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This paper deals with the nonlinear models of regenerative chatter on machine tools.
The limitations and actual problems of the existing theory are summarized. These
cause difficulties in industrial applications, like in the design of optimum technolog-
ical parameters, adaptive control and/or vibration-suppression strategies. An indus-
trial machine-tool vibration case is analysed experimentally and conclusions are
drawn with respect to the likely mechanism of the nonlinear behaviour in a four-
dimensional phase-space representation embedded in the infinite-dimensional phase
space of regenerative chatter. In some respects, the whole phenomenon seems to be
analogous to the turbulence in fluid mechanics.
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1. Introduction

Undesired relative vibrations between the tool and the workpiece jeopardize the
quality of machined surfaces in the case of cutting. If the modal parameters (natural
frequencies, proportional relative damping factors, vibration modes) are identified on
a machine tool (including the actual tool and workpiece), and the cutting force is also
well estimated, then there is a possibility that we may predict these vibrations, or
design the technology in a way that the instability of the cutting is avoided. If these
methods are fitted in technology–parameter–optimization processes and software,
great financial advantage can be achieved (see Halley et al . 1999).

One of the most important causes of instability in the cutting process is the so-
called regenerative effect. The physical basis of this phenomenon is well known in
the literature. Because of some external perturbations, the tool starts a damped
oscillation relative to the workpiece, and the surface of the workpiece becomes wavy.
After a round of the workpiece (or tool), the chip thickness will vary at the tool
because of this wavy surface. As a consequence, the cutting force depends on the
actual and delayed values of the relative displacement of the tool and the workpiece,
where the length of the delay is equal to the time-period τ of the revolution of the
workpiece (or tool). This delay is the central idea of the regenerative effect.

There exist, of course, other physical mechanisms which lead to relative vibrations
between the tool and the workpiece. One of these is related to the thermoplastic
behaviour of the chip material (see Davies & Burns 1999); another important one is
described via two-and-higher-degree-of-freedom vibrations in the presence of friction
between the tool and chip–workpiece contact surfaces (see Grabec 1988; Wiercigroch
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1997). The unification of these different kinds of models and the clarification of
possible overlaps between them are still open problems.

The prediction of the regenerative vibrations is difficult in practical cases, even
when the above-mentioned experimental preparatory work (modal analysis and cut-
ting-force estimation) is carried out successfully, as shown by Minis & Berger (1998).
In spite of the fact that the linear stability analysis of the stationary cutting under
regenerative conditions can be considered as a solved problem on the research level,
the results are rarely applied in practice and the major development efforts are taken
in the direction of adaptive and/or active control of the chatter. One reason for this
is the uncertainty of some of the parameters in the model. But even if the parameters
are well estimated, the results of the linear stability analysis are limited. Experiments
(see Hanna & Tobias 1974; Shi & Tobias 1984) in the 1970s and 1980s suggested that
unstable periodic motions may exist around the otherwise stable stationary cutting,
and the amplitude of this motion can be very small. In other words, the domain of
attractivity of the stable cutting may be very small, and the whole cutting process
may be very sensitive to perturbations. This means a serious practical limitation to
the industrial applicability of the (otherwise still complicated) linear models.

The specialist literature (Stépán & Kalmár-Nagy 1997; Nayfeh et al . 1997; Kalmár-
Nagy et al . 1999) of nonlinear dynamics has been dealing with this unstable periodic
motion since the mid-1990s, using both analytical methods and computer simula-
tion. The early results were often contradictory to each other and also to the exper-
iments, and the complexity of the calculations made them inaccessible for industrial
applications. In this paper, however, experimental and theoretical research results
are reported which may provide simple-to-use analytical formulae on the domain of
attraction of stable stationary cutting for technology design using computer algebra,
and which may also help to show a deeper understanding of the nonlinear regenera-
tive chatter. This deeper understanding is partly based on an industrial case study,
where the development of quasi-periodic oscillations, chaotic ones and fractal-like
machined surfaces are experienced and analysed in order to construct the topologi-
cal mechanism of regenerative vibration development in a four-dimensional subspace
embedded in the infinite-dimensional phase space of regenerative chatter.

2. Linear model of regenerative chatter

In order to represent the open questions related only to the time-delay effects, a
cartoon model of the machine tool is first considered in the form of a one-degree-
of-freedom (one-DOF) damped oscillator, with the characteristic parameters ωn and
ξ denoting the natural angular frequency of the undamped system and the relative
damping factor (or dimensionless coefficient of viscous damping), respectively. This
simple model can still be useful in those practical cases where there exists a well-
separated lowest natural frequency and corresponding vibration mode of the machine
tool (see Tlusty & Spacek 1954; Tobias 1965; Stépán 1989). The model in figure 1
shows the case of the so-called orthogonal cutting.

In spite of the fact that the single mechanical DOF gives the impression that the
system can be uniquely analysed in the phase plane of the tool displacement and
velocity, and so the well-known basic methods of linear and nonlinear dynamics can
be used here, the corresponding mathematical model is ‘infinite dimensional’; the
phase space is the function space of continuous functions above the ‘time’ interval
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Figure 1. Mechanical model of regenerative chatter for orthogonal cutting.

[−τ, 0], and nonlinear vibration phenomena may occur much more complicated than
the ones expected from the mechanical DOF. In this respect, the complexity of the
regenerative vibrations experienced in the cutting process can be compared with
that of the turbulence phenomenon in fluid mechanics—both take place in infinite-
dimensional phase spaces. This is due to the presence of the time delay τ , which is
inversely proportional to the cutting speed v as explained in § 1.

The mathematical model of the above mechanical model is a delay-differential
equation (DDE). The mathematical modelling of regenerative chatter goes back to
the 1950s, when the theory of delay-differential equations started its development in
mathematics.

Time delay often occurs in control systems, where its presence is related to the
delay in the information transmission, and it is rarely experienced with a considerable
value in pure mechanical systems like machine tools. Note, however, that dynamic
contact problems of elasticity and/or plasticity often lead to similar delay-differential
equation models, as in the case of rolling metal sheets, or when an elastic tyre rolls on
a rigid ground, as shown by Stépán (1999). This similarity is not surprising when the
travelling-wave-like solutions of the corresponding partial differential equation (PDE)
models help to transform the two infinite-dimensional systems into each other.

In the specialist literature of control theory and mathematics it is a well-known
‘rule of thumb’ that increasing delay tends to destabilize any dynamical system. In
other words, ‘good memory causes trouble’. However, the regenerative chatter of
machine tools is an exception even in this respect: in mechanical systems with low
damping (like the machine-tool structures), the time delay may also have a stabilizing
effect. These special cases are analysed with special attention in the mathematical
literature by Kuang (1993) or Wang & Hu (1999).

Clearly, the mechanical system presented in figure 1 is linear. There have been dis-
cussions on the importance of machine-tool structure nonlinearities (see Shi & Tobias
1984; Nayfeh et al . 1997) relative to the cutting-force nonlinearities. It may hap-
pen that special machine-tool structure deficiencies make the corresponding struc-
tural nonlinearity important, but the detailed experimental analysis presented in
the appendix of Shi & Tobias (1984) is convincing: the cutting-force nonlinearity
determines most of the nonlinear vibrations.
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Figure 2. Nonlinear cutting-force characteristic.

The standard stationary nonlinear cutting-force dependence on chip thickness is
presented in figure 2. The simplest experiment-based approximation of this function
for small chip thickness (h < 0.9hinf) is the well-known ‘three-quarter rule’, where
the dependence on the chip width w is linear and the dependence on the cutting
speed v is neglected,

Fx(w, h) = c1wh
3/4. (2.1)

Its linear part at the theoretical chip thickness h0 is described with the help of the
so-called cutting coefficient k1, defined as

k1(w, h0) =
∂Fx(w, h)

∂h

∣∣∣∣
h0

= 3
4c1wh

−1/4
0 . (2.2)

Let p(θ) describe the shape of the stationary stress distribution along the active
face of the tool in the time-domain above θ ∈ [−σ, 0], with∫ 0

−σ

p(θ) dθ = 1, (2.3)

where σ is the time needed for a chip particle to slip along the active face of length l
(see also figure 1). Consequently, this pressure distribution is p(s/v)/v along the
space coordinate vθ = s ∈ [−l, 0] of the tool face, where the contact length is l = vσ
and the cutting-force distribution is described by Px(w, h, s) = Fx(w, h)p(s/v)/v. If
this distributed force system on the tool edge can be modelled properly (for exam-
ple, by experiments, simulation and special finite-element methods, as done by Usui
et al . (1978), Davies et al . (1997) and Marusich & Ortiz (1995), respectively), the
corresponding short time-delay effect can be integrated into the cutting-force expres-
sion, as explained by Stépán (1998). The chip-thickness variation along the active
face can then be approximated as

∆h = h(t, θ) − h0 = x(t− τ + θ) − x(t+ θ), t ∈ [t0,∞), θ ∈ [−σ, 0], (2.4)

and the linear approximation of the cutting-force variation has the form

∆Fx ≈ k1

∫ 0

−σ

p(θ)(x(t− τ + θ) − x(t+ θ)) dθ. (2.5)
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When this cutting-force variation is substituted in the equation of motion of the
machine-tool model, the following integro-differential equation is obtained:

ẍ+ 2ξωnẋ+ ω2
nx =

1
m

∆Fx(∆h)

⇒ ẍ(t) + 2ξωnẋ(t) + ω2
nx(t) +

k1

m

∫ 0

−σ

p(θ)x(t+ θ) dθ

− k1

m

∫ −σ

−τ−σ

p(τ + θ)x(t+ θ) dθ = 0. (2.6)

In accordance with Usui et al . (1978), a good approximation of the shear-stress
distribution can be given by an exponential function of the form

p(θ) =
1
σ0

eθ/σ0 , θ ∈ (−∞, 0], (2.7)

where σ0v = l0 can take the role of an approximate finite contact length, although
σ → +∞ in this case. The mathematical advantage of this weight function is that
the integrals in the equation of motion can be calculated by parts, and after differ-
entiating the whole integro-differential equation again with respect to the time t, the
following third-order DDE serves as a basic mathematical model:

σ0
...
x (t) + (1 + 2ξωnσ0)ẍ(t) + (2ξωn + ω2

nσ0)ẋ(t)

+
(
ω2

n +
k1

m

)
x(t) − k1

m
x(t− τ) = 0. (2.8)

Clearly, this model provides two well-known limit cases. When the short regener-
ative effect is very strong, that is, σ0 → ∞, then the long delay effect is negligible,
and the equation of a simple damped oscillator is obtained after an integration with
respect to the time t,

ẍ(t) + 2ξωnẋ(t) + ω2
nx(t) = 0. (2.9)

This system is always asymptotically stable, of course. When the short regenerative
effect is negligible, then σ0 → 0, and so the pressure distribution tends to the Dirac
delta function, i.e. p(θ) → δ(θ), and the equation of motion assumes the form of a
simple second-order delay-differential equation,

ẍ(t) + 2ξωnẋ(t) +
(
ω2

n +
k1

m

)
x(t) − k1

m
x(t− τ) = 0. (2.10)

The stability of this system is well studied in the literature (see, for example, Stépán
1989), and it shows that the simplified equation of motion has serious limitations at
low and high cutting speeds. The so-called dynamic cutting theory of Tobias (1965)
tries to improve this simple model for low cutting speeds only, but the experimental
identification of the key parameter in his model, the so-called penetration factor C,
is difficult and needs special consideration for the different cases of turning, milling
or drilling. Tlusty (1978) is more successful in this respect.

Note that models with more than one discrete time delay in the equations of motion
also occur in the case of high-speed milling with large feed rate (together with the
aforementioned time-periodic coefficients and parametric excitation), as shown by
Balachandran & Zhao (2000) and Bayly et al . (1999) or, in the case of grinding,
Davies (1998).
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3. Linear stability analysis and stability charts

The stationary cutting is described by the constant chip thickness h(t) ≡ h0, i.e. by
the trivial solution x(t) ≡ 0 in the equation of motion (2.6). Its asymptotic stability
in the Lyapunov sense is determined by the characteristic function D. This comes
either by the application of the Laplace transformation in (2.6) or simply by the
substitution of the trial solution x(t) = A exp(λt), A, λ ∈ C,

D(λ) = λ2 + 2ξωnλ+ ω2
n +

k1

m

∫ 0

−σ

p(θ)eλθ dθ − k1

m

∫ −τ

−τ−σ

p(τ + θ)eλθ dθ. (3.1)

When the exponential weight function (2.8) is used, this characteristic function sim-
plifies to

D(λ) = λ2 + 2ξωnλ+ ω2
n +

k1

m

1
1 + σ0λ

− k1

m

e−λτ

1 + σ0λ
, (3.2)

which corresponds to the DDE (2.8) after multiplication by the denominator 1+σ0λ.
The stability charts are traditionally constructed in the plane of the parameters

Ω = 2π/τ and k1. The reason for this is that the cutting speed is linearly proportional
to the angular velocity Ω of a cylindrical workpiece (often given in RPM), while the
cutting coefficient k1 is linearly proportional to the other important parameter, the
width of cut w, as shown by (2.2).

The borders of the stability domains in the stability chart can be constructed
by substituting pure imaginary characteristic roots λ = iω into the characteristic
function above. Then, separating its real and imaginary parts, we obtain the real
functions

R(ω) = ReD(iω) = −ω2 + ω2
n +

k1

m

1 − cos(ωτ) + σ0ω sin(ωτ)
1 + σ2

0ω
2 , (3.3)

S(ω) = ImD(iω) = 2ξωnω +
k1

m

sin(ωτ) − σ0ω(1 − cos(ωτ))
1 + σ2

0ω
2 . (3.4)

The R(ω) = 0, S(ω) = 0 equations give an infinite series of curves in the parameter
plane. It is not trivial to choose the stable domains bordered by them. The mathe-
matical theory which supports this job is given in Stépán (1989), and is based on the
condition that all the infinitely many characteristic roots are located in the left half
of the complex plane. The curves themselves can be expressed in a more explicit form
for Ω = 2π/τ and k1, but we do not present them here because of their complexity.
Still, the parameter ω ∈ ((2j − 1)π/τ, 2jπ/τ), j = 1, 2, . . . , appears in the formu-
lae, which also gives the angular vibration frequency at the limit of the stability. A
stability chart like this can be constructed by a simple computer program based on
the above formulae, and this is presented in figure 3 for the parameters m = 50 kg,
ξ = 0.05 and ωn = 775 rad s−1.

As is clearly shown in figure 3, the stability limit has an almost fractal-like struc-
ture for low cutting speeds, and the shaded stable and the white unstable domains
alternate for varying cutting speeds when the cutting coefficient is in the range of
3 N µm−1. Also, there is an improvement in stability for low cutting speeds and
for high speeds, too. The stability properties are worst in the middle range of the
workpiece speed of 700 RPM. The complexity of these stability charts, even for the
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Figure 3. Stability chart with short and long regenerative effects.

simplest mechanical models like the one in figure 1, explains why it is so difficult to
achieve simple-to-use practical conclusions regarding machine-tool vibrations.

When the short regenerative effect is negligible, that is, σ0 → 0 and the stress
distribution on the active face of the tool tends to a concentrated cutting force in
accordance with p(θ) → δ(θ), the characteristic function (3.2) simplifies to

D(λ, k1) = λ2 + 2ξωnλ+ ω2
n +

k1

m
− k1

m
e−λτ , (3.5)

and the stability limit curves in (3.3) and (3.4) become

−ω2 + ω2
n +

k1

m
(1 − cos(ωτ)) = 0, (3.6)

2ξωnω +
k1

m
sin(ωτ) = 0. (3.7)

Now, the stability limit curves (or D curves) can be expressed easily in a relatively
compact algebraic form,

Ωj(ω) =
πω

jπ − arctan[(ω2 − ω2
n)/(2ξωnω)]

, j = 1, 2, . . . , k1,

k1(ω) = 1
2m

(ω2 − ω2
n)2 + 4ξ2ω2

nω
2

ω2 − ω2
n

.




(3.8)

Since the cutting coefficient k1 is positive, the second formula already shows that
the vibration frequency after the loss of stability will always be above the natural
frequency of the system. Also, a minimum value of the cutting coefficient can be
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found for some critical running speeds Ωcr,j . These are similar to the minimum
values shown on the lobes of figure 3, but they are the same for each lobe. This
critical minimum value of the cutting coefficient gives a conservative estimate for the
stable domains and can be calculated by checking its derivative in (3.8),

dk1

dω
(ωcr) = 0 ⇒




ωcr = ωn
√

1 + 2ξ,

k1,min = 2mω2
nξ(1 + ξ),

Ωcr,j = Ωj(ωcr), j = 1, 2, . . . .

(3.9)

In the above model, using concentrated cutting force, this critical frequency (to-
gether with the critical cutting coefficient) is always the same at any of the critical
running speed values Ωcr,j , and it is just a bit greater than the (lowest) natural
frequency of the machine tool. This fact often leads to a misunderstanding, when
engineers identify the occurring vibration as a kind of resonance. Regenerative chat-
ter is, however, a kind of self-excited vibration.

4. Experimental observations

(a) A case study from industry

A machine-tool vibration problem caused a bottle-neck in the manufacturing process
of a workshop. A numerically controlled cutting machine was used for thread cutting
using a comb-like tool of seven edges, as shown in the enlarged part of figure 4. The
shaded regions explain the approximate chip formation during cutting. The thread
had to be cut on the internal surface of a cylindrical workpiece. The workpiece had
a length of 220 mm, while its internal diameter was about d = 176 mm.

Actually, the internal surface of the workpiece was slightly conical, having a diam-
eter smaller by 3 mm at the middle cross-section than at the two ends. This had
no effect on the dynamics of the cutting. However, the thread had to be cut start-
ing from one side of the cylinder in the direction of its mid part, and it had to
be repeated again from the other end. In order to achieve greater efficiency and to
decrease costs, a special chock was used on the machine tool. This chock made it
possible to turn over the workpiece about an axis perpendicular to the main shaft
axis through the geometrical centre of the workpiece, even during the running of the
main shaft (see figure 4). During this turnover, the tool was withdrawn from the
cylinder, but the main shaft did not have to slow down to rest and to accelerate
again; also, the workpiece had neither to be released from the chock nor to be turned
over by the machinist or by a service robotic arm.

These arrangements had important dynamical consequences. The most important
fact was that the bearings/shaft/chock/workpiece structural part had a low first nat-
ural frequency due to the great mass of the complicated multi-functional chock and
due to the relatively low stiffness of the tubular shaft and that of the roller bearings
having soft tubular rollers. The mass of the chock itself was ca. 340 kg, the work-
piece and other oscillating parts were about another 6 kg. At the centre of the chock,
the reduced stiffness of the shaft on the soft supports was about k = 97 N µm−1,
according to our static measurements and simple approximate calculations.
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Figure 4. Thread cutting and machine-tool mechanical structure.

As the simple mechanical model in figure 4 shows, the first vibration mode in the
direction normal to the main shaft had a natural frequency of

fn =
ωn

2π
=

1
2π

√
k

m
= 84.1 Hz. (4.1)

This natural frequency was also confirmed by the results of simple impact experi-
ments. The chock was hit by a rubber hammer, and the vibrations of the chock were
detected by a piezo crystal accelerometer (while the main shaft did not rotate, of
course). It was also checked, by numerical estimations, that the gyroscopic effects
and the twisting torque on the shaft did not affect the natural frequency by more
than 1%, neither did the increase in temperature at the bearings during rotation.
Still, these may cause ca. 1 Hz deviation between measurement results on the same
machine tool when it is out of operation and during machining. This small value
can be important in the explanation of the regenerative chatter frequency devia-
tions, where the theoretical and experimental results should coincide in a narrow
frequency interval of ca. 6 Hz.

The impact-induced vibration signal was also useful in identifying the relative
damping factor in the simplified model of figure 5. The calculation of the logarith-
mic decrement and its conversion to the relative damping factor gave the result of
ξ = 0.025.

The results also confirmed that there are no other vibration modes with low natural
frequencies close to the one mentioned above. Actually, this real machine was just
the same, from the mechanical model viewpoint, as those which are often used in
laboratory experiments, when an elastic element is fitted typically between the tool
and the tool-holder (see, for example, Moon & Johnson 1998). Still, the model in
figure 5 has two degrees of freedom, due to the cylindrical symmetry. According to
the approach proposed by Tobias (Shi & Tobias 1984), the cutting-force variation
∆F is considered to have the same direction as the cutting force itself. This means
that the oscillation of the two-DOF system can be described with the help of the
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single coordinate x only, which determines the variation of the chip cross-section
geometry. The vibration itself will take place in the y-direction in the same manner,
but this direction has no linear effect on the chip geometry, so we do not include
this in the regenerative vibration model, and only the cutting-force variation in the
x-direction is modelled and calculated.

(b) Cutting coefficient and overlap factor

Although the tool has seven edges (as shown in figure 4), the first does not operate
according to the designed technology. The time delay between the edges remains
equal to the time period of one rotation of the workpiece. This means that, in spite of
the fact that the number of cutting edges is more than one, the parametric excitation
effect, which occurs typically in the milling process due to the time-varying number
of active tool edges (see Minis & Yanushevsky 1993), does not show up here.

There is another effect, however, which does modify the conventional linear model
described in § 2, and this is due to the fact that the second edge cuts the even
(non-machined) surface and, thus, there is no regenerative effect there. This can be
described by the use of a so-called overlap factor q in the following way.

The cutting force is estimated according to the three-quarter rule, as in (2.1). With
respect to the jth tool edge, the corresponding coefficients c1,j in the formula

Fx,j(wj , hj) = c1,jwjh
3/4
j (4.2)

are estimated from standard engineering tables, taking into account the ultimate
stress (ca. 490 MPa) of the workpiece material and the spatial orientation of the
cutting force relative to the x-direction (which is ca. 60◦ in the x, y-plane, and another
60◦ in the x, z-plane of the tool for the sides of the sixth and seventh teeth, as shown
in figure 4). The calculation of the cutting-force variation in the x-direction is not an
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easy task, since both the chip width w and the thickness h vary, and they do so in
different ways for different groups of the edges. The total cutting-force variation in
the x-direction is the sum of the variations for each tooth, and it assumes the form

∆Fx =
7∑

j=2

∆Fx,j =
7∑

j=2

(
∂Fx,j

∂h
∆hj +

∂Fx,j

∂w
∆wj

)
, (4.3)

where the chip-thickness and chip-width variations can be expressed by the present
position x(t) and the past position x(t− τ) of the workpiece in the following way,

∆h2 = −x(t),
∆hj = x(t− τ) − x(t), j = 3, 4, 5,
∆wj = ∆hj tanκj , j = 2, 3, 4, 5,
∆hj = (x(t− τ) − x(t)) sinκj , j = 6, 7,
∆wj = (x(t− τ) − x(t)) cosκj , j = 6, 7,




(4.4)

with κj = 27◦ for teeth j = 2, 3, 4, 5 and κj = 30◦ for teeth j = 6, 7. The actual
dimensions of the chip geometry can be estimated from the tooth gauge (3.175 mm)
of the comb, but it was also determined by a measurement microscope checking
the worn surface of the tool edges. Note that there is no delay effect on the second
tool edge (which is actually the first active tool edge). When the chip geometry
variation (4.4) is substituted in the cutting-force variation formula (4.3), the cutting-
force variation is expressed by the present and delayed x positions of the workpiece,
but the coefficients of the two terms are not the same, due the missing delayed term
at the second edge,

∆Fx = k1(qx(t− τ) − x(t)). (4.5)

After carrying out all the detailed calculations prescribed in formulae (4.2)–(4.4),
the actual value of the overlap factor becomes q = 0.8, and the cutting coefficient k1
has its value at ca. 8.5 N µm−1.

The overlap factor q expresses physically how much the subsequent cuts overlap
each other. Since most of the chip material is removed by the second tooth of the
tool, the actual value of 0.8 is quite small relative to the usual value of 1 in standard
regenerative vibrations, and it does have an effect of ca. 10–15% on the stability
limits. The value of the cutting coefficient k1 is a less reliable quantity, since the
coefficients c1,j in the cutting-force formulae (4.2) come from experimental data
carried out during stationary cutting to provide simple-to-use formulae for technology
design.

Finally, the actual length of the chip and tool face contact length in x-direction was
also measured, again, by checking the wear on the cutting surface under a microscope.
This length, denoted by l in § 2 (and in figure 1), was always less than 0.6 mm. The
comparison of the short and long time delay in this case shows that

σ

τ
=

l/v

dπ/v
=

l

dπ
=

0.6
176π

≈ 0.001.

This means that the short regenerative effect is really negligible in the middle range
(Ω = 100–400 RPM) of cutting speeds and the concentrated cutting-force approach
can be used, as explained in § 2 during the comparison of the mathematical mod-
els (2.8) and (2.10).
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Figure 6. Theoretical and experimental stability chart.

(c) Linear stability—theory and measurements

The above-explained equation of motion assumes the form

ẍ(t) + 2ξωnẋ(t) +
(
ω2

n +
k1

m

)
x(t) − k1

m
qx(t− τ) = 0, (4.6)

which would be identical to (2.10) if the overlap factor q were 1. The stability chart
of this linear model can be constructed with the help of the same closed-form calcula-
tions (3.5)–(3.8) as described by Stépán (1989), but the results are affected somewhat
by the overlap factor. The resulting stability chart in figure 6 shows the theoretically
calculated stability limit, where the circles refer to the parameters of the measure-
ment points.

Practically, the parameters of all the working points fall in the unstable domain,
except that of the third at Ω = 344 RPM. Vibrations with different frequencies
occurred in all cases, even in the third which is supposed to be within the linear
stability limit. The measured and calculated vibration frequencies fit together quite
well.

Clearly, greater domains of stability could be found at higher cutting speeds with
the same value of the cutting coefficient. However, the power of the given machine
tool gave a limitation to increasing the speed above ca. 370 RPM, that is, the safer
regions of stable cutting were beyond reach.
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(d) Nonlinear phenomena in the measured signals

As explained in § 2, it is usually the cutting-force nonlinearity which has the most
important effect on the nonlinear behaviour. In the experimentally studied machine
tool there was no structural nonlinearity which could have been suspected to have
a comparable effect to that of the cutting force. The nonlinear cutting-force char-
acteristic in figure 2 has two important parts. The non-symmetric characteristic of
the function around the theoretical chip thickness h0 has a central role in why the
analytical calculation and approximation of a possible unstable periodic motion is
so complicated (see Stépán & Kalmár-Nagy 1997). This non-symmetry means that
the Taylor series of the function will also contain even- (i.e. second-, fourth-, etc.)
degree terms. The Taylor expansion of the Taylor formula about the theoretical chip
thickness h0 corresponds to the expansion of the cutting-force variation ∆Fx about
zero with respect to the chip-thickness variation ∆h,

∆Fx(∆h) =
3∑

j=1

1
j!
kj(∆h)j . (4.7)

Following from the differentiation in the Taylor formula, the first three coefficients of
the series depend on the theoretical chip thickness h0 and the (constant) chip width
w as follows:

k1 = 3
4c1wh

−1/4
0 , k2 = −1

4
k1

h0
, k3 =

5
16

k1

h2
0
. (4.8)

The first parameter k1 has already been defined as the cutting coefficient in (2.2).
The other important part of the characteristic is at zero chip thickness. Since there

is no negative chip thickness, the characteristic has a kink at zero; it is not differen-
tiable there. The zero value of the cutting force for negative h values refers to the
case where the tool actually leaves the material of the workpiece. This nonlinear-
ity becomes important for large oscillations, and will be responsible for the global
behaviour of the tool during the nonlinear regenerative chatter (see also Batzer et
al . (1999) for the case of drilling).

Note also that an inflection may show up in the cutting-force characteristic at
large chip thicknesses of hinf , as shown by the measurements of Shi & Tobias (1984),
for example. This value may be of theoretical importance only, but the bifurcation
calculations can be carried out much more easily at this point, since the secondary
cutting coefficient k2 becomes zero in this case. These calculations show that the
subcritical nature of the Hopf bifurcation, i.e. the possible existence of an unstable
limit cycle, remains unchanged.

The photograph of the machined workpiece in figure 7 shows the so-called ‘sun-
flower spirals’ on its surface, which are so typical for regenerative chatter. This surface
is analysed for a workpiece manufactured at the cutting speed Ω = 344 RPM. The
signal, taken by an inductive displacement detector, is presented in figure 8. Each
line of signal represents one rotation of the workpiece, that is, it has the time-length
just equal to the time delay τ = 60/Ω = 0.175 s. In spite of the fact that the actual
technological parameters fall in the stable domain (as shown in the stability chart),
the workpiece starts increasing oscillations, due to some perturbation which pushed
the system ‘outside’ the inset (or basin) of one of the unstable limit cycles. The
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sunflower
spirals

Figure 7. Workpiece surface after violent vibrations during thread cutting.

existence of these limit cycles was predicted in several research reports (see Shi &
Tobias 1984; Nayfeh et al . 1997). In the paper of Stépán & Kalmár-Nagy (1997),
the unstable limit cycle is estimated to exist within an 8% range below the critical
cutting coefficient, which is the case in the experiment at 344 RPM, as shown in
figure 6. Since the actual parameter point is close to a peak between two lobes in
the stability chart, two unstable periodic motions may be present at the same time,
with two slightly different frequencies, as shown by the frequency diagram above the
stability chart of figure 6. The combination of the two periodic motions (independent
of their stability) may easily result in quasi-periodic motions as well. The existence of
possible parameter domains where stable or unstable quasi-periodic vibrations may
occur with two nearby frequencies in them can also be studied by the methods of
bifurcation theory.

The corresponding codimension-2 bifurcation diagram in figure 9 shows the most
likely scenario at one of the critical peak points of the stability chart: in one of the
parameter sectors, the trajectories get involved in a quasi-periodic oscillation (topo-
logically, in a torus) after leaving the unstable limit cycle ‘outwards’. However, the
torus itself is again unstable (saddle-like). The small two-dimensional phase plots
represent the two radii of the polar coordinates of the four-dimensional centre mani-
fold belonging to the critical parameter values, where two pairs of complex conjugate
characteristic roots appear in the imaginary axis of the complex plane with two dif-
ferent but nearby imaginary parts. In these phase plots, the two rotations are not
shown. Consequently, the trivial fix point 0 represents the (asymptotically stable)
stationary cutting, the non-trivial fix points in the axes refer to (unstable) limit
cycles, while the fix point in the positive quadrant refers to an (again, unstable)
torus.

For the time being, this bifurcation diagram can be calculated for the above-
mentioned case of the inflection point of the cutting-force characteristic only, since the
analytical calculations are too complicated, even with the use of computer algebra.
A similarly detailed closed-form calculation is presented for a time-delay system
in robotics, with a topologically conjugate result showing two stable limit cycles
and a saddle-like unstable torus in between, for a parameter sector on the opposite
(unstable) side of the chart (see Stépán & Haller 1995).
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Figure 8. Measured surface of the workpiece.

Note that the algebraic calculations are so complex that they may lose their
credibility in these cases; the simulation results may also be questioned due to
the infinite-dimensional phase-space structure, and the unstable periodic and quasi-
periodic motions can hardly be identified by either simulation or measurements.
Still, a simple analysis of the surface signal in the first part of figure 8 (and others
similar) supports the above-described mechanism of the evolution of the nonlinear
oscillation. Two vibration frequencies can be identified from the vibration signal
simply by numbering two subsequent periods of the beating effect marked in fig-
ure 8 within the first 3–4 periods of rotation in the signal. Since ca. 15.3 periods
of oscillations can be counted in one time period τ , and the marked beating effect
takes ca. 2×12.5 oscillations, the sum and difference of the two component vibration
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frequencies are calculated as follows,

1
2(ω1 + ω2) =

15.3
τ

= 88.0 Hz, 1
2(ω1 − ω2) =

15.3
2 × 12.5

1
τ

= 3.5 Hz, (4.9)

which yields
ω1 = 91.5 Hz, ω2 = 84.5 Hz (4.10)

These are just the frequencies which are plotted in the stability chart of figure 6 at
the running speed 344 RPM.

(e) Chaos and/or transient chaos

Based on the above experimental evidence and the accompanying theoretical cal-
culations, let us discuss the possible motion of the system in that region of the techno-
logical parameters where the stationary cutting is actually asymptotically stable, and
unstable periodic and quasi-periodic motions exist around it, as shown in figure 10.
The heteroclinic orbits connecting the (unstable) periodic and quasi-periodic solu-
tions form a three-dimensional set in the four-dimensional subspace (originated in a
centre manifold) of the infinite-dimensional phase space of the cutting (i.e. delayed)
dynamics. This three-dimensional set shows up as a line in the polar coordinate
representation of the four-dimensional subspace, since the two rotations are not pre-
sented. This three-dimensional set borders the domain of attraction of the stable
stationary cutting. When a certain motion starts ‘outside’ this set, as shown in fig-
ure 10, the vibrations start increasing, in spite of the fact that the cutting is linearly
stable. First, the trajectory may approach the torus, which means that the increasing
vibrations show a quasi-periodic nature for a certain time period, and the machinist
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Figure 10. Switches between regenerative dynamics and damped oscillations.

may even sometimes expect their disappearance when the beating effect is just in
the decreasing amplitude range. But this is not so. The vibrations will continue to
increase with greater and greater wave amplitudes as the trajectory starts leaving
the (saddle-like unstable) torus ‘outwards’.

At this point, another important nonlinearity comes into the picture: the cutting
force becomes zero for negative chip thickness (see figure 2), that is, the tool leaves
the workpiece material and the regenerative effect (together with the time delay)
is switched off, suddenly. Physically, this process is represented by that part of the
manufactured surface of the workpiece shown in figure 8, where the hypothetical
path of the tool is also presented by dotted lines above the fractal-like surface. These
vibrations continue in a violent way until, in the end of the process, the teeth num-
bered 6 and 7 (see figure 4) are broken and actually left in the workpiece material.
In the schematic phase-space topology of figure 10, the separation of the tool and
the workpiece means that the trajectory jumps from the delayed infinite-dimensional
dynamics to the two-dimensional dynamics of a simple damped oscillator at the cut-
ting surface (which, actually, also moves; ‘rotates’). Clearly, the damped-oscillator
dynamics will push the trajectory back into the delayed dynamics, describing the
physical process as the tool hits the workpiece material soon after leaving it. Then
the above-described switches between the two dynamics may be repeated several
times, resulting in a complicated and irregular behaviour.

It is likely that the resulting vibration is chaotic, and the surface of the workpiece,
as a trace of this motion, becomes a fractal, as already proposed by Moon & Johnson
(1998). It is also a possible scenario that the tool may actually arrive back at the
regenerative dynamics ‘inside’ the border of the basin of attraction of the stationary
cutting, as shown in the last part of the sample hypothetical trajectory in figure 10.
This means that after a periodic, then quasi-periodic, then chaotic, motion, the tool
can still jump back to the stable stationary cutting. However, the time-length of this
transient chaotic behaviour (if it occurs at all) varies stochastically, and it may be
so long that the whole cutting process is over in the meantime. This explains why
this phenomenon is experienced so rarely.
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5. Summary

The simplest detection of the machined surface in the case of thread cutting led to a
description of the complex vibration development on machine tools, and the mech-
anism of this development was implemented in the infinite-dimensional phase space
with a finite-dimensional topological picture. The experienced temporary periodic
and quasi-periodic motions refer to unstable limit cycles and tori in the phase space.
Also, chaotic and/or transient chaotic oscillations can be expected in the final stage
of the vibration development.

From a practical viewpoint, the moral of this story is two-fold. The linear sta-
bility theory (which is already quite complicated to implement due to parameter
uncertainties and the infinite-dimensional nature of the dynamics) does have a lim-
ited practical meaning, since the presence of unstable periodic and/or quasi-periodic
motions make the stationary cutting sensitive to perturbations kicking the system
out of the basin of attraction. The estimations based on Hopf bifurcation calcula-
tions and experiments show that the global stability of stationary cutting can be
expected to be 8–10% below the linear stability limit only. On the other hand, when
the vibrations outside the basin of the stationary cutting are initiated by some per-
turbations, the temporary decrease in the vibrations follows a beating effect only,
and the vibrations will return, and increase further. Still, when the motion already
looks violent and irregular, the vibrations can disappear if the tool jumps back to
the material at a ‘lucky’ point of the infinite-dimensional phase space, which leads
the system back to the sensitive, but linearly stable, stationary cutting.

This research was supported by the Hungarian National Science Foundation under Grant
no. OTKA T030762/99, and the Ministry of Education and Culture Grant no. MKM FKFP
0380/97.
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