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Delayed feedback of sampled higher derivatives
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Systems where the present rate of change of the state depends on the past values of
the higher rates of change of the state are described by so-called advanced functional
differential equations (AFDEs). In an AFDE, the highest derivative of the state-space
coordinate appears with delayed argument only. The corresponding linearized equations
are always unstable with infinitely many unstable poles, and are rarely related to practical
applications due to their inherently implicit nature. In this paper, one of the simplest
AFDEs, a linear scalar first-order system, is considered with the delayed feedback of
the second derivative of the state in the presence of sampling in the feedback loop (i.e.
in the case of digital control). It is shown that sampling of the feedback may stabilize
the originally infinitely unstable system for certain parameter combinations. The result
explains the stable behaviour of certain dynamical systems with feedback delay in the
highest derivative.

Keywords: functional differential equations; advanced argument; sampling; stability; delay

1. Introduction

Functional differential equations (FDEs) are often used to describe hereditary
systems in different fields of science and engineering. FDEs can be categorized
into retarded, neutral and advanced types (e.g. Èl’sgol’c 1964; Kolmanovskii &
Myshkis 1999). If the rate of change of the state depends on the past states of
the system, then the corresponding mathematical model is a retarded functional
differential equation (RFDE). If the rate of change of the state depends on its own
past values as well, then the corresponding equation is called a neutral functional
differential equation (NFDE). If the rate of change of the state depends on the
past values of higher derivatives of the state, then the system is described by an
advanced functional differential equation (AFDE). Note that these equations are
also referred to as FDEs of retarded, neutral or advanced type.

The reason for the word ‘advanced’ can be demonstrated by the following
example. Consider the simple AFDE

ẋ(t) = ẍ(t − τ). (1.1)
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470 T. Insperger et al.

By a τ -shift transformation in time, and by using the new variable z = ẋ , this
equation can be written in the form

ż(t) = z(t + τ). (1.2)

Here, the rate of change of the state is determined by the future values of the
state, i.e. an advanced state determines the present rate of change of the state.

As opposed to RFDEs and NFDEs, AFDEs are rarely used in practical
applications due to their inverted causality explained by equation (1.2).
Furthermore, the solutions of AFDEs, in general, lose their initial smoothness,
and the method of successive integration shows that solutions may not even
exist, while the two-sided solutions do exist (Wiener 1994). Forward solution of
AFDEs corresponds to backward solution of RFDEs, which may not exist either.
While linear autonomous RFDEs have infinitely many poles on the left half of the
complex plane, linear autonomous AFDEs have infinitely many poles on the right
half of the complex plane. In this sense, linear autonomous AFDEs are always
strongly or infinitely unstable.

The literature of FDEs is quite extensive; we refer the interested reader for
example to the texts by Kolmanovskii & Nosov (1986), Stepan (1989), Hale &
Lunel (1993), Niculescu (2001), Hu & Wang (2002) or Michiels & Niculescu
(2007), just to mention a few. However, these works mostly deal with RFDEs and
NFDEs, and AFDEs are not considered since they are said to have no practical
significance. Some basic properties of AFDEs together with some special cases are
described in the books of Èl’sgol’c (1964), Wiener (1994) and Kolmanovskii &
Myshkis (1999). Oscillatory conditions for some special AFDEs are discussed
in the basic paper by Ladas & Stavroulakis (1982). Shah & Wiener (1983) and
Song et al. (2005) analysed systems with piecewise constant advanced arguments.
FDEs with alternately advanced and retarded arguments were analysed by Filho
(1997), Rodrigues (1997) and Lv et al. (2007).

In this paper, a linear first-order scalar AFDE is considered with piecewise
constant argument in the advanced term. The investigation of this system is
motivated by an engineering example of a digital control system with the delayed
feedback of a derivative higher than that of the present state. The piecewise
constant argument corresponds to the sampling effect (zero-order hold, ZOH)
in the digital control. It is shown that the system can be exponentially stable,
although the continuous counterpart, the autonomous AFDE with continuous
argument in the advanced term, is unstable with infinitely many unstable poles.

2. Motivation

The motivation of the current study arose during the analysis of a simple stick
balancing problem via feedback control that uses accelerometers to determine
the stick’s angular position. The mechanical model can be seen in figure 1.
The equation of motion reads

J ϕ̈ − Hmg sin ϕ = Q, (2.1)

where ϕ is the angular position of the pinned stick, m the mass, H the distance
between the suspension point O and the centre of gravity C, J the mass moment
of inertia with respect to the axis normal to the plane of the figure through point
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Figure 1. Model of stick balancing with one degree of freedom, and the mechanical model of the
accelerometer.

O and Q the control torque. This model, also called stiffness control, is used
to describe self-balancing of humans in the sagittal plane (Winter et al. 1998;
Stepan 2009).

In figure 1, the enlarged insert represents the mechanical model of the piezo-
accelerometer attached to the stick at point A. This accelerometer operates
normal to the stick as a mass m0 attached to a spring of stiffness k modelling the
piezo crystal. The accelerometer’s output y is proportional to the displacement
q of the mass: y = KAq with KA (V m−1) being the characteristic constant of the
accelerometer. The displacement q of the mass depends on the angular position
ϕ of the rod. If the rod is standing still in an oblique position, then

q = m0g
k

sin ϕ. (2.2)

In an ideal linear case, the output is proportional to the angular position: y =
Kϕ, where K = KAm0g/k (V rad−1). Using the sensor’s output y as input in a
proportional–derivative (PD) controller with feedback delay τ , the control torque
is obtained as

Q = Py(t − τ) + Dẏ(t − τ) = PKϕ(t − τ) + DK ϕ̇(t − τ), (2.3)

where P (N V−1) and D (N s V−1) are the proportional and the differential control
gains. In this case, the linearized equation of motion reads

J ϕ̈(t) − Hmgϕ(t) = PKϕ(t − τ) + DK ϕ̇(t − τ). (2.4)

This equation is one of the basic examples of RFDEs. The corresponding
stability properties are well known and are presented in several textbooks (e.g.
Kolmanovskii & Nosov 1986; Stepan 1989).

If the dynamic effects, namely, the angular acceleration of the rod, are also
taken into account, then the displacement of the accelerometer reads

q = m0g
k

sin ϕ − m0L
k

ϕ̈. (2.5)

In this case, the linearized output is

y = Kϕ − K1ϕ̈, (2.6)
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Figure 2. Sampling effect as time-periodic delay. (a) r = 1, (b) r = 2, (c) r = 3, and (d) r → ∞.

where K1 = KAm0L/k (V s2 rad−1) and K is the same as above. For this model,
a PD controller with feedback delay τ results in the control torque

Q = Py(t − τ) + Dẏ(t − τ)

= PKϕ(t − τ) − PK1ϕ̈(t − τ) + DK ϕ̇(t − τ) − DK1
...
ϕ (t − τ). (2.7)

In this case, the linearized equation of motion reads

J ϕ̈(t) − Hmgϕ(t) = PKϕ(t − τ) − PK1ϕ̈(t − τ) + DK ϕ̇(t − τ) − DK1
...
ϕ (t − τ).

(2.8)

This equation is now an AFDE, since the highest (third) derivative appears with
a delayed argument only.

In this example, the advanced nature of the system comes from the fact that the
accelerometer’s signal is affected by the angular acceleration of the rod. Similarly
to the previous example, mechanical systems occur that are governed by AFDEs
via feeding back the acceleration signal using a PD controller with feedback delay,
or by feeding back the jerk in a proportional (P) controller with feedback delay.
Note that a similar case was investigated by Vyhlídal et al. (2009), where the
velocity and the acceleration were fed back proportionally with feedback delay,
resulting in an NFDE.

A kind of philosophical question arises. How can such systems be interpreted in
practical applications, when the describing mathematical system is non-causal?
Possible answers can be found in the small modelling inaccuracies that are
neglected in the model, but they may have important qualitative effects on the
behaviour of the system. Such a phenomenon is the sampling of digital control,
which was not considered in equations (2.7) and (2.8). In digital control, the
feedback is held constant for each sampling period h (ZOH), i.e. the control
torque reads

Q = Py(tj − rh) + Dẏ(tj − rh)

= PKϕ(tj − rh) − PK1ϕ̈(tj − rh) + DK ϕ̇(tj − rh) − DK1
...
ϕ (tj − rh), (2.9)

t ∈ [tj , tj+1),

where tj = jh, j ∈ Z and h is the sampling period such that τ = rh with r being
an integer. Note that the sampled output can also be represented in the form

y(tj − rh) = y(t − σ(t)), t ∈ [tj , tj+1), (2.10)

where
σ(t) = τ − tj + t, t ∈ [tj , tj+1) (2.11)
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Figure 3. (a) Stability chart for the RFDE (3.1) for τ = 1. (b) Stability charts for the sampled
RFDE (3.2) for τ = 1 and for different sampling periods h.

is a time-periodic time delay shown in figure 2. In fact, the sampling effect
introduces a periodic parametric excitation at the time delay according to
equation (2.11). It can be seen that the time-periodic time delay σ(t) tends to
the constant delay τ as the sampling period h tends to 0.

Note that the sampling effect presented above is equivalent to the zeroth-
order semi-discretization method of RFDEs (see Insperger et al. 2008). Semi-
discretization is a discretization technique where only the terms with delayed
arguments are discretized while the other non-delayed terms are left in their
original form. It is known that discretization techniques preserve exponential
stability for RFDEs (Győri et al. 1998). However, for NFDEs, this is not true in
general, as shown by Fabiano & Turi (1999). Preservation of exponential stability
of NFDEs under delay perturbations was also analysed by Győri & Hartung
(2001). Here, it will be shown for AFDEs that the discretized (or sampled) system
can be stable in spite of the fact that the original AFDE is unstable with infinitely
many unstable poles.

3. Delayed, neutral and advanced functional differential equations

In this section, first-order FDEs of delayed, neutral and advanced types are
considered with and without the sampling effect in the delayed term. Stability
properties with respect to the system parameters are analysed.

(a) First-order delay–differential equation

Consider the first-order delay–differential equation
ẋ(t) = ax(t) + bx(t − τ). (3.1)

This equation is a special type of Cushing’s equation (Cushing 1977) and it is
often referred to as one of the simplest basic examples for a delayed system (e.g.
Stepan 1989; Hale & Lunel 1993; Michiels et al. 2002). The stability condition for
the parameters a and b was first presented by Hayes (1950). The corresponding
stability chart can be seen in figure 3a.
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Equation (3.1) can also be considered as a control system with delayed feedback
of the state, where a is the system parameter, b is the control gain and τ is the
feedback delay. In the case of digital control, ZOH arises in the feedback loop, thus
the argument of the delayed term becomes piecewise constant. The corresponding
equation reads

ẋ(t) = ax(t) + bx(tj − rh), t ∈ [tj , tj+1), (3.2)

where h is the sampling period, tj = jh and j , r ∈ Z such that rh = τ . Owing to the
piecewise constant argument of the delayed term, equation (3.2) can be solved
over each sampling period [tj , tj+1), and the finite-dimensional discrete map can
be constructed

yj+1 = Φyj , (3.3)

where

yj =

⎛
⎜⎜⎜⎜⎝

x(tj)
x(tj−1)
x(tj−2)

...
x(tj−r )

⎞
⎟⎟⎟⎟⎠

and Φ =

⎛
⎜⎜⎜⎜⎜⎜⎝

eah 0 . . . 0
b
a

(eah − 1)

1 0 . . . 0 0
0 1 . . . 0 0
...

. . .
...

0 0 . . . 1 0

⎞
⎟⎟⎟⎟⎟⎟⎠

. (3.4)

The system is asymptotically stable if the eigenvalues of the monodromy matrix
Φ are in modulus less than 1. The corresponding stability charts can be seen
in figure 3b for τ = 1 and for different sampling periods. It can be seen that, by
decreasing the sampling period h while keeping rh = τ = 1 constant, the stability
boundaries converge to that of equation (3.1). This is due to the fact that (3.2) is
the zeroth-order semi-discretization of equation (3.1) according to Insperger et al.
(2008). Since semi-discretization preserves asymptotic stability of the original
equation (3.1) (see Hartung et al. 2006), it can be used to obtain approximations
of the stability charts, as demonstrated in figure 3.

(b) First-order differential equation of neutral type

Consider the first-order differential equation of neutral type

ẋ(t) = ax(t) + bẋ(t − τ). (3.5)

This equation can be considered as a control system with delayed feedback of
the state’s derivative. The condition for asymptotic stability is a < 0 and |b| < 1
(see Kolmanovskii & Nosov 1986). The corresponding stability chart can be seen
in figure 4a.

The sampled counterpart of equation (3.5) reads

ẋ(t) = ax(t) + bẋ(tj − rh), t ∈ [tj , tj+1). (3.6)

Similarly to equation (3.2), equation (3.6) can be transformed into a discrete map
of the form

zj+1 = Ψ zj , (3.7)

Phil. Trans. R. Soc. A (2010)
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Figure 4. (a) Stability chart for the NFDE (3.5) for τ = 1. (b) Stability charts for the sampled
NFDE (3.6) for τ = 1 and for different sampling periods h.

where

zj =

⎛
⎜⎜⎜⎜⎝

x(tj)
ẋ(tj)

ẋ(tj−1)
...

ẋ(tj−r )

⎞
⎟⎟⎟⎟⎠

and Ψ =

⎛
⎜⎜⎜⎜⎜⎜⎝

eah 0 . . . 0
b
a

(eah − 1)

aeah 0 . . . 0 beah

0 1 . . . 0 0
...

. . .
...

0 0 . . . 1 0

⎞
⎟⎟⎟⎟⎟⎟⎠

. (3.8)

The system is asymptotically stable if the eigenvalues of the monodromy matrix
Ψ are in modulus less than 1. The corresponding stability charts can be seen in
figure 4b for τ = 1 and for different sampling periods. The stability boundaries
of the sampled system (3.6) seem to converge to that of the original (non-
sampled) one (3.6). Note that, although the stability charts of the sampled
system in figure 4 seem to converge to the chart of equation (3.5), the above
discretization does not necessarily preserve exponential stability for NFDEs
generally (Fabiano & Turi 1999).

(c) First-order differential equation of advanced type

Consider the first-order differential equation of advanced type

ẋ(t) = ax(t) + bẍ(t − τ). (3.9)

This system is asymptotically stable for b = 0 and a < 0, and is unstable for
any other parameter combinations (see Èl’sgol’c 1964). If b �= 0, then the system
has infinitely many unstable poles (i.e. roots of the characteristic equation with
positive real parts).

The sampled counterpart of equation (3.9) reads

ẋ(t) = ax(t) + bẍ(tj − rh), t ∈ [tj , tj+1). (3.10)
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Figure 5. (a) Stability chart for the AFDE (3.9) for τ = 1. (b) Stability charts for the sampled
AFDE (3.10) for τ = 1 and for different sampling periods h.

This is an equation of advanced type; again, however, the argument of the
advanced term is piecewise constant. Another form of equation (3.10) is

ẋ(t) = ax(t) + bẍ(t − σ(t)), (3.11)

where σ(t) is a time-periodic time delay defined in equation (2.11) and presented
in figure 2. Similarly to the previous RFDE and NFDE cases, a discrete map can
be constructed by step-by-step solution in the form

wj+1 = Θwj , (3.12)

where

wj =

⎛
⎜⎜⎜⎜⎝

x(tj)
ẍ(tj)

ẍ(tj−1)
...

ẍ(tj−r )

⎞
⎟⎟⎟⎟⎠

and Θ =

⎛
⎜⎜⎜⎜⎜⎜⎝

eah 0 . . . 0
b
a

(eah − 1)

a2eah 0 . . . 0 abeah

0 1 . . . 0 0
...

. . .
...

0 0 . . . 1 0

⎞
⎟⎟⎟⎟⎟⎟⎠

. (3.13)

Again, this system is asymptotically stable if the eigenvalues of the monodromy
matrix Θ are in modulus less than 1. The corresponding stability charts can be
seen in figure 5b for τ = 1 and for different sampling periods. It can be seen that
while the original equation (3.9) is always unstable for b �= 0 with infinitely many
unstable roots, the sampled system can be stable even for b �= 0. Furthermore, it
can be seen that the stability boundaries do not converge to the boundaries of
the non-sampled system.

4. Advanced functional differential equation stability diagrams

In order to obtain an insight into the stability properties of equation (3.10),
the eigenvalues of the corresponding monodromy matrix Θ should be analysed
in detail. For a given sampling period h, the matrix Θ has r + 2 = τ/h + 2
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Figure 6. Contour plots for the critical eigenvalues of the sampled AFDE (3.10) for τ = 1 and
for different sampling periods h. (a) h = 1, (b) h = 0.5, (c) h = 0.2, (d) h = 0.1, (e) h = 0.05, and
(f ) h = 0.02.

eigenvalues that can be computed numerically. The magnitude |μ1| of the critical
(maximum in modulus) eigenvalue μ1 characterizes the decay of the system’s
oscillations for perturbations, i.e. ‖wj+1‖ ≤ |μ1|‖wj‖. Figure 6 shows the contour
plots of the maximum eigenvalues for different sampling periods. Stability
boundaries are denoted by the contour lines where |μ1| = 1 (these are denoted
by thick lines). It can be seen that the stable domains in the stability diagrams
do not disappear as the sampling period decreases; however, the magnitude of the
critical eigenvalue within the domain of stability approaches 1 (see the contour
lines and the associated modulus numbers).

Figure 7 shows the number of unstable poles for system (3.10). The stable
domains are denoted by 0. It can be seen that, as the sampling period h is
decreased, i.e. as the size of the monodromy matrix is increased, the number of
unstable poles increases in the unstable domains. The number of unstable poles
is in the range of τ/h = r .

5. Numerical analysis of the transition h → 0

In order to analyse the transition between the sampled AFDE (3.10) and the
original AFDE (3.9), stability diagrams in the plane of h and b are constructed for
fixed negative a. These diagrams can be determined numerically by increasing the
parameter b step by step until the magnitude of the critical eigenvalue becomes
larger than 1. This gives the stability boundaries for positive b. Similarly, the
stability boundaries for negative b are obtained by decreasing b step by step.
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Figure 7. Number of unstable eigenvalues of the sampled AFDE (3.10) for τ = 1 and for different
sampling periods h. (a) h = 1, (b) h = 0.5, (c) h = 0.2, (d) h = 0.1, (e) h = 0.05, and (f ) h = 0.02.

−2

−1

0

1

2(a) (b)

(c) (d)

b stable

unstable

unstable
−2.0

−1.0
−0.5

0
0.5
1.0

2.0

b stable

unstable

unstable

10−2 10−1 1
−1.0

−0.5
−0.2

0
0.2
0.5

1.0

h
10−2 10−1 1

h

b stable

unstable

unstable
−1.0

−0.5

−0.1
0

0.1
0.5

1.0

b stable

unstable

unstable

Figure 8. Stability domains for the sampled AFDE (3.10) in the plane (h, b) for τ = 1 and for
different system parameters a. (a) a = −1, (b) a = −2, (c) a = −5, and (d) a = −10.

Figure 8 presents these diagrams for a = −1, −2, −5 and −10. These numerical
results show that the stability domain does not disappear as the sampling period
h tends to zero. Furthermore, they suggest that the critical value of b converges
to ±1/a. This latter feature can easily be confirmed by writing the characteristic
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Figure 9. Sketch of the stability properties of the sampled AFDE (3.10) in the plane (h, b) for
fixed a < 0.

equation of the monodromy matrix Θ in the form

(μ − eah)(μr+1 − abeah) = abeah(eah − 1). (5.1)

For a small sampling period h, the roots can be approximated as

μ1 ≈ 1 + ah and μl ≈ [ab(1 + ah)]1/(r+1)ei2lπ/(r+1), l = 2, 3, . . . , r + 2. (5.2)

The condition for asymptotic stability in this case is a < 0 with |ab(1 + ah)| < 1.
This confirms that, as h tends to zero, the stability boundaries in the plane
(a,b) tend to b = ±1/a with a < 0. On the other hand, the transition h → 0
corresponds to the original AFDE, i.e. in this case the system has infinitely many
unstable poles if h = 0 and b �= 0. This shows that, as h → 0, the system is stable
if |b| < −1/a with a < 0, but in the limit case, i.e. when h = 0, ‘suddenly’ infinitely
many poles become unstable. This phenomenon is presented in figure 9.

The approximations in equation (5.2) show that, as the sampling period h gets
smaller and smaller, one pole (μ1) approaches to 1, while the other (r + 1) poles
cluster round the circle of radius ab in the complex plane. This phenomenon is
presented in figure 10 for some special parameter combinations. Three special
cases are considered:

— a = −1, b = 2.5: The system is unstable for any sampling period h.
The number of unstable poles increases as h decreases. For h < 0.2,
the magnitude of the critical eigenvalue is decreasing, and the poles
approach the unit circle from outside.

— a = −1, b = 1.5: The system is stable for h = 1 but unstable for any
other h < 1. The number of unstable poles increases as h decreases. The
magnitude of the critical eigenvalue is decreasing, and the poles approach
the unit circle from outside.

— a = −1, b = 0.5: The system is stable for all h > 0. The number of stable
poles increases as h decreases. The magnitude of the critical eigenvalue is
increasing, and the poles approach the unit circle from inside.

Phil. Trans. R. Soc. A (2010)

 on December 14, 2009rsta.royalsocietypublishing.orgDownloaded from 

http://rsta.royalsocietypublishing.org/


480 T. Insperger et al.

−1

0

1 (i) (ii) (iii) (iv) (v) (vi)

(i) (ii) (iii) (iv) (v) (vi)

(i) (ii) (iii) (iv) (v) (vi)

(a)

(b)

(c)

|m1|=
1.102Im

Im
Im

|m1|=
1.226

|m1|=
1.143

|m1|=
1.082

|m1|=
1.043

|m1|=
1.018

−1

0

1

|m1|=
0.8867

|m1|=
1.041

|m1|=
1.051

|m1|=
1.033

|m1|=
1.018

|m1|=
1.008

−1 0 1

−1

0

1

|m1|=
0.5876

Re
−1 0 1

|m1|=
0.7653

Re
−1 0 1

|m1|=
0.8982

Re
−1 0 1

|m1|=
0.9476

Re
−1 0 1

|m1|=
0.9734

Re
−1 0 1

|m1|=
0.9893

Re

Figure 10. Location of the poles for different parameter combinations. The unit circle is denoted by
the grey line. (a) a = −1, b = 2.5, (b) a = −1, b = 1.5, and (c) a = −1, b = 0.5. (i) h = 1, (ii) h = 0.5,
(iii) h = 0.2, (iv) h = 0.1, (v) h = 0.05, and (vi) h = 0.02.

The magnitude |μ1| of the critical eigenvalue is given for each plot. These
diagrams demonstrate how the jump of infinitely many poles outside the unit
circle appears as h → 0.

6. Conclusion

In this paper, the AFDE (3.9) and its sampled counterpart (3.10) or, in other
form, equation (3.11), were analysed. It was shown that the sampled AFDE (3.10)
is asymptotically stable for certain parameter combinations while the original
AFDE (3.9) is always unstable with infinitely many unstable poles (if b �= 0).
The transition h → 0 was analysed and it was found that the stable parameter
domains of the sampled AFDE do not disappear as h → 0, in spite of the fact
that, in the limit case when h = 0, the system has infinitely many unstable
poles. This unusual phenomenon, namely, that infinitely many unstable poles
appear for an infinitesimal change in the system’s parameters, is not unique
for FDEs—see, for example, the case of a delayed follower force in example 3.7
in Stepan (1989).

From a practical point of view, this strange transition between the sampled
and the continuous cases is not very interesting, since as h → 0, more and more
eigenvalues get closer and closer to the unit circle. For instance, a system with
many critical poles of real parts ln 0.99 can be considered practically unstable,
since the decay of the oscillations is extremely slow compared with the dynamics
of the system.

However, the interesting point is that an advanced system with delayed
feedback of the highest derivative (which is known as infinitely unstable) can
be stabilized by periodic sampling of the feedback, i.e. by making the argument
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of the delayed term piecewise constant. This phenomenon is somewhat similar to
the delayed Mathieu equation (Insperger & Stepan 2002), where a parametric
excitation in the stiffness stabilizes the delayed system. In the current case,
sampling can be considered as a kind of parametric excitation in the delay as
shown in equation (3.11) with equation (2.11) (see also figure 2). In this case,
parametric excitation in the delay stabilizes the otherwise infinitely unstable
system.

In the current analysis, one of the simplest AFDEs was considered; however,
similar equations may appear in many realistic problems, like in the case of the
stick balancing problem introduced in §2. In general, equations with advanced
terms can typically arise in controlled mechanical systems, since the output may
easily be affected by the acceleration or by the jerk of the system. This effect
is often considered to be a kind of noise in the output, and is therefore often
neglected; however, it may have an important role in the system’s dynamics.
Consider the output of a general system in the form

y(t) = f (t, x(t − τ), ε1ẋ(t − τ), ε2ẍ(t − τ)), (6.1)

where y ∈ R
m is the output, x ∈ R

n is the state, and ε1 and ε2 are small, but non-
zero, parameters. Usually, such effects are neglected, i.e. ε1 and ε2 are considered
to be zero. However, if they are not neglected, then the linearized equation has
the form

ẋ(t) = Ax(t) + B0x(t − τ) + ε1B1ẋ(t − τ) + ε2B2ẍ(t − τ) (6.2)

with A, B0, B1 and B2 being appropriate matrices obtained during the
linearization. If the parameter ε2 is non-zero, then this equation is an AFDE,
and the system is unstable with infinitely many unstable poles, independently
of the exact value of ε2. While the effect of higher-order derivatives is rarely
modelled in practical applications, a system’s unexpected instability or its other
weird behaviour is often referred to as the consequence of ‘unmodelled system
dynamics’. If the system works properly then it is often attributed to the
robustness of the controller and often no detailed explanation is given. In this
work, it was shown that one explanation for the stable operation of such systems
may be the sampling effect of digital control.
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