1s an integer & > 0 such that

b> 0, R((4k+1)—’25)>o and R((4k+3)-;—)<0
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or

b<0, R((4k+3)7)>0 and R((4k+5)%) <0,

These inequalities are equivalent to those of the statement of the theorem. The special
characteristic of the polynomial ~w? + ag in R explains that there are no more stability

regions. A

|

2b/x

Fig. 3.9. Stability chart of RDDE (3.15)

The number of the characteristic roots with positive real parts is shown in the

stability chart of {3.15) in Fig. 3.9. Before we give the stability regions of the NDDE
Z{t) + apz(t) = bZ(t — 1) (3.16)

in the parameter plane (ao,b), we prove a lemma which is very useful in the case of the

scalar NFDE

n

d?
Za,.w ()—6(k—nzt—r +Z[ z(0)dn, (6) (3.17)
7=0
wherez € R, 7> 0, n > 0, g, = 1, the scalar y, {{ = 0,...,n — 1) are functions of

bounded variation and they satisfy the usual condition (2.2}.
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Lemma 3.9. The characteristic function of the scalar NFDE (3.17) has seros

of infinite number in the positive half of the complex plane if

(6] > 1. (3.18)

Proof. If (3.17) is transformed into an n-dimensional system of first order
NFDEs like (2.29) then the matrix C in (2.29) has the form
0 ... 0
c={:
0 ... b
which means that the eigenvalues of C are 0 with multiplicity (n — 1), and b. If || > 1

then C has an eigenvalue outside the unit disc, and
d(A) = det{I -- Ce™ ")

has zeros of infinite number in the right half ot the complex plane. Theorem 1.9 implies

that the characteristic function of (3.17) also has geros of infinite number there. A

Because of this lemma, and since exponential stability is implied by (2.22) or
(2.23) and

n
2 lesl=1TrCl =l < 1,
k=1
these conditions of Theorem 2.25 are not only sufficient but also necessary for the expo-

nential asymptotical stability of the sero solution of the scalar NFDE (3.17) having one

discrete delay in its neutral term.

Theorem 3.10. The trivial solution of the scalar NDDE (3.16) is exponentially

asymptotically stable if and only if

ag

b<0, @ >0 and b>— -1
T
or there exists an integer k > 1 such that either
ag ag
b>0 b< m—oe— — 1 d b< ——=+1
! {2k — 1)2x2 o (2kn)Z
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or

b<0, b>—-—2"+41 and b> —oe 1,

(2kx)? (2k +1)2x2
Proof. It is easy to see that these inequalities give stability regions where |b| < 1.
Since the inequalities are equivalent to conditions (2.22), the statement of the theorem

follows from Lemma 3.9 and Theorem 2.25. A

i

-1

Fig. 3.10. Stability chart of NDDE (3.16)

The numbers of the characteristic roots with positive real parts are shown in the

stability chart of (3.16) in Fig. 3.10.

The stability charts of the second order DDEs (3.9), (3.15) and (3.16) were
correctly constructed in the papers [5,33] by means of the Pontryagin method. Similar,

simple charts are often cited as Vyshnegradskii diagrams [35].

As the references show, the low (first and second) order DDEs with a single

discrete delay have been analysed in the literature by means of several methods mentioned
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in Section 1.3, since all these methods can be applied in the case of one discrete delay. It
is more complicated to investigate DDEs with two discrete delays or more. The special
literature, of course, presents a lot of results in this line as well, but mainly for the
first order scalar RDDE only {26,27,46|, and the results are usually gained by a special
analysis of the actual characteristic functions. Let us examine such problems now, using

the direct stability investigation of the characteristic function presented in Theorem 2.19.
Theorem 3.11. The trivial solution of the scalar RDDE
E(t) + bzt — 1) +dz(t — 12} =0 (3.19)

is exponentially asymptotically stable if and only if

T

2(ry + 72) ns -—’-——-1:1;; %) '

0<b<

Proof. In order to apply Theorem 2.1,, we need the characteristic function
D(A) = X+ be™™* 4 pem 72X

and the functions
R{w) = Re D3w} = bcos(riw) + bcos(row)
_ 1 + T T — T2
= 2bcos( 5 w) cos( 5 w) ;
S(w) =Im D(tw) = w — bsin(nw) — bsin{rw)
_ _ . T1 + To T — T2
=w stm( 5 w) cos( 2 w) .

In Theorem 2.19, condition (2.23b) gives

R(0) = 25> 0. (3.20)

If the number s of the non-negative zeros of S ig even then

1
T+ T

S'(0)<0 = &> (3.21)
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and the stability condition (2.23¢) with m = 0 has the actual form

z—: }*¥ sgn R(ox) = —1.

k=1

This is equivalent to

S(==)>0 & —T— —2becos(Z2T)50, (3.22)
n+nr 1 + 7o T+ T 2

where x/(7; + 72) is the smallest positive zero of R. If the number s of the zeros of S is

odd, then
1

T1+T2

S0)<0 = b< (3.23)

which means that § has one zero only. Hence, s = 1. The stability condition (2.23¢) is

satisfied trivially:
Z *sgn R{ox) = 0.

The inequalities (3.20) and (3.22) are just equivalent to the condition in the statement of
the theorem, while {3.21) and (3.23) show that this result is independent from the actual

number s of the zeros §. A

‘ i

T2
unstable
x /{45)
1/(2b)
stable ,
L

0 1/{2b) =/(4b)
Fig. 3.11. Stability chart of RDDE (3.19)

Fig. 3.11 shows the corresponding stability chart of the RDDE {3.19) in the

plane of the delay-parameters {ry,7;}. With the help of Theorem 2.16, it is easy to prove
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that two complex conjugate characteristic roots cross the imaginary axis from the left
to the right, as ; and/or r; are increased through the limit of stability. This has been

proved in {46] as well. If b < O then there is at least one positive real characteristic root

of (3.19).

As a matter of fact, this stability chart of (3.19) can easily be constructed by
means of a previous result in Corollary 3.3 and the D-subdivision method. In this case,
those parameters have to be determined in the parameter space (r1,r2,b) where the

characteristic eéuation of (3.19) has roots with zero real parts. These are given by
Rw)=0, Sw)=0; wel0,00).

For example, when b is assumed to be a constant, they give a sequence of the so-called
D-curves in the parameter plane (r;, 72). The limit of stability is given by some of them,
and they can be chosen by means of Corollary 3.5 applied to the case r; = 75, i.e. to the

gpecial form

z(t) + 2bz(t — 1) =0

of the RDDE (3.19). Its zero solution is exponentially asymptotically stable if

x r
W< — =B =< —,
1 2 1 p) T

This point can also be found in Fig. 3.11. It determines the critical curve, the limit
of stability, since the characteristic roots are continuous functions of the parameters
in the characteristic function. However, it always needs additional work if we want to
give a correct mathematical proof, that is to prove thai there are no more regions of

stability, to investigate the structure of the D-curves and the continuous dependence of

the characteristic roots on system parameters.

The stability charts of second and higher order systems may become extremely

complicated in the presence of more discrete delays than one. The investigation of the
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RDDE

z(t) + agz(t) = bx(t — 11) + bz(t — 72) (3.24)
will represent this. Instead of the reconstruction of the complicated system of inequalities
from the stability condition (2.226) in Theorem 2.19, some simpie necessary or sufficient

conditions will be given first, and an interesting stability chart will be presented for

gpecial parameters ag and b in the parameter plane of the delays r; and 5.

Corollary 3.12. The trivial solution of (3.24) is not asymptotically stable if

ag SZb

Proof. /.emma 2.14 and Corollary 2.30 imply the statement. A

Theoren 8.18. The zero solution of {3.24) is exponentially asym ntotically
stable if

b>0, ao>2b, lTl—Tgi'(-f-'—

Va0

and

rn>3m or T >3n.

Proof. The method followed here is similar to the one in the proof of Theorem

2.37. We need the functions

D{A) = A% + ag — be ™" — be™ 2"

1)

+ —
R(w) = —w? +ap — 2bcos(r1 5 Tzw) cos(‘rl 5 Tzw) ,

S(w) = stzs'lrx(rl —; Tgw) cos(‘rl ;mw) )

If ry > 3m or 5 > 37y then

. 2n
< .
I ~nl nt+mn
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Thus, the smallest positive zero of S is x/|r; —73|. Since b > 0, the function S is positive

if

x
we (G, _I"'l — 72|) .

The inequalities ag > 2b and |r; — ] < x/,/ag are equivalent to
x
R{0) >0 and R(-—w-m—-—) <0
[r1 — 73
which means that the number r of the positive zeros px of R is odd, and these seros are

all in the interval where S is positive. Thus,

r

D (~1)*sgnS(p) = -1,

k=1
and the stability conditions (2.22) in Theorem 2.19 are satisfied. A

‘l T

T1

0 e

Fig. 3.12. Some stability regions of RDDE (3.24) for 0 < b < ag/2

The stability domains given in the statement of Theorem 3.13 are shaded in Fig.
3.12.

In Fig. 3.13, all the domains of stability are shaded in the actual quadrant of
the plane (r;, 72} when ag = 6 and b = 1. This stability chart has been constructed by

means of the D-curves
Rw)=0, S(w)=0; wel0,00)

of the D-subdivision method and with the help ~f the following
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Corollary 3.14. The sero solution of (3.24) is exponentially asymptotically
stable if ag = 6, b =1 and |

7 =0 O<nrn<— I" <n<-—x= 2r< < —=
) 0. ® or
2 ) 1 \/-6- 1 ‘/— 1

Ve

or

x x
p=n; 0<n<—F/ o *<7y < ~=.
2 =115 <R i 78
Proof. If either r = 0 or 7 = r;, the RDDE (3.24) contains one delay only,
and it can be transformed into the form of (3.9). If the actual parameters are substituted

into the inequalities of Corollary 3.4, the statement is implied directly. A

Ta

Fig. 3.13. Stability chart of RDDE (3.24) for ag =6, b ='1

{Reprinted with permission from [54], Copyright 1985 Birkhduser Verlag AG)
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3.2. Damping in low-order systems

If there is viscous damping in a };olonomic or anholonomic mechanical system of
finite degrees of freedom then all the derivatives of the general coordinates may appear
in the equations of motion. However, this viscous damping is often slight. This makes it
possible to construct stability charts based on the stability results obtained for undamped
systems. For example, the stability charts of the mechanical systems presented in the
Example 3.6 can easily be determined if there are terms of ¢(t) or ¢;(t), ¢2(t) with
small positive coefficients of damping in the equations (3.12) or (3.14) respectively. The

D-curves given by
R(w)=ReD(iw) =0, S(w)=ImDiv)=0; we€]0,00)

determine disjunct domains in the parameter plane. Since the characteristic roots are
continuous functions of the damping parameters, the domains of stability can be chosen
with the help of the stability charts of Figs. 3.6 or 3.8, where these parameters were
zero. Such stability charts are presented in [32] for the system in Fig. 3.7 with viscous
damping. Hsu also calls attention for a parameter domain where a stability region
appears at higher values of viscous dampring, independently from the basic structure of
the stability regions determined in the absence of damping. This example in [32] shows

an important limitation of the D-subdivision method.

Nevertheless, the following stability charts are not always accompanied with
theorems giving the exact necessary and sufficient conditions of stability. Its reasom
is mainly the complexity of the conditions. When all the powers of A are present in
the characteristic functions, neither the zeros of the function R nor those of § can be
calculated explicitly, as was possible in the case of undamped systems. In these cases, we
shall often refer to the D-subdivision method and the corresponding theorems of Section

3.1 only.
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Example $.15. The familiar stability chart of the scalar RDDE
z(t) + aox(t) + bz(t — 1) =0 (3.25)

in Fig. 3.14 was determined first in [28]. It contains the result of Corollary 3.3 when
ag=0. A

by

unstable
/2
1 -
stable
ag
L 4 L] 13 ¥ —Be
0 1

Fig. 3.14. Stability chart of RDDE (3.25)

Example 3.16. Figures 3.15 and 3.16 show the stability regions of the scalar
" RDDE

z(t) + a12(t) + aoz(t) = bz(t ~ 1) {3.26)

when ¢; = 1 and a; = —1 respectively. These charts are also known from {33]. The
stability regions become greater than those of Fig. 3.1 as the “damping” a, is increased
from zero. However, there are still small domains of stability when a; < 0, that is when

the system is unstable in the absence of the delay (see the shaded areas in Fig. 3.16). A

It is a well-known special case of {3.26) when ag = 0. The following statement
is proved by means of the Pontryagin method in {25]. Theorem 2.19 gives its proof in a

much simpler way.
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| b/=2 unstable
1] stable.
ag/x?
A
0
_ unstable
- Fig. 3.15. Stability chart of RDDE (3.26) whenay =1
b ox2
1 %
1 00/3'2
4 ¥ T T Ty T Y T Y Y \ | T s
0 ] 19
<)

Fig. 3.16. Stability chart of RDDE (3.26) when a; = —1
Theorem 3.17. The sero solution of the scalar RDDE
Z(t) + a1 z{t) = —z{t — 1)

i1s exponentially asymptotically stable if and only if

sin py
P1

a; >
where p; is the only real positive root of the equation

W =CosWw.

Proof. The characteristic function has the form

D(A) =X +ah+e .
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Thus,

R(w) = —w? + cosw,
S{w) =aw —sinw.

Since m = 1, and R has only one positive sero p;, the stability condition (2.22b) in

Theorem 2.19 gives |

—sgnS(p1)=—-1 <4 app;—sinp; >0.
This 18 equivalent to the statement. A

The structures of the stability charts (see e.g. [33]) of the scalar DDEs
2(t) + a12(t) + aoz(t) = 5Pt —1), p=0,1,2 (3.27)

are similar to each other. They can be deterniined for p = 1 and 2 as in Example 3.16.
There always exist stability domains for a; < 0, where the order p of the derivative of
the delayed term may be 0, 1 or 2 as well. However, these stability regions disappear

below a critical negative value of a; .
Theorem 3.18. The zero solution of the DDE (3.27) is unstable if
a; < -2,
where p = 0,1 or 2.
Proof. The proof is shown, first, for the case p = 0, when
DN =23+ a;d+ag—be™,

R{w) = —w® + a9 — beosw,

S{w) = ayw + bsinw,
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and the stability condition (2.22b) in Theorem 2.19 has the actual form

r

Y o (~1)*egn S(p) = -1.

k=1
Since
R(w) = 2w + bsinw,
and because a; < —2, the function S is always negative in those intervals where R is
decreasing, that is between a maximum and a subsequent minimum of R determined by

R'{w) = 0. R may have zeros of odd subscript in these intervals only. Thus,
' . Ls
(-0)¥* s S(paji1) =1, forall j=0,1,...,int(3),

and condition (2.22b) is not satisfied. Theorem 2.19 implies that the trivial solution is
not asymptotically stable. Theorem 2.15 shows that 'here is at least one characteristic

root with positive real parts in this case, so the triviz! solution is unstable.

The statement can also be proved if we try to find the critical values of a; when

the D-curves

R(w)=0, S(w)=0; wel0,00)
have “peaks”. This calculation will be shown in the case of p = 1 in (3.27). Now,
R(w) = —w? + ap — bwsinw,
S(w) = 61w — bwcosw
and the D-curves in the plane of the parameters ap and b are given by

ao=w2+a1wtanw,

R ; w € [0,00).

cosw

The stability regions disappear when

dao
— = 2w tanw + a
dw ta lcos?w

=0
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and

db sin w 6
—_a = {}.
dw Y os2w
These equations can easily be solved for w and a; . They give the critical value a; = —2.

The zero solution is stable (but not asymptotically stéblé) if
a1 =-2, a=73x", b=(-1)*2; j=12....

The result is similar when p = 2, i.e. when {3.27) s a NDDE. However, the trivial

solution is unstable in this case for all the parameters ag and b if a; = —2. A

The analysis of the D-curves in the plane (ap,}) shows that the greater the
damping is, the greater the stability regions are when (3.27) is a RDDE, i.e. when p =0
or 1. This leads to the follv/ing

Proposition 8.19 If the zero solution of the RDDE (3.27) (p = 0,1) is ex-
ponentially asymptotically stable for the parameters {ag,b,a}) then it is exponentially

asymptotically stable for (ag,b,a;} as well, where a; > a}. A
This statement is not valid for the NDDE (3.27) {p = 2} as is shown below.

Theorem 3.20. The trivial solution of the NDDE

3(0) + a1lt) + Talt) = —23{e - 1)

iz exponentially asymptotically stable if and only if

3

——8-—<a1 <aj or 0<gy
where
> 3 .
al = —7pzsinpz

and po s the only solution of the equation

1‘.2

3
w?(1+ Zcosw) =7
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in the interval (x/2, 7).

Proof. As was shown in Lemma 3.9, Theorem 2.25 can be applied as a necessary
and sufficient stability criterion since the absolute value of the coefficient of the neutral

term is less than 1. The positive zeros of

R(w) = —w? + i - Ewg cosw
4 4
are
pr =1, ng(g',K) and p3=1;—.
Since

- 3
S(w) =ajw + szsinw,

the stability condition (2.225)

r

S (-1*sgn S(pn) = 1
k=1
yields

‘ 3 ) 3
—s8gnay + sgn(cu + Zpg s pg) - sgn(al + ?) = —1.

This 1s just equivalent to the inequalities in the statement of the theorem. A

Let us examine, now, the modification of the stability chart in Fig. 3.2 when the

“damping” appears in the third order equation (3.10).

I s2/x)°

unstable

stable

J a1 (2/7)?

10 7

¥ L4 Y T T A——

0 10

Fig. 3.17. Stability chart of RDDE (3.28) when ag = 5

77



§ b(2/x)3

unstable
] stable
10
[\k 6 (2/1)?
0 10

Fig. 3.18. Stability chart of RDDE {3.28) when a¢ = ~17

Example 8.21. The stability charts - the scalar RDDE

4

() + ax—z(t) +agaft) +bz(t — 1) =0 (3.28)

are shown in Figs. 3.17 and 3.18 when ap = 5 and ag = —17, respectively. They have

been based on Corollary 3.5 and on the application of the D-subdivision method. A

Simple sufficient stability conditions can be given for the scalar second order

RDDE

z(t) + a1z{t) + apz(t) = Zb z(t — 1;) (3.29)

As the following theorems show, it 13 easy to estimate a minimum value of the “damping”

a; or maximum values of the delays r;, (7 = 1,..., p) where the zero solution is still stable.

Theorem 3.22. The trivial solution of (3.29) is exponentially asymptotically
stable for all the values of the delays, i.e. for r; €[0,00), (7 =1,...,p) If

z p—~1 ]bfl
ao>Z|b,-| and a; > =

,
=1 \/“0 - ?:1 1851
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Proof. In order to apply Theorem 2.37 (or its special form given in Corollary

2.38), we shall give some estimations of the functions R and § calculated from the

characteristic function of {3.29):

P
D) =X +aA+a— Y bje™ ",
i=1

P
R(w) = ~w®+ ag — Z bj cos(r;w),

=1

p
S(w) = aw + ) _ bysin(rw).
=1
It is easy to see that

R (w) £ R{w) < R"'(w),. we€ (,+o0},

p
R {w) = —w? + ag - z fbst,
=1

' P
RHw) = ~w? + oo + Z 1b;],
i=1
and

57 (w) € S(w) £ ST (w), we]0,+oo),

§7(w) = ayw - E 1851,

=1
p
STHw) =aw+ > [b;].
=1

Since ag > E?=1 |b;], all the positive zeros of R are in the interval

Ins = (/a0 — X0, b1, yfa0 + 22, sl 1,

and the non-negative zeros of S are in the interval

1 P
Isy =0, ;;Zlbjl]-

=1
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These intervals are disjoint since

;?:1 lel

18 ' p
a; > = —Zlb,-|< _ao—Z]b,-I .
\/ao = E§=1 ijl : %1 J=1 J=1

If a representative number p? is chosen from Ig; , where S is always pogitive, the condition

(2.22b) is satisfied:

1

S (-1)*sgm () = -1,

k=1
and Theorem 2.37 implies the statement of the theorem. A

As a matter of fact, the estimations R and ST have had no role in the proof,

and Theorem 2.19 can also be applied directly.

Theorem 8.28. The trivial solution of (3.29) is exponentially asymptotically
stable if

P
ag > Zb,- and a; > Zlbjlfj.
j=1

Proof. Let us estimate the function S in the following way:

$(w) = I D(iw) > S~ (w) = (a1 — 3 Bslmi)w, w € (0,00).

=1
Since ay > zf;: 1 16577, the function S is positive in (0, co) . Thus, the stability condition
(2.223) is satisfied independently from the polynomial estimation of R {which can be done
as in the proof of Theorem 3.22 anyway). Theorem 2.37 implies the statement. A

} 72

al/bz A

stable "

0 a1/b1
Fig. 3.19. A stability region of RDDE (3.29), p = 2, ay,by,b2 > 0, ap > by + b
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3.3. Systems with finite continuous delay

In this section, the second order scalar RFDE

Z(t) + aoz(t) = b [_01 w(8)z(t + 6)db (3.30) ._

18 investigated. The delay is continuous, its length A is finite, and it can be assumed to

be 1 without the loss of generality. We suppose th=t the weight functice w satisfies

l/: w(a)dal =1. (3.31)

The parameter

€= / ’ fw(6)d6 | (3.32)

-1
will also be us.:] to characterize the function w. Let us see, firat, a simple iutroductory

result.

Theorem 3.24. Consider the weight function
w()=1, 8e[-1,0] (3.33)

in (3.30). The z = 0 solution of the RFDE (3.30) is exponentially asymptotically stable
if and only if

0<b<ay and ag# 4p°x°
for all the integers p=1,2,....
Proof. According to Remark 2.2, the RFDE with delay of finite length satisfies

condition (2.2}, and Theorem 2.19 can be applied again. The characteristic function has

the form

A ag— =g A0
D(A)z{ b ’ Aio‘
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Thus, the functions R and S are as follows:

—wd tap—bHBR 2L Q
R ={ oy ot e,

bl—coaw, w 0
S(w)={0, ’ wio '

_ The condition aop > b implies R(0) > 0. This means that R has positive seros of odd
number. The function S is positive in (0,00) f 6 > Gand w # 2pr for all p = 1,2,... .
In this way,

r

Z(—l)k sgn S(px) = -1

k=1
and the stability condition (2.22}) is satisfied when m = L. The condition ag # 4p?x? is

equivalent to (2.224) in Theorem 2.19. If either R(0) < 0 or b < 0, it is easy to see that
(2.225) is not sztisfied. A

Rema:k 8.25. In the RFDE (3.30) with {3.33), let us increase the parameter
ag through 4«2 while b is fixed somewhere in (0, ag). When ao is just 4x2, there are two
pure imaginary characteristic roots and all the others have negative real parts. However,
the relevant pair of roots do not cross the imaginary axis as a; is increased farther.
’They turn back to the left, after touching the imaginary axis. The conditions of the

Hopf Bifurcation Theorem are not satisfied in this case. A

The following theorems will give the stability charts of the RFDE (3.30) with

the weight function
w(f) = %sin(xﬁ) + x{1 = 2¢)sin(226), 6 €[~1,0] (3.34)

which satisfies (3.31) and (3.32) as well. To prepare the proofs of the theorems below,
and to avoid long and tedious calculations, the following expressions present the formulae
of the characteristic function and its real and imaginary part when A = iw:

- -a X .
A? 4 ag + ba? (ﬂlﬁiﬁ:j +2(1— 26):\;&3‘—1"_—;) , AF tim +i2n

—x% +ap + (1 —2¢)b Fi5h, A= tin -
—4n% + ag — $hFi5(1 —2€)b, A= +i2x

D) =
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—w? +ag + br? (ALY 4 2(1 - 245228}, w it w2

R(w) =4 —n2 +ap+ $(1-2¢}b, | w=x ,
—41rz+ao—-:1,;b, . w=2x
B bkzsinw(—z—(;;};;rg+2;lf—_7§;), w#x, 27
' S(“’) =1 -%b, _ w=7x . (3.35)
' —Z{1-2¢)b, k w=2x

Theéirem 3.26. The z = 0 solution of the RFDE (3.30) with the weight function
w(8) = 2 sin(xd)
{i.e. when ex 1/2 in (3.34)) is exponentially asymptotically stable if and on'ly. if
b<0, b>—-a; and b> 3{ap —4x?)
or there exists an integer 7 > 1 suca that either
b>0, b<3(ao—47x%), b<{4/®—1){ao—4s°x?) and ao < (25+ 1)*x?
or
b<0, b>-—ag, b>((27+2)°-1)(a0—(27+2)*>x%) and ao > (27 +1)%x%.
Proof. Let us consider, first, the case of 4 > 0. When ¢ = 1/2, the‘formula.

(3.35) of S shows that S is positive in the intervals (25w, (27 + 1)), (7 = 1,2,...). For

b > 0, the inequalities in the theorem are equivalent to
R(2x) >0, R{(2jx)>0 and R{(27+1)}x)<0

for some 7 = 1,2, ..., as is shown by the actual form of R at € = 1/2. On the basis of all

these, R has zeros of odd number only in an interval where § is positive, that is

Z(—l)k sgn S{px) = -1,
k=1
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and Theorem 2.19 implies the stability of the sero solution. The polynomial part of R is
a simple polynomial of second degree and the transcendental part is bounded in [0, oo)
Thus, there are no other regions of stability f b > 0. If b < 0, then R has to have
seros of odd number either in (0,2x) or in one of the intervals ({25 + 1)x, (27 + 2)x),
(7 =1,2,...), where S is positive. This is equivalent to the further inequalities in the
theorem. A | | |

b/

Fig. 3.20. Stability chart of RFDE (3.30} with weight function {3.34}, ¢ = %

The stability chart of the RFDE (3.30} presents the number of characteristic
roots having positive real parts in Fig. 3.20. These numbers have been determined by
means of Theorem 2.15. The structure of the stability regions (denoted by o} iz similar
to that of the RDDE (3.9) in Fig. 3.1.

Theorem 3.27. The zero solution of the RFDE (3.30) with the weight function

(3.34}, where € = 1/4, is exponentially asymptotically stable if and only if

b<0, b>—ay and b>5(a0—91r2)
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or there exists an integer 7 > 2 such that either
5 S . .
b>0, b< -2-(30 -9x%), b< E((ZJ — 1) — 4)(ao — (27 — 1)?x?) and

b> (4% ~ 1)(aq — 45%x7)

or

b<0, b>-—ap, b<(47%—1)(ap—45%x%) and

b > 2((25+1)" ~ ) (a0 ~ (24 + 1)) .

Proof. The proof of Theorem 3.26 serves as a guide-line to prove this theorem.
The only important difference is that S is positive in ({27 — 1}x, 257), and it is negative

in (0,3x) and (27x, (27 + 1)1!'); (7=2,3,...) when b> " and e = 1/4 in (3.35). A

fo/x?

Fig. 3.21. Stability chart of RFDE (3.30) with weight function (3.34), e = }
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The stability chart in Fig. 3.21 presents the number of characteristic roots having

positive real parts when € = 1/4 in (3.34).

The comparison of the stability charts in Figs. 3.20 and 3.21 emphasizes that the
regions of stability moved globally to the opposite sides of the axis ag in the parameter
plane (ao,b) as the parameter ¢ changed from 1/2 to 1/4 in the weight function (3.34),

although the main characteristic of the weight function did not change substantially.

ko/x?

2
50. 4 -
5 0y
‘—-g._l P 4 A 0{/
1 /3// o / 3

Fig. 3.22. Stability chart of RFDE (3.30) with weight function (3.34), ¢ = 32

If € € (},3) in (3.34), then the function S has positive zeros not only at pr,
(p=3,4,...), but also at

! 2
€
o =2 .

8c—3

This can easily be calculated from (3.35). Thus, the stability conditions of (3.30) are
the combinations of the inequalities of the Theorems 3.26 and 3.27 together with an
additional one related to o*. Fig. 3.22 shows a stability chart of (3.30) when ¢ = 32/77

in (3.34). In this case, the special zero of S is ¢* = 16x/5. The figure gives the numbers
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of characteristic roots having positive real parts. There is a domain of stability which is

substantially separated from the others.

3.4. Unbounded delay

Let us consider the first order scalar equation

z(t) = / i z(t + 6)dn(6), (3.36)

-Q0

where £ € R, n is a scalar function of bounded variation, and it satisfies- the usual
condition (2.2). This equation has been studied in the literzture when n has a special
characteristic, for example, when 5 is8 monotonous. Such equatibns often occur in biolog-
1:al applications {11]. The first theorem is about a sufficient c:ndition of stability when

n is non-increasing in {3.36).

Theorem 3.28. Suppose that n i8 a non-constant and non-increasing function

in the scalar RFDE (3.36). The trivial solution of (3.36) is exponentially asymptotically
stable if '

f_ow fdn(6) < 1.

Proof. The characteristic function of (3.36) is as follows

0

D(A) =\ — / e*dn(9) .

— 00

Thus,
: 0
R(w) = Re D(sw) = — /; cos{wd)dn(8),
S(w)=ImDiw) =w - ./: sin(wf)dn(f) .
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Since n is non-constant and non-increasing function, we have

RO =~ [ dn= lm_n(6)=n(0) >0,

—oo 0——oo
This means that condition (2.23b) is satisfied in Theorem 2.19. Since 7 is non-increasing
and f‘_)w fdn(f) < 1, the following estimation of S is true:
0 0
S(w) > w ~ f_m whdn(8) = w(1 - [_m 8dn(6)) > 0,
for all w € (0,00). Thus, S has only s = 1 non-negative zero, and this is oy = 0. This

yields the trivial satisfaction of condition (2.23¢) with m = 0:

0

Z(-l)" sgn R{ox) + :-];i-((ml)1 + (~1)°) + (-1)% =0,

and Theorem 2.19 implies the statement of the theorem. A

This theorem immediately presents a result of (50| in connection with a problem

in bioecology:
Corollary 3.29. Consider the scalar RFDE
—h _
z(t) = —a/ w(f -+ h)z(t + 9)d8 (3.37)

where h > 0, @ > 0 and the weight function w is non-negative, continuous on {—00,0],

fo w(f)dd =1,

— 00

and there exist the scalars ¥ > 0 and K > 0 such that
lw(6)| < Ke¥?, forall 6 € ({—o0c,0].
The zero solution of (3.37) is exponentially asymptotically stable if

0 1
/ buw(8)dd >~ + .

-0
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Proof. The RFDE (3.37) is, of course, a special case of {3.36) where

cxf w(x + h)dx, 6 € (—oo,—h]
q(G) { —o f-oo “’(X)dx 3 fe (—ha O] -

/ioedq(e) <1

implies the stability of the sero solution. The calculation of this integral gives

According to Theorem 3.28,

| —a/—h fw(f + h)df =—a([0 xw(x)dx — h) <1,

—0 - O

which proves the statement. A

It is obvious that [ Em fw(8)dd is negative, and it does not satisfy the condition

of Coroilary 3.29 if ah > 1, i.e. when the past-effect is great enough

The case of non-increasing 7 has been considered in Theorem 2.28. The following
theorem investigates the RFDE (3.36) with “almost® non-decreasing function 1. More

precisely, {3.36) is investigated with

n(8) = {#(ﬂ), ‘ 8 €(~c0,0)
~po +limg . _ou(f), #=0
where yg is a real number, u : (—o0,0) — R is of bounded variation, satisfies the usual
condition (2.2), and p is a non-decreasing function. Such RFDEs may describe, for
example, compartmental systems in biology [22], or single species models in population

dynamics.

Theorem 3.30. Consider the scalar RFDE

z(t) = —poz(t) + /_oo z(t + 8)du{d) (3.38)

where u is a2 non-decreasing function and sastisfies {2.2). Its trivial solution is exponen-

tially asymptotically stable if and only if

G
;10>/ du .
—oa
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Proof. If the characteristic function "

D(A) = A + io — / " M)

is not positive at zero, that is if

0 .
-0

then the zero solution is not asymptotically stable as follows from Corollary 2.30. It

will be shown that D(0) > O implies the exponential asymptotical stability. Since u is a

non-decreasing function in

R(w) = Re D{iw) = pg — / os(wb)du(f),

R can be estimated as follows:

0
R(w)Zy.o-—[ dp>0.

The stability condition (2.23b} is satisfied then, and (2.23¢) is also fulfilled since

- 1 ] m m
S (-1 sgn Rlow) + ((-0* + (-1™) + (-1

k=1

= i(—-l)k + %((—-1)’ +(-1)°) +{-1)°0=0

is true independently from the number s of the non-negative zeros of S. Thus, the

statement is proved by Theorem 2.19. A

The RFDE (3.38) has also been investigated by Plant. In {42}, he proved that the
zero solution is asymptotically stable when p{f) = arctan 6 and po > ffw du = 5. This
function g does not satisfy condition (2.2) since p’{f) = (1+ 6%)~? cannot be bounded
by any exponential function of the form Ke”?, v > 0. However, the asymptotic stability

of the zero solution is not exponential in this case, as it was also pointed out in [42].
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Krisztin {36] has investigated the critical case uo = f_?m du, giving the necessary and
sufficient condition of the stability of the solutions. These results of [36] or {42] cannot be
achieved by the direct stability investigation of the characteristic functions only, because

our method is applicable to prove exponential stability if it exists.

In this section, we shall speak, finally, about the scalar RFDE (3.36) when 7
i8 an exponential function. In applications when there is no exact information about
the “weights” of the past states of a dynamical system, it is very convenient to choose
an exponential ﬁeighb function. In this way, the RFDE with unbounded delay can be
transformed into a system of ordinary differential equations. Since the characteristic
function is polynomial, all the difficulties are avoided. These mathematical models can
be handl: easily, but the qualitative results obtained from them may be incorrect for
the real cystem having an infinite spectrum, since its weight function iz different from

the approimative exponential one.

This problem has generally been investigated in {17]. The following theorem
deals with a special equation only, but it gives explicit estimations for the location of the
characteristic roots of a linear RFDE (3.36) where » is close enough to an exponential

function. The results are partly related to those of Driver {12].

Theorem 3.31. Consider the scalar RFDE
0
z(t) = / z(t + 6)dn(8)
— Q0

where

[ —etth § € {—o0, 7]
')(9)—{_5__63/};’ § € {—r,0] ’

7>0,0<h<1/4and ¢ € R. When € = 0, there are two characteristic roots only, these
are denoted by 5\1,3 . For any small p > 0 and large M > 0, there exists an ¢*(p, M) such

that for all [¢| < ¢* there are exactly two characteristic roots Ay » satisfying
A= dl<p, 7=1,2
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and all the further characteristic roots have real parts less than — M, that is
Red; < -M, 57=34,....

€* can be given as

* . T /1 —rh 1 _n
€ =mm(p;‘- Z—-hc "/ )¢ r ) (3.39)

Proof. Substituting n into the RFDE, we get

z(t) = — /0 %ce/hx(t + 8)df — ex(t — -r)_.

- 00

Let us introduce the new variable y € R by

0
y(t) = / -::eeﬂ‘z(t +8)dd.

Yince the initial functions can be chosen from the space B on 'y (see Definition 1.2}, the

derivative of y can be calculated by partial integration. This yields

i) = 72(6) - 29(0),

and the RFDE with unbounded delay can be transformed into a two-dimensional system

of RDDEs:
z(t) = —y(t) — ex{t — 7),
i(6) = 3alt) - 7).

Its characteristic function

i 1 1
A+ = +eA+ )

.12
D(X) =3+ 22+ 2 -

has only two zeros if ¢ = 0. They are

- 1
A = —|—=1++v1-4k
1.2 2h(
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which are real and negative since 0 < A < 1/4. Without the loss of generality, we can

suppose that
. ¢ 1 <
p< mm(-{;w/l — 4h, [A4]) .

In this case, the analysis of the transcendental part of D shows that
1, ., 1 1
- < lel=¢7 /P —
!e()\+h)e | < |el1_c , A€] h,+oo).

Thus, (3.39) gives |
1 1 p [1
2 - il B el
|A +h)\+hi_,h\/4 h
for the characteristic roots lying in [~1/h,+00). The elementary examination of this
inequality proves that there are only two real zeros A; 5 of D in [—1/h, +00), and they

are in the o-neighbourhoods of 5«1,9 .

We shall prove, now, that all the other characteristic roots are on the left-hand
side of the line A = —M in the complex plane. Without the loss of generality, we can
suppose that

1 1

M>—-4-,
>h+r

The function

Dae(z) = (2~ M) + 5 (= M)+ =+ e{(z = M) + )70

has the zeros

zi=A+M, 7=12,...,

where A; are the seros of I. Since A; 3 > —1/r, Dy has at least 2 positive real zeros
z1 2 = A1,2 + M. By means of Theorem 2.15, it will be shown that D has exactly 2
zeros in the right half plane if [¢] < ¢*. When m = 1, the number N of the characteristic
roots with positive real parts are given by (2.17):
N=1+ Z(—l)k sgn S{px), {3.40)
k=1
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where

S(w) = Im Dy (iw) = —w(2M — %) + ee™w cos(rw) — e(}- - J\I)cf.M sin{rw)

h
and py (k= 1,...,r) are the positive real seros of
‘ . 2 2 M 1 M, . 1 M
R(w) = Re DM(lw) = —w’ + (M - 'h— -+ X) + €e¢ W sm(fw) -+ 6(—}-; - M)c cos(fw) .

It iz obvious that

lim R(w)= —o0.

w— 400

With the help of (3.39), it can also be seen that

_ M 1 . 1o M 1 M 1
R(0) = M? Tt (M — >e > M? =ty -+t >0.

Thus, the number r of the positive seros of R is odd. In the same time, (3.39) yields the

estimation
S(6) < ~o((2M - ) = |de™ — [e(M ~ )re¥)
<—-w((2M—i—)——-(M-~;1;)) =-w(M—;—) <0

for w € (0,00) . This means that S{pc) <0 (k=1,...,r) and (3.40) gives that Dps has
¥
N=1-)Y (-1)F=2
k=1
zeros z; o with positive real parts, and
Rez; <0 = Rel;<-M, j5=34,...

for the further zeros A; of D. This completes the proof of the theorem. A

As formula (3.39) shows, the greater the discrete delay 7 is, the smaller ¢* is. If
we want to push the non-relevant characteristic roots A; (7 = 3,4,...) far to the left, the
“perturbation” ¢ of the pure exponential function n has to be decreased exponentially

as a function of M. Theorem 3.31 was also an example of how to use Theorems 2.15

and 2.16 to separate the relevant and non-relevant pai’t of the spectrum in the case of

RFDEs.
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4. Applications

In the previous section, Example 3.7 has presented some stability problems of
retarded mechanical systems. These simplified mechanical models were used in the sixtjes
to investigate the stability of space vehicles [34]. A lot of interesting stability problems
caused by delays can be mentioned from the different fields of contrql_‘t_sheory. However,
the greatest difficulties in analytical investigatiors occur when an oscillatory system
is subjected to a retarded feed-back 'force, especially when the delay is continuous, or
there are more delays than one. There are such examples in mechanical engineering,
in machine dynamics. The analytical stability investigation of some models of man-
machine s 7: tems, robotics and machine tool vi_brations will be presented in Sections 4.2,
4.3 and 4 4, respectively. But first, a bioecological problem will be ~xamined. This
lis a good iatroduction to the above-mentioned field of engineering applications, since
from a mathematical viewpoint, the oscillations in a predator-prey system of population

dynamics are very similar to the vibrations of machine tools.

4.1. Bioecology

The time history of the sizes of two populations living in a well-separated envi-

ronment is often described (cf. [8,11,37]) by the two-dimensional RFDE
ult) = fluy, v), (4.1a)

o(t) = g(ue, ve) - (4.18)

The scalar 4 and v stand for the population densities of the two species, so they must be

non-negative. The functions u; , vy € B are defined by (1.3} in Definition 1.1. We assume
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that (4.1) has a trivial solution (U,V) in the positive quadrant of the plane (u,v), and

f19:BxB — R are continuous and the variational system with respect to (U, V) exists.

In this section, the variational systems of two models of Freedman will be ex-
amined, as well as the non-linear Lotka-Volterra-MacDonald model of a predator-prey
system. The models proposed by Freedman contain discrete delays, while the Lotka-

Volterra model modified by McDonald introduces continuous delay into the equations.

Using the Nyquist criterion, Freedman and Rao [19] have achieved some general
stability and instability results with respect to (U, V) in (4.1). These results were applied

then to a model of two competing populations. The linearisation of the equations at the

equilibrium (U, V) yields
!.51 (t) = —011%y (t) - ngxg(t) + bll T (t - T’ ’ (4.20)

:%g(t) = —ad91T (t) het Gggzg(t) + 6-22.22(t - f) ’ (426)

where z; = u ~ U, 23 = v — V and all the constant parameters are positive except the
intrinsic delays 7 and & which are non-negative. The parameters a;, and dz; can be
assumed to be the competition strengths, a;; and ay; are the intrinsic death rates, while

b1 and bz are the intrinsic birth rates [19].

The following stability result gives an estimation of the delays r and ¢ for which
stability will persist.

Theorem 4.1. The trivial solution of the RDDE (4.2) is exponentially asymp-
totically stable if

(b11 — a11)(bo2 — a22) > ajza2y {4.3a)

and

611(622 + 0.22822)1' -+ bgg(bll -+ 0.22811)6 <@y +age— by — by, (4.35)
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Proof. The same method will be used as in the proof of Theorem 3.23. The

characteristic function is given by

D(X) = A% + (811 + a22)A + (a11a33 — a12a33)

~by1Ae™ ™ —baghe 8 —aggbi ™ — ayibage T 4 by boge TFON

thus,

R(w) = —w? + (a11a22 — a12621) ~ byywsin(rw) — boow sin(Ew)
— G221, cos(rw) — 6162z co8(€w) + byybag cos({r + E)w)
S(w) = (@11 + 822)w — by 1w cos(rw) — bozw cos(éw)
--Gggb1) sin(rw) + ay1bag sin(€w) — by1bae sin((r + f)w) .
For w € (0, o0), “he following inequalities hold:
|cos(rw)| <1, —sin({r + f)w) > —(r+ &w

and

sin(rw) > —0.227w ., .

With the help of them, § can be estimated in the following way:
S{w) 2 §7 (w)

= (ﬂu + age — by — bag — 0.22a32b117 — 0.22811b226 — by boa(r + E))w .

Thus, {4.3b) yields

Sw)2 85 (w)>0, for we(0,00).

On the other hand,

R(0) = ay1a23 — a12821 — az2b11 — a11bzg + b11b22 > 0
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follows from (4.3a). Since
im R(w)= -0,

W00

the number r of the positive seros pi of R is odd, and
Z(—l)k sgn S(px) = —1.
k=1

This means that the stability condition (2.225) in Theorem 2.19 is satisfied, and the proof
is completed. A

Remark 4.2. The RDDE (4.2) can be transformed into the second order RDDE
Z1(t) + (a1 + a22)1(t) + (@11022 — a12021) 74 (2)

— blli“"‘-‘t - T) + boozy (t — 6) + anabi 7y (t*- 1') 4+ a11b2272y (t — f) — bli")gg.’tl (t - (T+ E)) .

This eq:ation contains 3 discrete delays: 7, £ and 7+ £. Theorem 3.24 cannot be applied

here directly because of the presence of the delayed values of the firat derivative of z;.
We also note that (4.3} is not satisfied if
a11 +agz —b11 — b22 <0,

since the left-hand side of (4.3b) is non-negative. This means that the condition (4.3b)
is not satisfied if the trivial solution is unstable when r = ¢ = 0 ((4.2) is an ordinary

differential equation). A

The condition of asymptotic stability given by Freedman and Rao in (19} is more

restrictive with respect to the delays than (4.35) is in Theorem 4.1.
Another special variational system of (4.1) has the form
z1(t) = —anzi(t) — biaza(t — £), (4.4a)

o (t) = —a;;::g(t) + bp12q (t - T) ) (4.4b)
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which may describe the dynamics of a predator-prey system around the equilibrium
(U,V). If u and v are the population densities of the prey and the predator, respectively,
then z; = u—U, 23 = v—V . There are two discrete delays in this model. The derivation

of the parameters is presented in [19]. The coefficients a3, b1z and by are positive.

Corollary 4.3. The trivial solution of (4.4) is exponentially asymptotically
stable for any time lags r > 0 and ¢ > 0 if :

by2bay

Va11622 — by302;

@11822 > bigbay and a3y +azn >

Proof. The elimination of z; in the RDDE (4.4) leads to the equation

Z1(t) + (11 + az2)1(t) + anra23z1 () = —bizbarzi (t — (7 + £))

which is identical to the RDDE (3.29) if
61 =a1; + a2, Gy =0811823, b = ~bjby,

b;=0,{7=23,...,p), and np=7+¢ {4.5)

is substituted into (3.29). With these parameters, Theorem 3.22 implies the statement.
A

Remark 4.4. With the help of a different technique, Freedman and Rao have
obtained a better result in [18]. It can be proved that ajja22 > b12bz; implies asymptotic

stability in (4.4}, even if the second inequality in Corollary 4.3 does not hold. A

Corollary 4.5. The trivial solution of the RDDE (4.4) is exponentially asymp-
totically stable if

a1y + ao2
ajiazg > —bygbe; and 7+ €<l
bi2b21

Proof. The statement follows from Theorem 3.23 after the substitution of the

parameters (4.5) into (3.29). A



As a matter of fact, it is not difficult to determine the exact stability regions in
the parameter space of the RDDE (4.4). In Example 3.16, similar stability charts were
presented. If .

a1 = (a11 +ex)(r + §), a0 =ayiaxn(r+£)?
and b= —byabg (r +¢)?

is substituted into the RDDE (3.26), then Fig. 3.15 gives a stability chart for the param-

~eters ag, ay and b, which can be transformed into the space of some chosen parameters

of (44)

In the cases of the models of the competing populations and the predator-prey
system, we have investigated neither the conditions of the existence of (U, V), nor the
nonlinea- sibrations in the RFDE (4.1}. Results in this line can be found :n [18]. However,
we shall ~ive a deeper analysis of the Lotka-Volterra model of predator-prey systems,
which has beern modified by MacDonald [37]. The mathematical model {4.1) gets the

following actual form:

a(t) = ut) (e~ %u(t) ~ a(t)), (4.6a)
o(t) = v(t) (- + n/_o u(t + 8)dn(6)) . (4.65)

In these equations, u and v are the population densities of the prey and the predator,
respectively. All the parameters are positive. K is the carrying capacity of the prey, a is
the rate of predation per predator, « is the rate of conversion of prey into predator, -y is
the specific mortality of predator in absence of prey and ¢ is the specific growth rate of

prey at zero density in absence of predators. 5 is a scalar function of bounded variation.

0
f dn=1.
—o0

In this way, the model takes into account the density of the prey in past with a positive

It is non-decreasing on (—o0,0|, and

weight. We also suppose that the parameters satisfy the following inequality:
K> ~. (4.7)
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This implies that the RFDE {4.6) has a trivial solution in the positive quadrant of the
plane {u,v), i.e. there exists an equilibrium of the predator-prey system where the species

may exist together. This equilibrium is given by

@v)=(1,=(1-2)

(o 4

as it can easily be calculated from the right-hand side of (4.6). In order to investigate the
stability of this equilibrium and to analyse the non-linear vibrations around it, the new
variables z; = «— U and z3 = v—V are introduced, and the RFDE (4.6} is transformed

into the new form of

1(t) = —G—'L-zl(t] - .°;_’*z,; () — —xl(t) az(t)za(t), (4.8a)

0

zo(t) = —(1 - ——-) / 1(t + 8)dn(8) + szt )[ z1(t +8)dn(8). {4.8b)

-0

Although the linear part of {4.8) involves the delayed values of z,, the stability
investigation of the trivial solution is sﬁnpk if the kernel is exponential, more exactly

when

n(@) =", 6 € (00,0

where 7 can be considered as the measure of the influence of the past. The following

theorem has been proved first in [15] by Farkas.

Theorem 4.8. The trivial solution of the RFDE (4.8) with 5(8) = /™ is

exponentially asymptotically stable for any 7 > 0 if

(’7<)K:c£’1(—;-+ %-0—%)

The trivial solution is also exponentially asymptotically stable if

1
KK.>’7(£+\/—+£) cand T < 7o
2 4 7
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where
.= K«
T (Kx)? 4Kk — e’

The trivial solution is unstable if 1 > r.,.

Proof. Let us introduce the new variable
° 1
z3(t) = / ~e®/"zy (t +6)df .
coo T :
Since the initial functions are chosen from the space B in accordance with Definition 1.2,
it can be shown that

. 1 1
Iz =—1 — —I3.
T T

Thus, the variational system can be transformed into the system of ordinary differential

equations
. € o
0\ (~F -% 0 (=
:fz = ; O « (1 —; Kn) L2 s
I3 oy 0 ~r I3

and the characteristic function becomes polynomial:

1 €y 1 ey 1 oy,
= 3 - —)A2 ——A+ - - )
D(A) =X+ (T + Kn)'\ + T Kn + f’ye(l K’;)

The application of the Routh-Hurwitz criterion results in the critical value 7., of the

measure of the delay if {(Kx)? —vKx —ve > 0. As Kx goes to v(1/2+ V1/4+€/v)+0,

Tor tends to co. A

If 2 better approximation of the past-effect i8 necessary, functions like

n{8) = (1 - g)e""

can be used in (4.8). Then the same method should be nsed as in Theorem 4.6, since
the characteristic function D remains a polynomial of fourth degree. For more details,
see references [4,13]. However, if 5 is different from these exponential functions, then the

characteristic fanction of (4.8) is transcendental:

D(A) = det ( M xx 53)
== e 3
—=e(1— ) [2 2dn(8) A
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and the stability investigation requires the application of Theorem 2.19. The following
theor_ems give similar results to those of Theorem 4.6 when the length of the delay is finite.
Since. the delay is the bifurcation parameter in the investigation of the non-linear system,
the stability conditions are usually expressed with the help of the critical maximum value

of the delay.

Theorem 4.7. Consider the function n given by

: 0, ' ﬁe —oo, —h
'1(9):{%(1+c06(§6’)), ﬂeg—h,(’] |

in the RFDE (4.8), where 2 > 0. The trivial solution of (4.8) is asymptotically stable if
h < he

where
2 pr(r - p)

hor = x2(Kx—1) sinpy

and p; is the only positive root of the equation

4 7121+ cosw
Kk’ 2 x2—w?

w?® = hley(1 —
in the interval (0, ). The trivial solution is unstable if h > h.,.

Proof. If the actual fanction n is substituted into (4.8), the calculation of
0 o
Y T oainl X a1 08
e dn9=—[ — gin{—#@)e”" df
[ ane)=- [ FsinGe)

leads to the characteristic function

3 4 .
D(A)={A2+%h/\+eq(1—w-f—g~;)h2%h, A#:f:‘t"ﬂ' .
—r? +in(EELAF er(l - F)R®%), A=ix

Thus, its real and imaginary parts at A = 1w give

R = [~ - IR
—n?, w=mx"
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s<w)={%’z’*<w-h(ff~—v)%’-%), whn
Zhe(1-dh(Ke—7)),  w=rx

The analysis of (1+cosw)/(#? —w?) shows that it is positive and decreasing for w € [0, x),
and it is non-positive for w € {x, 00). This means that R has r = 1 sero only, and this sero
is p1 € (0, x) defined in the statement of the theorem. The stability condition (2..22 b} of
Theorem 2.19 results in

r

> _(~1)* sgn S(px) = —sgn S(p1) = —1.
k=1

Since Kx > « according to (4.7), S(p;) > 0 is exactly equivalent to h < h,; , and Theorem
2.41 implies the asymptotic stability of the zero solution of the non-linear RFDE (4.8).

If h > he,ie. S(p1) <O, then formula (2.17) in Theorem 2.15 shows that there are
N=1-3gnS(p:)=2

characteristic roots with positive real parts, and the trivial solution is unstable. A

For the time being, we do not state anything about the critical case h = k., ,
when the stability of the trivial solution of (4.8) is determined by the non-linear terms.

it will be examined later.
The following theorem deals with discrete delays in (4.8).

Theorem 4.8. Consider the function n given by

, 0 ¢&(—o0,—1)
, 8 € [—1', 0)
, 6=0

n(8) =

R O

in the RFDE (4.8}, where the delay r > 0. The trivial solution of (4.8) is asymptotically

(v <)Knsq(%+\/"i-+%). (4.9)

stable for any 7 € [0,00) if
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The trivial solution is also asymptotically stable if

1 1 €
KK>’¥(‘2”+ Z-I—':") and <1, (4.10)

where
Kk
vVer((Kx)? — Kk — ev)

The trivial solution is unstable if r > r.,.

Ter =

arccos (1 -2 (KK.);?—' 'yKn) .

Proof. After substituting » into the linear part of (4.8), we get the following
RDDE with one discrete delay:

(20) - GeiF ) G0+ G’ o ) (2627)
zo(t) iEe(1- ) 0 z2(t) 1E(1—5) 0/ \=z{t—7) /"
The corresponding characi«<ristic function has the form

- 224 1 Lovi— 1,2 =X
D(A) = A —}-K'cr)\+26'y(1 Kn)r (t+e71),

and the functions R and S are given by

R(w) = ~w* + Serl1 - Z)r2(1 + cosw),
S{w) = —--1'(w - —(K!C —q)rsinw).

There is at least one positive zero of R and the number r of its zeros is uneven. The
zeros py having even subscript k are situated in some of the intervals ((25 — 1), 277),

(7 =1,2,...). In these intervals, S is positive, that is
(—1)*sgnS{px) =1, forall k=24,...,r—1.
The stability condition (2.22b) in Theorem 2.19 gives
S (~1)* sgn S(on) = —1
k=1
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which is satisfied if and only if
sgnS(px) = +1, - forall k=1,3,...r

Using the actual form of the functions S and R, this condition means that

1 ] ’ . . |
pr — 5 (KK —7)rsin pi > 0, (4.11a)
2 K ] .

for all k = 1,8,...,r. The elimination of r from (4.11) results

2 :
\/—k:-(}-(%—:—;j-\/l+cospk >sinpg, forall k=13,...,r

A detailed anal-sis of these inequalities shows that they are equivalent to th> following

conditions:
€Y :
e 2> ] d 3 cen .
Kr(Kx—q) 2 and px # x,37,57%,..., (4.12)
or
2¢
Pr < (T — k)ﬂ' + arccos(l - ﬁ—(—},{:—_‘q)-) (413)

forall k =1,3,...,r. (4.12} is equivalent to {4.9) in the statement of the theorem. If the
mequalities (4.13) are substituted into {4.115), we obtain conditions with respect to the

delay 7. The strictest condition arises when k = r in (4.13). Since p, € {0, x), this gives

o a.rccos(l e KK__? )
€’7(KK.-—- 1/1-+-cosp, KK.— '

K:c(Kn—»-y)

which is equivalent to 7 < 1, in (4.10). The asymptotic stability of the zero solution of
the non-linear RFDE (4.8) is implied by Theorem 2.41. If v > .., then S{p,} < 0. In
accordance with formula (2.17) in Theorem 2.15, the number of the characteristic roots

with positive real parts is determined by

N=1+ Z(-—l)k sgn S(px) -

k=1
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Since S{px) > 0, (k= 2,4,...,r — 1) and S(p,) < 0, we get

.1 (r—1)/2 2io1 '
N=2+——+ Z} (~1) 7 sgm S{pa;-1) 2 2
,:

if 7 > 1, and the trivial solution is unstable. As r is increased further, more and more

complex conjugate characteristic roots cross the imaginary axis of the complex plane. A

‘Although the stability conditions have more or less the same structures in The-
orems 4.6, 4.7 and 4.9, it i3 not easy to compare the critical lengths of the delays in the
cases of the three different weight functions in the RFDE (4.8). The following numerical

results may help in this matter. If the parameters are fixed at
a=9=Kk=€e¢=1 and K=2 (4.14)

then Theorem 4.6 gives 7., = 2 when n ig exponential, Theorem 4.7 gives h, = 2.27...
when 7 has finite support and it is trigonometrical, and Theorem 4.8 gives 1., = x when

there is one discrete delay (n is a step-function} in (4.8). Some numerical results with

respect to further kernels are given in [55].

~

All the above-mentioned results seem to prove the rule of thumb, that increasing
delay destabilizes any dynamical system. However, the following example calls attention
to rather peculiar phenomena. Let us consider the predator-prey model (4.8) with the

fixed parameters (4.14) and with the function n given by

0, § € (—oo,—71) _
n#)=< 1—-p, 8€l-10) , 0<p<i1. (4.15)
1, =0

With the help of the parameter p, the ratio of the weights of the present and past can be
expressed. There is a single discrete delay 7 in the system. Since all the other parameters
are fixed, we can determine the stability chart on the plane of the two parameters p and 7.
Fig. 4.1 shows this chart in a narrow but interesting interval of p. It has been constructed

by means of the D-subdivision method, Theorem 4.8, and the following
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Thedrem 4.9. Consider the RFDE (4.8) with (4.14) and (4.15):

z(8)Y _ (-3 —1) [=zi(t) 0 0\ [=mft-1) |
(iﬁ(t)) B ( £ 0 z3(t) + 22 0 ) \za(t~1) /)" (4.16)
Tts trivial solution is exponentially asymptotically stable for any 7 E [0, 00) if

16p° —40p + 17 < 0.

Proof. The zeros of the characteristic function

1.2 2

D(A) A+2A+p2+(1 p)ze |

depend continuously on the parameters. There are pure imaginary characteristic roots

+iw if
1.2 1.2
R{w, = —w? +p? + (1 -—p)-é—cosw =0,

F(w) = -;(w — {1 —p)sinw) = 0.

If 7 18 eliminated from these equations, we obtain the following equatidn of second degree

for cosw:

2(1 —p)?cos®w+ (1—p)cosw+p+2(1 - p)? =0.

It has no real solution for cosw if 16p? — 40p + 17 < 0. Thus, the assumption of the
theorem implies that there are no pure imaginary characteristic roots. It is easy to
see that the equilibrium is asymptotically stable for p = 1, when (4.16} is an ordinary
differential equation. As in Theorem 3.31, it can be shown that for p values sufficiently
close to 1, all the characteristic roots are to the left of the line A = —M{<< 0} on the
complex plane, except two of them which are in the (1 >>) p-neighbourhoods of the two
characteristic roots in the case of p = 1. Taking into account the continuous dependence

of the characteristic roots on p, we find that Re A < O for all the zeros of D. A

This theorem means that the equilibrium is stable for any delay if (1 >)p > 0.543,

that is when the weight of the present is great enough in comparison with that of the
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past. This result is clearly shown by the stability chart of Fig. 4.1. The result of Theorem
4.8 18 also presented there when p = 1/2, ., = . However, the most interesting part
of the chart is the bend 0.52 < p < 0.543. In this interval, there is not only one critical
value with respect to the.delay 7. The equilibrium can be stabilized by great time lags,
in spite of the fact that it loses its stability at a small a_ela.y. Moreover, as p tends to the
less root of 16p? — 40p + 17 = 0, the number of the stable and unstable intervals of the

delay r tends to infinity.

Stable
" 054
p
052
7// 7 / Unstable
050 Z - il | {
0 19] 20 0
r

Fig. 4.1. Stability chart of RDDE (4.16)

(Reprinted with permission from [66], Copyright 1986 Pergamon Press Ltd.)

It would, of course, be very important to know something about the existence of
periodic solutions. As outlined in Section 2.5, the existence of Hopf bifurcation can be
proved quite easily. As a matter of fact, it has been shown at the ends of the proofs of
Theorems 4.6, 4.7 and 4.8, that two complex conjugate zeros of the characteristic function
cross the imaginary axis from left to the right as the length of the delay is increased
through its critical value. If it can also be proved that they cross the imaginary axis
with non-zero velocity, then the Hopf Bifurcation Theorem applies. In the case of the
kernel (4.15), there may exist characteristic roots which come back again to the negative
half of the complex plane, as the delay is increased further on, and a sequence of Hopf
bifurcations may arise. However, from application viewpoint, it is not satisfactory to
know about the existence of periodic solutions only. We want to study their stability as

well, that is to determine whether the Hopf bifurcation is supercritical (stable limit cycle
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exists around the unstable equilibrium) or subcritical (unstable limit cycle exists around
the stable equilibrium). Moreover, an analytic approximation of the periodic solution

may also be very useful.

The literature presents a lot of results related to the existence of Hopf bifurca- .
tions in first and second order systems (see, for instance, the examples a.nd references in
[26]). Freedman and Rao [18] have also proved the existence of Hopf bifurcation in Freed-
man’s predator prey model. But there are much less eiamples for the investigation of the
super- or subcriticality of the bifurcation, since thig requires a long and tedious calcula-
tion. For first order scalar RFDEs, such analyses can be found in references [27,30,46,50],
and for a second order RDDE, there are numerical results in [43]. We shall present this
investigation for tre two-dimensional non-linear system of the Lotka- Volterra-MzcDonald

model (4.8).

We recall, first, that Farkas et al. [15,16] have proved the existence of a super-
critical Hopf bifurcation in (4.8) when n(6) = ¢®/7. Szabé [58] has given the necessary

and sufficient condition of supercriticality:

1 1 € v+e¢
Ke>qf = -+ - 1.
" 1<2+\/4+"m+6/2)

Since (4.8) can be transformed into a three-dimensional system of ordinary differential

equations in this case, the long algorithm of the calculation can be carried out explicitly,
keeping all the parameters of the system. In the infinite dimensional case, we shall fix

all the parameters except the délay, in order to have an explicit calculation.
We shall need the following

Lemma 4.10. Let us consider the two-dimensional scalar system given in its

Poincaré normal form:

y1 = Py2 + f'zoy’? + fuviye + fozyg + f30y§ + ley?.w + f12y1y§ + foayg ,  (4.174)
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Y2 = —fy1 + 9209} + 911¥1¥2 + G0a¥3 + a0y} + ga1vPys + gravivd + gosys, (4.17b)
where f is positive. The zero solution is asymptotically stable (unstable) if A < 0
(A > 0), where

A= %(.g.((fm + fo2)(—fi1 + 920 — goz) + (920 + go2)(f20 — foz + g11))

+(3fa0 + fiz + gar + 3903)) .
Proof. See {1 or [27]. A

Theorem 4.11. Consider the RFDE (4.8) with the kernel given by (4.15), where

p = 1/2 and the parameters are fixed as in (4.14). After a time transformation ¢ = rt,

(4.8) assumes the form

8- (4 ) () (2 &) (26
Z.Q(t) ( i 0 $2(f) “I‘ 0 zg(t - 1)
L 530 - rm(@m(d) ) o
\ Z2:()z2(8) + 321 (F - 1)2a(f)
The zero solution is asymptotically stable if (0 €)r < 7 and it is unstable if 1 > Ter,

(4.18)

where 7., = x. For any 7 > 7., where 7 —r,, is sufficiently small, there exists an orbitally
asymptotically stable periodic solution of (4.18) around the unstable zero solution, 1Le.

the Hopf bifurcation is supercritical at r = 7,,.

Proof. As a matter of fact, it is the algorithm published in [27] that we have

taken as a basis in this proof.

Theorem 4.8 implies that the characteristic function

T 2 2
D) =224 24 — 4 —¢*
(A)y=2*+ 5 + 1 -+ , e
of {4.17) is stable {unstable) if 7 < 7, (r > 7.,) where r,, = 7. f r = Ter, then D has
two pure imaginary zeros

. x
'\1,2=i“ﬁ; ﬁ:'z_
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and all the other characteristic roots have negative real parts. It is easy to see that the
zero Ay i8 a smooth function of the delay r, and it is uniquely determined by D(A;(r), 1) =
0 and A;(x) = $x/2. Since

. di(x) x

R dr “12+81r+20>

0,

the complex conjugate characteristic roots Ay 3 cross the imaginary axis with a positive
velocity as 7 is increased through r.,. Thus, the Hopf bifurcation theorem implies the

existence of closed orbits for some r close to 7.,.

In order to investigate the stability of these orbits, the stability of the zero
solution has to be examined in the critical case r = r,,., when the non-linear terms are
relevant in the local behaviour of the solutions. Qur aim is to re’duce this investigation for
an ordinary diffe: :ntial equation like (4.17), and to apply Lemma 4.10. This r»duction

requires a long ar 1 tedious calculation as follows.

Let us transform (4.18) with the critical parameter r = x into the operator

differential equation

i = Azy + F(z) (419)

where z = col(z1, z2), 7 is defined as in Definition 1.1, z; € B, where the length of the
delay is finite (A = 1) and the dimension n = 2. The linear operator A : B — B and the
non-linear one F : B — B are defined by

4.4(8), #€l-1,0
A9(0) ={f’¢(o))+ Mooy, do0

where ¢ € B and the matrices L and M are

i=(F 7). =
# €{-1,0)

FOO) =] [ -560)-x4104a00) Y ,_o -
('15"‘?51_(0)%(0) + 12'-¢1(_1)¢,2(0)) , =0

and

o)
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where ¢ = col(¢1,42). The operator differential equation can be transformed into its

Poincaré normal form with the help of the “eigenvectors® of the operator A. The right-
hand side eigenvectors 31,3, € B belonging to the eigenvalueé' A1,z = *ix/2 are calcu-

lated as the solution of the four-dimensional first order boﬁndm‘y value problem

.
Asl = —=—3%
2 1)

x
As; = =38
2

After the substitution of A, the calculation results

10 = (7 ) oo+ (2 ) sinZo),

s2(i = (2) cos(0) + ("12) sin(26)

The left-hand side eigenvecuvors ny, ny : [0,1] — R? of A, belonging to the same eigen-

values, are determined from a similar boundary value problem as above:

"

A*ﬂq = —nq
9 ’
n

A*ﬂg L
2

In these equations, A* denotes the adjoint operator given by

* - "“4“¢(a) : S (0, 1]
Ard(o) = {L*d{Z(O) + M*y(1), o=0 ’

where L* and M™ are, of course, the transposed matrices, and ¥ : [0,1] — R? is contin-

uous. The solution

= mrarm (e )5 (et e ) 0G),

nafo) = —- 1 ([ 4 cos(Zo) + (—8—2x sin(%0)
N = S e+ 20\ \ 16 +4x ) N2V T 8 2
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has been calculated taking into account the conditions of orthonormality:
<ni;,81>=1, <np8>=0,

<nz 8 >=0, <nge>=1,

where the scaiar product < .,.> deﬁnéd in [25] gets the special form

0

<pb>=9 00+ [ v (E+)MAOE.

£=—1

Let us introduce the new variables
Y1 = < ni, T >,

y2=<n2:zt>:
W=1I¢ - Y181 — Yas2,

where y1,y2 : [to, o0} — R and w : [to,00) — B. The time dependent scalars y; and
Yo are the coordinates of z; in the directions of s; and s5, respectively, while the other

“parts” of z; are contained by the infinite dimensional w. Since
gl = < nl,i'g >=< nl,Azt +F($f) >
=< A'n;, 5 >+ < nl,F(:b‘t) >=< gng,xt > +";(O)F($t)(0) ;
. X .
g2 =< —gm, 7 > +n3(0)F(z)(0),
w= Az, + F(z;) — 9181 — %232,

the Poincaré normal form of the operator differential equation (4.19) is as follows:

Y1 0 Z O 71
wl=|-3 0 0 Y2
w 0 0 A w

n‘{ (O)F(w +yi131 + y232)(0)
+ n3 (O)F(wj‘ y181 + y252)(0) ,
F(w + y191 + y2s2) — 27y n7(0)F(w + y151 + yos2)(0)s;
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where the actual expressions of A, Fiony,ng, s a.nd_ sz must be substituted into the right-
hand side of the equation. In the infinite dimensional state space, there is a centre

manifold which is tangent to the (y;, y2) plane at the origin, and which is locally invariant

and attractive. Thus, its equation can be approximated in the form

w(f) = '21’(}‘11(9)313 + 2h13(8) Y192 + haa(6)y3d) . (4.20)

when the third and higher order terms are neglected. The unknowns hyj,his, hyy € B
can be calculated from a six-dimensional first order boundary value problem which is
established from the right-hand side of the third equation of the Poincaré normal form

and from the time-derivative of (4.20):

. R w X
h= -2 1297 + 5k — haz)yiys + 'é'huyg +heodt.

The solution of this probl n is as follows:

hi1(8) = (32) sin(«f}),

hi2(8) = (g) cos(x8) + ;5:'58}35 ((_64_“ x) 608(29} + (i;fi) siu(%ﬁ)) )

haa(6) = (g) sin(x) .

Let us use these functions in the approximative equation {4.20) of the equation of the
centre manifold. If it is substituted into the first two equations of the Poincaré normal
form, and the terms of at least fourth degree are omitted, then we get the two-dimensional
system of ordinary differential equations which describes the flow on the centre manifold

locally. This system has the same form as (4.17) having the coefficients

r 8x 4x (7 -+ 4)
ﬁ~'2', fzo——foz—*7rz+8x+20, fir = 2187520
fao =0 fig = n (16— 64(9!’-!-4) )
30T A2 e 8 + 20 x2 4+ 8x +20/'
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dx(m +4) 8x

72 +8x+ 20" 72 +8x+20"
x 64(x +4) \
S S—— —16-~81r+—————) =0.
9 -w2+8«+20( <2 +8r+20/° 9

The coefficients f21, fo3, gso and g;o will later be of no importance. If A is calculated in

- Lemma 4.10 with these data, we get

X2+ 8xr+20°

This is negative, and Lemma 4.10 implies the asymptotic stability of the zero solution
of the operator differential equation. This also means that the zero solution of {4.18) is

asymptotically stable in the critical case r = r,.. Thus, the Hopf bifurcation is super-

critical and tke proof of Theorem 4.11 is completed. A

Rema~k 4.12. According to [1], the approximate frequency § and tt: amplitude

a of the orbitaity asymptotically stable periodic solution of {4.18) can be given by

x

1 dA1(7er) _\/r—w
aw\/—ARe i (r—1er) = —-

Although this result is very simple, the calculation of A in the formula of a is

very difficult, as it has been shown in the proof of Theorem 4.11. A

The finite dimensional analysis in [16] and the infinite dimensional one in The-
orem 4.11 give the same qualitative result for the RFDE (4.8). However, if we consider

the kernel (4.15) in (4.8) and investigate the non-linear system
(28)-(¢ ) (E6) (2 0) (26=3)

—3573(t) — z1(t)za(t)
+ (PII( ) , (4.21)

t)za(t) + (1 — p)za(t — r)z2(t)
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then there may be a lot of bifurcation points with respect to the delay r, as is shown in
Fig. 4.1. With_ the help of a computer program, we have repeated the long calculation
presented in the proof of Theorem 4.11, and the bifurcations were analysed at p = 0.535.
Table 4.1 and Fig. 4.2 summarize the results. There are five bifurcation points in this

case, and there are super-, and subcritical Hopf bifurcations as well.

Tor A B a/T =1
4.265 -0.089 0.442 © o 0.499
3.183 6.283 0.259 0.042
18.48 -0.380 0.442 0.189
29.16 7.781 0.299 0.025
32.69 -0.478 0.442 0.138
Table 4.1
T
l e gt able
7 wee wwe == ynstable
-~
P ~
O 2 - / — o
/7 7
[ T
0 R T T -

Fig. 4.3. Hypothetic bifurcation diagram of RDDE (4.21), p = 0.535

This investigation is, of course, valid locally at the critical delays, and it is very
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difﬁcult to say anything about the possible connections of the branches shown in Fig.
4.2. The trajectories do not cross each ot'_her in the infinite dimensional space B, but
they do so in the plane {z1, 2). There are several points along the curve of the stability
limit in Fig. 4.1, where the Hopf bifurcation is degenerai;e with codimension 1, that is
where A = 0 or Re X (r.,) = 0. In [54], we have given some results. for the RFDE (4.8)
in this line, using the classification of Golubitsky and Langford [21]. However, it is still

only a hypothesis that the global picture of the bifurcation diagram is the one in Fig.
4.3.

In the following sections, the analysis of the non-linear RFDE models will not

be as deep as in the case of the predator-prey model (4.8) of Lotka-Volterra-MacDonald.

However, the same technique can always be applied.

4.2. Biomechanics, man-machine systems

Two examples will be examined in this section. The first one is in connection
with a very simple model of a problem of balancing, the second one is related to a
model of the manual control of crane handling. Since a human operator is involved in

these systems, the delay of the operator’s reflexes will have an important role in the

mathematical models.

A lot of experimental and theoretical research studies have investigated the differ-
ent possible ways of the stabilization of inverted pendulums. This problem is Interesting
either in biology, to explain the self-balancing of the human body, or in robotics, to
construct biped robots. From the long series of publications, we mention the references
[29,31] only, where the Nyquist plots have been used for stability investigations. We shall

give an analytical investigation of the balancing of a stick. The mechanical model of F ig.
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4.4 18 considered, which is the simplest possible model describing the “man-machine®
| system when somebody plé.ces the end of the stick on his fingertip, and tries to move the

lowest point of the stick in a way that its upper position should be stable.

VAV A S v i G
Fig. 4.4. A mechanical model of stick balancing

The actual control forc: Q is considered in the form

Qt; =b1g1(t — 1) + boqu{t ~ 1), (4.22)

where 7 is the delay of the human reflexes. The positive constant parameters 5; and bg
have to be chosen properly. After a short practice, a human being is usually able to find

those values of 4; and by where the upper ¢; = 0 position of the stick is stable. Let us

determine these values exactly.

The mathematical model of the system has the form

(3 Aioore®) (80 ([ dmissinalt) ) _

Imlcos g, (t) m gaft) 2mlg?(t) sin g (£)

0 .
(b]_q']_(t - T) + boql(t —_ T)) ’
where m is the mass of the homogeneous rod, ! is its length and ¢ stands for the gravi-

tational acceleration. This is a RDDE, where g; can easily be eliminated. This yields

(4 — 3cos” g1 ()41 (t) -+ 343 (t) sin g1 (£) cos g1 (1) - %’— sin g (¢)

6 ] N
+;—n—z(blq1 (t —7)+ boqa(t — r)) cos gy (t) =0, (4.23)
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which is a second order scalar non-linear RDDE. The g; = 0 solution satisfies, of course,
this equation. We are going to investigate this equilibrium. However, there may be other
trivial solutions of (4.23). As it will be shown in the following remark, these further

trivial solutions of (4.23) do not represent equilibria of the original mechanical system.

Remark 4.13. The trivial solutions of (4.23) in the interval (—x/2, x/2) are
given by

bog1 = mgtangq .

This means that there are 3 solutions if by > mg, and there is only the zero solution if
bo < mg. If it exists, the non-gero trivial solution ¢} 7 O of (4.23) does not represent an

equilibrium of the stick, since in this case
- 1
a2 = —boqy ,
m
that is the stick moves with a constant acceleration, without any rotation. A

If the RDDE (4.23) is linearized at the 3ero solution with respect to the variation

z of ¢; , then we obtain

3(e) — ﬁ—fz(t) + ;ﬁd-bli(t 0+ %boz(t —r)=o0. (4.24)

Theorem 4.14. The trivial solution of the RDDE (4.24) is exponentially asymp-
totically stable if and only if

ml
mg < by < (mg+ —02) coso
g 0 ( g 672 )
where o 1s the smallest positive zero of the equation
byw = byrtanw

in the interval (0, x/2}.
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Proof. The characteristic function assumes the form

6
D()\) = A2 - 29,2 +. -—-—rb Ae™ + %T2boc_)‘
m :

T Tm
Thus,
6g , 6 6
R.(w) = —w? - TT + -;;-Qrblw sinw + - by cosw,

6
S{w) = -;;lwr(blw cosw — thy sinw) .

If b6 > mg then

6
R(0} ='——§g‘r:3 + %rzbo > 0.

Since o is defined by byo = b7 tano, o € (0,%/2), it is obvious that S(c) = 0, o is the

smallest positive zero of S, and
Sw}>0, for w:~{0,0).
The condition by < (mg + mla?/{672)) cos o is equivalent to
R{os) <0

This and R{0) > O imply that R has zeros pj of uneven number in (0,0). R may have

further zeros of even number in {0, o0}, but they are all in intervals where S is negative.

Thus,

r

Y (—1)*sgn (o) =

k=1

> (DrsmS(a)+ Y (-)FsenS(e) = -140=-1

Pi€(0,0) Px€E(e,00) :
which means that the stability condition (2.22b) in Theorem 2.19 is fulfilled. On the
other hand, it is easy to see that there is at least 1 real positive characteristic root if
by < mg (see Theorem 2.28), and there are at least two characteristic roots with positive
real parts if R(c) > O (see Theorem 2.15). Thus, there is no more stability region, just

the one mentioned in the statement. A
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Fig 4.5 shows the stability chart determined in Theorem 4.14. According to
Theorem 2.41, the zero solution of the non-linear RDDE (4.23) is also asymptotically
stable if the point {by,b;) lies in the region of stability. It is obvious that the stability
region does not exist always. If the delay 7 is too great, or the length [ of the stick is too

small, the rod cannot be equilibrated.

| b1/{mg) [sec]

unstable
] stable
] unstable
0.1
bo/(mg)
0 0.5 ' ’ .

Fig. 4.5. Stability chart for balancing model (4.24}, | = Im, r = 0.1sec

Theorem 4.15. The trivial solution of (4.24} is unstable if

. I .
T> T, Tep= 37 (4.25)

If r < 7., then there always exist positive b, and b, such that the trivial solution is

exponentially asymptoticaily stable.

Proof. According to Theorem 4.14, the upper stability limit with respect to &g

1s expressed by
mi .

bo,maz(0) = (mg + —6—13-02) cosog, o€ (0, —i) .

If it is less than the lower limit bg ynin = mg for allo € (0, #/2), then there is no stability

region at all. Since

dbO,rna;z

=0
do

o=0

?
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bo,maz < Bo,min holds for all o € (0,x/2) if

dzbo,maz

—e 0.
do? o=0 <

The calculation of the second derivative of by maz at ¢ = 0 results

m

373 <0

which gives the critical value 7., of the delay in the statement. A

Theorems 4.14 and 4.15 ha_,ve interesting physical meaning. In spite of the fact
that the model is simplified, and the formula (4.22} of the control force describes only
the basic components of the human operator’s behaviour, the results are quite reliable
even quiititatively. The delay of ouf reflexes is in the range of 0.1 :econd. Formula
(4.25) mcans that after a short practice, everybody is able to balanc: a stick of length
[ =0.3 metres, when the critical delay is 7., = 0.1 second. Anybody can experience that
the longer the stick is, the easier it is to equilibrate it, since 7., becomes greater. It is
impossible to balance short sticks like pencils, etc. Finally, if one is a bit tipsy, the long
stick cannot be equilibrated either, because the delay of the reflexes becomes t00 great.

This may cause problems even in the self-balancing of the human body.

The self-balancing of human beings i8, of course, a very complicated phenomenon.
The body is controlled by us to stabilize it in a position which is physically unstable with
‘a lot of degrees of freedom. However, even a simple inverted pendulum cannot be bal-
anced by means of a single position signal or a single velocity signal. As Fig. 4.5 shows,
there 1s no stability if either b; = 0 or by = 0 in (4.22). The human brain also has to use
both signals, and the ear does provide them. Roughly speaking, the semicircular canals
sense the angular velocity, while the attitude is sensed ’by means of the otolith organs

(see [29,52] and the references in them).

Let us, now, investigate the non-linear model of stick balancing when the control
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force has the simplest non-linear characteristics

QUt) = baga(t — 7) + bogu(t = 7) + bagd(t — 7). (4.26)

In order to make the investigation simpler, let us assume that the delay r is so small that

2

the terms 72 can be neglected in the power series of (4.26), that is

| Q(t) = —b17q1{t) + (b1 — bor)d1(t) + bogu (t) + bag(t) - 3b3rq§ (t)ar(t).

The substitution of this control force into the original model {4.23) results in the second

order scalar ordinary differential equation

' 6 - 6 .
(4 —3cos®q — -"E‘rbl cos g1)g1 + E(bl — tbo — 37b3g?) g1 cos gy

2 . 6g . 6 6
j%3qf 8in ¢y CO8 gy — Tg sing; + ;;“I'bo*h cos q; + ;—y—d—baqf cosq; = 0. {4.27)

'Theorem 4.16. The zero solution of (4.27) is exponentia y asymptotically
stable if

b0>mg, by > 1bg and T<—’E£.
65,

There is a Hopf bifurcation at b; = tbg, by > myg, 8b;7 < mil, which is supercritical
(subcritical) if b3 < 0 (b5 > 0).

Proof. The variational system of (4.27) at g; = 0 assumes the form
6 .. 6 ] 6
— —— [R— —_ 4 — —
(1 mirbi)z-}- — (b1 — 78p)z [(bo mg)z = 0.

The application of the Routh-Hurwits criterion gives the stability conditions of the zero

solution. If b; = rby, then there are two imaginary charactenstic roots

6(50 ~ mg)

Az =3, B= ml — 6r2by

Let us omit the fourth and higher degrees of ¢; in (4.27) and introduce the new variables
i =q Ya = q—l
’ B
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Then we get the following system at b; = rbg:

| (3;) N (-?,B g) (:;)"‘ (g3°y§+'921ygyg+gmyly§) . (4.28)

where
1 187 5
91 = Bl = 6r3by
Thus, in Lemma 4.10, we have
1
A=~
8921

For the parameter domain by > mg and 8b,7 < m!, the sign of A is _ﬁniqugly determined
by the sign of bs. Lemma 4.10 implies that the Hopf bifurcation is supercritical (sub-

critical) if b3 is negative (positive). If b3 = O then the Hopf bifurcation is degenerate.

A

The result of Th->rem 4.16 means that negative by has to be applied in th.
control (4.26) of the inverred pendulum if we want to have an orbitally asymptotically
stable periodic motion around the unstable equilibrium at by > mg and b; < bgr. Note
that (4.28) is not the differential equation of the flow on the centre manifold of the original
infinite dimensional system (4.23) with (4.26) at the critical parameters, it may be a good
approximation for small delays, though. Strictly speaking, the result of Theorem 4.16
does not provide any direct conclusion with respect to the non-linear vibrations in the
RDDE (4.23) with the non-linear control {4.26). A correct analysis requires an infinite

dimensional calculation for (4.23) just as it was in the proof of Theorem 4.11 for (4.18).

The second example of this section is related to another man-machine system

which is described by the block diagram of Fig. 4.6 [61].

In this system, a human operator manipulates an object by means of a hydraulic
servomechanism. We assume that the “machine” part of the system can be described by
the simplified transfer function Y given by

1

Y= JX3(T202 + 2¢TA +1)°
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where T and ¢ characterise the main properties of the servomechanism, and J is the
inertia of the controlled object. As regards the transfer function H of the human being,
there are a lot of sophisticated models for it in the literature. A goo& survey is given
in [38], for instance. In order to be able to make analytical stability investigation, we

consider the basic component of this transfer function:
H(A) = Ke ™ (LA + 1)

where K > 0 is the operator gain, 7 is the delay of the operator’s reflexes and L > 0
is the so-called lead time constant. This transfer function describes exactly the same

human response as (4.22) in the stick balancing problem.

H(\) Y{}) Z -

Fig. 4.6. Block diagram of a man-machine system

By applying the inverse Laplace transformation for the overall characteristic

function
_ _HY(})
T 1+ HNY ()

we can reconstruct the differential-difference equation for the scalar state variable z.

After the usual time transformation with respect to the delay r, it assumes the form

dt ¢ d° 2 42 KL d K rt
—z{t) + 2> —=z(t) + 1—'2—5555“) + 'j—ﬁ'&;x(t - 1)+ —3*&;2"2(# —1)=0. (4.29)

Let us investigate the stability of this linear system in the undamped case, that is when
¢ = 0.
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Theorem 4.17. Consider the RDDE (4.29) when ¢ = 0. Its trivial solution is
exponentially asymptotically stable if and only if

L>r and R(og)) <0
and there exists an integer 7 > 0 such that
R(O’(QJ)) <0 and R(“(?J‘-}-l)) > 0,

where R is given by

2 KL 3 4
R(w) =w* - o2 + S wsinw + £I-—cosa.:,

T2 J 12 J 17

and oy, {k=0,1,...) is the only real root of the equation
Lw = rtanw
in the interval (kx, kx + x/2}.

Proof. Since the characteristic function has the actual form

2 K L K rt
— )14 I_AQ ——=—2 —X A
D)) -+ T3 + 7 T Ae + TR

it is easy to see that
R(w) = Re D(iw),

: K r? :
S{w) = Im Dfiw) = -.—I-E(Iwcosw — rsinw).

According to the definition of o(x), (k = 0, 1,.. .}, the function § is positive in the intervals
(O,Ir:r(o)) and (0(2;41),%(2;5+2)), and it is negative in {0(z,},0(2;41)), ( =0,1,...). The
inequalities in the statement of the theorem mean that the function R changes its sign in
(0,0(0)) and in one of the intervals (o(2;),7(2;+1))- The positive seros of R are denoted

by py 2> ... > p,, where r is even since

R(0)>0 and lim R(w)=+oco.

w— oD
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Thus,

Z (.‘“l)k sgn S (px) + Z (~DFsgnS(px) =1+1=2.

PrE(0,9(0)) PRE(9(3/)10(2541))
Since R has no positive sero outside these intervals, the stability condition (2.225) with
m=2

i:(—l)k sgn S{px) =2

is equivalent to the system of inequalities in the statement, and Theorem 2.19 implies

the stability of fhe trivial solution. A
The actual expressions of the D-curves
R(w)=0, S(w)=0, wel0,00)

can easily be rearranged with respect to L and r, and Theorem 4.17 gives t1e regions
of stability bord.red by these curves in the parameter plane of the human paiameters L
and r in the man-machine system. Fig. 4.7 shows this stability chart when T, X/J are
fixed and ¢ = 0. The shaded domains are the stable ones.

Some Nyquist diagrams of the same system have been presented in [61]. When
¢ > 0, the structure of the stability chart remains the same as that of Fig. 4.7, it is much
more difficult to plot the D-curves, though. If ¢ is great enough, the stability domains

become joint.

As the stability chart shows, the system cannot be stabilized without a lead
compensator {i.e. when L = 0). If the operator has a long practice, then he is able to
choose the best lead time constant L, and his reflexes may be slower, he does not have
to concentrate intensely. However, if the operator’s reactions are too fast (r is about 0.1
second) and L is too great, then the system is unstable. This case can be thought as
human fluster. As the disjoint domains of stability clearly prove, it may be better to

have a greater delay in the system to achieve stability.
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Fig. 4.7. Stability chart of man-machine model (4.29),

T =0.1sec, K/J = 0.1sec, ¢ = 0

Although the models of man-machine systems in this section were definitely

simplified, the analytical investigation of these models and that of their results, the

stability charts, have valuable information about the roles of the actual parameters in

the system.
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4.3. Robotic_s

There are a lot of stability problems in robotics which cannot be explained if the
delays in the robot systems are ignored. Delays may occar in the control system of the

robot, in the information transmission as well as in the mechanical part of the robot.

The master-slave systems present a simple example when thé delay arises in the
control. As has been discussed in the previous section in connection with man-machine
systems, the deiay of the human operator’s reflex introduces a time léxg into the control
of master-slave systems. This is more than 0.1 second. The situation is very similar
in the case of a manipulator which is on-line controlled by a computer. The sample
time of the digital contrnl serves as a basis for the value of the delay; which & usually
about 0.01-0.001 second‘; However, the delayed feed-back is not continuous in digit:l
control, the model of th:se systems contains a so-called sero order holder as well. This
means that a pure discrete mathematical model [57] describes these computer controlled

systems better than a RFDE, the latter may be a good approximation, though.

In another important group of problems, the delay occurs in the information
transmission. This past-effect becomes crucial in undersea and space teleoperations.
The dead time is equal to the time needed by the ultrasonic or electromagnetic wave to

cover the distance to and fro between the master and the slave. This delay may exceed

0.1-1.0 second.

If a robot works in 2 material forming process like milling, rolling, etc., a delayed
feed-back can be found in the pure mechanical part of the robot as well. It is inversely
proportional to the relative velocity of the tool and the workpiece. This phenomenon

will be discussed in detail in the following section.

In this section, two simple mechanical models of robotics will be investigated.
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The first model shown in Fig. 4.8 describes a one degree of freedom, position controlled
elastic robot [56]. The position g; of the end-effector is detected directly. The control
of the robot is assumed to be a kinematical constraint. This means that the actuator,
acting on the first body in this model, provides a velocity ¢, which is determined by the

position of the end-effector:

q:(t) = —Kqa(t — 1),

where K > 0 is the gain and 7 stands for the delay in the control.

Q1 g2
+ =~ 5 t -
Q —
EEERER = my ma

VA

8
LSS ST T 77

Fig. 4.8. Mechanica. .nodel of an elastic robot

By means of the new variable v = ¢, this mechanical system is covered by the

following linear RDDE:

41 (t) o 0 0 a (t) 0 -K 0\ faft—1)
g0ty =1 O 0 1 @it} |+ {0 0 0 g20t—1) |,
\ o(¢) a? —a? —2ka v(t) 0 —2Kka 0 v(t — 7}
{4.30)

where @ = y/s/mg3 is the natural frequency of the undamped, uncontrolled system, and
x = f/(2maa) is the relative damping factor. As the following corollary shows, it is easy

to determine those parameters which provide stability for the undamped system.

Corollary 4.18. Consider the RDDE (4.30) with x = 0. Its trivial solution is

- exponentially asymptotically stable if and only if there exists an integer k > 0 such that

K T x \3
L)
a 2ar 2ar

1, 1 3
X —~——(2k7r+f-)~—-——(2kx+ f)
o T 2 T
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and

— < ——-—(2k1r+ —2--) + (ai)” (2kr+ ?"23)3-.

Proof. Since the characteristic function of (4.30) assumes the form

D(A) = X% + (ar)2A + (ar)? e
. ) a

]

the result of Corollary 3.5 can be applied here directly. If | «

ay = (ar)® and b= (ar)sé

are substituted into (3.10) in Corollary 3.5, then the stability conditions follow immedi-

ately, since all the parameters are positive. A

The stability chart for the damped system (4.30) is presented in Fig. 4.9 in the
plane of the dimensionless parameters (r¢} and (K/a). It has been constructed for a
small value of the relative damping (x = 0 01) with the help of Corollary 4.18 and the

D-subdivision method.

| £/a

unstable

0.1 4
stable

T L 1 ¥ ] [ 4 -
0 m

Fig. 4.9. Stability chart for robot model (4.30}, k = 0.01
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In robotics, the application of high gains K is preferred. As the stability chart
shows, it is very important to choose a proper ratio of the time delay r and the oscillation
time 2x/a of the basic vibration mode. . It is not true generally for these oscillatory

systems that the shortest possible delay is the best.

In the second example of this section, the mathematical model of an experimental
master-slave system [63] is examined. This system has been based on a force-reflective

manipulator. The linearized equations of motion have the form
(5 ) (36)+(5 2)(58)+ (5 %) (36)
(& 5) (2620) - (&),

with subscript 1 for the master and subscript 2 for the slave. Since the actual master-
ilave system was designed for space applications [63], the d:lay r in the information

transmission cannot be ignored. K > 0 is the gain related to the force reflection.

Let us suppose that an operator with delay £ of reflexes tries to find the ¢; =

g> = O position when there 18 no load on the slave, Le.

Since the operator gets the information about the position of the slave with the trans-

mission delay 7 (e.g. by means of a camera), the operator’s response is delayed by 7+ £:
Q)= —Lat —7-¢),

where L > 0 is the operator’s gain. Let us assume that the inertia m; and the viscous

friction f; are negligible in master. Then g; can be eliminated from the motion equations:

mag2(t) + fagalt) + Kga(t) — Kga(t — 27) + Lga(t — 27 — £) = 0. (4.31)
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This RDDE contains two discrete delays: 27 and 2r + £. A high viscous damping f;
in slave can eliminate the destabilizing effects of the delays. The following statement

estimates this value.

Corollary 4.19. The trivial solution of the RDDE (4.31) is exponentially
asymptotically stable if

fa>2(K+L)r+ L¢.

Proof. The RDDE (4.31) is a special case of the RDDE (3.29) where p = 2 and

K . _h o, _ K ’

ag —= —, ay s blz—“, bg:-—-—
ma ma ms; ma

b
1 =2r and m=2r+¢&.

Since all the parameters of (4.31) are positive, ag > by + by und ay > [by|ry + |bajr, is

rrue and Theorem 3.23 implies the statement. A

The stability region determined in Corollary 4.19 is shown in Fig. 4.10 in the

plane of the information delay r and the operator’s reflex delay £.

i

2(K+ L)

stable

|

0 f2/L
Fig. 4.10. A stability region of master-slave model (4.31)

It 1s much more difficult to determine an exact stability chart in the plane of the
delay parameters when the viscous damping is small in slave, that is when fo ~ 0. In
this case, the RDDE (4.31} has a similar form to that of equation (3.24). Its stability

- analysis can be carried out in a similar way as in Theorem 3.13 and in Corollary 3.14. Fig.
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3.13 shows that the stability chart of second order systems with two discrete delays may
be very complicated. Really, the stability chart of (4.31) also shows disjoint stability
domains either for small or great values of the operator’s gain L. As can be seen in

Fig. 4.11, the operator's delay ¢ can be longer and the information delay r should be

“shorter if L is great.

* T[sec]

-7
»\ stable )
— — — L/mg = 53/sec”
I / —————— L/mg = 80/sec?
/] |
- / \
/A
- / \ unstable
stable
i
1 1 H T L § E[sec]

Fig. 4.11. Stability chart of master-slave model (4.31), f = 0, K/m, = 100/sec?

In this section, the examples from the field of robotics call the attention that a
deep analysis of the delay-effects may be necessary if the stability properties of a robot

are not satisfactory.
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4.4. Machine tool vibrations

The accuracy of machine tools is highly affected by occurring vibrations. There
may be a lot of reasons for vibrations in machine tools. Most of them can be handled
with the conventional methods of machine dynamics. However, the sglf-extited vibrations
arising in the cutting process may cause serious difficulties. It is not easy to predict when
and why these vibrations appear, and to give a strategy to avoid them only by changing

the technological parameters, namely the feed, the depth of cut and the cutting speed.

The most important reason for instability in the cutting process is the so-called
regenerative effect. As a matter of fact, it is a past-effect which has a clear physical
explanation. Beca'se of some external disturbances, the tool starts a damped vibration
relative to the worxoiece, and the surface of the workpiece becomes wavy. After a round
of the workpiece (¢r tool) the chip thickness will vary at the tool because of th's wavy
surface. Thus, the cutting force depends on the actual and delayed values of the relative
displacement of the tool and the workpiece where the length of the delay is exactly equal

to the time-period r of the revolution of the workpiece (or tool). This delay is the central

idea of the regenerative effect.

In order to represent the open guestions in connection with this effect only, we
assume orthogonal cutting and simplify the mechanical model of the machine tool ac-
cording to Fig. 4.12. The machine tool is assumed to have one relevant natural frequency
a/(2x), where @ = y/s/m , and z is the direction of the corresponding oscillation mode.
If « = b/(2ma} denotes the relative damping factor, the motion equation of this system

has the form
1
z(t) + 2xai(t) + o®z(t) = ;‘-(F,( () — Fo(£0)) (4.32)
where F, is the z component of the cutting force F'. The cutting force depends, of course,
on the actual chip thickness f which is changing in time. In the case of steady-state
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cutting conditions, the chip-thickness is constant and it should have the theoretically

required value fg.

/ ////1//

OO
ANNNANRNNN

Fig. 4.12. Mechanical model of regenerative machine tool vibration

The cutting force is a strongly non-linear function of the chip thickness. This
function is known approximately from experiments in the literature. Its power series at

fo starts with the terms

dF.(fo)
daf

1 d&?Fy(fo) 1d2F.(fo)

Fo() = E(fo) + S5 (= o)+ 3 = (= o)+ 55 (= o) - (43)

In order to get a RDDE with respect to the variable z, we also need the mathematical
connection of the actual chip thickness and the tool displacement z. This geometrical

connection is clearly shown in Fig. 4.12:

f(t) = fo—z(t) + =(t — 1), {4.34)

which means that the actual chip thickness depends on the present and a previous dis-

placement of the tool. If v stands for the constant cutting speed, do is the diameter of
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the rotating workpiece and N denotes its angular velocity, then the time delay 7 can be

expressed as
dom 2x

v N’

T =

(4.35)

Substituting (4.33—35) into the motion e_quation (4.32), we obtain the simplest mathe-

matical model which describes the regenerative machine tool vibrations.

The variational system with respect to the z = 0 solution can easily be deter-

mined if (4.33) is cut at the linear terms:

Fo(f) = Fo(fo) + ko(f — fo} -

As (4.34) shows, the linear approximation of the cutting force variation is given by

Fo(£(8) - Fa(0) = ka(={t - 7) - 2(8) (4.36)

where the constant cutting force coefficicnt k, is determined by the technological param-

eters according to
dF.(fo)

k, = 223000

df

It is, for instance, approximately linearly proportional to the width of cut, it depends

inversely on the depth of cut, and it is almost independent from the cutting speed.

The substitution of formulae (4.35) and (4.36) into (4.32) results in the scalar,
linear, second order RDDE

k k 2
z(t £t 24 22 = it — Z2). .
z(t) + 2xaz{t) + (a® + m)a:(t) m:z:(t N) (4.37)
It has the same form as the RDDE (3.26) where
— 2ka X BRIV AT Y LA
al—chaN, ag = (a +m)(N)’ b—m(N).

The stability chart of {4.37) in Fig. 4.13 has been determined in the same way as in

Example 3.16 for the equation (3.26). The parameters of the machine tool are fixed, and
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the stability chart is presented in the plane of the parameters k, and N. It is easy to
transform this chart into the operational space of the technological parameters, the feed,

the depth of cut, and the cutting speed. .This chart is of great importance in technology

design.
b &, [MN/m] oA
‘ uM\_/\//\
stable
1' r
Nir.p.m]

Y T T tuns

0 500

Fig. 4.13. Stability chart of machine tool vibration model (4.37),
m = 50kg, a = T75/sec, k = 0.05

The mathematical model (4.37) describes well the basic stability properties of
regenerative machine tool vibrations. The steady-state cutting process is unstable if
the cutting force coefficient k, is too great. As Fig. 4.13 shows, there is a domain at
k, 2 3—4 MN/m, where the stability of the system depends “periodically” on the cutting
speed. This phenomenon is exactly the same as it was in the case of the predator-prey
model (4.16) on the stability chart of Fig. 4.1. We have to recall that the angular velocity

N (or the cutting speed v) is inversely proportional to the time delay r in {4.35).

These basic stability properties given by the stability chart of Fig. 4.13 have
been verified experimentally for the middle range of cutting speeds [60]. However, the
experiments show that the real cutting process has much better stability properties at

low and high cutting speeds than could be expected on the basis of the mathematical
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model (4.37).

‘ k,[MN/mj
\
1 \ unstable
I\
\\"‘. _
stable
1
N[r.p.m.]
T Y Y Lot

0 500

Fig. 4.14. Stability chart of machine tool vibratica model (4.39),
m = 50kg, a = T75/sec, k = 0.05,.6' = ,.001

The so-called dynamic cutting theory of Tobias [60] h.s introduced an additional
damping term into (4.37) at low cutting speeds. This theory considers the cutting force

variation in the form

Fo(£(8) = Falfo) = ka(a(t — 1) — 2(t)) - Ckari(t) (4.38)
where
1
ko= 1k

is the chip thickness coeflicient and C is the penetration rate factor. The physical inter-
pretation of (4.38) is quite complicated and it is different for turning, milling and drilling

[60]. If {4.38) is used in the motion equation (4.32), the mathematical model has the

form

- C k, 2%\ . 1 k,
a:(t) + (2&0: + m;—ﬁ—) :!:(t) + (a2 -+ m;)x(t)

1 k, 27
= Gontlt-y) (439)

which is very similar to the basic model (4.37). The only relevant difference between

the two models is the appearance of N™! in the coefficient of # which results in a high
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damping if the angular velocity NV (i.e. the cutting speed) is small. The stability chart of
this model is presented in Fig. 4.14. The penetration rate factor C =0.001.is a typical

experimentally determined value for turning.

The comparison of the stability charts of Figs. 4.13 and 4.14 shows that the
second model is more adequate. The mathematical model (4.39) gives gréater:stability
regions at low cutting speeds. However, .it still does not explain thé'experimenta.l fact
that there is an improvement of stability properties at high cutting speeds as well. The
model given beiow_solves this problem, but this modification of the Basic model (4.37) is

very different from that of the dyramic cutting theory in (4.38).

The original model {4.37) is based on the regenerative effect which takes into
account a “long” :ime delay 7, the time period of one revolution of the wérkpi e, But
there exists a short regenerative effect as well. The mechanical model in Fig. 4.1: shows
that the cutting force F is the resultant of a distributed force system p on the active face
of the tool. In the case of steady-state cutting conditions, its £ component is assumed

to have the form
p=(f,¥) = Fo(fluwz(¥), ¢ €[0,A]

where the function w, describes the shape of the distributed force system in the direction

z, and h i8 the contact length. We assume that

/Ohw,w)dzp =1.

Instead of (4.36) or (4.38), the improved formula of the cutting force variation is given
by

F.(f(u)) — Fo(fo) = k, f w, (¥) (z(u — dox — ¢} — z(u — ¥))dy (4.40)

where k, is the same cutting force coefficient as it was in (4.36). Formula (4.40) gives the

cutting force variation with respect to the new variable u instead of the time t, where

u=uvt (4.41)
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can be thought of as an arc length. This explains that the long delay is represented by
the circumference don of the cylindrical wdrkpiecé instead of the time 7 in accordance
with formulae (4.35). If the transformation (4.41) is applied for the motion equation

(4.32) as well, and (4.40) is substituted into it, we obtain the scalar RFDE

d3 ad |, o\ 2 k, [* : .
Zuz 2(u) +2r——afu) + (;) z{u)+ — /; wz(¥)(z(u— ¥) — z(u—dox — ))dy = 0.
With the help of the dimensionless arc length

u

dor

U=
thizs RFDE can be transformed into the form
2x 2-3' 2
"~ fatalpn o 2 {47 -
z''(3) +2K.aN:c {6) + « (N) z(#)

i/q . - R
o2 2 W) (i) - 1- P =0, 4

m\N
where / denotes the derivative with respect to %. The dimensionless weight function W,

is defined by w, in the following way:

W. () = dorwa(dord), $eD, %1, (4.43)
where the new parameter
g= é-;‘_w = % | (4.44)

gives the ratio of the lengths of the long and the short delays in the system. The
parameter ¢ will have an important role in the stability investigation. It can be expressed
by means of distances: it is the ratio of the circumference don of the cylindrical workpiece
and the length A of the contact line of the chip and the active face of the tool. But it can
also be expressed (see (4.35)) as the ratio of the time peﬁod 7 of one revolution of the
workpiece and the time £ needed by a particle of the chip to slip along the active face of

the tool (1.e. £ = h/v). Roughly speaking, there are two delays in the system, a discrete
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one related to the long delay, and a continuous one related to the short delay. In order

to get a clear picture about them, let us transform the RFDE ({4.42) into the standard

form
ni) + 200 2 (3) 4 o2 ()
T (u)+2naNa:(u)+a(N) a:(u)
k, 72m\2 [° k, (2x\2 f-1 o
== —8)z{ii + 0)dh — (== Y ANl _
+m(N) _sz( )z{i + 6)dé m(N) /—1—1/1Wz( 1-6)z(d+6)dd =0,

| (4.45)
where the long delay is just 1. The stability investigation of the model (4.45) is, of course,

much more complicated than those of the RFDEs {4.37) and (4.39). We also have two
new parameters: the function w, and the scalar k which appear as W, and g in (4.45)

according to formulae (4.43) and (4.44).

The RFDE (4.45) is simplifiec ‘f we consider the exponential weight function w,
given by
wa($) = -e ¥, €0, 00)

which is a reasonable approximation to describe the distributed force system p, it has
infinite support (h = oo, ¢ = 0), though. Formula (4.43) yields

- d :
Wz('j)) ;;r “d{)"‘b/ho = Wz(—e) = qerBﬂ’ 4 c (ﬂw,O]

where go has been defined as dgx/hg. The parameter go has the same meaning as ¢
has in (4.44}, since hg can be thought of as the measure of the short continuous delay.
Substituting this kernel into (4.45), and differentiating the equation with respect to #,
the integrals can be calculated as in the cases of {3.36) in Theorem 3.31 and (4.8) in
Theorem 4.6. Thus, the second order scalar RFDE {4.45) can be transformed into a
third order scalar RDDE as follows:

2" (5) + (%—%ha%)‘”"( )+ (2’“"2—9“ 2( V) )

N
+(a2 ) (i\":) goz(t) — k;(%) qqx(ﬁ ~1}=0 : (4.46)
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This model involves the original model (4.37) as well. If the short delay is negligible, i.e.
go — oo, then (4.46) becomes equivalent to {4.37). If the long delay-eﬁect is negligible,
lLe. go = .O, then (4.46) gives the ordinary differential equation of a simple damped
oscﬂlator. This mathematical model is very much different from the improved model
(4.39) of the dynamic cutting theory, but it gives a similar stability chart to that of Fig.
4.14. .The chart in Fig. 4.15 has been constructed in the same way as it was done in

Example 3.21 for a third order scalar RDDE. The stability chart shows great regions of
stability at low cutting speeds.

i %.[MN/m]|
] \\
\\
- \ unstable
\\
\\
107 | \‘\\_M/\/\/\/\
stable
Nir.pm.]

0 100 ' ' T o

Fig. 4.15. Stability chart of machine tool vibration model {4.46),
m = 50kg, o = 775 /sec, k = 0.05, go = 25.1

However, we can obtain even more realistic results if the weight function w, has

a finite support. For example, a good approximation of the force distribution on the tool

18 given by
we(y) = ;1;(1 + cos(%gb)) , Y €[0,h],

where h is finite. The length h of the contact line of the chip and the tool (see Fig.

4.12) may be very small in comparison with the circumference of the workpiece, i.e.
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q = dox/h may be great, but h is not negligible. Formula (4.43) gives the dimensionless

weight function _
. oy
Wz(“g) = Q(l + COS(QI@)) , b€ {_-:0].'
q

The actual form of the REDE (4.45) is as follows:

" LLSRTPNPYe” LI
z (u)+2&.aN:c(u)+a. (N) z(1)

-1

(1+c08('q1r(1+0)))z(ﬁ+0}dﬂ_) =0.
- {447)

-{-q-lsi (-2—5-)2 (['0 | (1+cos(gx8)) z{i+6)ds—

miN ~-1fe ~1-1/g
Its stability investigatioﬁ needs a tedious calculation, but it can be carried out in the
same way as the RFDE (3.30) was examined in Theorems 3.24, 3.26 and 3.27, or as the
RFDE (4.8) was analysed in Theorem 4.7. The stability chart of (4.47) is shown in Fig.
4.16 when ¢ = 100. This ratio g of the long and short Je¢lays may be a typical value
for turning. This stability chart gives all the qualitative cnaracteristics experienced in
practice. The stability properties of the systerﬁ improve at low cutting speeds, but they

also become better as the cutting speed 18 increased above 200r.p.m..

4 k,[MN/m]|
N ’M/\/\/\/\/\

\\"“ ._-_-—._“__o,’—"""

11
stable
Nir.p.m.]

Y T T Y T bl

0 100

Fig. 4.16. Stability chart of machine tool vibration model (4.47),
m = 50kg, o = 775/sec, k = 0.05, ¢ = 10C

145



l ks [MN/m]

unstable

107
stable

y T - ¥ L

0 100 * Nir.p.m.]
Fig. 4.17. Stability chart of machine tool vibratinn model (4.48),

m = 50kg, a = 775/sec, x = 0.01, ¢ = 4.9

Fig. 4.17 shows an even more complicated stability chart. In this case, the short

regenerative effect is strong, since ¢ = 4.9 only, and the weight function w, is given by

w, () = %sin(%gb), ¥ €0, A].
Hence,
Wa(~0) = ~Gasin(gns), 0 &[0

should be substituted into the REDE (4.45). This RFDE has the form

2x 27\ 2
"y~ AR s 2<% -
T (u)+2n:aN:z(u)+a (N) z(&)

_qk_n: (%)2%( f " sin(gnt)a(a+8)di— [ - sin(qw(1+a))z(a+o)da) —0. (4.48)

~1/q -1i-1/q

It may represent a model of drilling quite well, since ¢ is usually small for drilling, and

the maximum value of the distributed cutting force is “behind” the cutting edge (at
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¢ = h/2 in the case of the actual weight function w,) because of the negative rake angle

at the chisel edge of the drill.

The non-linear machine tool vibrations can be studied if the non-linear cutting
force (4.33) is substituted into the motion equation. Athough the equation becomes quite
complicated when the non-linear terms are fitted into the RFDE (4.45), it is still eagy
to prove the existence of Hopf bifurcations at the critical parameters. At the stability
limits, on the stability charts of machine tool vibrations, there are two \compiex conjugate
characteristic r;)ots which cross the imaginary axis. The nature of the Hopf. bifurcation
should be investigated as it was in the case of {4.18) in Theorem 4.11. There may be
a long series of bifurcation points if the bifurcation parameter is the cutting speed v
or the angular velocity N which are inversely proportional to the long delay r. If we
consider the real, experimentally determinec. :oefficients of the non-linear terms in (4.33},
then the existence of subcritical Hopf bifur.ations can be proved in the mathematical
model. Note that t;.he second derivative of the cutting force F, with respect to the chip
thickness f is always negative, while the third derivative is usually positive in practice.
The calculations, of course, cannot be carried out by hand, but a computer program like
the one used in the investigation of the RFDE (4.21) can follow the long algorithm of
the Hopf bifurcation analysis. The experiments in [49] prove the existence of an unstable

periodic motion around the stable equilibrium related to the steady-state cutting.
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