6.2 Negyedik

Alkhadadoni energia:

- Normal igénybevétel esetén: $U_N = \int \frac{N^2(x)}{2AE} \, dx = \frac{2T^2L}{2AE}$

- Háromtól - $U_{M_2} = \int \frac{M_2^2(x)}{2IE} \, dx = \frac{32M_2^2L}{2IE}$

- Csavarról - $U_{M_1} = \int \frac{M_1^2(x)}{2IP^6} \, dx = \frac{32N_2^2L(1+\nu)}{2IP^6}$

$A = \frac{d^2}{dq}, \, I = \frac{d^2}{dh}, \, IP = \frac{d^4}{32}$

Az eredő alkhadadati energia általában megegyezik az egyes terhelések katalizációja: $U_N = U_{M_2} = U_{M_1}$

m_1/T áram: $U_N = U_{M_2} \rightarrow \frac{2T^2L}{2AE} = \frac{16}{32M_2L}$

m_2/T áram: $U_N = U_{M_1} \rightarrow \frac{2T^2L}{2IP^6} = \frac{16}{32N_2^2L(1+\nu)}$

Teljes alkhadadati energia: (mind3 egys. mértékű és nem annak változását jelöli) $U = 3 \cdot U_N = \frac{6T^2L}{d^2T^4E} = 0,095 \text{ Nm}$
\[F_B = 300 + 2100 = 2400 \text{ N} \]
\[F_C = 1100 + 200 = 1300 \text{ N} \]

Példatarban került erők jelölése:

Az eredmény szerint a következő erők jelölése valósodható körül:

\[M_{t,B} = (2100 - 300) \cdot 60 = 108000 \text{ Nmm} \]
\[M_{t,C} = (1100 - 200) \cdot 120 = 108000 \text{ Nmm} \]

Mégoldás:

\[\sum F_x = 0 \quad \sum F_y = 0 \quad \sum M_A = 0 \]

2. esetben, 2 tagfaktor

\[F_{Az} = -2125 \text{ N} \]
\[F_{Dz} = -1575 \text{ N} \]

Ténybevétel a számlal (ügyességek HF)

Vesztélyes kör: B

\[M_{tot} = \frac{\sqrt{318750^2 + 108000^2}}{2} = 336549 \text{ Nmm} \]

\[M_{HH} = \frac{\sqrt{318750^2 + \frac{3}{4} \cdot 108000^2}}{2} = 332189 \text{ Nmm} \]

\[K_y = \frac{d_{35}}{32} = 7.85 \text{ m}^3 \]

\[\sigma_{tot} = \frac{M_{tot}}{K_y} = 128.51 \text{ MPa} \]

\[\sigma_{HH} = \frac{M_{HH}}{K_y} = 122.56 \text{ MPa} \]
6.5 Megjegyzés: (megfelelő elhelyezésű)

Válasszuk ki a szabályozóval rendelkező szerkezetekről:

\[\begin{bmatrix} 0 \\ -16 \cdot \sin 55^\circ \\ 16 \cdot \cos 55^\circ \end{bmatrix} \cdot \begin{bmatrix} 0 \\ -18 \cdot 100,4 \\ 9177,22 \end{bmatrix} \]

Hajóció és sajátáram-megelőző

\[M = I \times \overrightarrow{F} = \begin{bmatrix} 700 \end{bmatrix} \times \begin{bmatrix} 17,0384 \\ 1 \end{bmatrix} = \begin{bmatrix} 17,0384 \end{bmatrix} \text{KNm} \]

Keretművek jellemzők:

\[I = \frac{(140^\circ - 126^\circ)}{64} = 6,485 \cdot 10^6 \text{mm}^4 \]

\[I_p = 2 \cdot I = 12,97 \cdot 10^6 \text{mm}^4 \]

\[K_v = \frac{I}{70} = 92,643,8 \text{mm}^2 \quad (= \overline{K_y} = \overline{K_z}) \]

\[K_p = \frac{I_p}{70} = 185,288 \text{mm}^3 \]
H- és K-ban elválás σ és τ jellegű feszültségek

\[
\sigma_H = \frac{M_{az}}{K} = 99.03 \text{ MPa} \quad \rightarrow \quad (z \text{ tengely körülől hajlításból})
\]

\[
\sigma_K = \frac{M_{ay}}{K} = 63.34 \text{ MPa}
\]

\[
\tau_H = \tau_K = \frac{N_{k}}{K_P} = 31.36 \text{ MPa}
\]

(y tengely körülől hajlítás)

Egyenértékű feszültségek:

\[
\begin{align*}
\sigma_{H_{max}} &= \sqrt{\sigma_H^2 + 4\tau_H^2} = 208.88 \text{ MPa} \\
\sigma_{H_{min}} &= \sqrt{\sigma_H^2 + 3\tau_H^2} = 187.55 \text{ MPa} \\
\sigma_{K_{max}} &= \sqrt{\sigma_K^2 + 4\tau_K^2} = 196.55 \text{ MPa} \\
\sigma_{K_{min}} &= \sqrt{\sigma_K^2 + 3\tau_K^2} = 173.71 \text{ MPa}
\end{align*}
\]

6.6 Megoldás: Nincs $\sigma \notin \left[\begin{array}{c} 5 \end{array} \left. \begin{array}{c} 0 \\ \vdots \\ 0 \end{array} \right] \right]$, nem létezik a $\sqrt{\sigma^2 + \tau^2}$ képletet

Feszültségi állapot:

\[
\sigma = \left[\begin{array}{ccc} 60 & -80 \\ -80 & 240 \\ 0 & 0 & 0 \end{array} \right]
\]

Főfeszültségek:

\[
\begin{align*}
\sigma_1 &= 80 \text{ MPa} \\
\sigma_2 &= 0 \text{ MPa} \\
\sigma_3 &= -260 \text{ MPa}
\end{align*}
\]

let $(\sigma_2 - \sigma_3 \cdot 5) = 0$ - ből kijön!

\[
0 \left((60 - 5) \cdot (-240 - 5) - 80^2 \right) = 0 \quad \rightarrow \quad \sigma_2 = 80 \quad \sigma_3 = 260
\]

\[
(60 - 5)
\]

\[
(60 - 5)
\]

\[
(60 - 5)
\]

\[
(60 - 5)
\]

\begin{align*}
\text{Molar - füle egyenletéből fel:} \\
\delta_{eg0} &= \delta_1 - \delta_3 = -340 \text{ MPa} \\

\text{Bécska:} \text{ telje a:} \\
100 &= \frac{500}{340} = 1,47 \\

p \text{ felületi nyomás exekül:} \\
\frac{6}{2} &= \left[\begin{array}{ccc}
60 & -80 & 0 \\
-80 & -240 & 0 \\
0 & 0 & -p \\
\end{array} \right] \\
\Rightarrow p > 0 \text{, ha } p < 0, \text{ akkor } -p \text{ pozitív lesz.}

\frac{6}{2} = \sqrt{\frac{3}{2}} \frac{6}{2} \frac{6}{2} \\
\delta_{eg0} = \sqrt{\frac{3}{2}} \delta_d = \delta_d \\

\delta_d = \frac{6}{2} = \frac{6}{2} = \left[\begin{array}{ccc}
120 + \frac{p}{3} & -80 & 0 \\
-80 & -180 + \frac{p}{3} & 0 \\
0 & 0 & 60 - \frac{2p}{3} \\
\end{array} \right] \\

\delta_d = \delta_d = (120 + \frac{p}{3})^2 + (-180 + \frac{p}{3})^2 + (60 - \frac{2p}{3})^2 + (-80)^2 + (-80)^2 = \\
= \frac{2p^2}{3} - 120p + 63200 \\

\delta_{eg0} = \sqrt{\frac{3}{2}} \delta_d = \sqrt{\frac{p^2 - 120p + 94800}{3}} \\
\Rightarrow 240^2 = p^2 - 180p + 94800 \\
\Rightarrow p_{1,2} = \left\{ \begin{array}{l}
-80 \\
280
\end{array} \right.

p > 0, \text{ tehát } p = 280 \text{ MPa}
\end{align*}
(6.4)-es feladat, redukált egyenletek hat magyarázat.

\[\vec{b} = \begin{bmatrix} b_1 & \bar{c} & \phi \\ \bar{c} & \phi & \phi \\ \phi & \phi & \phi \end{bmatrix} \]

\[\vec{b} = \frac{N_a}{K} \]

\[\vec{c} = \frac{N_t}{K_p} = \frac{N_t}{2K} \]

\[\vec{b}_{\text{H}+} = \sqrt{b_1^2 + 4c_2^2} = \sqrt{\frac{N_a^2}{K^2} + 4 \cdot \frac{N_t^2}{4K^2}} = \frac{1}{K} \sqrt{\frac{N_a^2 + N_t^2}{K^2}} = \frac{N_{\text{H}+}}{K} \]

\[M_{\text{H}+} = \sqrt{N_a^2 + N_t^2} \]

\[\vec{b}_{\text{N}+} = \sqrt{b_1^2 + 3c_2^2} = \sqrt{\frac{N_a^2}{K^2} + 3 \cdot \frac{N_t^2}{4K^2}} = \frac{1}{K} \sqrt{\frac{N_a^2 + \frac{3}{4} N_t^2}{K^2}} = \frac{M_{\text{N}+}}{K} \]

\[M_{\text{N}+} = \sqrt{N_a^2 + \frac{3}{4} N_t^2} \]