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Increasing the accuracy of digital force control
process using the act-and-wait concept

Tamás Insperger, László L. Kovács, Péter Galambos, and Gábor Stépán

Abstract—Proportional gains are to be increased in force
control processes in order to reduce the force error. However,
the control process may become unstable for large gains due
to the digital and the delay effects. In this paper, the act-and-
wait control concept is compared to the traditional, continuous
control concept for a digital force control model with proportional
feedback subject to a short, one sample unit feedback delay. Both
concepts are implemented in an experimental setup. It is shown
that the proportional gain can be increased significantly without
loosing stability when the act-and-wait controller is used, thus,
the force error can effectively be decreased this way. The results
are confirmed by experiments.

Index Terms—discrete-time systems, feedback systems, stabil-
ity, force control.

I. INTRODUCTION

FORCE control is a frequent mechanical controlling prob-
lem in robotics since most robotic applications involve

interactions with other objects. The first papers on the basics
of force control approaches appeared in the early ’80s starting
with the pioneering work of Whitney [1], Mason [2] and
Raibert and Craig [3]. Since then, several comprehensive
textbooks were published summarizing different methods of
force control processes in the field of robotics [4], [5], [6].
The aim of force control is to provide a desired force between
the actuator and the environment (or workpiece). In order to
achieve high accuracy in maintaining the prescribed contact
force against Coulomb friction, high proportional control gains
are to be used [4], [5]. However, in practical realizations of
force control processes with high proportional gains, the robot
often loses stability, and starts to oscillate at a relatively low
frequency. These oscillations are mainly caused by the digital
effects [1] and by the time delays in the feedback loop [7], [8].
Such delays arise due to the time required for the computer
to compute the control force. In addition, the control signal
produced by the computer is piecewise constant (zero-order
hold) function of time.

Time delays are inherent attributes of feedback systems
that usually have unfavorable effects on the performance of
the control process. Teleoperation is a typical example, where
communication delay plays a crucial role [9], [10], but similar
delays may arise in haptic interfaces, as well [11]. The problem
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with time-delayed systems is that the dimension of their
phase space is usually larger than the dimension of the state
variables, therefore, the number of poles to be controlled is
usually larger than the number of control parameters. Thus,
complete pole placement is not possible for these systems
using traditional constant feedback gains. The act-and-wait
control concept is an effective tool to deal with pole placing
for systems with feedback delay. The act-and-wait technique
was introduced in [12] for discrete-time systems and in [13]
for continuous-time systems. The point of the technique is
that the controller is periodically switched on and off with
switch off period being larger than the feedback delay. Using
this periodic switching, the extra poles due to the time delay
are automatically assigned to zero, and the pole placement
problem of the remaining poles is possible if certain conditions
fulfill for the system parameters.

Although theoretical predictions showed that the act-and-
wait method can effectively be used for discrete-time control
systems with feedback delay [12], it has never been confirmed
by experiments until now. In this paper, a digital force control
process with a short (one sample unit) feedback delay is im-
plemented in an experimental setup. A proportional feedback
is applied in order to decrease the force error. It is shown that
the proportional gain can be increased, consequently, the force
error can be decreased without loosing stability if the feedback
is periodically switched on and off according to the act-and-
wait concept. The structure of the paper is as follows. First,
in Section II, the act-and-wait concept is summarized briefly
for discrete-time systems based on [12]. Then, in Section
III, the experimental setup and the corresponding mechanical
model is presented for the continuous and for the act-and-
wait control concept. In Section IV, the experimental results
are compared to the theoretical predictions. The paper is
concluded in Section V.

II. THE ACT-AND-WAIT CONCEPT

Consider the discrete-time system

x(j + 1) = Ax(j) + Bu(j − R), (1)

with the controller

u(j) = Dx(j), (2)

where x ∈ R
n is the state, u ∈ R

m is the input, A ∈ R
n×n,

B ∈ R
n×m, D ∈ R

m×n are constant and j ∈ Z. We assume
that the feedback delay R ∈ Z

+ is a fixed parameter of
the system that cannot be adjusted during the control design.
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State augmentation of system (1) with controller (2) yields the
discrete map

z(j + 1) = Ψz(j), (3)

with z(j) = (xT (j), uT (j−1), . . . , uT (j−R))T ∈ R
n+mR.

Here, the coefficient matrix

Ψ =

⎛
⎜⎜⎜⎜⎜⎝

A 0 . . . 0 B
D 0 . . . 0 0
0 I . . . 0 0
...

. . .
...

0 0 . . . I 0

⎞
⎟⎟⎟⎟⎟⎠ (4)

is actually the (n + mR) × (n + mR) monodromy matrix
of the system [14], [15]. The identity submatrices I below
the diagonal of Ψ represent the delay effect in the feedback.
Stability properties are determined by the eigenvalues of Ψ,
which are also called characteristic multipliers or poles. The
system is asymptotically stable if all the (n + Rm) poles
lie in the open unit disc of the complex plane. It can easily
be seen that in general cases, the poles cannot be controlled
completely by the control parameters, i.e., by the elements of
matrix D. This also causes problems during the stabilization
of the process.

The act-and-wait control concept for discrete-time systems
was introduced in [12]. It is a special case of periodic
controllers, where the control is periodically switched on and
off in the form

u(j) = g(j)Dx(j), (5)

where g(j) is the K-periodic switching function defined as

g(j) =
{

1 if j = hK, h ∈ Z

0 otherwise
. (6)

Here, integer K is called period parameter. While the feedback
delay R is a given system parameter, the period parameter K
can be chosen during the control design.

If K = 1 then g(j) ≡ 1. In this case, the control is
continuously active, which corresponds to controller (2).

If K ≥ 2 then g(j) alternates between one and zero. In
the first discrete step, g(j) = 1 and the control is active (act),
while in the following (K −1) number of steps, g(j) = 0 and
the control term is switched off (wait), then in the (K + 1) st

step, the control is active again, etc. In [12], it was shown
that if the period parameter K is chosen to be larger than
the feedback delay R, then the following discrete map can be
constructed

z(K) = Φz(0), (7)

where z(j), j = 0, K is defined as in (3) and the coefficient
matrix reads

Φ =

⎛
⎜⎜⎜⎝

M AK−RB AK−R+1B . . . AR−1B
0 0 0 . . . 0
...

...
...

...
0 0 0 . . . 0

⎞
⎟⎟⎟⎠ (8)

with
M = AK + AK−R−1BD. (9)
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Fig. 1. Mechanical model of the force control process.

Clearly, mR eigenvalues of Φ are zero, while its nonzero
eigenvalues are just equal to the eigenvalues of the n × n
matrix M. Consequently, stability properties are determined
by n poles only instead of (n + mR) ones. Moreover, if the
pair (AK ,AK−R−1B) is controllable, then the poles of the
system can arbitrarily be placed.

From now on, controller (5) will be called act-and-wait con-
troller, while controller (2), where the control is continuously
active, is called continuous controller.

III. FORCE CONTROL MODEL

The mechanical model of a single degree of freedom force
control process is shown in Fig. 1. Here, the modal mass mb

and the equivalent stiffness k represent the inertia and the
stiffness of the robot and the environment, while equivalent
damping b models the viscous damping originated from the
servo motor characteristics and the environment. Variable q
denotes the position of the robot, while x is a small per-
turbation around the desired position qd = Fd/k with Fd

denoting the desired contact force. Force Q represents the
controller’s action and C is the magnitude of the effective
Coulomb friction.

Considering a proportional-differential force controller, the
control force can be given as

Q(t) = Fd − P (Fm(t) − Fd) − D(Ḟm(t) − Ḟd), (10)

where P is the proportional gain, D is the differential gain,
Fd is the desired force and Fm is the measured force. This
type of control force computation was also considered in [4].
The equation of motion reads

mb q̈(t) + bq̇(t) + kq(t) = Fd − P (Fm(t) − Fd)

− D(Ḟm(t) − Ḟd) − C sgnq̇(t). (11)

Assuming steady-state condition by setting all the time deriva-
tives to zero, considering a constant Coulomb friction force
and using that Fm = kq(t), the maximum force error can be
given as

F max
e =

C

1 + P
(12)

(see, e.g., [4], [5]). Thus, the higher the proportional gain P is,
the less the force error is, while the differential gain D has no
effect on the accuracy of the force control process. Integral
control can also be used to compensate steady-state force
error in constant-velocity applications. However, if the system
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trajectory encounters velocity reversal, then simple integral
control rather increases than reduces frictional disturbance.
Since the steady-state force error is always within the dead
band [−F max

e , F max
e ], it can essentially be reduced by reducing

F max
e . This can be achieved by increasing the stiffness or

by increasing the proportional gain P , which is a kind of
artificial stiffness in the system. Theoretically, there is no upper
limit for the proportional gain P , since the constant solution
q(t) ≡ qd of (11) is always asymptotically stable when C = 0.
Experiments show, however, that the real system is not stable
for large proportional gains [16]. This instability is caused by
the digital effects and the corresponding delays in the feedback
loop.

In the next subsections, mathematical models for the contin-
uous and for the act-and-wait controller are presented in case
of digital control, and the corresponding stability properties
are compared using stability charts. Since the force error does
not depend on the differential gain D, a pure proportional
controller is investigated. Thus, the only control parameter is
P , while D = 0.

A. Digital control with continuous controller

In digital control, the control force is updated in discrete
instants such that

Q(t) = Fd − P (Fm(tj−1) − Fd)
= kqd − P (kq(tj−1) − kqd), t ∈ [tj , tj+1), (13)

where tj = j∆t, j = 0, 1, 2, . . . , and ∆t is the sampling time.
Here, we assume that the sampling frequency of the force
sensor and the frequency of the digital control are both f s =
1/∆t, and the data processing and the control computation are
executed within a single sampling period. Thus, the control
force Q commanded over the sampling period [t j , tj+1) is
computed using the contact force measured at instant t j−1.
This presents a short delay τ = ∆t in the feedback loop, in
addition to the zero-order hold. The corresponding equation
of motion reads

mb q̈(t) + bq̇(t) + kq(t) = kqd − P (kq(tj−1) − kqd)
− Csgnq̇(t), t ∈ [tj , tj+1). (14)

Stability properties of the system can be given by analyzing
the variational system around the desired motion q d. For this
computation, we neglect the dry friction from the model.
Considering that q(t) = qd +x(t), the variational system reads

ẍ(t) + 2ζωnẋ(t) + ω2
n x(t) = −ω2

n Px(tj−1), t ∈ [tj , tj+1),
(15)

where ωn =
√

k/mb is the natural angular frequency of the
uncontrolled undamped system, and ζ = b/(2mb ωn) is the
damping ratio. Introduce the frequency ratio

α = fn/fs, (16)

where fn = ωn/(2π) is the natural frequency of the uncon-
trolled undamped system and fs = 1/∆t is the sampling
frequency. Rescaling the time such that t̃ = t/∆t yields

ẍ(t̃) + 4πζαẋ(t̃) + 4π2α2x(t̃)
= −4π2α2Px(j − 1), t̃ ∈ [j, j + 1). (17)

Thus, the system is characterized by three dimensionless
parameters, the relative damping ζ, the proportional gain P
and the frequency ratio α. This way, a wide range of sys-
tem/environment combinations can be described by analyzing
different values of ζ, P and α.

Equation (17) can be transformed into the state-space form

ẋ(t̃) = Âx(t̃) + B̂D̂x(j − 1), t̃ ∈ [j, j + 1) (18)

with

x(t̃) =
(

x(t̃)
ẋ(t̃)

)
, Â =

(
0 1

−4π2α2 −4πζα

)
,

B̂ =
(

0
−4π2α2

)
, D̂ =

(
P 0

)
.

Solving (18) over a unit sampling period (∆ t̃ = 1 on the
rescaled time domain) results in a discrete system of form
(1)-(2) with matrices

A = ebA, B =
(

ebA − I
)

Â−1B̂, D = D̂, (19)

and with feedback delay R = 1. In this case, n = 2 and
m = 1, thus, the stability of the system can be assessed by
checking all the (n+mR) = 3 eigenvalues of the monodromy
matrix Ψ given in the form (4).

B. Digital control with act-and-wait controller

The control force associated with the act-and-wait control
concept can be given as

Qa&w(t) = Fd − g(j)P (Fm(tj−1)−Fd), t ∈ [tj , tj+1),
(20)

where g(j) is the K-periodic act-and-wait switching function
defined in (6), that is,

Qa&w(t) =
{

Fd − P (Fm(tj−1) − Fd) if j = hK, h ∈ Z

Fd otherwise
.

(21)

This means that for (K − 1) number of steps, the control
force is just equal to the desired force Fd, and the feedback
is switched on only in each K th step. The corresponding
variational system on the rescaled time domain reads

ẍ(t̃) + 4πζαẋ(t̃) + 4π2α2x(t̃)
= −g(j)4π2α2Px(j − 1), t̃ ∈ [j, j + 1). (22)

This equation can be transformed into the state-space form

ẋ(t̃) = Âx(t̃) + g(j)B̂D̂x(j − 1), t̃ ∈ [j, j + 1) (23)

with x(t̃), Â, B̂, D̂ given as in (18). Solution of (23) over a
sampling period gives a discrete system that is equivalent to
(1) and (5) with matrices A, B and D defined as in (19), and
with feedback delay R = 1.

The results for system (1) with the act-and-wait controller
(5) can now be applied to the presented force control problem:
if the period parameter K is larger than the feedback delay
R = 1, then the system has only n = 2 poles that are the
eigenvalues of matrix M defined in (9). The obvious choice
for the period parameter is K = 2. Note that complete pole
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placement is still not possible in this case, since the number of
poles to be controlled is 2 and the only control parameter is the
proportional gain P , still, the stability properties of the system
improves significantly as it is shown in the next subsection.

C. Comparison of continuous and act-and-wait controller

Stability of the control processes can be determined by
the analysis of the chartacteristic multipliers, that are the
eigenvalues of matrix Ψ in (4) for the continuous controller,
and the eigenvalues of matrix M in (9) for the act-and-
wait controller. The stability properties can be represented by
stability charts in the plane of the frequency ratio α = f n/fs

and the proportional gain P . In addition to stability charts,
the frequencies of the vibration that arise at the stability
boundaries can also be determined using the phase angle
of the critical (largest in modulus) eigenvalues of Ψ and
M, respectively. Since vibration frequencies can easily be
determined experimentally, they can also be used to verify
the theoretical predictions [16].

The vibration frequencies can be obtained by the analysis
of (17) and (22). Due to the sampling, (17) is periodic at the
sampling period, T̃ = 1, while (22) is periodic at the act-and-
wait period, T̃ = K . Here, T̃ denotes the principal period
of the system on the rescaled time domain, i.e., T̃ = T/∆t.
Vibrations arise when the system looses stability, therefore we
assume that the critical characteristic multiplier satisfies |µ1| =
1. Note that µ1 may be either real ±1 or complex e±iω1 .
According to the Floquet theory, the solution corresponding
to the characteristic multiplier µ1 reads

x(t̃) = p(t̃) eλ1 t̃ + p̄(t̃) eλ̄1 t̃, (24)

where p(t̃) is a T̃ -periodic function, bar denotes complex con-
jugate and λ1 is the characteristic exponent, i.e., µ1 = eλ1 eT .
Fourier expansion of p(t̃) and substitution of λ1 = iω1 results
in

x(t̃) =
∞∑

h=−∞

(
Ch ei(ω1+

h2π
eT

)t̃ + C̄h e−i(ω1+
h2π

eT
)t̃

)
, (25)

where Ch and C̄h are complex coefficients. Note that ω1

equals the phase angle describing the direction of µ1 on the
complex plane so that −π < ω1 < π. The exponents in
(25) give the angular frequency content of the motion. The
corresponding frequencies on the rescaled time domain are

f̃vib = fvib/fs = ±ω1

2π
+

h

T̃
, h = 0, 1, 2, . . . . (26)

Here, f̃vib is the vibration frequency on the rescaled time
domain, fvib is the vibration frequency on the regular time
domain in Hz, and fs = 1/∆t is the sampling frequency. In
the further analyses, the ratio fvib/fs will be used, thus, control
processes with different sampling rates can be compared. Of
course, only the positive frequencies have physical meaning.

Fig. 2 presents the stability boundaries (middle panel),
the associated vibration frequencies (top panel) and the ratio
of the maximum force error Fe and the Coulomb force C
(bottom panel) for the continuous control concept (thick grey)
and for the act-and-wait control concept (thin black). The
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Fig. 2. Vibration frequencies (top), stability boundaries (middle) and the
maximum force errors (bottom) for the continuous system (17) and for the
act-and-wait system (22) with period parameter eT = K = 2. The relative
damping is ζ = 1.57.

stability charts were determined via point-by-point numerical
evaluation of the critical eigenvalues of Ψ (for the continuous
controller) and M (for the act-and-wait controller) over a
200 × 200 sized grid of parameters α and P . The period
parameter for the act-and-wait controller was T̃ = K = 2.
It can be seen that there is an upper limit for the control gain
P for both cases. Above this stability boundary, the control
process is unstable. The lower stability limits corresponds to
negative proportional gain P and have no practical relevance.
The vibration frequencies in the top panel were determined
according to (26) using the eigenvalues corresponding to the
upper stability boundary. The ratio of the maximum force error
F max

e and the Coulomb force C is presented in the bottom
panel in Fig. 2. According to equation (12), this ratio comes
from the simple computation F max

e /C = 1/(1 + P ), where
P is the critical (maximum stable) proportional gain from the
middle panel. Fig. 2 shows that the critical proportional gains
are essentially larger for the act-and-wait controller than for
the continuous controller, and the corresponding force error is
smaller by a factor of 2-3.

Analysis of the eigenvalues shows that the continuous
control concept looses stability with a complex pair of char-
acteristic multipliers, that corresponds to a secondary Hopf
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TABLE I
SAMPLING FREQUENCIES DURING THE TESTS

test a b c d e f g h i j
∆t [ms] 10 20 30 40 50 60 70 80 90 100
fs [Hz] 100 50 33.33 25 20 16.67 14.29 12.5 11.11 10

α 0.02474 0.04948 0.07422 0.09896 0.1237 0.1484 0.1732 0.1979 0.2227 0.2474

bifurcation of the underlying nonlinear system. In this case,
quasi-periodic vibrations arise.

For the act-and-wait control case, if fn/fs > 0.14, then
the critical eigenvalue is real and it crosses the unit circle at
−1 that corresponds to flip (or period doubling) bifurcation
of the underlying nonlinear system. In this case, the period
of the arising vibrations is just double of the act-and-wait
period. If fn/fs < 0.14, then secondary Hopf bifurcation
occurs similarly to the continuous control case. The differences
between the secondary Hopf and flip cases can clearly be seen
in the frequency diagram, as well.

IV. EXPERIMENTAL VALIDATION

For the experimental validation of the theoretical results,
force control process was implemented using a HIRATA (MB-
H180-500) DC drive robot shown in Fig. 3. This robot has two
linear axes. The first axis (y-direction) was fixed during the ex-
periments, while the second axis (x-direction) was connected
to the base of the robot (environment) by a helical spring
of stiffness k = 7144 N/m. The contact force between the
environment and the spring was induced by the displacement
of the moving robot axis in the x-direction. The force was
measured by a Tedea-Huntleight Model 355 load cell mounted
between the spring and the robot’s flange. The driving system
of the moving axis consisted of a HIRATA HRM-020-100-A
DC servo motor connected directly to a ballscrew with a
20 mm pitch thread. The robot was controlled by a micro-
controller based control unit providing the maximum sampling
frequency of 1 kHz for the overall force control loop. The
control force was set proportionally to the measured force error
by the pulse with modulation (PWM) of the supply voltage
of the DC motor. The controller made it possible to vary
the sampling time and the time delay as integer multiples of
1 ms, and to set the proportional gain and the desired contact
force arbitrarily. The modal mass and the damping ratio of the
system were experimentally determined: mb = 29.57 kg and
b = 1447 Ns/m. The natural angular frequency of the uncon-
trolled undamped system was ωn =

√
k/mb = 15.54 rad/s,

the damping ratio was ζ = b/(2mb ωn) = 1.57. The Coulomb
friction was originated mostly from the DC drive system and
was measured to be C = 16.5 N.

During the tests, the desired contact force was set to
Fd = 50 N. Due to the relatively small stiffness, the system
is characterized by a well-defined single natural frequency:
fn = ωn/(2π) = 2.474 Hz. The disturbing effect of higher
order modes can therefore be neglected, and a single degree of
freedom model can be used. Since the natural frequency of the
system was constant during the tests, different frequency ratios
α = fn/fs = fn∆t were attained by changing the sampling
time ∆t between 10 ms and 100 ms according to Table I. For

Fig. 3. Experimental setup.

each sampling period, the proportional gain P was increased
step by step. The control process was declared unstable if the
robot started oscillations for perturbations larger than 50 N. In
most cases, the experimental stability boundaries were clearly
identified.

Fig. 4 presents the comparison of the theoretical and the
experimental results for the continuous control case. Left
middle panel shows the theoretically predicted stability bound-
aries (lines) and the experimentally determined ones (crosses).
In order to verify unstable behavior, the frequency spectra
of the arising vibrations were compared to the theoretical
predictions. Left top panel presents the theoretically predicted
vibration frequencies according to (26). Here dots denote the
theoretical frequencies for the test points a, b, c, etc. Right
panels show the corresponding power spectra density (PSD)
diagrams that were determined using the recorded time history
of the measured contact force. Here, the frequencies that were
predicted theoretically are denoted by black dots for reference.
In the PSD diagrams, logarithmic scale is used for the vertical
axes in order to show the higher frequencies clearly. Thus,
the structure of the frequency diagrams can be compared
to the theoretical predictions. Left bottom panels show the
ratio of the maximum force error F max

e and the Coulomb
friction force C. The theoretically predicted envelope curve
for this ratio is denoted by line, while the experimentally
measured values are denoted by crosses. It can be seen that the
measured force errors are smaller than the predicted maximum.
Fig. 4 shows that the theoretical predictions for the continuous
control case is verified by the experiments regarding all the
stability boundaries, the structure of the vibration frequencies
and the force error.

Fig. 5 presents the same comparison of the theoretical and
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Fig. 4. Experimental and theoretical stability charts (left middle), theoretical vibration frequencies (left top), force errors (left bottom) and experimental PSD
diagrams (right) for the continuous control concept.
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Fig. 5. Experimental and theoretical stability charts (left middle), theoretical vibration frequencies (left top), force errors (left bottom) and experimental PSD
diagrams (right) for the act-and-wait control concept.
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Fig. 6. Time histories of the measured contact force for ∆t = 10 ms.

the experimental results for the act-and-wait control case.
Left middle panel shows the stability boundaries, left top
panel shows the theoretically predicted vibration frequencies,
and right panels present the measured PSD diagrams. The
predicted and the measured force errors are presented in the
left bottom panel. It can be seen that the experimental results
agree well with the theoretical predictions for the act-and-wait
controller, as well.

The results shown in Figs. 4 and 5 confirm that larger
proportional gains can be used with stable control process
if the act-and-wait concept is used instead of the continuous
controller. Consequently, the force error can be reduced by a
factor of 2-3.

The gain of the act-and-wait method is demonstrated in
Fig. 6, where time histories of the measured contact force
are presented for different control concepts with the same
sampling period ∆t = 10 ms. The controller is switched on at
t = 1 s for all the six cases. Left panels present the continuous
control case for proportional gains P = 5, 10 and 13. Case
P = 13 corresponds to point ”a” in the stability chart of Fig. 4.
For P = 13.5, the control process was found to be unstable.
The ratio F max

e /C = 1/(1+P ) is also presented in each panel
in order to show the tendency of the force error for increasing
P . It can be seen that the overshoot is increasing with the
proportional gain, while the force error is decreasing.

For the act-and-wait controller, the proportional gain can be
increased up to P = 27 without loosing stability. Right panels
in Fig. 6 present the act-and-wait control case for proportional
gains P = 13, 20 and 27. The case P = 27 corresponds
to point ”a” in the stability chart of Fig. 5. For P = 27.5,
the control process was found to be unstable. The tendency
of the overshoot and the maximum force error for increasing
proportional gain is similar to that of the continuous controller:

the overshoot is increasing while the force error is decreasing
for increasing P . However, for the same proportional gain,
the overshoot is significantly smaller for the act-and-wait
controller, than it is for the continuous controller. This can
clearly be seen in Fig. 6 for the proportional gain P = 13 (left
bottom and right top panels). This is due to the fact that the
continuous control system with P = 13 is close to the stability
boundary (for P = 13.5, the system is already unstable), while
the act-and-wait control system is stable up to P = 27. For
the act-and-wait controller, the force error can be decreased
further by increasing the proportional gain, but in this case,
the overshoot is increasing. Still, in some applications, it might
be acceptable to have a strong transient with relatively large
overshoot in order to provide a minimal force error during the
steady state of the system.

In Fig. 6, the transient behavior of the system can also
be seen. For the continuous controller with P = 13, the
transient vibrations decay almost linearly in time that refers to
the presence of Coulomb friction. The frequencies appearing
in the transient can be identified using panel (a) in Fig. 4,
these frequencies are 8.4, 91.6, 108.4 and 191.6 Hz. Here,
the lowest frequency, 8.4 Hz, is the dominant frequency that
clearly appears in the force signal in Fig. 6, as well. For the
act-and-wait controller with P = 27, the transient vibrations
decays in a quasi-periodic way due to the periodic switching of
the controller. The corresponding frequencies can be read from
panel (a) in Fig. 5 as 8.5, 41.5, 58.5, 91.5, 108.5, 141.5 Hz.

V. CONCLUSION

The act-and-wait control concept was applied to an experi-
mental digital force control process with a short (one sample
unit) feedback delay. The point of the concept is that the
feedback loop is switched off and on periodically during the
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control process so that the duration of the switch off period is
larger than the feedback delay. The experimental setup was
designed such that the control gain can be varied in each
sampling, thus the act-and-wait concept can be implemented
in the system. The technique was compared to the traditional,
continuous control case, when the feedback loop is continu-
ously active.

Stability charts were constructed that plots the critical pro-
portional gains, where the process looses stability, as function
of the frequency ratio α = fn/fs with fn being the natural
frequency of the uncontrolled undamped system and f s being
the sampling frequency. It was shown that the application of
the act-and-wait concept allows the use of larger proportional
gains without loosing stability: the critical gains for the act-
and-wait controller is about the double/triple of the critical
gains associated with the continuous controller. Consequently,
the force error can significantly be decreased by the application
of the act-and-wait control concept. The theoretical results
were confirmed by experiments for a range of frequency ratios.
Vibration frequencies at the stability boundaries were used
to verify the model. The theoretically predicted frequencies
agreed well with the experimentally determined PSD dia-
grams.
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