
Corrections
(modified: 21 Feb 2022 )

The submitted version of the dissertation contains some typesetting errors. The present
PDF file is the corrected version. Corrections are listed below.

Location: Page 8, first sentence in Section 1.3.1
Original: formulas

Corrected: formulae

Location: Page 11

Original:
∂
(

tr
(

A
k
))

∂A
=

k−1
∑

i=0

(

A
i
A

k−1−i
)T

Corrected:
∂
(

tr
(

A
k
))

∂A
= k

(

A
k−1

)T

Location: Page 19, eq. (3.1)
Original: σ3 − I1σ + I2σ − I3 = 0

Corrected: σ3 − I1σ
2 + I2σ − I3δ = 0

Location: Page 20, eq. (3.6)
Original: s3 − J2s− J3 = 0

Corrected: s3 − J2s− J3δ = 0

Location: Page 39, eq. (4.34)

Original:
9Kα ‖s‖ ǫ̇√

2G

Corrected:
9KαSǫ̇√

2G

Location: Page 39, eq. (4.34)

Original:
9Kα ‖s‖ ǫ̇√

2G

Corrected:
9KαSǫ̇√

2G

Location: Page 52, eq. (4.115)

Original:
A

tanωn

Corrected:
Ae

tanωn

Location: Page 120, last row
Original: (??)

Corrected: (4.113)



Budapest University of Technology and Economics

Department of Applied Mechanics

Attila Kossa

Exact stress integration schemes
for elastoplasticity

PhD dissertation

2011

Supervisor: Professor László Szabó, D.Sc.
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1
Introduction

1.1 Aim of the work

Developing stress integration schemes for elastoplastic constitutive equations is still the part of

recent researches worldwide, and the new results are continuously published in scientific journals.

The importance of using numerically efficient stress integration schemes is obvious in engineering

calculations involving plastic deformation.

The author of this dissertation was motivated to begin his research in this subject, because it

was recognized that it may be possible to obtain exact stress solutions for elastoplastic models for

which these solutions have been not derived earlier by others.

The main goal of this work is to derive exact stress and strain solutions for two widely used

elastoplastic models: a) the associative von Mises elastoplastic model with combined linear hard-

ening; b) the non-associative Drucker–Prager elastoplastic model governed by linear isotropic

hardening. The von Mises yield criterion is usually suggested for metals, where the hydrostatic

pressure does not exhibit influence on the plastic behavior of the material. By including the

effects of the hydrostatic pressure into the definition of the yield criterion, we can arrive at the

Drucker–Prager yield criterion, which is applied for pressure-dependent materials such as soils,

concrete and some polymers.

Besides obtaining exact stress and strain solutions for the elastoplastic models under consider-

ation, this document is devoted to present the corresponding discretized stress update formulae.

In addition, the derivations of the algorithmically consistent tangent tensors are also purpose of

this work.
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CHAPTER 1. INTRODUCTION

1.2 Structure of the dissertation

The first chapter starts with the presentation of the aim of the work. Then, the structure of the

dissertation is briefly reviewed. Finally, it ends with the summary of the mathematical conventions

and notations used through the dissertation.

Chapter 2 provides an overview of the literature related to the subject of the dissertation. The

relevant papers are summarized and the most important contributions are discussed.

In Chapter 3, the necessary background of the theory of small strain elastoplasticity is provided.

After a brief analysis of the stress and strain tensors, two yield criteria are introduced, which are

investigated substantially in this work. The summary of the most widely used hardening laws is

also an important part of this chapter. Finally, the chapter ends with a section in which, the two

elastoplastic models considered in this dissertation are formulated.

Chapter 4 presents the exact time integrations of the constitutive models under consideration.

Besides the strain-driven formulation, the solutions for the stress-driven case are also derived.

Chapter 5 is concerned with the numerical implementation of the exact schemes derived in

Chapter 4. The complete stress update procedures are presented including the special loading

cases as well.

In Chapter 6, the algorithmically consistent tangent tensors are constructed. For the simplicity

of the presentation, this chapter summarizes the final formulas without providing the detailed

derivation steps. These details are given in Appendices C and D.

A series of numerical examples for both material models is presented in Chapter 7.

Chapter 8 gives a brief summary of the main results of the dissertation and presents the theses.

The dissertation includes Appendices as well. Appendix A is concerned with the definition

and analysis of the incomplete beta function. Appendix B gives a brief summary of the solution

for linear non-homogeneous differential equations. For simplicity reason, the main chapters of the

dissertation exclude the detailed derivation steps of the new solutions. These details can be found

in Appendix C and Appendix D. Finally, Appendix E briefly reviews the definition of the nested

derivatives and it presents an efficient approach to invert an incomplete beta function introduced

in the solution obtained for the von Mises model.

1.3 Summary of notations

1.3.1 General convention and characters

In order to simplify the presentation of formulae, specific font styles are used to represent different

mathematical quantities. The convention employed for this reason is the following:

• Scalar-valued functions: italic light-face letters (e.g. p, E, ζ).

• Vectors and second-order tensors: italic bold-face letters (e.g. s, σ, ε).

• Fourth-order tensors: italic bold-face calligraphic letters (e.g. T , De).

Exceptions are indicated in the surrounding text.
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1.3. SUMMARY OF NOTATIONS

Important characters are summarized below.

Latin letters

a, b Parameters introduced for both elastoplastic models

Aξ, Bξ Parameters introduced for the von Mises model

As, Bs Parameters introduced both for the von Mises model and the Drucker–

Prager model

Ae, Be Parameters introduced both for the von Mises model and the Drucker–

Prager model

B Material parameter used in the Armstrong–Frederick hardening rule

c Parameter measuring the strain increment part required to reach the yield

surface

ca Parameter measuring the strain increment part required to reach the apex

of the Drucker–Prager yield surface

C
e Fourth-order elastic compliance tensor

C
ep Fourth-order elastoplastic compliance tangent tensor

D
e Fourth-order elasticity tensor

D
ep Fourth-order elastoplastic tangent tensor

D
cons Fourth-order consistent tangent tensor

e Deviatoric strain tensor

E Young’s modulus

F Yield function

g Plastic potential function used for non-associative flow rules

G Shear modulus

h Hardening parameter related to the plastic hardening modulus

h̃ Material parameter introduced for the Drucker–Prager model

H Plastic hardening modulus

H1 Material parameter used in the power law hardening rule

I1, I2, I3 Scalar invariants of the Cauchy stress tensor

I Fourth-order identity tensor, Iijkl = 1
2
(δikδjl + δilδjk)

j Material parameter introduced for the Drucker–Prager model

J1, J2, J3 Scalar invariants of the deviatoric stress tensor

k Material parameter related to the yield stress

K Bulk modulus

m Material parameter used in the power law and the exponential law rules

M Combined hardening parameter

N Outward normal of the yield surface

p Hydrostatic stress (or pressure)

p Hydrostatic (or spherical) stress tensor

q, q̃ Parameters introduced for the deviatoric radial loading case of the

Drucker–Prager model

9



CHAPTER 1. INTRODUCTION

Q Gradient of the plastic potential function

R Scalar parameter related to the yield stress as R =
√

2
3
σY

s1, s2, s3 Principal stresses of the deviatoric stress tensor

s Deviatoric stress tensor

S Norm of the deviatoric relative stress tensor in the von Mises model; norm

of the deviatoric stress tensor in the Drucker–Prager model,

t Time

T Fourth-order deviatoric tensor, T = I − 1
3
δ ⊗ δ

V Parameter related to the material parameters and the strain rate in the

Drucker–Prager model

Greek letters

α, β Material parameters for the Drucker–Prager model

α Back-stress tensor

γ Parameter related to the accumulated plastic strain

δ Second-order identity tensor

ε Small (or infinitesimal) strain tensor

εe Elastic part of the strain tensor

εp Plastic part of the strain tensor

ε̄p Accumulated plastic strain

ǫ Volumetric strain

ǫ Volumetric strain tensor

θ Lode angle

ϑ The angle defined between the outward normal of the yield surface and

the trial stress increment

κ Half-angle of the Drucker–Prager yield surface cone

λ̇ Plastic multiplier (or consistency parameter)

ν Poisson’s ratio

ξ Deviatoric reduced (or relative) stress tensor

σ1, σ2, σ3 Principal stresses of the Cauchy stress tensor

σ Cauchy stress tensor

σ̄ Effective (or equivalent) stress

σY Yield stress

σY∞
Material parameter used in the exponential law hardening

ψ The angle introduced between ξ and ė in the von Mises model; The angle

introduced between s and ė in the Drucker–Prager model

ω The angle introduced between ξ and ṡ in the von Mises model; The angle

introduced between s and ṡ in the Drucker–Prager model
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1.3. SUMMARY OF NOTATIONS

1.3.2 Mathematical notations

Operations:

trA Trace of A

detA Determinant of A

devA Deviatoric part of A

A
T Transpose of A

Ȧ Material time derivative of A

A
−1 Inverse of A

‖A‖ Euclidean norm of A; ‖A‖ =
√
A : A for second-order tensor,

while ‖A‖ =
√
A

2 for vectors

A⊗B Dyadic (or tensor) product of A and B

A : B Double dot product (or double contraction) between A and B,

(A : B = AijBij)

Subscripts n and n+ 1 refer to the values of the particular variables at the beginning and the

end of the increment, whereas the sign ∆ is used to denote the increment.

Some important derivative rules for second order tensor A are (Itskov, 2009):

∂ ‖A‖
∂A

=
A

‖A‖ ,

∂
(

trAk
)

∂A
= k

(

A
k−1
)T
,

∂ (trA)

∂A
= δ,

∂
(

tr
(

A
k
L
))

∂A
=

k−1
∑

i=0

(

A
i
LA

k−1−i
)T
,

∂
(

tr
(

A
k
))

∂A
= k

(

A
k−1
)T
,

∂ (detA)

∂A
=detAA

−T
.
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2
Literature overview of exact integration schemes

in elastoplasticity

Elastoplasticity theory can be regarded as an essential part of solid mechanics. It combines

the theory of elasticity and the theory of plasticity. Thus, this theory has been developed to

understand and to describe the deformation of materials, where beyond the elastic limit permanent

deformation occurs. In the last few centuries, a great number of attempts have been made to

propose theories which are applicable to describe the deformation of ductile materials. A brief

historical survey can be found in the book of Westergaard (1952).

From practical point of view, the classical continuum approach is a well suitable theory to ana-

lyze elastic-plastic problems. In this case, the stresses, strains and internal variables are considered

as averaged quantities in the Representative Volume Element (RVE). Thus, this assumption ne-

glects the local heterogeneity in the material. As plenty of textbooks, papers and commercial

softwares prove, the continuum approach is well applicable for most of the structural calculations.

However, it should be noted, that many higher-order approaches have been developed to describe

more precisely the underlying physical phenomena in real materials. For instance, crystal plastic-

ity (see Nemat-Nasser (2004) or Gambin (2001) for details), Cosserat theory (based on the work

of Cosserat and Cosserat (1909)1), microcontinuum field theories (introduced by Eringen (1999))

are a few examples of these higher-order theories.

Depending on the kinematic description, the classical continuum approach can be divided into

small (or infinitesimal) strain theory and finite (or large) strain theory. In the former case the

1An English version translated by D. H. Delphenich of this book is also available.
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CHAPTER 2. LITERATURE OVERVIEW OF EXACT INTEGRATION SCHEMES IN

ELASTOPLASTICITY

displacement gradient is infinitesimal at every material point in the body, thus, the small strain

theory is a simplification of the finite strain theory using kinematic linearization. Finite strain

theory has to be involved only in calculations, where the material deforms so much that the

application of small strain theory would predict inaccurate solution. In elastoplastic problems,

these are mostly metal-forming processes such as forging, extrusion, drawing, rolling etc., which

produce very large deformation. On the other end, many elastoplastic engineering problems can

be solved accurately enough using the small strain formulation. In addition, the computational

cost is much less than using finite strain theory, consequently, the small strain theory is a widely

accepted approach in elastoplastic engineering calculations for structural and machine designers.

Two approaches exist to describe mathematically the plastic deformations of materials. Namely,

the deformation theory of plasticity and the incremental form (or rate form) theory of plasticity.

In the first case, the theory provides relations between the current components of the stress and

strain, whereas in the latter case, the plastic deformation is assumed to be depended on the load-

ing path. Thus, the incremental formulation defines relation between the stress and the strain

increments. For simplicity of the presentation, many authors prefer to use stress rate and strain

rate instead of stress increment and strain increment. However, it should be noted, that in case

of rate-independent theories, the deformation does not depend on time and the rate of deforma-

tion. The introduction of rate form quantities instead of incremental forms is applied only for

convenience. Obviously, rate-independent problems require the use of rate form quantities. Since

measurements indicated that plastic deformation in general is path dependent, the application of

the deformation theory is limited. However, it is still a part of recent developments, see Jones

(2009), for example.

A particular elastoplastic material model strongly depends on the selection of the yield criteria,

the elastic law, the flow rule and the hardening rule. Numerous yield criteria have been proposed

for the yielding of solids, which can be categorized as pressure-independent (von Mises crite-

rion, Tresca criterion for example) and pressure-dependent ones (Drucker–Prager criterion, Mohr–

Coulomb criterion, for instance). Usually, elastoplastic material models employs the Hooke’s law

to describe the elastic response of the material. However, there are models for which the elastic

strains are neglected compared to the plastic ones. The flow rule is used to determine the direction

of the plastic strain rate tensor. Experimental results indicated that in many cases, the associative

flow rule is violated. Consequently, in order to predict more accurately the material response the

non-associative flow rule has been suggested for some material. One possible categorization of the

hardening rules is to separate them into perfect plasticity, kinematic hardening, isotropic harden-

ing and into combined hardening rules. Furthermore, there exist linear and non-linear hardening

rules both for isotropic and kinematic hardenings.

One of the most widely known elastoplastic material models is the so-called Prandtl–Reuss

equations (see Chen and Han (2007); Khan and Huang (1995); Mendelson (1968); Prandtl (1925);

Reuss (1930) for example). This material model applies the von Mises yield criterion with as-

sociative flow rule and without hardening. The Prandtl–Reuss equations served origin for the
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development of more complicated elastoplastic models. In general, authors prefer to use the terms

”von Mises model” or ”J2 theory of flow” to refer to elastoplastic material models which based

on the von Mises yield criterion. The Prandtl–Reuss equations can be extended by incorporating

a particular hardening law, therefore, several new model can be formulated. Elastoplastic mod-

els based on the Drucker–Prager yield criterion are usually called as ”Drucker–Prager material”

for convenience. These models can be considered as an extension of the von Mises model by

incorporating the pressure dependence of the plastic deformation.

Closed-form solutions of elastoplastic problems exist only for a limited class of regular geome-

tries with simple loading. In general, elastoplastic problems are usually modeled as boundary-value

problems (BVP) and typically solved using the Finite Element Method (FEM). This strategy re-

quires the integration of the rate-form constitutive equation at every integration point of all the

elements. The global accuracy of the solution strongly depends on the integration technique

adopted in the calculations. One of the possible categorization of these integration schemes is to

separate them into numerical techniques and into exact schemes.

The relevant contributions related to the exact schemes proposed for the von Mises model are

discussed in the following paragraphs.

For the simplest case (perfect plasticity), an analytical solution was presented by Krieg and

Krieg (1977) using constant strain rate assumption in strain-driven case. It should be noted that

another form of the analytical solution was derived by Reuss (1930), where the author solved

a system of differential equations of the stress components. Hong and Liu (1997) treated the

problem as a two-phase linear system with an on-off switch, and presented an integration method

solution. By exact linearization of the stress update procedure, Wei et al. (1996) derived the

consistent modulus corresponding to the exact integration formula.

For the purely linear kinematic hardening model, Wang and Chang (1985, 1987) proposed an

exact formula for the integration of the constitutive equations. Numerical implementation of their

method can be found in the work of Szabó and Kovács (1987). The integration scheme presented

by Auricchio and Beirão da Veiga (2003) is also an exact solution for purely linear kinematic

hardening. A closed-form solution of purely linear kinematic hardening and softening is also given

in the paper of Yoder and Whirley (1984) in strain space description.

In case of purely linear isotropic hardening, Ristinmaa and Tryding (1993) extended the method

proposed by Krieg and Krieg (1977) and presented a solution technique involving an integral

expression, which cannot be integrated explicitly. Thus, the authors combined their method with

numerical techniques. Szabó (2009) proposed a solution to overcome this problem by using the

incomplete beta function in solving the governing equation. This yields a semi-analytical solution

for the von Mises elastoplasticity model with linear isotropic hardening.

For combined hardening, a truncated series solution was presented by Chan (1996). Ro-

mashchenko et al. (1999) proposed an analytical solution when the loading is given in the form of

multisection polygonal lines in the deviatoric stress space. The solution obtained by Ristinmaa

and Tryding (1993) requires numerical integration during the stress update procedure. An ap-
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CHAPTER 2. LITERATURE OVERVIEW OF EXACT INTEGRATION SCHEMES IN

ELASTOPLASTICITY

proach for this numerical integration can be found in the work of Krieg and Xu (1997). Another

exact scheme is presented in the work of Liu (2004a), where the author has proposed two numerical

schemes to solve the constitutive equation reformulated into an integral formulation. Therefore,

the latter schemes also involve numerical solutions in the final derivation. The exact stress solu-

tion for combined linear hardening case using constant strain rate assumption was presented by

Kossa and Szabó (2009b). In that paper, the authors extended the exact solution proposed for

linear isotropic hardening by Szabó (2009). In addition, Kossa and Szabó (2009b) presented the

exact strain solution for the stress-driven case, assuming constant stress rate input. The numerical

efficiency of the exact stress solution was demonstrated by Kossa and Szabó (2010b).

Many papers have been published analyzing numerical integration methods for constitutive

equations of elastoplastic solids. Although this dissertation is mainly concerned with the analyt-

ical solution of the governing equations, some relevant numerical studies are summarized in the

following. Two of the most widely used schemes are the generalized trapezoidal (GTR) and the

generalized midpoint rule (GMR). For the von Mises material model with combined isotropic-

kinematic hardening, Ristinmaa and Tryding (1993) derived the consistent tangent modulus of

the GTR and GMR in case of general loading, where the integration path starts from an elastic

state and ends in an elastoplastic state. A detailed discussion, and the construction of the consis-

tent tangent modulus of GMR in case of isotropic hardening, is given by Gratacos et al. (1992).

Caddemi (1994) has presented an unified treatment of the backward-difference, midpoint, and

trapezoidal algorithm for combined hardening. The error involved in backward-difference time in-

tegrations of elastoplastic models has been discussed in the paper of Cocchetti and Perego (2003).

Auricchio and Beirão da Veiga (2003) proposed a new integration scheme based on the computa-

tion of an integration factor for von Mises elastoplasticity model with combined linear hardening.

A new exponential based integration algorithm for associative von Mises elastoplasticity model

with combined linear isotropic-kinematic hardening has been presented by Artioli et al. (2006).

A comprehensive study of four integration methods based on the GMR is given by Artioli et al.

(2007). The numerical performance of the GTR is investigated by Yang et al. (2008) by using an

advanced soil model. Application of the return map algorithm and the corresponding consistent

tangent tensor to nonlinear combined hardening is given by Auricchio and Taylor (1995), where

authors have discussed also the generalized plasticity model. Khoei and Jamali (2005) developed

a solution method based on the return map algorithm for a multi-surface plasticity model with

both isotropic and kinematic hardening. In the work of Wallin and Ristinmaa (2001), a Runge–

Kutta integration scheme is investigated for von Mises materials with isotropic hardening and for

von Mises materials with damage evolution coupled to nonlinear mixed hardening. Application

of explicit Runge–Kutta methods with error control to general class of elastoplastic models are

under consideration in the paper of Hiley and Rouainia (2008). When the problem is considered

in finite strain framework, Ponthot (2002) proposed an unified integration algorithm based on the

classical radial return method for von Mises materials. Detailed study of the integration of inelas-

tic constitutive models is given in the textbooks of Simo and Hughes (1998), Dunne and Petrinic
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(2005), Stein et al. (2004), de Souza Neto et al. (2008) and Anandarajah (2010), for instance.

The following paragraph summarizes the relevant papers related to exact integration of the

constitutive equation of the Drucker–Prager elastoplastic model.

Loret and Prevost (1986) presented a stress solution for the Drucker–Prager elastoplastic model

governed by linear isotropic hardening assuming constant strain rate input. They adopted the

analytical solution technique proposed by Krieg and Krieg (1977) for the von Mises elastoplastic

model without hardening. Since the solution scheme derived by Loret and Prevost (1986) re-

quires a Runge–Kutta procedure, it cannot be regarded as a complete exact solution. Liu (2004b)

developed an integration scheme based on exponential mapping for the Drucker–Prager elasto-

plastic model, which can be regarded as another way of obtaining an exact scheme. This method

had already been proposed earlier for the von Mises elastoplasticity model (Auricchio and Beirão

da Veiga, 2003; Liu, 2004a). The method obtained by Liu (2004b) also utilizes a Runge–Kutta

scheme, therefore, this exponential-based solution method cannot be regarded as complete exact

solution. For the linear isotropic hardening case, Szabó and Kossa (2012) presented the exact

solution. The authors extended the solution scheme proposed by Loret and Prevost (1986), by

solving the differential equation, which describes the evolution of an internal variable. In addition,

Szabó and Kossa (2012) proposed an exact solution for the case, when the stress state is located

at the apex of the yield surface.

Besides analytical treatment of the solution, there are papers treating the problem numerically.

In the paper of Loret and Prevost (1986), the authors derived two approximate methods, namely

the incremental tangent prediction with radial projection and the one-step Euler integration tech-

niques. Based on the work of Liu (2004a), Rezaiee-Pajand and Nasirai (2008) and Rezaiee-Pajand

et al. (2011) proposed two numerical integration techniques involving the exponential maps for

the solution of the associative Drucker–Prager elastoplastic constitutive law. Genna and Pandolfi

(1994) demonstrated the application of a general two-step integration method assuming linear

mixed hardening and associative flow rule. Based on the introduction of a bi-potential function,

Hjiaj et al. (2003) derived an implicit scheme and also discussed the treatment of the apex in

the non-associated case for non-hardening material. In the paper of Rezaiee-Pajand and Sharifian

(2012), the authors reformulated the constitutive models governed by non-linear kinematic and

linear hardening using the method proposed by Krieg and Krieg (1977). Finally, they utilized

numerical schemes to obtain the corresponding stress solution.

This dissertation presents the derivations of the exact stress and strain solutions, the for-

mulations of the discretized stress update formulae and the constructions of the algorithmically

consistent tangent tensors for the associative von Mises elastoplastic model with combined linear

hardening, and for the non-associative Drucker–Pareger elastoplastic model governed by linear

isotropic hardening. These results were presented in the papers of Kossa and Szabó (2009b) and

Szabó and Kossa (2012).
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3
Theory of small strain elastoplasticity

3.1 Analysis of stress and strain

3.1.1 Stress invariants

Consider the Cauchy stress tensor σ. The characteristic equation of σ is

σ
3 − I1σ

2 + I2σ − I3δ = 0, (3.1)

where the scalar stress invariants I1, I2 and I2 are computed according to the formulas (de

Souza Neto et al., 2008):

I1 = trσ, I2 =
1

2

(

(trσ)2 − tr
(

σ
2
))

, I3 = detσ. (3.2)

These stress invariants can be written in a simpler form using Cauchy principal stresses:

I1 = σ1 + σ2 + σ3, I2 = σ1σ2 + σ2σ3 + σ3σ1, I3 = σ1σ2σ3. (3.3)

The deviatoric stress tensor is obtained by substracting the hydrostatic (or spherical) stress tensor

p from the Cauchy stress tensor:

s = σ − p = σ − pδ, where p =
1

3
trσ. (3.4)

Its scalar invariants are

J1 = trs = 0, J2 =
1

2
tr
(

s
2
)

, J3 = dets =
1

3
tr
(

s
3
)

. (3.5)
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The characteristic equation of the deviatoric stress s is

s
3 − J2s− J3δ = 0, (3.6)

where the stress invariants J2 and J3 can be expressed using the principal stress of s:

J1 = s1 + s2 + s3 = 0, J2 =
1

2

(

s
2
1 + s

2
2 + s

2
3

)

, J3 = s1s2s3 =
1

3

(

s
3
1 + s

3
2 + s

3
3

)

. (3.7)

The relations between the invariants J1, J2, J3 and I1, I2, I3 are

J2 =
1

3

(

I
2
1 − 3I2

)

, J3 =
1

27

(

2I31 − 9I1I2 + 27I3
)

. (3.8)

3.1.2 Haigh–Westergaard stress space

In the study of elastoplasticity theory, it is usually convenient if we can somehow illustrate the

meaning of expressions using geometrical representation. The basis of such illustrations is the

introduction of the so-called Haigh–Westergaard stress space (Chen and Han, 2007; Haigh, 1920;

Westergaard, 1920), where principal stresses are taken as coordinate axes. In this principal stress

space, it is possible to illustrate a certain stress state1 as a geometrical point with coordinates σ1,

σ2 and σ3, as shown in Figure 3.1.

Figure 3.1: Haigh–Westergaard stress space.

The straight line for which σ1 = σ2 = σ3 defines the hydrostatic axis, while the planes per-

pendicular to this axis are the deviatoric planes. The particular deviatoric plane containing the

origin O is called as π-plane. The distance of a deviatoric plane from the origin is measured with

the parameter ζ as

ζ = ‖ζ‖ =
√
3p. (3.9)

1It should be noted that two stress matrices with the same eigenvalues but with different eigenvector orientations
are mapped to the same geometrical point in the principal stress space. Consequently, this type of illustration does
not provide information about the stress orientation with respect to the material body.
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The deviatoric part ρ is defined as

ρ = OP −ON , (3.10)

which can be represented by the vector components

[ρ] =







σ1

σ2

σ3






−







p

p

p






=







s1

s2

s3






(3.11)

with length

ρ = ‖ρ‖ =
√

2J2 = ‖s‖ . (3.12a)

The Lode angle measures the angle between the deviatoric projection of the σ1 axis and the

radius vector of the current stress point (Jirásek and Bažant, 2002). It is defined by the relation

cos3θ =
3
√
3

2

J3
√

J3
2

. (3.13)

Consequently, the principal stresses can be expressed as

σ1 =
ζ√
3
+

√

2

3
ρ cosθ, (3.14)

σ2 =
ζ√
3
+

√

2

3
ρ cos

(

θ − 2π

3

)

, (3.15)

σ3 =
ζ√
3
+

√

2

3
ρ cos

(

θ +
2π

3

)

. (3.16)

Here, σ1 ≥ σ2 ≥ σ3.

3.1.3 Linear elastic stress-strain relation

The general form of the linear elastic stress-strain relation for isotropic material can be written as

σ = D
e : ε, (3.17)

where ε is the small strain tensor, whereas D
e denotes the fourth-order elasticity tensor, which

can be formulated in general form as (Doghri, 2000)

D
e = 2GT +Kδ ⊗ δ. (3.18)

Expression (3.17) represents the Hooke’s law. In (3.18), G stands for the shear modulus, while K

denotes the bulk modulus. Their connections to the Young’s modulus E and to the Poisson’s ratio

ν are (Chen and Saleeb, 1982; Sadd, 2009)

G =
E

2 (1 + ν)
, K =

E

3 (1− 2ν)
. (3.19)
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The inverse relation of (3.17) has the form

ε = C
e : σ, (3.20)

where C
e denotes the fourth-order elastic compliance tensor, the inverse of De (Doghri, 2000):

C
e =

1

2G
I − ν

E
δ ⊗ δ =

1

2G
T +

1

9K
δ ⊗ δ. (3.21)

3.1.4 Decomposition of the strain

The additive decomposition of the total strain into elastic and plastic parts is a fundamental

assumption in the small strain elastoplasticity theory. It means the relation

ε = ε
e + ε

p
, (3.22)

where ε denotes the total strain, whereas εe and εp stand for the elastic and for the plastic parts.

The additive decomposition is also adopted for the strain rates. For one-dimensional case, Figure

3.2 illustrates the strain decomposition.

Figure 3.2: Strain decomposition in uniaxial case.

Furthermore, the strain tensor can be decomposed additively as

ε = e+ ǫ, (3.23)

where e denotes the deviatoric strain tensor, whereas the volumetric strain tensor, ǫ, is given by

ǫ = ǫδ, ǫ =
1

3
trε. (3.24)

The decomposition into elastic and plastic parts is valid for the deviatoric and the volumetric

strain, and for the strain rate quantities, as well.
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3.2. YIELD CRITERIA

3.2 Yield criteria

The law defining the elastic limit under an arbitrary combination of stresses is called yield criterion.

In general three-dimensional case, where the stress state is described by six independent stress

components, the yield criterion can be imagined as a yield surface in the six-dimensional stress

space. This yield surface divides the whole stress space into elastic and plastic domains. Therefore,

the yield criterion can be represented as a yield surface. In the Haigh–Westergaard stress space,

the yield surface constitutes a three-dimensional surface with the definition

F (σ, σY ) = 0, (3.25)

where F (σ, σY ) denotes the yield function, whereas σY represents the yield stress. F = 0 means

yielding or plastic deformation, while for elastic deformation we have F < 0. Thus, the yield

criterion is expressible in the form

F (σ, σY ) ≤ 0. (3.26)

A particular yield function depends on the definition of the equivalent stress and the characteristic

of the yield stress. For isotropic materials the yield criterion can be written in terms of the scalar

invariants of the total stress (Chen and Han, 2007):

F (I1, I2, I3, σY ) ≤ 0. (3.27)

3.2.1 The von Mises yield criterion

The von Mises yield criterion states that plastic yielding occurs, when the octahedral shearing

stress reaches a critical value k = σY /
√
3 (von Mises, 1913). This behavior can be written using

the yield function

F (σ, σY ) =

√

3

2
s : s− σY (3.28)

or in an alternative way:

F (σ, σY ) =
√

J2 − k ≡ 1√
2
‖s‖ − k. (3.29)

The yield function (3.28) can be reformulated in a simpler, but equivalent form as

F (s, R) = ‖s‖ − R, (3.30)

where R =
√

2
3
σY (Simo and Hughes, 1998). The yield surface corresponding to this yield criterion

is a cylinder parallel to the hydrostatic axis (see Figure 3.3). Consequently, its locus on a particular

deviatoric plane (including the π-plane) is a circle with radius R.
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Figure 3.3: (a) The von Mises yield surface. (b) Meridian plane of the von Mises yield surface.

3.2.2 The Drucker–Prager yield criterion

The Drucker–Prager yield criterion is a simple modification of the von Mises criterion, in which

the hydrostatic stress component is also included to introduce pressure-sensitivity (Drucker and

Prager, 1952). The yield function for this case can be written as (Chen, 2007; de Souza Neto

et al., 2008; Jirásek and Bažant, 2002)

F (σ, σY , α) =
1√
2
‖s‖+ 3αp− k, (3.31)

where α is an additional material parameter. The yield surface in the principal stress space is

represented by a circular cone around the hydrostatic axis (see Figure 3.4).

Figure 3.4: (a) Drucker–Prager yield surface. (b) Meridian plane of the Drucker-Prager yield surface.

The angle κ in the meridian plane is defined as

tanκ =
√
6α. (3.32)
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3.3. PLASTIC FLOW RULES

3.3 Plastic flow rules

The material starts to deform plastically, when the yield surface is reached. Upon further loading,

the deformation produces plastic flow. The direction of the plastic strain rate is defined according

to the plastic flow rule

ε̇
p = λ̇

∂g

∂σ
, (3.33)

where the scalar function λ̇ denotes the plastic multiplier (or consistency parameter), whereas g

is the plastic potential function, which itself is a function of the stresses. The plastic flow rule is

called associative if the plastic potential function in (3.33) equals to the yield function. Otherwise,

the flow rule is termed non-associative. For the associative case, the direction of the strain rate

is the outward normal of the yield surface, whereas for non-associative flow rule it is the gradient

of the plastic potential surface.

3.4 Hardening laws

In uniaxial experiment, it is observed that the yield stress associated to a material can vary

upon plastic loading. Furthermore, for some class of materials the yield stress in the reverse load

direction (compression) is different than for tension. These phenomena can be modelled using

various hardening laws. The simplest case is the perfectly plastic material, for which, the yield

stress remains unchanged under loading. In this case the yield function becomes

F (σ, σY 0) = σ̄ (σ)− σY 0, (3.34)

where σY 0 indicates the initial yield stress, whereas σ̄ (σ) stands for the effective (or equivalent)

stress.

3.4.1 Isotropic hardening

The hardening behavior is termed isotropic if the shape of the yield surface remains fixed, whereas

the size of the yield surface changes under plastic deformation. In other words, the yield surface

expands without translation under plastic loading.

3.4.1.1 Linear isotropic hardening

If the material behavior, in the plastic region of the uniaxial stress-strain curve, is modelled with

linear schematization, then we arrive at the linear isotropic hardening rule:

σY (ε̄p) = σY 0 +Hε̄
p
, (3.35)
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where the slope of the curve is given by the constant plastic hardening modulus H , whereas ε̄p

denotes the accumulated (or cumulative) plastic strain, which defined by (Chen and Han, 2007)

ε̄
p =

√

2

3

∫ t

0

‖ε̇p‖dτ. (3.36)

An alternative, but equivalent, way to define the linear isotropic hardening is (Simo and Hughes,

1998)

R (γ) = R0 + hγ, (3.37)

where

R0 =

√

2

3
σY 0, h =

2

3
H, γ =

∫ t

0

‖ε̇p‖dτ. (3.38)

3.4.1.2 Nonlinear isotropic hardening

Nonlinear empirical idealization of the plastic hardening, in most cases, provides more accurate

prediction of the material behavior. The most commonly used forms for the nonlinear isotropic

hardening rule are the power law and the exponential law hardening (Doghri, 2000):

σY (ε̄p) = σY 0 +H1 (ε̄
p)m , and σY (ε̄p) = σY 0 + σY∞

(

1− e
−mε̄p

)

, (3.39)

where H1, m and σY∞
are material parameters. There exist some other nonlinear schematizations,

which can be found in the textbook of Skrzypek (1993), for instance.

3.4.2 Kinematic hardening

The kinematic hardening rule assumes that during plastic flow, the yield surface translates in

the stress space and its shape and size remains unchanged. This hardening model based on the

Bauschinger effect observed in uniaxial tension-compression test for some material (Bauschinger,

1881; Lemaitre and Chaboche, 1990). The use of kinematic hardening rules involves the modifica-

tion (shifting) the stress tensor σ with the so-called back-stress (or translation) tensor α, in the

yield function. Thus, the yield function becomes F (σ −α, σY ). Depending of the evolution of the

back-stress tensor, a few kinematic hardening models exist. Two widely used rules are presented

in the following.

3.4.2.1 Linear kinematic hardening

The simplest evolutionary equation for the back-stress tensor α is the Prager’s linear hardening

rule (Chen and Han, 2007; de Souza Neto et al., 2008; Prager, 1955, 1956):

α̇ =
2

3
H ε̇

p = hε̇
p
. (3.40)
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3.4.2.2 Nonlinear kinematic hardening

Among different type of nonlinear kinematic hardening rules, the Armstrong–Frederick’s type is

the most widely used and adopted one (Armstrong and Frederick, 1966; Frederick and Armstrong,

2007; Jirásek and Bažant, 2002). This rule introduces a fading memory effect of the strain path

as

α̇ =
2

3
H ε̇

p − B ˙̄εpα, (3.41)

where B is a material constant.

3.4.3 Combined linear hardening

By combining the isotropic and kinematic hardening rules we arrive at the combined hardening

(or mixed hardening) rule, by which the characteristics of real materials can be predicted more

accurately. The combined linear hardening rules involves both the linear isotropic hardening rule

(3.35) and the linear evolutionary equation (3.40) for the back-stress.

The plastic hardening modulus corresponding to the isotropic and to the kinematic hardening

can be defined as

Hiso =MH, Hkin = (1−M)H, hiso =
2

3
Hiso, hkin =

2

3
Hkin, (3.42)

where the combined hardening parameter M ∈ [0, 1] defines the share of the isotropic part in

the total amount of hardening (Axelsson and Samuelsson, 1979; Chen and Han, 2007; Simo and

Hughes, 1998). In this case, Hiso has to be used in (3.35), whereas Hkin replaces H in (3.40).

Consequently, M = 1 means purely isotropic hardening, while M = 0 denotes purely kinematic

hardening.

3.5 Elastic-plastic constitutive models

3.5.1 Introduction

This section presents the constitutive equations of the two elastic-plastic constitutive models

under consideration in this dissertation. Besides the formulation of the corresponding elastoplastic

tangent tensors, the inverse forms of the constitutive equations are also presented.

3.5.2 Associative von Mises elastoplasticity model with combined lin-

ear hardening

Based on (3.30), the yield function of the von Mises elastoplasticity model with combined linear

hardening is given by

F = ‖ξ‖ −R, (3.43)
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where ξ = s − α denotes the deviatoric relative (or reduced) stress. The plastic flow direction,

according to (3.33), is defined by the associative flow rule

ε̇
p = λ̇N , N =

∂F

∂σ
=

ξ

‖ξ‖ , ‖ε̇p‖ = λ̇ = γ̇, (3.44)

where N represents the outward normal of the yield surface. The linear isotropic hardening rule

(3.37) takes the form

R (γ) = R0 + hisoγ. (3.45)

The evolutionary law for the back-stress according to the Prager’s linear hardening rule (3.40) is

defined as

α̇ = hkinε̇
p = λ̇hkinN = λ̇hkin

ξ

‖ξ‖ . (3.46)

The loading/unloading conditions can be expressed in the Kuhn-Tucker form as (de Souza Neto

et al., 2008; Luenberger and Ye, 2008; Simo and Hughes, 1998)

λ̇ ≥ 0, F ≤ 0, λ̇F = 0. (3.47)

The plastic multiplier can be derived from the consistency condition Ḟ = 0 using with combination

of (3.17) and (3.22):

Ḟ =
∂F

∂σ
: σ̇ +

∂F

∂α
: α̇− Ṙ = N : De : ε̇− (2G+ h) λ̇, (3.48)

λ̇ =
N : De : ε̇

2G+ h
=

2Gξ : ė

(2G+ h) ‖ξ‖ . (3.49)

The fourth-order elastoplastic tangent tensor D
ep, which relates the strain rate ε̇ to the stress

rate σ̇ is computed from

σ̇ = D
e : ε̇e = D

e : ε̇−D
e : ε̇p = D

e : ε̇− N : De : ε̇

2G+ h
D

e : N (3.50)

=

(

D
e − D

e : N ⊗N : De

2G+ h

)

: ε̇. (3.51)

Therefore the rate-form elastic-plastic constitutive equation has the following form:

σ̇ = D
ep : ε̇ , (3.52)

where

D
ep = D

e − D
e : N ⊗N : De

2G+ h
= D

e − 4G2

(2G+ h) ‖ξ‖2
ξ ⊗ ξ. (3.53)
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The constitutive equation (3.52) can be separated into deviatoric and hydrostatic (spherical) parts

as follows

ṡ = 2Gė− 4G2

(2G+ h) ‖ξ‖2
(ξ : ė) ξ (3.54)

and

ṗ = 3Kǫ̇ . (3.55)

It can be clearly concluded, that in this model, the hydrostatic part of the total stress is governed by

pure elastic law. Therefore, the plastic deformation affects only the deviatoric stress components.

The evolutionary equation for the back-stress can be expressed by combining (3.46) and (3.49):

α̇ =
2Gh (1−M)

(2G+ h) ‖ξ‖2
(ξ : ė) ξ. (3.56)

The evolution law of the parameter R related to the yield stress is obtained by taking the time

derivative of (3.45):

Ṙ =
2GMh

(2G+ h) ‖ξ‖ (ξ : ė) . (3.57)

In this description, R represents the radius of the yield surface (cylinder). Finally, the definition

for the rate of the deviatoric relative stress is given by

ξ̇ = ṡ− α̇ = 2Gė− 2G

‖ξ‖2
(

1− Mh

2G+ h

)

(ξ : ė) ξ. (3.58)

Inverse elastoplastic constitutive equation

The inverse elastic-plastic constitutive equation, which relates the stress rate to the strain rate,

is given by the relation

ε̇ = C
ep : σ̇, (3.59)

where the fourth-order elastoplastic compliance tangent tensor C
ep can be derived by inverting the

elastoplastic tangent tensor D
ep using the Sherman–Morrison formula (Sherman and Morrison,

1949; Szabó, 1985):

C
ep = (Dep)−1 = C

e +
1

h
N ⊗N = C

e +
1

h ‖ξ‖2
ξ ⊗ ξ. (3.60)

The constitutive equation (3.59) can be separated into deviatoric and hydrostatic parts as follows

ė =
1

2G
ṡ+

1

h ‖ξ‖2
(ξ : ṡ) ξ, (3.61)
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and

ǫ̇ =
1

3K
ṗ. (3.62)

Combining (3.61) with (3.57), (3.58) and (3.56) we arrive at

Ṙ =
M

‖ξ‖ (ξ : ṡ) , α̇ =
1−M

‖ξ‖2
(ξ : ṡ) ξ, ξ̇ = ṡ− 1−M

‖ξ‖2
(ξ : ṡ) ξ. (3.63)

3.5.3 Non-associative Drucker–Prager elastoplasticity model with lin-

ear isotropic hardening

The yield function (3.31) for the Drucker–Prager model with linear isotropic hardening can be

formulated as

F =
1√
2
‖s‖+ 3αp− k. (3.64)

Since non-associative case is considered, the plastic flow potential function has to be defined. A

commonly adopted form is given by (Chen and Han, 2007)

g =
1√
2
‖s‖+ 3βp, (3.65)

where β is a material parameter. The gradients of the yield function and the plastic potential

function, with respect to σ are the following:

N =
∂F

∂σ
=

s√
2 ‖s‖

+ αδ, (3.66)

Q =
∂g

∂σ
=

s√
2 ‖s‖

+ βδ, (3.67)

The non-associative flow rule for the plastic strain rate is defined using (3.33) as

ε̇
p = λ̇Q = λ̇

(

s√
2 ‖s‖

+ βδ

)

. (3.68)

The norm of plastic strain rate and the rate of the accumulated plastic strain (3.36) are the

following:

‖ε̇p‖ = λ̇

√

1

2
+ 3β2, ˙̄εp = λ̇

√

1

3
+ 2β2. (3.69)

The linear isotropic hardening rule (3.35) for this model becomes (Chen and Han, 2007)

k (ε̄p) =

(

α+
1√
3

)

σY (ε̄p) . (3.70)
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The loading/unloading conditions can be expressed in the Kuhn–Tucker form (3.47). The plastic

multiplier can be obtained from the consistency condition Ḟ = 0, using with combination of (3.17)

and (3.22):

Ḟ =
∂F

∂σ
: σ̇ − k̇ = N : De : ε̇− λ̇

(

N : De : Q+H

(

α +
1√
3

)

√

1

3
+ 2β2

)

, (3.71)

λ̇ =
N : De : ε̇

N : De : Q+H

(

α +
1√
3

)

√

1

3
+ 2β2

=
1

h̃

(

2G√
2 ‖s‖

s : ė + 3Kαtrε̇

)

, (3.72)

where the scalar parameter h̃ is defined as

h̃ = G+ 9Kαβ +H

(

α+
1√
3

)

√

1

3
+ 2β2. (3.73)

The elastoplastic tangent tensor is derived from

σ̇ = D
e : ε̇e = D

e : ε̇−D
e : ε̇p = D

e : ε̇− N : De : ε̇

h̃
D

e : Q (3.74)

=

(

D
e − D

e : Q⊗N : De

h̃

)

: ε̇. (3.75)

Using the result above, the elastoplastic constitutive law can be written as

σ̇ = D
ep : ε̇, (3.76)

where

D
ep = D

e − D
e : Q⊗N : De

h̃
(3.77)

= D
e − 1

h̃

(

2G2

‖s‖2
s⊗ s+

6KGα√
2 ‖s‖

s⊗ δ +
6KGβ√
2 ‖s‖

δ ⊗ s+ 9K2
αβδ ⊗ δ

)

. (3.78)

The constitutive equation (3.76) can be separated into deviatoric and hydrostatic parts as follows

ṡ = 2Gė− 2G2

h̃ ‖s‖2
(

s : ė+
9Kα ‖s‖ ǫ̇√

2G

)

s (3.79)

and

ṗ = 3Kǫ̇− 3
√
2KGβ

h̃ ‖s‖

(

s : ė+
9Kα ‖s‖ ǫ̇√

2G

)

. (3.80)

Inverse elastoplastic constitutive equation

The inverse of the constitutive law (3.76) is defined as

ε̇ = C
ep : σ̇, (3.81)

where the fourth-order elastoplastic compliance tangent tensor Cep is obtained by the inversion of
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(3.77) using the Sherman–Morrison formula (Sherman and Morrison, 1949; Szabó, 1985):

C
ep = (Dep)−1 = C

e +
1

j
Q⊗N (3.82)

= C
e +

1

j

(

1

2 ‖s‖2
s⊗ s+

α√
2 ‖s‖

s⊗ δ +
β√
2 ‖s‖

δ ⊗ s+ αβδ ⊗ δ

)

, (3.83)

where the scalar parameter j is defined as

j = h̃−G− 9Kαβ = H

(

α +
1√
3

)

√

1

3
+ 2β2. (3.84)

The inverse constitutive law (3.81) can be separated into deviatoric and hydrostatic part as follows:

ė =
1

2G
ṡ+

1

2j ‖s‖2
(

s : ṡ+ 3
√
2 ‖s‖αṗ

)

s (3.85)

and

ǫ̇ =

(

1

3K
+

3αβ

j

)

ṗ+
β (s : ṡ)√
2 ‖s‖ j

. (3.86)
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4
Exact time integration of constitutive models

4.1 Introduction

This chapter presents the two alternative ways used to obtain stress and strain solutions for

the rate-form constitutive equation. In the first description, the problem is defined in strain-

driven formulation. In this case, the strain field (path) is assumed to be known in the whole

loading history and the stress field (path) has to be determined by the integration of the rate-

form constitutive equation. Whereas, the stress-driven formulation is employed in the case when

the stress field (path) is given and we are interested in the solution of the corresponding strain

field (path). Thus, for this description the inverse of the rate-form constitutive equation is needed

to be formulated and integrated.

The solutions in strain-driven and stress-driven cases, are presented in the following sections

for both elastoplastic model under consideration.

4.2 Strain-driven problems with constant strain rate assump-

tion

Under strain-driven formulations it is assumed that the total and plastic strain fields, the stress

field and the internal variables appearing in the particular model are known at time instant

tn ∈ [0, T ], where [0, T ] ⊂ R denotes the time interval under consideration. Furthermore, the total

strain field ε is assumed to be given in the whole interval [0, T ], consequently, the loading history

is defined by the given strain field ε (t). Therefore, in strain-driven problems, the stress field, the

plastic strain field and the internal variables have to be determined for a given time t ∈ [tn, T ],

t > tn.

In the following, the solution for plastic loading is derived for the case when ε̇ is constant.

For simplicity of the presentation, the dependence on the variable t is omitted in the following

expressions. Exceptions are indicated in the surrounding text.
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CHAPTER 4. EXACT TIME INTEGRATION OF CONSTITUTIVE MODELS

4.2.1 Associative von Mises elastoplasticity model with combined lin-

ear hardening

4.2.1.1 Solution in general case

Define the following inner product (Kossa and Szabó, 2009b):

ξ : ė = ‖ξ‖ ‖ė‖ cosψ = S ‖ė‖ cosψ, (4.1)

where the notation S = ‖ξ‖ introduced1, which represents the norm of the deviatoric relative

stress ξ. By definition the angle ψ is restricted to be 0 ≤ ψ ≤ π. The schematic illustration of ψ

is given in Figure 4.1.

Figure 4.1: Schematic illustration of the stress solution in the deviatoric principal stress plane.

Substituting (4.1) into the expression of the plastic multiplier (3.49), we have

λ̇ =
2G ‖ė‖ cosψ

2G+ h
. (4.2)

Consequently, the plastic yielding condition λ̇ > 0 implies that in plastic loading case the angle ψ

is restricted to be between 0 ≤ ψ < π/2.

Substituting (4.1) into (3.57) and using the yield criteria, the evolutionary equation for S can

be formulated as

Ṡ = −4Gb ‖ė‖ cosψ , (4.3)

where the scalar parameter

b = − Mh

2 (2G+ h)
(4.4)

is introduced for simplicity.

1According to the yield criterion, S = R in case of plastic loading
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The time derivative of (4.1) has the form

ξ̇ : ė = Ṡ ‖ė‖ cosψ − S ‖ė‖ sinψ ψ̇. (4.5)

Taking the double-dot product of (3.58) and ė gives

ξ̇ : ė = 2G ‖ė‖2 − 2G

(

1− Mh

2G+ h

)

‖ė‖2 cos2ψ. (4.6)

Combining (4.5), (4.6) and (4.3) allows us to express ψ̇:

ψ̇ = −2G ‖ė‖
S

sinψ . (4.7)

By dividing (4.7) with (4.3), the problem can be reduced to the separable ordinary differential

equation

1

S
dS = 2b

1

tanψ
dψ, (4.8)

with the initial conditions ψ (t = tn) = ψn and S (t = tn) = Sn. Thus, the solution of parameter

S in terms of the angle ψ, can be simply obtained as

S
∫

Sn

1

S̃
dS̃ = 2b

ψ
∫

ψn

1

tanψ̃
dψ̃, (4.9)

S = Sn

(

sinψ

sinψn

)2b

. (4.10)

This result was published also by Krieg and Xu (1997) and Ristinmaa and Tryding (1993). Sub-

stituting (4.10) into (4.7) leads to the separable differential equation

(sinψ)2b−1 dψ = −2G ‖ė‖
Sn

sin2b
ψn dt, (4.11)

which can be integrated yielding the solution

ψ
∫

ψn

(

sinψ̃
)2b−1

dψ̃ = −2G ‖ė‖
Sn

sin2b
ψn

t
∫

tn

dt̃, (4.12)

1

2
B

(

cos2ψn,
1

2
, b

)

− 1

2
B

(

cos2ψ,
1

2
, b

)

= −2G ‖ė‖
Sn

sin2b
ψn (t− tn) , (4.13)

B

(

cos2ψ,
1

2
, b

)

−B

(

cos2ψn,
1

2
, b

)

=
4G ‖ė‖ (t− tn)

Sn
sin2b

ψn , (4.14)

where function B (x, a, b) denotes the incomplete beta function, which is discussed in detail in
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Appendix A. Having these solutions, the solution for ξ can be expressed by the following linear

combination (see Appendix C.1 for detailed derivation steps):

ξ = Aξξn +Bξė , (4.15)

where

Aξ =
S

Sn

sinψ

sinψn
, Bξ =

S

‖ė‖
sin (ψn − ψ)

sinψn
. (4.16)

After ξ is obtained, it can be substituted into (3.54):

ṡ = Ȧsξn + Ḃsė, (4.17)

where

Ȧs = − 2G2 ‖ė‖ sin (2ψ)
(2G+ h)Snsinψn

, Ḃs = 2G− 4G2cosψsin (ψn − ψ)

(2G+ h) sinψn
. (4.18)

Integrating both sides in (4.17) yields the solution (see Appendix C.2 for detailed derivation steps)

s = sn + Asξn +Bsė , (4.19)

As =
2G (Aξ − 1)

(2G+ h) (2b+ 1)
, (4.20)

Bs = 2G (t− tn) +
2G (Bξ − 2G (t− tn))

(2G+ h) (2b+ 1)
. (4.21)

The schematic illustration of the stress solution is given in Figure 4.1.

The hydrostatic stress follows the elastic evolutionary law (3.55), thus the solution is

p = pn + 3Kǫ̇ (t− tn) . (4.22)

Remark: The basic assumption is that the plastic hardening modulus H is smaller than the

shear modulus G and greater than zero, i.e., 0 < H/G < 1 and 0 < h/G < 2/3. Parameter b in

(4.4) can be expressed as

b = − M
2
3
H

2
(

2G+ 2
3
H
) = − MH

6G+ 2H
= −

M
H

G

6 + 2
H

G

. (4.23)

The variation of parameter b in terms of parameter M and the ratio H/G is illustrated in Figure

4.2. Thus, it can be clearly concluded that b is restricted to be

−1

8
< b < 0 . (4.24)

36



4.2. STRAIN-DRIVEN PROBLEMS WITH CONSTANT STRAIN RATE ASSUMPTION

Figure 4.2: Variation of parameter b.

4.2.1.2 Solution in radial loading case

The stress solution derived in the preceding section has singularity if ψn = 0. This particular case

is called as radial loading (or proportional loading) case. Since ψn = 0 we can use the identity

(Kossa, 2007)

ξ

‖ξ‖ =
ė

‖ė‖ . (4.25)

According to (4.3), the solution for S reduces to

S = Sn − 4Gb ‖ė‖ (t− tn) . (4.26)

From (4.25) it follows that

ξ = S
ė

‖ė‖ . (4.27)

In view of (4.25), the solution of the deviatoric stress can be simply obtained by integrating (3.54):

s = sn +
2Gh (t− tn)

(2G+ h)
ė . (4.28)

4.2.1.3 Discussion on the angle ψ

Equation (4.14) defines the solution for the angle ψ in an implicit manner. This expression can

be written in the form

B

(

cos2ψ,
1

2
, b

)

= x, where x = B

(

cos2ψn,
1

2
, b

)

+
4G ‖ė‖ (t− tn)

Snsin
−2b
ψn

. (4.29)

The angle ψ as a function of the variable x is illustrated in Figure 4.3. Based on the general

characteristics of the incomplete beta function, it can be clearly concluded from (4.29) that ψ is

a strictly monotonically decreasing function. Consequently, it follows that ψ < ψn for t > tn.

Furthermore, another important property can be easily observed in (4.29). Namely, the angle ψ

cannot reach zero for finite strain input ‖ė‖ (t− tn).
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Figure 4.3: Illustration of the angle ψ.

4.2.2 Non-associative Drucker–Prager elastoplasticity model with lin-

ear isotropic hardening

4.2.2.1 Solution in general case

Define the following inner product (Szabó and Kossa, 2012):

s : ė = ‖s‖ ‖ė‖ cosψ = S ‖ė‖ cosψ, (4.30)

where2 S = ‖s‖. The angle ψ is illustrated in Figure 4.4, where σ̇
e = D

e : ε̇ is the elastic stress

rate.

Figure 4.4: Schematic illustration of the angle ψ.

2Here, the parameter S differs from that introduced for the von Mises model.
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Using (4.30), the plastic multiplier (3.72) can be written in the form

λ̇ =

√
2G ‖ė‖
h̃

(cosψ + V ) , (4.31)

where the parameter V was introduced by Loret and Prevost (1986) as

V =
9Kαǫ̇√
2G ‖ė‖

. (4.32)

For simplifying the presentation of the solutions it is convenient to introduce two additional scalar

parameters, which are (Szabó and Kossa, 2012)

a =
G

2h̃
(1− V )− 1

2
, b =

G

2h̃
(1 + V )− 1

2
. (4.33)

The evolutionary equation of S is obtained by

Ṡ =
s

‖s‖ : ṡ = 2G ‖ė‖ cosψ − 2G2

h̃S

(

S ‖ė‖ cosψ +
9KαSǫ̇√

2G

)

, (4.34)

Ṡ = 2G ‖ė‖ (a− b− (a + b) cosψ) (4.35)

Combining (4.35) with the time derivative of (4.30) gives

ṡ : ė = 2G ‖ė‖2 (a− b− (a + b) cosψ) cosψ − S ‖ė‖ sinψψ̇. (4.36)

Taking the double dot product of (3.79) with ė gives

ṡ : ė = 2G ‖ė‖2 sin2
ψ + 2G ‖ė‖2 cosψ (a− b− (a+ b) cosψ) . (4.37)

The evolutionary equation for the angle ψ is obtained by equating (4.36) and (4.37):

ψ̇ = −2G ‖ė‖
S

sinψ . (4.38)

Combining expression (4.35) with (4.38) leads to the separable differential equation

1

S
dS =

(

(a+ b)
1

tanψ
− (a− b)

1

sinψ

)

dψ. (4.39)

with the initial conditions ψ (t = tn) = ψn and S (t = tn) = Sn. Using the identity

sinψ = 2sin

(

ψ

2

)

cos

(

ψ

2

)

(4.39) can be reformulated as

1

S
dS =









b

cos

(

ψ

2

)

sin

(

ψ

2

) − a

sin

(

ψ

2

)

cos

(

ψ

2

)









dψ. (4.40)
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Integrating both sides yields the solution for S:

S
∫

Sn

1

S̃
dS̃ =

ψ
∫

ψn













b

cos

(

ψ̃

2

)

sin

(

ψ̃

2

) − a

sin

(

ψ̃

2

)

cos

(

ψ̃

2

)













dψ̃, (4.41)

S = Sn









cos

(

ψ

2

)

cos

(

ψn

2

)









2a







sin

(

ψ

2

)

sin

(

ψn

2

)









2b

. (4.42)

Substituting the solution (4.42) into (4.38) leads to the separable differential equation

cos2a−1

(

ψ

2

)

sin2b−1

(

ψ

2

)

dψ = −4G ‖ė‖
Sn

cos2a
(

ψn

2

)

sin2b

(

ψn

2

)

dt. (4.43)

The solution for the angle ψ can be obtained by solving (4.43) (Szabó and Kossa, 2012):

ψ
∫

ψn

cos2a−1

(

ψ̃

2

)

sin2b−1

(

ψ̃

2

)

dψ̃ = −
t
∫

tn

4G ‖ė‖
Sn

cos2a
(

ψn

2

)

sin2b

(

ψn

2

)

dt̃, (4.44)

B

(

cos2
ψ

2
, a, b

)

− B

(

cos2
ψn

2
, a, b

)

=
4G ‖ė‖ (t− tn)

Sn
cos2a

(

ψn

2

)

sin2b

(

ψn

2

)

(4.45)

Having this solution (4.45) in hand, the solution of the deviatoric stress s can be expressed as a

linear combination (Appendix D.1 contains the detailed derivation steps)

s = Assn +Bsė , (4.46)

where

As =
S

Sn

sinψ

sinψn
, Bs =

S

‖ė‖
sin (ψn − ψ)

sinψn
. (4.47)

Combining (3.80), (4.30) and (4.35) allows us to reformulate the evolutionary equation for the

hydrostatic stress in the form

ṗ = 3Kǫ̇− 3
√
2KGβ

(

h̃−G

)

(

1

2G
Ṡ + ‖ė‖ V

)

. (4.48)

Integrating this expression yields the solution for p:

p = pn + 3Kǫ̇ (t− tn)−
3
√
2KGβ ‖ė‖
h̃−G

(

S − Sn

2G ‖ė‖ + V (t− tn)

)

, (4.49)
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p = pn + ǫ̇ (t− tn)K

(

3− 27Kαβ

h̃−G

)

− 3
√
2Kβ

2
(

h̃−G

) (S − Sn) . (4.50)

The schematic illustration of the stress solution in the Haigh–Westergaard stress space is given in

Figure 4.5.

Figure 4.5: Schematic illustration of the stress solution.

Remark: Since the basic assumption is that the plastic hardening modulus H is smaller than

the shear modulus G, it follows from (3.73) that 0 < G/h̃ < 1. According to the expression of the

plastic multiplier (3.72), the plastic loading condition
·

λ > 0 for purely hydrostatic loading, i.e.,

ė = 0, reduces to trε̇ > 0. Whereas for general case, i.e., ė 6= 0, it is simplified, via (4.31), to

G

h̃
(V + cosψ) > 0, (4.51)

(Loret and Prevost, 1986). Because the angle ψ is in the interval [0, π], the condition (4.51)

implies that V > −1. Thus, according to (4.33), the parameters a and b are restricted to be

a < 1/2 and b > −1/2 during plastic process. Using the expressions (4.33), the variation of

parameters a and b with respect to the ratio G/h̃ and parameter V are shown in Figure 4.6.

Furthermore, from (4.51) it is clearly follows that the condition when a > 0 and b > 0 cannot

be satisfied. Therefore, only the following three regions are available during plastic flow: a ≥ 0

and b < 0; a < 0 and b ≤ 0; a < 0 and b > 0. These domains, with condition (4.51) are illustrated

in Figure 4.7.d. Figure 4.7.a and Figure 4.7.c show the regions of parameters G/h̃ and V where
·

λ > 0.
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Figure 4.6: Variation of parameters a, b and V .

Figure 4.7: Illustration of the regions, where
·

λ > 0.

42



4.2. STRAIN-DRIVEN PROBLEMS WITH CONSTANT STRAIN RATE ASSUMPTION

Using the expressions (4.33), the parameters G/h̃ and V can be eliminated from (4.51). Con-

sequently the condition
·

λ > 0 can be written in terms of the initial angle ψ and the parameters a

and b. Figure 4.7.b and Figure 4.7.d illustrate the domains where
·

λ > 0 is satisfied.

4.2.2.2 Solution in deviatoric radial loading

The particular loading scenario when ė = 0, or ψ = 0 or ψ = π is termed as deviatoric radial

loading case. In this case the solution for the deviatoric stress is proportional (see Figure 4.8).

The stress solutions derived for the general case has singularity in this simple case. The rate-form

equation (4.35) can be reformulated for this loading case as

Ṡ = q · 2G ‖ė‖
(

1− G

h̃

)

− 9
√
2KαG

h̃
ǫ̇, (4.52)

where

q =











1 if ψn = 0,

−1 if ψn = π,

0 if ‖ė‖ = 0.

(4.53)

Figure 4.8: Illustration of the deviatoric radial loading case.

Thus, the solution of the norm of the deviatoric stress reduces to the simple form

S = Sn −
9
√
2KαG

h̃
ǫ̇ (t− tn) + q · 2G ‖ė‖

(

1− G

h̃

)

(t− tn) . (4.54)

Since the solution for the deviatoric stress is proportional, we have

s =
S

Sn
sn . (4.55)
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The evolutionary equation (3.80) with combination of (4.52) can be reformulated as

ṗ = 3Kǫ̇

(

1− 9Kαβ

h̃−G

)

− 3Kβ
√
2
(

h̃−G

) Ṡ. (4.56)

Therefore, the solution of the hydrostatic stress becomes

p = pn + 3Kǫ̇

(

1− 9Kαβ

h̃−G

)

(t− tn)−
3Kβ

√
2
(

h̃−G

) (S − Sn) . (4.57)

4.2.2.3 Strain input required to reach the apex

In this subsection the special case is considered, when the strain input implies that the stress

arrives to the apex of the yield surface. Both the general loading case and the deviatoric radial

loading case can produce this type of loading. Denote caε̇ (t− tn) the strain input required to

reach the apex. The particular value of parameter ca is obtained in the following.

General loading case

When the stress state reaches the apex, then S becomes zero. From (4.42) it follows that this

occurs when the angle ψ becomes zero. According to the discussion made in Section 4.2.2.5, this

can happen when a < 0 and b > 0. The parameter ca can be expressed from (4.45) as

ca =
Sn

4G ‖ė‖ (t− tn)

B (a, b)−B

(

cos2
ψn

2
, a, b

)

cos2a
(

ψn

2

)

sin2b

(

ψn

2

) , (4.58)

where B (a, b) denotes a beta function.

Deviatoric radial loading

From (4.54) it follows that

ca =
Sn

9
√
2KαG

h̃
ǫ̇ (t− tn)− q · 2G ‖ė‖

(

1− G

h̃

)

(t− tn)

. (4.59)

4.2.2.4 Solution at the apex

Neither the general solution nor the solution derived for deviatoric radial loading case can be

applied directly for the special case, when the initial stress state at tn is located at the apex of the

yield surface. To overcome this drawback, it is an applicable way to introduce a secondary yield

function and a secondary plastic flow potential function as (Hofstetter and Taylor, 1991)

F2 = 3αp− k, g2 = 3βp. (4.60)
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This technique was proposed by Koiter (1953) for non-smooth multi-surface plasticity theory. The

gradients of F2 and g2, with respect to σ are

N 2 =
∂F2

∂σ
= αδ, Q2 =

∂g2

∂σ
= βδ. (4.61)

Then the plastic strain rate tensor can be constructed as

ε̇
p =

2
∑

i=1

λ̇iQi. (4.62)

For i = 1 we have F1 = F and Q1 = Q defined by (3.64) and (3.67). Therefore the plastic strain

rate is located within the complementary cone of
∂g

∂σ
. To obtain the direction of this vector in

the principal stress space, we have to evaluate (3.67) at the apex. Obviously, expression (3.67)

has singularity at this point. To overcome this drawback, it is a possible way to write the identity

(Szabó and Kossa, 2012)

s

‖s‖ =
ė

‖ė‖ . (4.63)

By this substitution, we assume that the plastic strain rate tensor is located in the plane spanned

by the hydrostatic and the deviatoric parts of the input strain ε̇. Thus

N 1 =
ė√
2 ‖ė‖

+ αδ, Q1 =
ė√
2 ‖ė‖

+ βδ. (4.64)

According to (3.70) it is assumed that the rate of parameter k can be written as

k̇ = H

(

α +
1√
3

)

√

1

3
+ 2β2

2
∑

i=1

λ̇i. (4.65)

Then, the plastic multipliers λ̇1 and λ̇2 are obtained by evaluating the consistency conditions

Ḟ1 = 0 and Ḟ2 = 0:

λ̇1 =
√
2 ‖ė‖ , λ̇2 =

9Kαǫ̇

h̃−G
−

√
2 ‖ė‖ . (4.66)

Thus, the plastic strain rate (4.62) becomes

ε̇
p = ė+

9Kαβǫ̇

h̃−G
δ (4.67)

Therefore, the constitutive relation reduces to

σ̇ = D
e : ε̇−D

e : ε̇p = 3Kǫ̇δ − 27K2αβǫ̇

h̃−G
δ. (4.68)
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It can be clearly observed that the relations for the deviatoric and for the hydrostatic stresses are

ṡ = 0, ṗ = Kǫ̇

(

3− 27Kαβ

h̃−G

)

. (4.69)

Thus, the stress solutions can be simply obtained as (Szabó and Kossa, 2012)

s = 0, p = pa +Kǫ̇

(

3− 27Kαβ

h̃−G

)

(t− tn) , (4.70)

where pa denotes the hydrostatic stress corresponding to the apex point. Solutions in (4.70) are

valid until the conditions λi > 0 hold. Observing (4.66) it is satisfied when

9Kαǫ̇

h̃−G
>

√
2 ‖ė‖ . (4.71)

If (4.71) is violated, then the secondary yield function and the secondary plastic flow potential

function are no more active. In this case, the consistency condition Ḟ1 = 0 yields

λ̇1 =
1

h̃

(

2G√
2
‖ė‖+ 9Kαǫ̇

)

. (4.72)

Thus, the plastic strain rate becomes

ε̇
p =

1

h̃

(

2G√
2
‖ė‖+ 9Kαǫ̇

)(

ė√
2 ‖ė‖

+ βδ

)

. (4.73)

In this case, the deviatoric and hydrostatic part of the constitutive relation become

ṡ =

(

2G

(

1− G

h̃

)

− 9
√
2KGαǫ̇

h̃ ‖ė‖

)

ė, (4.74)

ṗ = K

(

3− 27Kαβ

h̃

)

ǫ̇− 3
√
2KGβ

h̃
‖ė‖ . (4.75)

Therefore the stress solutions are (Szabó and Kossa, 2012)

s =

(

2G

(

1− G

h̃

)

− 9
√
2KGαǫ̇

h̃ ‖ė‖

)

(t− tn) ė , (4.76)

p = pa +K

(

3− 27Kαβ

h̃

)

ǫ̇ (t− tn)−
3
√
2KGβ

h̃
‖ė‖ (t− tn) . (4.77)
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4.2.2.5 Discussion on the angle ψ

Equation (4.45) defines the solution for the angle ψ in an implicit manner. This expression can

be written in the form

B

(

cos2
ψ

2
, a, b

)

= x, where x = B

(

cos2
ψn

2
, a, b

)

+
4G ‖ė‖ (t− tn)

Sncos−2a

(

ψn

2

)

sin−2b

(

ψn

2

) . (4.78)

Depending on the values of parameters a and b, the incomplete beta function has different property,

which is illustrated in Figure 4.9, where the angle ψ is plotted as a function of parameter x.

Figure 4.9: Illustration of the angle ψ.

Based on the general characteristics of the incomplete beta function, it can be clearly concluded

from (4.78) that ψ is a strictly monotonically decreasing function. Consequently it follows that

ψ < ψn. In addition, one very important feature can be observed: the angle ψ can become zero

for the domain where a < 0 and b > 0. The particular values of parameter x at which ψ will

be zero is x = B (a, b), where B (a, b) denotes the beta function (Abramowitz and Stegun, 1968;

Spanier and Oldham, 1987).
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4.3 Stress-driven problems with constant stress rate assump-

tion

Under stress-driven formulation, it is assumed that the total and plastic strain fields, the stress

field and the internal variables appearing in the particular model are known at an instant time

tn ∈ [0, T ], where [0, T ] ⊂ R denotes the time interval under consideration. Furthermore, the

stress field σ is given in the whole interval [0, T ], consequently, the loading history is defined by

the given stress field σ (t). Therefore, in stress-driven problems, the strain field, the plastic strain

field and the internal variables have to be determined for a given time t ∈ [tn, T ], t > tn.

In the following, the solution for the plastic solution is derived for the case when σ̇ is constant,

thus

σ = σn + σ̇ (t− tn) , s = sn + ṡ (t− tn) , p = pn + ṗ (t− tn) . (4.79)

For simplicity of the presentation the dependence on variable t is omitted in the following expres-

sions.

4.3.1 Associative von Mises elastoplasticity model with combined lin-

ear hardening

4.3.1.1 Solution in general case

Define the angle ω through the following inner product (Kossa and Szabó, 2009b):

ξ : ṡ = ‖ξ‖ ‖ṡ‖ cosω = S ‖ṡ‖ cosω. (4.80)

In this case the plastic multiplier, by inserting (3.61) into (3.49), becomes

λ̇ =
ξ : ṡ

h ‖ξ‖ =
‖ṡ‖ cosω

h
, (4.81)

Thus, it follows that during plastic loading the angle ω is restricted to be between 0 ≤ ω < π/2.

Substituting (4.80) into (3.63)1 and using the yield criterion gives

Ṡ =M ‖ṡ‖ cosω . (4.82)

Taking the time derivative of (4.80) yields

ξ̇ : ṡ = Ṡ ‖ṡ‖ cosω − S ‖ṡ‖ sinωω̇ =M ‖ṡ‖2 cos2ω − S ‖ṡ‖ sinωω̇. (4.83)

Evaluating the double dot product of (3.63)3 with ṡ gives

ξ̇ : ṡ = ‖ṡ‖2 − (1−M) ‖ṡ‖2 cos2ω = ‖ṡ‖2 sin2
ω +M ‖ṡ‖2 cos2ω. (4.84)
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Equating (4.83) and (4.84), the rate equation for ω can be obtained as

ω̇ = −‖ṡ‖ sinω
S

. (4.85)

Combining (4.82) and (4.85) leads to the separable differential equation

1

S
dS = −M 1

tanω
dω, (4.86)

with initial conditions ω (t = tn) = ωn and S (t = tn) = Sn. Integrating it gives the solution for S:

S
∫

Sn

1

S̃
dS̃ = −M

ω
∫

ωn

1

tanω̃
dω̃, (4.87)

S = Sn

(

sinωn
sinω

)M

. (4.88)

Substituting this result into (4.85) yields the separable differential equation

(sinω)−M−1 dω = − ‖ṡ‖
Snsin

M
ωn

dt. (4.89)

Integrating this expression gives

ω
∫

ωn

(sinω̃)−M−1 dω̃ = − ‖ṡ‖
Snsin

M
ωn

t
∫

tn

dt̃, (4.90)

B

(

cos2ω,
1

2
,−M

2

)

−B

(

cos2ωn,
1

2
,−M

2

)

=
2 ‖ṡ‖

Snsin
M
ωn

(t− tn) . (4.91)

Having the solution for the angle ω, the deviatoric reduced stress can be expressed with the

following linear combination (see Appendix C.3 for detailed derivation steps):

ξ = Aξξn +Bξṡ , (4.92)

where

Aξ =
S

Sn

sinω

sinωn
, Bξ =

S

‖ṡ‖
sin (ωn − ω)

sinωn
. (4.93)

After ξ is obtained it can be substituted into (3.61) yielding

ė = Ȧeξn + Ḃeṡ (4.94)
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with

Ȧe =
‖ṡ‖ sin2ω
2hSnsinωn

, Ḃe =
1

2G
+

cosωsin (ωn − ω)

hsinωn
. (4.95)

Integrating both sides gives (see Appendix C.4 for detailed derivation steps)

e = en + Aeξn +Beṡ , (4.96)

where

Ae =
1−Aξ

h (1−M)
, Be =

(t− tn)

2G
+

(t− tn)−Bξ

h (1−M)
. (4.97)

The hydrostatic part of the strain is computed using the elastic relation

ǫ = ǫn +
1

3K
ṗ (t− tn) . (4.98)

4.3.1.2 Solution in radial loading case

The stress solution derived in the preceding section has singularity if ωn = 0. In this case we can

write the identity (Kossa, 2007)

ξ

‖ξ‖ =
ṡ

‖ṡ‖ . (4.99)

Integrating (4.82) yields the solution

S = Sn +M ‖ṡ‖ (t− tn) . (4.100)

It follows from (4.99) that

ξ = S
ṡ

‖ṡ‖ . (4.101)

Therefore the solution for the deviatoric strain, by combining (3.61) and (4.99),will be

ė =
1

2G
ṡ+

1

h
ṡ =

2G+ h

2Gh
ṡ, (4.102)

e = en +
2G+ h

2Gh
(t− tn) ṡ . (4.103)

The hydrostatic part of the strain is computed with (4.98).
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4.3.2 Non-associative Drucker–Prager elastoplasticity model with lin-

ear isotropic hardening

4.3.2.1 Solution in general case

Define the angle ω through the following inner product:

s : ṡ = ‖s‖ ‖ṡ‖ cosω = S ‖ṡ‖ cosω. (4.104)

The plastic multiplier, by combining (3.72), (3.85) and (3.86) then becomes

λ̇ =
‖ṡ‖√
2j

(

cosω +
3
√
2αṗ

‖ṡ‖

)

. (4.105)

Thus, plastic loading occurs when

ṗ > − ‖ṡ‖
3
√
2α

cosω. (4.106)

From (4.104) it follows that

Ṡ = ‖ṡ‖ cosω . (4.107)

Taking the time derivative of (4.104) and then combining it with (4.107) gives

ω̇ = −‖ṡ‖ sinω
S

. (4.108)

Dividing (4.107) with (4.108) yields the separable differential equation:

1

S
dS = − 1

tanω
dω (4.109)

with the initial condition ω (t = tn) = ωn and S (t = tn) = Sn. Thus the parameter S can be

written3 as a function of the angle ω:

S = Sn
sinωn
sinω

. (4.110)

By substituting this solution back into expression (4.108) we arrive at the separable differential

equation

1

sin2
ω
dω = − ‖ṡ‖

Snsinωn
dt, (4.111)

3It must be noted that the function S (t) is known because stress-driven problem is considered. The only reason
to express it as a function of the angle ω is to simplify the final formulas.
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which has the solution4

ω = arctan

(

Snsinωn
Sncosωn + ‖ṡ‖ (t− tn)

)

. (4.112)

The deviatoric strain can be written as a linear combination (see Appendix D.2 for detailed

derivation steps):

e = en + Aesn +Beṡ , (4.113)

where

Ae =
1

2j
ln

(

S

Sn

)

+
3αṗ√
2j ‖ṡ‖

ln





tan
ωn

2

tan
ω

2



 , (4.114)

Be =
(t− tn)

2

(

1

G
+

1

j

)

+
3αṗ (S − Sn)√

2j ‖ṡ‖2
− Snsinωn

‖ṡ‖

(

Ae

tanωn
+
ωn − ω

2j

)

. (4.115)

Furthermore, the solution for the hydrostatic part of the strain can be written as(see Appendix

D.3 for detailed derivation steps):

ǫ = ǫn +

(

1

3K
+

3αβ

j

)

ṗ (t− tn) +
β (S − Sn)√

2j
. (4.116)

4.3.2.2 Solution in deviatoric radial loading

The solutions reduce to simpler forms in the case when ωn = 0 or ωn = π or ‖ṡ‖ = 0. These

scenarios correspond to the deviatoric radial loading case, when we can write that

S = Sn + q̃ ‖ṡ‖ (t− tn) , s =
S

Sn
sn, (4.117)

where q̃ is defined by

q̃ =











1 if ωn = 0,

−1 if ωn = π,

0 if ‖ṡ‖ = 0.

(4.118)

Inserting (4.117) into (3.85) and (3.86) gives

ė =
1

2G
ṡ+

3αṗ√
2Snj

sn + q̃
1

2j
ṡ, (4.119)

ǫ̇ =

(

1

3K
+

3αβ

j

)

ṗ+ q̃
β ‖ṡ‖√

2j
. (4.120)

4It must be emphasized that the function ω (t) can be computed without this formula. Introducing ω as the
function of the parameter t and the initial angle ωn allows us to simplify the final formulas.
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Thus, the solutions for the strains will be

e = en +
3αṗ (t− tn)√

2Snj
sn +

(

1

2G
+ q̃

1

2j

)

(t− tn) ṡ , (4.121)

ǫ = ǫn +

(

1

3K
+

3αβ

j

)

ṗ (t− tn) + q̃
β ‖ṡ‖√

2j
(t− tn) . (4.122)

4.3.2.3 Stress input required to reach the apex

In this subsection the special case is considered, when the stress input implies that the stress

arrives to the apex of the yield surface. In stress-driven case, it is obviously follows that the apex

can be reached only due to deviatoric radial loading. Denote caσ̇ (t− tn) the stress input required

to reach the apex. From (4.79) it is clearly follows that

ca =
Sn

‖ṡ‖ (t− tn)
. (4.123)

4.3.2.4 Solution at the apex

When the initial stress state is located at the apex and stress-driven formulation is considered,

then it is obvious that the new stress state leaves the apex when ‖ṡ‖ > 0. From (4.105) it follows

that plastic loading initiates if

‖ṡ‖ > −3
√
2αṗ, (4.124)

otherwise elastic unloading occurs. The solutions (4.121) and (4.122) can be used by inserting

q̃ = 1 into these expressions:

e = en ++

(

1

2G
+

1

2j

)

(t− tn) ṡ , (4.125)

ǫ = ǫn +

(

1

3K
+

3αβ

j

)

ṗ (t− tn) +
β ‖ṡ‖√

2j
(t− tn) . (4.126)
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5
Stress update procedures

5.1 Introduction

Within a time increment ∆t = tn+1 − tn, it is assumed that at time tn the strain εn, the stress

σn, and the accumulated plastic strain ε̄pn are known and the material parameters are also given.

The main goal of the stress update procedure is to determine the stress at time tn+1 for a given

strain increment ∆ε. For this reason, first the trial stress state is introduced by assuming that

the strain increment produces purely elastic deformation. Thus we have

σtrial = σn +D
e : ∆ε = σn +∆σtrial = strial + ptrialδ, (5.1)

where

∆σtrial = 2G∆e+ 3K∆ǫ δ, strial = sn + 2G∆e, ptrial = pn + 3K∆ǫ. (5.2)

Depending on the nth state and the trial state various scenarios can happen. These are discussed

in detail for the particular models under consideration in the following sections.

When the nth state is located on the yield surface, then we can introduce the angle ϑ defined

between Nn, and ∆σtrial as

cosϑ =
Nn : ∆σtrial

‖Nn‖ ‖∆σtrial‖
, (5.3)

where Nn denotes the yield surface gradient at the nth state.

Since the exact variation of the strain during the increment is not known, it is a commonly

adopted approach to assume that the strain varies linearly in the time interval tn ≤ t ≤ tn+1

(Sloan and Booker, 1992) and thus the strain-rate is constant. Consequently, the exact stress

solutions presented in the preceding chapter can be easily implemented in the discretized stress

update procedures.
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5.2 Associative von Mises elastoplasticity model with combined

linear hardening

The various stress update scenarios are summarized in Figure 5.1.

Figure 5.1: Geometrical interpretation of various loading cases in the stress updating procedure.

The yield function at the nth state and at the trial state are obtained using (3.30) as

Fn = F (ξn, Rn) = ‖ξn‖ −Rn, Ftrial = F (ξtrial, Rn) = ‖ξtrial‖ −Rn, (5.4)

where

ξtrial = strial −αtrial = strial −αn = ξn + 2G∆e. (5.5)

In this model, the plastic deformation is pressure-independent, thus the hydrostatic part of the

total stress is calculated according to the elastic material law. Therefore pn+1 = ptrial holds in any

case.

5.2.1 Case A: Elastic loading

Both the nth state and the trial state are located in the elastic domain, i.e., Fn < 0 and Ftrial ≤ 0.

Therefore, the stress increment is purely elastic. In this case, the new stress state is simply

computed as σn+1 = σtrial.

5.2.2 Case B: Plastic loading

When the stress state at time tn is plastic, i.e., Fn = 0, and the trial stress implies that Ftrial > 0,

then, the new stress state becomes also plastic. Plastic process initiates only in the case, when

ϑ ≤ π

2
. This condition satisfied when ψn ≤ π

2
. According to Section 4.3.1 the stress update

formulas are

ξn+1 = Aξξn +Bξ∆e, (5.6)

sn+1 = sn + Asξn +Bs∆e, (5.7)
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where

Aξ =
Sn+1

Sn

sinψn+1

sinψn
, Bξ =

Sn+1

‖∆e‖
sin (ψn − ψn+1)

sinψn
, (5.8)

As =
2G (Aξ − 1)

(2G+ h) (2b+ 1)
, Bs = 2G+

2G (Bξ − 2G)

(2G+ h) (2b+ 1)
. (5.9)

The initial value of the angle ψ is defined by

ψn = arccos

(

ξn : ∆e

Sn ‖∆e‖

)

. (5.10)

The angle at the end of the increment is computed by solving the equation based on (4.14):

B

(

cos2ψn+1,
1

2
, b

)

= B

(

cos2ψn,
1

2
, b

)

+
4G ‖∆e‖

Sn
sin2b

ψn. (5.11)

An efficient method to perform this task is given in Appendix E.2 using the nested derivatives

proposed by Dominici (2003). The parameter Sn+1 =
∥

∥ξn+1

∥

∥ is computed using (4.10) as

Sn+1 = Sn

(

sinψn+1

sinψn

)2b

. (5.12)

Since the increment is plastic it follows that Rn+1 = Sn+1.

If the increment produces radial loading, then the stress update formulas, according to Section

4.2.1.2, reduce to

ξn+1 = Sn+1
∆e

‖∆e‖ , sn+1 = sn +
2Gh

(2G+ h)
∆e, (5.13)

where

Sn+1 = Sn − 4Gb ‖∆e‖ , Rn+1 = Sn+1. (5.14)

5.2.3 Case C: Elastic-plastic transition

The increment starts from the elastic region and ends in a plastic state, i.e., Fn < 0 and Ftrial > 0.

Therefore, the whole increment is divided into purely elastic and plastic parts. In this case, first

the contact stress state, σc = sc+pcδ, has to be calculated. The contact point at which the stress

just reaches the yield surface is obtained from the yield condition

F (ξc, Rn) = 0, (5.15)

where

ξc = ξn + c2G∆e, pc = pn + 3cK∆ǫ. (5.16)
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The parameter c, which describes the share of the elastic part in the total amount of the strain

increment, is obtained by solving a quadratic equation based on (5.15)1:

c =
−Sncosψn +

√

S2
ncos

2ψn + (R2
n − S2

n)

2G ‖∆e‖ . (5.17)

This expression can be used also for deviatoric loading case. The loading part between the contact

point and the trial state is identical to Case B. Therefore beyond the contact point, the stress

update formulas derived forCase B have to be used with the modified strain increment (1− c)∆ε

and with σc as the nth state. The schematic illustration of this case is presented in Figure 5.2.

Figure 5.2: Schematics of the stress update for Case C.

5.2.4 Case D: Elastic-plastic transition due to unloading

In this case, the initial stress state at time tn is located on the yield surface, i.e., Fn = 0, as in

Case B. However, in this case, the trial stress increment intersects the yield surface, i.e., ϑ > π/2

(which condition is identical to ψn > π/2), and ends outside of it, i.e., Ftrial > 0. This causes that

elastic unloading occurs prior to plastic loading, namely, there is a transition from the plastic to

plastic state due to unloading. Consequently, the stress update formulas are identical to those

presented for Case C. Since in this case ‖ξn‖ = Rn, the expression for c, using (5.15), is simplified

to:

c = − ξn : ∆e

G ‖∆e‖2
= − Rn

G ‖∆e‖cosψn. (5.18)

5.2.5 Case E: Unloading

The nth state lies on the yield surface and the trial state is located in the elastic domain,

(Fn = 0 and Ftrial ≤ 0). Therefore the increment produces elastic unloading. In this case, the

new stress state can be calculated according to Case A.

1Here 0 ≤ ψn ≤ π. And only the positive value of c is considered.
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5.3 Non-associative Drucker–Prager elastoplasticity model with

linear isotropic hardening

The yield conditions at the beginning of the increment and at the trial state are defined as

Fn = F (σn, kn) , Ftrial = F (σtrial, kn) . (5.19)

The various stress update cases are illustrated in Figure 5.3.

Figure 5.3: Geometrical interpretation of various loading cases in the stress updating procedure.

5.3.1 Case A: Elastic loading

Both the nth state and the trial state are located in the elastic domain, i.e., Fn < 0 and Ftrial ≤ 0.

Therefore, the stress increment is purely elastic. In this case the new stress state is simply

computed as σn+1 = σtrial.

5.3.2 Case B: Plastic loading

When, the stress state at time tn is plastic, i.e., Fn = 0, and the trial stress implies that Ftrial > 0,

then, the new stress state becomes also plastic. The plastic process initiates only in the case of

ϑ ≤ π/2 excluding the special case when the trial stress path lies on the yield surface and meets

the apex. This scenario, when ϑ = π/2 and ψn = π, will be discussed in Case D.

The initial parameters are calculated as

V =
9Kα∆ǫ√
2G ‖∆e‖

, cosψn =
sn : ∆e

Sn ‖∆e‖ . (5.20)

Then, the angle ψn+1, using (4.45), is determined by solving the equation

B

(

cos2
ψn+1

2
, a, b

)

= B

(

cos2
ψn

2
, a, b

)

+
4G ‖∆e‖

Sn
cos2a

(

ψn

2

)

sin2b

(

ψn

2

)

. (5.21)
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With the solution of the final angle ψn+1 in hand, the norm of the deviatoric stress at the new

stress state, the pressure and the deviatoric stress can be calculated as

Sn+1 = Sn







sin
1

2
ψn+1

sin
1

2
ψn







2b





cos
1

2
ψn+1

cos
1

2
ψn







2a

, (5.22)

pn+1 = pn +K

(

3− 27Kαβ

h̃−G

)

∆ǫ− 3
√
2βK

2
(

h̃−G

) (Sn+1 − Sn) , (5.23)

sn+1 =

(

Sn+1sinψn+1

Snsinψn

)

sn +

(

Sn+1sin (ψn − ψn+1)

‖∆e‖ sinψn

)

∆e. (5.24)

Finally, the new total stress is expressed as

σn+1 = sn+1 + pn+1δ. (5.25)

For the case, when the increment produces deviatoric radial loading, then the stress update for-

mulas, according to (4.54)-(4.57), are simplified to

sn+1 =

(

1− 9
√
2KαG

Snh̃
∆ǫ+ q

2G ‖∆e‖
Sn

(

1− G

h̃

)

)

sn, (5.26)

and

pn+1 = pn +K

(

3− 27Kαβ

h̃−G

)

∆ǫ− 3Kβ
√
2
(

h̃−G

) (Sn+1 − Sn) . (5.27)

Furthermore the stress update formulas when the nth state is located at the apex are

sn+1 = 0, (5.28)

pn+1 = pn +K∆ǫ

(

3− 27Kαβ

h̃−G

)

. (5.29)

Rewriting (4.71), these solutions are valid when

9Kα∆ǫ

h̃−G
>

√
2 ‖∆e‖ . (5.30)

Otherwise

sn+1 =

(

2G

(

1− G

h̃

)

− 9
√
2KGα∆ǫ

h̃ ‖∆e‖

)

∆e, (5.31)

pn+1 = pa +K

(

3− 27Kαβ

h̃

)

∆ǫ− 3
√
2KGβ

h̃
‖∆e‖ . (5.32)

According to Section 4.2.2.3, the stress solution can reach the apex of the yield surface. The share

of the strain increment part needed to reach the apex in the total amount of strain increment
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is measured with parameter ca. For general loading case it is computed using the discretized

counterpart of (4.58) as

ca =
Sn

4G ‖∆e‖

B (a, b)−B

(

cos2
ψn

2
, a, b

)

cos2a
(

ψn

2

)

sin2b

(

ψn

2

) , (5.33)

whereas in case of radial loading it is obtained using (4.59) as

ca =
Sn

9
√
2KαG

h̃
∆ǫ− q2G ‖∆e‖

(

1− G

h̃

)
. (5.34)

5.3.3 Case C: Elastic-plastic transition

The increment starts from the elastic region and ends in a plastic state, i.e., Fn < 0 and Ftrial > 0.

Therefore, the whole increment is divided into purely elastic and plastic parts. In this case, first

the contact stress state, σc = sc + pcδ has to be calculated.

The contact point at which the stress just reaches the yield surface is obtained from the yield

condition

F (σc, kn) = 0, (5.35)

where

sc = sn + c2G∆e, pc = pn + 3cK∆ǫ. (5.36)

The parameter c, which describes the share of the elastic part in the total amount of the increment,

is obtained by solving a quadratic equation based on (5.35):

c =
Sncosψn + V S̃ −

√

(

Sncosψn + V S̃

)2

−
(

S̃2 − S2
n

)

(V 2 − 1)

2G ‖∆e‖ (V 2 − 1)
, (5.37)

where S̃ =
√
2 (kn − 3αpn). After the contact point has been computed, the stress update formulas

derived for Case B are used with σc as initial stress state, and with the modified strain increment

(1− c)∆ε.

In the following, some special cases are clarified. If the strain increment is purely hydrostatic,

i.e., ‖∆e‖ = 0, then

c =
S̃ − Sn

9
√
2αK∆ǫ

. (5.38)
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In the case, when V = 1 and ‖∆e‖ 6= 0, the parameter c can be expressed by

c =
S̃2 − S2

n

4G ‖∆e‖
(

Sncosψn + S̃

) . (5.39)

When the initial state is stress-free and the strain increment has deviatoric part, i.e., σn = 0 and

‖∆e‖ 6= 0, then

c =

√
2kn

2G ‖∆e‖ ((1 + V )
, (5.40)

whereas for the case, when the increment is purely hydrostatic, i.e., ‖∆e‖ = 0, and starts from

the stress-free state (σn = 0), then the contact point is the apex, and (5.40) reduces to

c =
kn

9αK∆ǫ
. (5.41)

5.3.4 Case D: Elastic-plastic transition due to unloading

In this case, the initial stress state at time tn is plastic as in Case B, i.e., Fn = 0. However,

here, the trial stress increment intersects the yield surface, i.e., ϑ > π/2, and ends outside of it

(Ftrial > 0). This yields that elastic unloading comes prior to plastic loading, namely, there is a

transition from the plastic to plastic state through the elastic region. The stress update formulas

are identical to those in Case C. The strain increment is divided into a purely elastic part, c∆ε,

and an elastic-plastic part, (1− c)∆ε, where the factor c can be calculated according to (5.35):

c =
Sn (cosψn + V )

G ‖∆e‖ (V 2 − 1)
. (5.42)

It should be noted that the particular scenario when ‖∆e‖ = 0 cannot produce this type of loading

case. Furthermore, if V = 1, then only the direction corresponding to ϑ = π/2 can yield this type

of loading case. In this case, the contact point is at the apex and ψn = π. For this particular case,

the elastic stress path lies on the yield surface and the parameter c reduces to

c =
Rn

2G ‖∆e‖ . (5.43)

Beyond the contact point, the stress update formulas derived for the apex case solution in Case B

are used, where σc is given as the initial stress state, and the strain increment equals to (1−c)∆ε.

5.3.5 Case E: Unloading

The nth state lies on the yield surface and the trial state is located in the elastic domain, i.e.,

Fn = 0 and Ftrial ≤ 0. Therefore the increment produces elastic unloading. In this case, the new

stress state can be calculated according to Case A.
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6
Consistent tangent tensors

6.1 Introduction

In general, an elastoplastic finite element analysis involves the stress updating procedure after

which the global nonlinear system of algebraic equations is solved. The structure of the tangent

tensor has a strong influence on the convergence speed of the calculations. For finite element

implementations, where usually the Newton–Raphson method is employed, the construction of

the consistent tangent modulus tensor (or consistent tangent operator or algorithmic stiffness

tensor) is crucial (Ibrahimbegovic, 2009; Jirásek and Bažant, 2002; Simo and Hughes, 1998).

This yields faster convergence of the numerical scheme, compared to the case when continuum

tangent modulus is used. The consistent tangent modulus gives a quadratic rate of asymptotic

convergence for the iterative solution (Simo and Hughes, 1998). This, so-called algorithmically

consistent tangent modulus, can be obtained by exact linearization of the stress update procedure.

The definition for the consistent tangent modulus is based on

dσn+1 =
∂σn+1

∂εn+1
: dεn+1 = D

cons : dεn+1, (6.1)

D
cons =

∂σn+1

∂εn+1
=
∂sn+1

∂εn+1
+
∂pn+1

∂εn+1
. (6.2)

Using the additive decomposition of the strain tensor, the expression above can be expressed as

D
cons =

∂σn+1

∂∆e
: T +

1

3

∂σn+1

∂∆ǫ
⊗ δ. (6.3)

The following two sections present the corresponding algorithmically consistent tangent modulus

tensors for stress update procedures presented in Section 5.2 and Section 5.3.
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6.2 Associative von Mises elastoplasticity model with combined

linear hardening

6.2.1 General loading case

When the initial state is located inside the elastic domain and the trial stress takes place out of

the yield surface then the stress update algorithm discussed in Section 5.2.3 has to be used. This

case is the most complicated scenario, which can occur during the stress update procedure. Thus,

the expression of the consistent tangent tensor will be given for this case. Since the derivation of

the consistent tangent tensor is quite lengthy, only the final result is summarized here. Detailed

derivation steps are provided in Appendix C.5.1. The structure of the consistent tangent tensor

is given as

D
cons = a1ξc ⊗ ξc + a2ξc ⊗∆e + a3∆e⊗ ξc + a4∆e⊗∆e + a5T +Kδ ⊗ δ, (6.4)

where the expressions for the parameters a1, a2, a3, a4 and a5 are given in Box 1.

a1 =
2GAξ
2G+ h

(

D1

tanψn+1
− C1

tanψc

)

, a2 =
2GAξ
2G+ h

(

D2

tanψn+1
− C2

tanψc

)

,

a3 =
2GBξ

(2G+ h) (2b+ 1) (1− c)
×

(

2bD1

tanψn+1

− D1 − C1

tan (ψc − ψn+1)
− (2b+ 1)C1

tanψc

− c

(1− c) ‖∆e‖Sccosψc

)

+ c
Bs − 2G (1 + As)

Sc ‖∆e‖ cosψc
,

a4 =
2GBξ

(2G+ h) (2b+ 1) (1− c)
×

(

2bC4

tanψn+1

− D2 − C2

tan (ψc − ψn+1)
− (2b+ 1)C2

tanψc
− 1

‖∆e‖2
)

,

a5 = Bs (1− c) + 2Gc (1 + As) ,

C1 =
2Gc ‖∆e‖ − Sccosψc
S2
c ‖∆e‖ cosψcsinψc

, C2 =
Sccosψc − 2Gc ‖∆e‖
Sc ‖∆e‖2 sinψc

,

D1 =
Aξ

S2
n+1

(C1S
2
c − 4GbC1Sc ‖∆e‖ (1− c) cosψc − 2Gctanψc) ,

D2 =
Aξ

S2
n+1

(

C2S
2
c − 4GbC2Sc ‖∆e‖ (1− c) cosψc −

2GSc (1− c)

‖∆e‖ sinψc

)

.

Box 1: Parameters in the consistent tangent tensor for the von Mises model in case of general
loading.
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6.2.2 Radial loading case

In the radial loading case, the stress update formulae are much more simpler than in the general

loading case. Consequently, the corresponding consistent tangent tensor has a much simpler

structure. For this case, it is written in the shorter form

D
cons = a1∆e⊗ ξc + a2T + a3δ ⊗ δ. (6.5)

Box 2 contains the expressions for parameters a1, a2 and a3, whereas Appendix C.5.2 provides the

detailed derivation steps.

a1 = − 4G2c

Sc ‖∆e‖ (2G+ h) cosψc
, a2 =

2G (2Gc+ h)

2G+ h
, a3 = K.

Box 2: Parameters in the consistent tangent tensor for the von Mises model in case of radial loading.

6.3 Non-associative Drucker–Prager elastoplasticity model with

linear isotropic hardening

6.3.1 General loading case

The consistent tangent tensor is derived for the case when elastic plastic transition occurs. In

this case ,the stress update formulae presented in Section 5.3.3 have to be applied. Since the

calculation is quite lengthy but otherwise straightforward, only the final results are stated in the

following. Detailed presentation of the differentiation procedure can be found in Appendix D.4.1.

The corresponding consistent tangent tensor depends on whether the stress path has reached

the apex of the yield surface or not. These two situations are illustrated in Figure 6.1.

Figure 6.1: Illustration of the stress update procedure, when the nth state is located in the elastic
domain. (a) the updated stress state lies on the smooth portion of the updated yield surface; (b) the
apex has been reached during the increment.
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6.3.1.1 Stress update without reaching the apex

When the nth state is located in the elastic domain and the updated stress state lies on the smooth

portion of the yield surface, then the consistent tangent tensor has the form

D
cons = a1sc ⊗ sc + a2sc ⊗∆e+ a3sc ⊗ δ + a4∆e⊗ sc + a5∆e⊗∆e

+a6∆e⊗ δ + a7δ ⊗ sc + a8δ ⊗∆e + a9δ ⊗ δ + a10T , (6.6)

where the expressions of the parameters are collected in Box 3-Box 5. In Box 5, 3F2 (•, •, •; •, •; •)
denotes the generalized hypergeometric function (Wolfram Research, 2010c), whereas Ψ (•) stands
for the digamma function (Wolfram Research, 2010a).

a1 =
R1

m1
− C1

m2
+
D1

m3
− m4

Sc
, a2 =

R2

m1
− C2

m2
+
D2

m3
,

a3 =
R3

m1
− C3

m2
+
D3

m3
− m4 ‖∆e‖ cosψc

tr∆ε
,

a4 = (1− c)

(

R1

m5

+
D1

m6

+
C1

m7

)

+
c (Bs − 2GAs)

Sc ‖∆e‖ (cosψc + V )
,

a5 = (1− c)

(

R2

m5
+
D2

m6
+
C2

m7
− Bs

‖∆e‖2
)

,

a6 = (1− c)

(

R3

m5
+
D3

m6
+
C3

m7

)

+
cV (Bs − 2GAs)

tr∆ε (cosψc + V )
,

a7 =
R1

m8

, a8 =
R2

m8

, a9 =
R3

m8

+K

(

1− 9Kαβ

h̃−G

)

,

a10 = (1− c)Bs + 2cGAs,

Box 3: Parameters in the consistent tangent tensor for the Drucker–Prager model in case of general
loading.

6.3.1.2 Stress update through the apex

For the special scenario, when the increment starts from an elastic state and the updated stress

is located in the apex the consistent tangent tensor is computed simply as

D
cons = K

(

1− 9Kαβ

h̃−G

)

δ ⊗ δ. (6.7)

The detailed derivation steps are provided in D.4.3.
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m1 =
Sn+1

As
, m2 =

tanψc
As

, m3 =
Scsinψc

Sn+1cosψn+1

, m4 =
2GcV As

Sc (V + cosψc)
,

m5 =
Sn+1

Bs

, m6 =
tan (ψn+1 − ψc)

Bs

, m7 =
(1− c) ‖∆e‖ sin2

ψc

Sn+1sinψn+1
, m8 =

√
2
(

G− h̃

)

3Kβ
,

C1 =
2Gc (1 + V cosψc)

S2
c sinψc (cosψc + V )

− 1

Scsinψc ‖∆e‖ , C2 =
Sccosψc − 2Gc ‖∆e‖

Scsinψc ‖∆e‖2
,

C3 =
2GcV ‖∆e‖ sin2

ψc

Sctr∆εsinψc (cosψc + V )
,

D1 =
C1

k1
+
k4

Sc
− k5

Sc
, D2 =

C2

k1
− k2

‖∆e‖ +
k3

‖∆e‖ − 2G (1− c) sinψn+1

Sn+1 ‖∆e‖ ,

D3 =
C3

k1
+
k2 ‖∆e‖
tr∆ε

− k3 ‖∆e‖
tr∆ε

− k4 ‖∆e‖ cosψc
tr∆ε

− k5 ‖∆e‖ V
tr∆ε

,

k1 =
Sn+1sinψc

sinψn+1 (2G ‖∆e‖ (1− c) (a− b− (a+ b) cosψc) + Sc)
,

k2 =
2G (1− c) sinψn+1

Sn+1
(a− b)ln

(

tan
ψc

2

)

,

k3 =
sinψn+1 (b− a)

(

α̃n+1 − α̃c − β̃n+1 + β̃c

)

4 ‖∆e‖ cos2a
(

ψn+1

2

)

sin2b

(

ψn+1

2

) ,

k4 =
4G2

c (1− c) V ‖∆e‖ sinψn+1

Sn+1Sc (V + cosψc)
, k5 =

2Gc sinψn+1

Sn+1 (V + cosψc)
,

R1 = D1n1 + C1n2 +
2GcV Sn+1

S2
c (V + cosψc)

, R2 = D2n1 + C2n2 −
n3

‖∆e‖2
,

R3 = D3n1 + C3n2 +
n3

tr∆ε
− 2G ‖∆e‖ cV Sn+1cosψc

Sctr∆ε (V + cosψc)
,

n1 = Sn+1
b− a+ (a+ b) cosψn+1

sinψn+1
, n2 = Sn+1






atan

ψc

2
− b

tan
ψc

2






,

n3 = Sn+1 (a− b)ln







tan
ψc

2

tan
ψn+1

2






.

Box 4: Parameters in the consistent tangent tensor for the Drucker–Prager model in case of general
loading.
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α̃c = B

(

cos2
ψc

2
, a, b

)

ln

(

cos2
ψc

2

)

−
3F2

(

a, a, 1− b; a + 1, a+ 1; cos2
ψc

2

)

a2cos−2a
ψc

2

,

α̃n+1 = B

(

cos2
ψn+1

2
, a, b

)

ln

(

cos2
ψn+1

2

)

−
3F2

(

a, a, 1− b; a + 1, a+ 1; cos2
ψn+1

2

)

a2cos−2a
ψn+1

2

,

β̃c =
3F2

(

1− a, b, b; 1 + b, 1 + b; sin2ψc

2

)

b2sin−2bψc

2

− B

(

sin2ψc

2
, b, a

)

ln

(

sin2ψc

2

)

+B (a, b) (Ψ (b)−Ψ (a+ b)) ,

β̃n+1 =
3F2

(

1− a, b, b; 1 + b, 1 + b; sin2ψn+1

2

)

b2sin−2bψn+1

2

−B

(

sin2ψn+1

2
, b, a

)

ln

(

sin2ψn+1

2

)

+B (a, b) (Ψ (b)−Ψ (a+ b)) .

Box 5: Parameters in the consistent tangent tensor for the Drucker–Prager model in case of general
loading.

6.3.2 Deviatoric radial loading case

When the increment produces deviatoric radial loading, then the corresponding stress update

formulae reduce to simpler form as discussed in Section 5.3. Similarly to the general loading case,

it is possible that the updated stress lies on the smooth portion of the yield surface or it reaches

the apex. The consistent tangent tensors for these two cases are given in the following.

6.3.2.1 Stress update without reaching the apex

If the updated stress lies on the smooth portion of the yield surface, then the consistent tangent

tensor can be written as

D
cons = a1sc ⊗ sc + a2sc ⊗∆e+ a3sc ⊗ δ + a4∆e⊗ sc + a5∆e⊗ δ

+a6δ ⊗ sc + a7δ ⊗∆e + a8δ ⊗ δ + a9T , (6.8)

where parameters a1 - a9 are given in Box 6. The derivation of these parameters is provided in

Appendix D.4.2.
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a1 =
2Gc

S2
c

(

1− G

h̃

)

− 2GcSn+1V

S3
c (V + q)

, a2 =
2Gq (1− c)

Sc ‖∆e‖

(

1− G

h̃

)

,

a3 =
3
√
2Kα

Sc

(

cq

V + q

Sn+1

Sc
− G

h̃

)

, a4 = − 2GcSn+1

S2
c ‖∆e‖ (V + q)

,

a5 = − 2GcV Sn+1

Sctr∆ε (V + q)
, a6 =

−3
√
2KGβc

h̃Sc

,

a7 =
−3

√
2GKβq (1− c)

‖∆e‖ h̃
, a8 = K

(

1− 9Kαβ

h̃

)

, a9 =
2GcSn+1

Sc
.

Box 6: Parameters in the consistent tangent tensor for the Drucker–Prager model in case of deviatoric
radial loading.

6.3.2.2 Stress update through the apex

In the special case, when the updated stress is located in the apex of the yield surface, then the

corresponding consistent tangent tensor is constructed in exactly the same way as for the general

loading case. Therefore, it is given by

D
cons = K

(

1− 9Kαβ

h̃−G

)

δ ⊗ δ. (6.9)

The detailed calculation steps are given in Appendix D.4.3.

6.3.3 nth state located at the apex

When the initial stress is located at the apex, then two situations can happen during the stress

update procedure: the stress solution cannot leave the apex; or the updated stress will lie on the

smooth portion of the yield surface. Condition (5.30) has to be involved to decide which scenario

will occur. Obviously, the consistent tangent tensors are different for these cases.

According to the discussion made in Appendix D.4.3.3, the consistent tangent tensor is

D
cons = K

(

1− 9Kαβ

h̃−G

)

δ ⊗ δ (6.10)

for the case when the stress solution remains at the apex. Whereas, it is computed as

D
cons = a1∆e⊗∆e + a2∆e⊗ δ + a3δ ⊗∆e + a4δ ⊗ δ + a5T , (6.11)

when the updated stress is located on the smooth portion of the yield surface. Box 7 collects the

expressions for parameters in (6.11).
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a1 =
3
√
2KGαtr∆ε

h̃ ‖∆e‖3
, a2 = −3

√
2KGα

h̃ ‖∆e‖
, a3 = −3

√
2KGβ

h̃ ‖∆e‖

a4 = K

(

1− 9Kαβ

h̃−G

)

, a5 = 2G

(

1− G

h̃

)

− 3
√
2KGαtr∆ε

h̃ ‖∆e‖

Box 7: Parameters when the nth state located at the apex and the updated stress lies on the smooth
portion of the yield surface.
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7
Numerical examples

7.1 Introduction

This chapter is devoted to present a number of numerical computations in order to analyze the

performance of the new solution methods proposed in this dissertation. The numerical examples

are collected in two sections.

In Section 7.2, the associative von Mises elastoplastic model with combined linear hardening

is considered. The accuracy of the new stress update scheme presented in Section 5.2 is inves-

tigated by presenting five different test examples. In the first example, the aim is to compute

the corresponding stress response in the case when a nonlinear strain path is given. The problem

is solved by approximating the strain input with rectilinear polygons. The accuracy of the new

method is compared to the results obtained using the widely used radial return method (RRM).

The second example is performed through a displacement-based finite element analysis. One 3-D

hexahedron element is considered under homogenous stress loading defined by combined tension

and shear loading. Errors are analyzed at the end of the loading path. Examples 3, 4 and 5 present

finite element test examples, where the numerical calculations are performed by the commercial

finite element software ABAQUS (ABAQUS, 2007). The new stress update algorithm with the

corresponding consistent tangent tensor has been implemented into ABAQUS via the UMAT sub-

routine interface (Kossa and Szabó, 2010b). The results obtained using the ABAQUS internal

scheme and the new UMAT code are compared. In Example 3, a widely adopted test example,

a perforated strip subject to uniaxial extension, is analyzed, whereas Example 4 investigates the

strain values computed in the case of a prescribed stress path. Finally, Example 5 demonstrates

the performance of the two schemes by computing the stress response for a fixed plate under

surface pressure loading.

Section 7.3 presents two examples in case of the non-associative Drucker–Prager elastoplastic

model governed by linear isotropic hardening. The first example gives a detailed study about the

apex problem. Namely, it demonstrates the regions in the stress space where the stress solution
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can reach the apex point of the yield surface. Whereas, the second example investigates the

accuracy of the stress update formulae in the case when a nonlinear strain input is approximated

with strain increment assuming constant strain rate.

7.2 Associative von Mises elastoplasticity model with combined

linear hardening

7.2.1 Example 1: Prescribed nonlinear strain input

7.2.1.1 The problem description and the reference solution

In order to apply the stress update formulae presented in Section 5.2 for a problem described with a

nonlinear strain path, an approximation of the whole strain path with a multisection polygonal line

is needed. Therefore, the proposed technique would yield a solution which can only be considered

to be an approximation, where the nonlinear strain input is approximated by superposition of

linear segments. The accuracy of the solution depends upon the degree of the approximation. Let

the material parameters be the following: E = 200 GPa, ν = 0.3, H = 40 GPa, M = 0.5 and

σY = 150 MPa.

The strain path is given by the prescribed ε11 and ε12 components of the strain tensor:

ε11 = 0.003 (1− cost) , ε12 =
1

2
γ12 = 0.003sint, (7.1)

whereas the other strain components are kept to be zero. Since the constitutive model is rate-

independent, the variable t denotes a dimensionless parameter. The interval 0 ≤ t ≤ 3π/2 is

considered in this calculation. Figure 7.1.a displays the whole strain path in the (ε11, ε12) plane.

At the beginning, pure elastic deformation occurs until the initial yield surface is reached. This

point can be calculated from the initial yield condition:

‖s (t)‖ =

√

2

3
σY =⇒ tel = 0.1884739447. (7.2)

Figure 7.1: (a) Prescribed nonlinear strain path in Example 1. (b) Rectilinear approximations of the
prescribed nonlinear strain path.

72



7.2. ASSOCIATIVE VON MISES ELASTOPLASTICITY MODEL

Elastoplastic loading results in the interval tel < t ≤ 3π/2. The reference solution in the

elastoplastic region was obtained by numerically (fourth-order Runge–Kutta method with 1000

steps) solving the corresponding system of nonlinear DEs described by (3.54)-(3.58). These results

are collected in Figure 7.2. Figure 7.2.a shows the angle ψ versus the parameter t, Figure 7.2.b

illustrates the variation of the radius of the yield surface, while the non-zero components of the

back-stress α and the stress σ are displayed in Figure 7.2.c and Figure 7.2.d.

Figure 7.2: Reference solutions in Example 1. (a) Variation of the angle. (b) Radius of the yield
surface. (c) Components of the back stress. (d) Components of the stress.

7.2.1.2 Numerical calculations

For calculations using either the new method given in Section 5.2 or the RRM, the strain path

given by (7.1) needs to be divided into increments. Figure 7.1.b shows two linear approximations

of the originally nonlinear strain path. The errors of both methods at a given time are reported

as the relative norm of the error between the reference and the computed solution:

E
‖R‖ = 100

|R−Rref |
Rref

[%] , E
‖α‖

= 100
‖α−αref‖
‖αref‖

[%] , E
‖σ‖

= 100
‖σ − σref‖
‖σref‖

[%] , (7.3)

where R, α and σ represent the results obtained by applying the specific algorithm, whereas Rref ,

αref and σref denote the exact solutions. Errors resulting in the approximations (5 and 20 steps,

respectively) are illustrated in Figure 7.3. Results obtained using the RRM are indicated with

squares; whereas, circles denote the solutions computed with the new method. Filled markers

correspond to the 20, and empty markers to the 5 step case, respectively. Furthermore, Table

7.1 shows the required computational time (CT), besides the considered errors, for both methods.

Here, Tcomp denotes a dimensionless relative time measure. Tcomp = 1 represents the required CT

for the RRM, when the strain path is approximated with 5 steps. The higher CT of the new

solution technique is explained with the more complex structure of the new method. However, in
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the calculation of the computational cost, other factors should be considered, besides the CT. For

example: how many intermediate steps must be stored in order to obtain a required accuracy?

From Table 7.1 it can be clearly concluded that in this simple example, using almost the same

amount of CPU time, the new method with 8 steps renders roughly the same accuracy as the

RRM can yield with only 30 steps.

Figure 7.3: Numerical results of the new method and the RRM in Example 1. (a) Comparison of errors
in the radius of the yield surface. (b) Comparisons of errors in the back stress. (c) Comparison of errors
in the total stress tensor.

7.2.2 Example 2: Prescribed rectilinear stress loading

7.2.2.1 The problem description and the exact solution

The previous example was a strain-driven problem with a prescribed nonlinear strain path. In

this second example, the loading is given in the stress space, or more precisely, in the (σ = σ11,

τ = σ12) plane (see Figure 7.4). Since only the σ11 and σ12 components are controlled, we have a

plane stress problem. The whole loading path consists of three different loading sections. Starting

from the initial stress-free state (point O), first the initial yield surface is reached (point Y) by

uniaxial tension involving only pure elastic deformation. Then, the uniaxial tension is further

applied until the point A is reached. This second loading part (Y→A) represents a proportional

elastoplastic loading. Beyond the point A, an additional stress component, namely, τ = σ12

begins to increase from τB = 0 MPa to τB = 300 MPa; whereas, σ = σ11 is kept to be constant

(σB = σA = 300 MPa). The last loading section, A→B, is a non-proportional elastoplastic loading.

Material parameters are the same as in the first example.
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Table 7.1: Comparison of the RRM and the new scheme in Example 1.

RRM new scheme

Number Error Values [%] Error Values [%]

of segments Tcomp E
‖σ‖

E
‖α‖

ER Tcomp E
‖σ‖

E
‖α‖

ER
5 1.00 8.27 11.10 6.77 3.88 3.48 4.68 3.27

6 1.19 6.87 9.22 5.67 4.57 2.47 3.32 2.31

7 1.38 5.86 7.87 4.91 5.27 1.84 2.47 1.72

8 1.56 5.10 6.86 4.32 6.14 1.42 1.90 1.32

9 1.75 4.52 6.07 3.86 6.89 1.13 1.51 1.05

10 2.00 4.06 5.45 3.49 7.64 0.92 1.23 0.86

15 2.94 2.67 3.59 2.36 11.46 0.41 0.55 0.38

20 3.94 1.99 2.68 1.78 15.45 0.23 0.31 0.22

25 5.00 1.59 2.13 1.43 19.50 0.15 0.20 0.14

30 6.12 1.32 1.77 1.19 23.50 0.10 0.14 0.10

50 10.56 0.79 1.06 0.72 38.83 0.04 0.05 0.04

Figure 7.4: Loading path in Example 2, and the corresponding exact solution of the strain components
and yield curve.

The attention is focused on the non-proportional loading part A→B. Although, the loading

path is linear in the stress space (consequently the stress rate is constant), the components of the

corresponding strain are nonlinear; therefore, it cannot be characterized by constant strain rate.

The main goal during this analysis is to determine the total strain ε, the back-stress α and the

radius of the yield surface R at point B. Two solution methods are considered and compared,

similar to the previous example. The first one is the new solution technique given in Section

5.2, whereas the second is the RRM. Note that, if the loadings were characterized by constant

strain rate (which is equivalent to a linear loading path in the strain space), then the new method

would provide the exact solution using only one loading step. However, in this case we do not

have constant strain rate. Therefore, the accuracy of each variable is strongly dependent on the

number of loading steps applied in section A→B.

The exact values at point Y are determined according to the elastic Hooke’s law. Since the

loading Y→A is proportional, the exact values at point A can be calculated simply by using the
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Table 7.2: Exact values in Example 2 at points Y, A and B, respectively.

Y A B

ε11 [×10−3] 0.75 5.25 10.194

ε22 = ε33 [×10−3] −0.225 −2.325 −4.797

ε12 = ε21 [×10−3] 0 0 7.948

α11 [MPa] 0 50 115.924

α22 = α33 [MPa] 0 −25 −57.962

α12 = α21 [MPa] 0 0 79.973

R [MPa] 122.474 183.712 327.761

exact solution corresponding to a proportional loading. At the end of the last loading section

(A→B), the exact solution is determined by the solution technique presented in Section 4.3.1.1 for

stress-driven case using constant stress rate assumption. This can be done, because the loading

part A→B is a linear path in the stress space; therefore, we have constant stress rate. The exact

values of ε, α and R are summarized in Table 7.2. Furthermore, the shape and the position of the

yield curve in the (σ, τ) plane at loading points Y, A and B are illustrated in Figure 7.4, where

the contributions of the exact solution of the total strain components in terms of the applied τ

stress are also presented.

7.2.2.2 Numerical calculations

In order to obtain information about the performance of the consistent tangent tensor, besides

the accuracy of the corresponding stress update algorithm, this example is performed in a stan-

dard displacement-based finite element analysis created in MATHEMATICA (Wolfram Research,

2010e). One 3-D linear (8-noded) hexahedron element (with 100 [mm] edge dimension) is con-

sidered with 2-point Gaussian quadrature. Because the loading Y→A is proportional, the values

computed at point A are unaffected by the number of steps applied in section Y→A. Therefore,

even the RRM renders the exact solution using one loading step.

The numerical analysis is focused on the non-proportional loading path A→B, where an it-

erative solution procedure is involved to obtain the resulting displacement values. Two issues

are discussed: (a) The performance of the consistent tangent tensor compared to the continuum

tangent tensor, and (b) The accuracies and the computational costs of the RRM and the new

method. Issue (a) is demonstrated by presenting the required iterations for various cases of load

step number (1, 2, 5 and 10), and presenting the energy and residual norms at the end of each

iteration in a selected loading step. Whereas, issue (b) is illustrated by comparing the errors in

the computed variables (ε, α and R) at the end of the loading path (point B), and comparing the

computational times required for each methods.

The convergence of the iteration in a given load step is measured in terms of the discrete

energy norm, which is computed from the incremental nodal displacement vector ∆dn+1 and the

residual vector R (dn+1) as

∆E
(

d
(i)
n+1

)

:= ∆d
(i+1)
n+1 ·R

(

d
(i)
n+1

)

, (7.4)
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Table 7.3: Iterations for each step using continuum and consistent tangent tensors in Example 2. Four
cases are considered: the whole loading path is divided into 1, 2, 5 and 10 steps, respectively.

Number of applied steps

Step 1 2 5 10

D
ep

D
cons

D
ep

D
cons

D
ep

D
cons

D
ep

D
cons

1 36 5 22 5 10 5 7 4

2 27 4 12 4 7 4

3 15 4 8 4

4 15 4 9 4

5 15 4 10 4

6 10 4

7 10 3

8 10 3

9 10 3

10 10 3

where d
(i)
n+1 denotes the ith approximation of the nodal displacement corresponding to the actual

load step, whereas ∆d
(i)
n+1 is the incremental nodal displacement at ith iteration (Simo and Hughes,

1998). The termination criteria is defined by

∆E
(

d
(i)
n+1

)

≤ 10−9∆E
(

d
(1)
n+1

)

. (7.5)

The CT is measured with a dimensionless relative time measure Tcomp. Here, contrary to

Example 1, Tcomp = 1 denotes the CT required for the RRM when the loading in A→B is given

in one load step, i.e., path A→B is not divided into steps.

The computed errors are measured in the same manner as in Example 1. Similarly, the error

of the computed strain is defined by

E
‖ε‖ = 100

‖ε− εexact‖
‖εexact‖

[%] . (7.6)

Table 7.3 contains the number of iterations required for convergence. For illustration purposes,

four cases are considered: the loading A→B is divided into 1, 2, 5 and 10 steps, respectively. The

obviously better performance of the consistent tangent tensor can be clearly seen in these results.

In Table 7.4, the values of the energy and residual norms at the end of each iteration are displayed,

corresponding to the last (5th) step of the case when the loading A→B is divided into 5 steps.

These results show that, when the iterations are terminated, both the residual and the energy

norms have much smaller values if the consistent tangent tensor is used. Table 7.5 is intended

to show the numerical accuracies and the CTs of the two methods, in terms of the number of

the applied steps. The errors considered are presented in Figure 7.5.a-7.5.c in log-log plots. As

can be seen in Table 7.5, the new method requires more CT than the RRM, because of the more
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Table 7.4: Energy and residual norm values in Example 2 at the end of each iteration of the last (5th)
step in the case when the loading path is divided into 5 steps.

Energy norm [Nmm] Residual norm [N]

Iteration D
ep

D
cons

D
ep

D
cons

1 5.28 E+3 9.14 E+3 6.19 E+4 5.05 E+3

2 1.01 E+3 3.05 E+1 2.80 E+4 1.22 E+1

3 2.04 E+2 7.29 E−5 1.27 E+4 3.89 E−5

4 4.19 E+1 1.83 E−15 5.80 E+3 1.51 E−9

5 8.67 E+0 2.65 E+3

6 1.80 E+0 1.21 E+3

7 3.74 E−1 5.50 E+2

8 7.78 E−2 2.51 E+2

9 1.62 E−2 1.14 E+2

10 3.37 E−3 5.22 E+1

11 7.00 E−4 2.38 E+1

12 1.46 E−4 1.08 E+1

13 3.03 E−5 4.96 E+0

14 6.30 E−6 2.26 E+0

15 1.31 E−6 1.03 E+0

complex structure of the integration scheme. However, substantial information can be extracted

from the results if we combine the CTs and the resulting errors. For example, if we consider the

error E
‖ε‖ and the corresponding CT of various load step numbers, then we can conclude that

the new method can be faster than the RRM when higher accuracy is required (see Figure 7.5.d

and Table 7.6). This kind of efficiency of the new method comes from the fact that we need less

loading steps in order to achieve the same accuracy.
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Figure 7.5: Numerical results for the new scheme and the RRM in Example 2 in log-log plots. (a)
Comparison of errors in the total strain at point B. (b) Comparison of errors in the back-stress at point
B. (c) Comparison of errors in the stress at point B. (d) The CTs of the two methods considered in terms
of the required accuracy in the total strain.
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Table 7.5: Comparison of the RRM and the new scheme. Σiter counts the total number of iterations
(sum of step × iterations of step).

RRM new scheme

Applied Error values [%] Error values [%]

Steps Tcomp Σiter E
‖ε‖ E

‖α‖
ER Tcomp Σiter E

‖ε‖ E
‖α‖

ER
1 1.00 3 13.24 16.17 1.45 2.69 5 8.90 10.87 0.94

2 2.49 7 8.11 9.90 1.07 4.97 9 3.43 4.19 0.31

3 3.78 11 5.96 7.27 0.83 7.17 13 1.86 2.27 0.13

4 5.27 15 4.72 5.77 0.69 9.06 17 1.16 1.42 0.08

5 6.87 19 3.92 4.78 0.59 11.45 21 0.78 0.96 0.06

6 7.86 22 3.34 4.08 0.51 13.83 25 0.56 0.68 0.04

7 9.06 25 2.91 3.56 0.46 14.92 27 0.42 0.51 0.03

8 10.85 29 2.58 3.16 0.41 17.11 30 0.33 0.40 0.03

9 12.14 32 2.32 2.83 0.37 19.61 33 0.26 0.32 0.02

10 13.04 35 2.10 2.57 0.34 21.40 36 0.21 0.26 0.02

15 18.90 49 1.44 1.75 0.24 29.96 50 0.10 0.12 0.01

20 23.48 60 1.09 1.34 0.18 37.42 61 0.05 0.07 ≈0.00

25 29.55 75 0.88 1.08 0.15 46.08 76 0.03 0.04 ≈0.00

30 35.53 90 0.74 0.90 0.13 54.94 90 0.02 0.03 ≈0.00

50 58.42 150 0.45 0.55 0.08 90.66 150 0.01 0.01 ≈0.00

100 115.94 300 0.23 0.28 0.04 182.12 300 ≈0.00 ≈0.00 ≈0.00

Table 7.6: Comparison of the RRM and the new scheme in Example 2, in view of the required accuracy
in E

‖ε‖
.

RRM new scheme
Required

accuracy in E
‖ε‖

[%]

Required
steps

Tcomp
Required
steps

Tcomp

10 2 2.49 1 2.69

5 4 5.27 2 4.97

2 11 13.93 3 7.17

1 22 25.68 5 11.45

0.5 45 54.04 7 14.92

0.1 230 273.29 15 29.96
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7.2.3 Example 3: Uniaxial extension of a perforated strip

The present example is a well-known problem in the literature and has been analyzed by many

others (Artioli et al., 2006; Auricchio and Beirão da Veiga, 2003; Simo and Hughes, 1998; Szabó,

2009). A perforated strip subject to uniaxial extension is considered under plane strain condition.

The strip dimension in [mm] is given in Figure 7.6, where due to symmetry only a quarter of the

strip is outlined. The material parameters are taken as E = 7 GPa, ν = 0.3, σY 0 = 24.3 MPa,

H = 275 MPa andM = 0.81818. Loading is performed by controlling the horizontal displacement

of the right boundary in two steps as illustrated in Figure 7.7.

Figure 7.6: Strip dimensions in Example 3.

Figure 7.7: Loading history of the right edge in Example 3.

We are interested in the resulting displacement of point A at the end of the step 2. Relative

errors obtained for a given mesh are calculated by

EA =

∣

∣

∣

∣

∣

uA − u
ref
A

u
ref
A

∣

∣

∣

∣

∣

· 100 [%], (7.7)

where urefA denotes the reference (”exact”) solution and uA means the computed value. urefA =

0.0146756973 mm has been calculated with the UMAT code using 2048 equal load increments in

each load steps. Two cases of mesh discretization are considered as illustrated in Figure 7.8. The

coarse mesh consist of 192 (with 450 nodes), while the fine mesh of 1344 (with 2860 nodes) C3D8

elements with one element along the thickness.
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Figure 7.8: Finite element discretizations in Example 3. (a) coarse mesh. (b) fine mesh.

The results are compared in Figure 7.9, where (a) and (c) display the relative errors of ABAQUS

internal scheme and the new UMAT code, respectively, in terms of the load increments applied in

each step. In Figure 7.9, (b) and (d) demonstrate the CPU time in terms of the required accuracy

in EA. It is relevant to note that these calculations have been performed on the same computer.

The number of iterations for a given load increment are collected in Table 7.7.

Figure 7.9: Comparisons of the ABAQUS internal scheme and the new method. (a) Relative errors of
the residual displacement in point A (coarse mesh.) (b) CPU time in view of resulting accuracy (coarse
mesh). (c) Relative errors of the residual displacement in point A (fine mesh). (d) CPU time in view of
resulting accuracy (fine mesh).

The superior accuracy of the new UMAT code can be clearly concluded from Figure 7.9.

Although, for the same number of applied load increments, the ABAQUS internal scheme needs

less CPU time, the UMAT code is more accurate yielding that the new scheme is faster if we
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Table 7.7: Total number of iterations in Example 3.

Applied increments Total number of iterations

in each step ABAQUS internal scheme UMAT code

4 20 20

8 31 30

16 51 51

32 83 78

64 138 138

128 259 259

256 513 513

512 1024 1024

consider the problem globally. For example: in order to achieve 1% accuracy in EA using the fine

mesh, ABAQUS internal scheme needs about 150 s CPU time, while the new UMAT code requires

only about 50 s.

7.2.4 Example 4: Prescribed rectilinear stress path

Here, one 3D hexahedron element is considered with stress loading history illustrated in Figure

7.10. The final step is the unloading from point D to O. Let the material parameters be the

following: E = 200 GPa, ν = 0.3, σY 0 = 150 MPa, H = 40 GPa and M = 0.5. Since the loading

path is consist of linear segments in the stress space, the new solution technique derived in Section

4.3.1 for constant stress rate loading can be applied to obtain the exact solution at points A, B,

C and D. The first loading point A is reached by proportional loading, therefore the quantities at

this stage can be derived with the analytical solution corresponding to the proportional loading.

The exact nonzero strain components are given in Table 7.8.

Figure 7.10: Loading path in Example 4.

For comparison purposes the resulting error in the strain tensor is considered with the relative
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Table 7.8: Exact solution in Example 4.

Strain components [×10−3]

Loading point εx εy εz γxy

A 1.050000 -0.365000 -0.365000 0

B 4.052273 -3.452002 -0.600270 0

C 6.256050 -5.802965 -0.453085 5.822912

D 8.764326 -7.489331 -0.954995 8.942970

E 6.924326 -6.209331 -0.714995 6.862970

error measure

E
‖ε‖ =

‖ε− εexact‖
‖εexact‖

· 100 [%], (7.8)

where ε means the strain computed with ABAQUS internal scheme or with the UMAT code,

respectively, while εexact denotes the exact values (see Table 7.8). Relative errors at the end of

the loading path (point O) are reported in Figure 7.11 in terms of the increment number applied

in each loading segments, whereas Figure 7.12 illustrates the evolution of E
‖ε‖ during the loading

history in two cases: a) one increment is applied in each segment; b) each segments are divided

into 8 increments.

Figure 7.11: Relative errors at the end of loading path (point O) in Example 4 (a) log–normal plot (b)
log–log plot.
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Figure 7.12: Relative errors during the loading path in Example 4 (a) 1 increment in each step (b) 8
increments in each steps.

7.2.5 Example 5: Fixed plate under surface pressure loading

As the fourth example this fifth one presents also an initial boundary value problem. A rectangular

plate with fix supported edges is analyzed (see Figure 7.13). The loading is given by normal

pressure of the top surface in two steps as given in Figure 7.15. Due to symmetry conditions, only

one quarter part is modelled as shown in Figure 7.13 (dimensions are in [mm]).

Figure 7.13: Quarter model of the plate analysed in Example 5.

Numerical calculations have been performed with 100 C3D8 elements (198 nodes) as illustrated

in Figure 7.14. Material parameters are equivalent to those used in Example 4 except the mixed

hardening parameter. In addition, here we analyze how the numerical results vary in terms of the

parameter M .

As output, the von Mises equivalent stress (σeqA) is monitored at point A, where the material

becomes plastic first. The reference solution σrefeqA has been obtained with the UMAT code using

2048 load increments in each load step. The evolution of σrefeqA through the loading is illustrated

in Figure 7.15, where the reference solutions at the end of step 2 are also indicated.
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Figure 7.14: FE mesh in Example 5.

The errors of the ABAQUS internal scheme and the UMAT code are evaluated introducing

the following relative norm

Eσ =

∣

∣

∣

∣

∣

σeqA − σ
ref
eqA

σ
ref
eqA

∣

∣

∣

∣

∣

· 100 [%]. (7.9)

Observing Figure 7.16, the superior accuracy of the new UMAT code can also be recognized.

For testing the speed of the algorithms the case ofM = 0.35 has been analyzed and the total CPU

time reported by the ABAQUS message file are compared in terms of the applied load increments

(see Figure 7.17). In addition, the total number of iterations are collected in Table 7.9.

Figure 7.15: Loading history and the corresponding reference solution for various cases of the mixed
hardening parameter M in Example 5.
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Figure 7.16: Comparisons of the ABAQUS internal scheme and the new method for various case of the
mixed hardening parameter M in Example 3. (a) M=0.1. (b) M=0.35. (c) M=0.65. (d) M=0.9.

Figure 7.17: Total CPU time used by ABAQUS internal scheme and the UMAT code in terms of
accuracy in Example 5.
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Table 7.9: Total number of iterations in Example 5.

Applied increments Total number of iterations

in each step ABAQUS UMAT

2 10 9

4 16 16

8 27 26

16 47 47

32 76 75

64 132 133

128 256 256

7.3 Non-associative Drucker–Prager elastoplasticity model with

linear isotropic hardening

7.3.1 Example 6: Strain increment needed to reach the apex

An initial stress state located on the smooth portion of the yield surface is considered. Depending

on the input strain increment and the material parameters, the new stress state can arrive to the

apex of the cone surface. Thus, it is obvious to examine this particular case substantially. In the

following, the attention is focused on the situations, when the stress solution, corresponding to a

given strain increment, can reach the apex.

Since the initial stress state at tn corresponds to the elastic limit, the principal stress compo-

nents can be written as

σn1 = pn +

√

2

3
Sncosθ, (7.10)

σ2n = pn +

√

2

3
Sncos

(

θ − 2π

3

)

, (7.11)

σ3n = pn +

√

2

3
Sncos

(

θ +
2π

3

)

, (7.12)

where θ denotes the Lode’s angle. The parameter Sn, using the yield condition, can be expressed

as the function of the pressure as follows

Sn =
√
2 (kn − 3αpn) . (7.13)

In this case, the free parameters are the Lode’s angle, θ and the pressure pn. Note, that the

initial stress state, given in an arbitrary coordinate system, can be related to the principal stresses

defined above.

The strain and trial elastic stress increments during the time step ∆t can be defined by

∆ε = ∆e +
1

3
tr∆ε δ (7.14)
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and

∆σtrial = D
e : ∆ε = 2G∆ e+Ktr∆ε δ (7.15)

while, their amplitudes can be expressed as

‖∆ε‖ =

√

‖∆e‖2 + 1

3
(tr∆ε)2, (7.16)

‖∆σtrial‖ =

√

4G2 ‖∆e‖2 + 3K2 (tr∆ε)2. (7.17)

Consider two orthogonal local coordinate systems (t, m, n) and (t, h, d) with common origin

which is located at the initial stress point coordinate. The directions of unit vectors n and d

correspond to the gradient of the yield and the plastic potential surfaces, respectively. The unit

vector m is located in the meridian of the cone, whereas, the direction of the unit vector h is

identical to the hydrostatic axis. Finally, the vector t is orthogonal to the plane spanned by the

unit vectors n and m (or d and h). These are illustrated in Figure 7.18.

Figure 7.18: Illustration of the coordinate systems (t,m,n) and (t,d,h).

The basis vectors of these systems, using the parameters α and θ, are expressed by

t
T =

1√
6

[

−2sinθ, sinθ +
√
3cosθ, sinθ −

√
3cosθ

]

, (7.18)

m
T =

1√
3
√
1 + 6α2

[

1− 2
√
3αcosθ, 1 +

√
3αcosθ − 3αsinθ, 1 +

√
3αcosθ + 3αsinθ

]

, (7.19)
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n
T =

√
2√

1 + 6α2

[

α +
cosθ√

3
, α− cosθ

2
√
3
+

sinθ

2
, α− cosθ

2
√
3
− sinθ

2

]

. (7.20)

d
T =

1√
6

[

2cosθ,
√
3sinθ − cosθ, −

√
3sinθ − cosθ

]

, (7.21)

h
T =

1√
3
[1, 1, 1] . (7.22)

Now, define a vector, ∆Σ, associated to the trial stress increment ∆σtrial in the coordinate system

(t, m, n):

∆Σ = ρ (cosφ sinϑ t+sinφ sinϑm+cosϑn) , (7.23)

where ρ = ‖∆Σ‖ = ‖∆σtrial‖ is the magnitude of the trial stress increment. The limits for the

angles are

0 ≤ ϑ <
π

2
, −π

2
≤ φ ≤ π

2
. (7.24)

Then, the same vector in the coordinate system (t, h, d) can be expressed as

∆Σ = 2G ‖∆e‖ (cosψn d+sinψn t)+
√
3Ktr∆εh. (7.25)

The parameters ρ, ϑ and φ can be related to the parameters 2G ‖∆e‖ , 3Ktr∆ε and ψn by the

following relationships:

2G ‖∆e‖ =
ρ√

1 + 6α2

√

cos2φ+
(√

6α sinϑ− cosϑ sinφ
)2

, (7.26)

√
3Ktr∆ε =

ρ√
1 + 6α2

(√
6α cosϑ+ sinϑ sinφ

)

, (7.27)

cosψn =
cosϑ−

√
6α sinϑ sinφ

√

cos2φ+
(√

6α sinϑ− cosϑ sinφ
)2
. (7.28)

Now, the new stress state at the end of the time interval t ∈ [tn, tn +∆t] associated to the given

strain increment can be evaluated. It is very important to emphasize that, the input set defined

above can be used to describe the whole possible input strain increments. Namely, the parameter

ranges of ϑ and φ defined in (7.24) cover the region (a half-sphere) for which the new stress state

belongs to plastic state. Applying equations (7.26)-(7.28), the stress update can be evaluated

using ϑ, φ and ρ as input parameters.
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Figure 7.19: Values ρ/Sn required to reach the apex for given (t,m) pair.
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Figure 7.19 illustrates the domain in the (t,m, n) coordinate system, where the stress solution

can reach the apex. The norm of the required strain increment is also demonstrated by plotting

the contour lines of the ratio ρ/Sn over these domains. Four different G/h̃ ratios are considered,

while α = 1
√

6
tan30◦. By observing the results, it can be clearly concluded that the greater the

value of G/h̃ the larger the domain where the solution can reach the apex. At the boundaries of

these regions, where n 6= 0, ρ must have infinite value to reach the apex, whereas at the boundaries

where n = 0, the apex can be reached using finite values of ρ.

Another illustration can be seen in Figure 7.20, where the value of the ratio 2G ‖∆e‖ /Sn
needed to reach the apex, is presented for a given (φ, ϑ) pair. Each surfaces corresponds to a

specific values of the ratio G/h̃. Here, the case, when κ = 30◦ is analyzed.

Finally, Figure 7.21 demonstrates the evaluation of the ratio S/Sn in terms of the input variable

2G ‖∆e‖ /Sn. Various direction of the input vector ∆Σ are considered in cases when κ = 15◦

and κ = 45◦, respectively. The particular value, where the ratio S/Sn becomes zero, denotes the

special scenario when the stress solution has reached the apex.

It should be noted that the example presented here is a simple illustration of the proposed

method. Several aspects of the Drucker–Prager model can be investigated using the technique

applied in this example.

Figure 7.20: Values 2G ‖∆e‖ /Sn required to reach the apex for given (ω, ϑ) pair.
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Figure 7.21: Variation of S/Sn in terms of the input parameter 2G ‖∆e‖ /Sn for particular orientation
(φ, ϑ).
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7.3.2 Example 7: A non-proportional non-linear strain path

The second example demonstrates the accuracy of the proposed method for a non-linear strain

input. In order to create an error analysis, it is necessary to know the exact stress solution

for the given non-linear strain input. When the load is given by a linear (piecewise rectilinear)

stress path in the stress space and linear hardening materials are considered, the corresponding

strain solution ε (t) is generally non-linear. This ε (t) solution can be obtained analytically, since

the inverse constitutive equation of the material model under consideration can be integrated

analytically (see Section 4.3.2).

In this example, the stress as input parameter is controlled and the corresponding exact strain

solution is computed first. Then, the strain increment, obtained previously, is considered as strain

input for which the stress solution is computed with the method proposed for the constant strain

input case. Therefore, we have an approximate stress solution for the strain increment, which is

constructed from the non-linear strain solution obtained using constant stress input.

In the following, we consider a stress state σn located on the smooth portion of the yield

surface. As input parameter a stress increment ∆σ is given. Here we consider stress increments,

which produce a new stress state located not in the apex. The exact strain solution ∆ε is obtained

using the analytical solutions proposed in see Section 4.3.2. It must be noted that the strain rate ε̇

is not constant over ∆t in this case. Therefore, the following relative error E∆σ can be constructed:

E∆σ =
‖∆σ

∗ −∆σ‖
‖∆σ‖ × 100 [%] , (7.29)

where ∆σ∗ denotes the stress increment calculated for the input ∆ε using the solution method

proposed for linear strain path input. The error measure (7.29) can be represented efficiently

in terms of the orientation and the norm of ∆σ in the principal stress space. Let the material

parameters be the following:

E = 60 MPa, ν = 0.25, H = 30 MPa, α = 0.3, β = 0.15 (7.30)

and the norm of the deviatoric stress at the initial state is Rn = 1 MPa. Figure 7.22 demonstrates

the relative error measure (7.29) in terms of ‖∆s‖, ωn and ∆p.

These results give informative details about the accuracy of the proposed method if we ap-

proximate the nonlinear strain input with constant strain-rate.
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Figure 7.22: Relative error E∆σ in terms of the angle ωn and the parameter ‖∆s‖ /Rn.
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8
Conclusions and Theses

Present dissertation was concerned with elastoplasticity theory, especially with the solution of

constitutive equations. The main goal of this dissertation was to develop exact stress integra-

tion schemes for two commonly adopted elastoplastic constitutive models. One of them is the

associative von Mises model governed by combined linear hardening, whereas the second one is

the non-associative Drucker–Prager model with linear isotropic hardening. After a brief intro-

duction of the necessary theoretical background, the well-known expression of the constitutive

equations was formulated. Then, each model was considered in strain-driven and stress-driven

case, respectively. The exact stress solution of the system of differential equations representing

the constitutive equation was obtained for both models in case of strain-driven formulation. In

addition, the exact strain solutions were also derived for the stress-driven case. The complete

stress update procedures discussing all the special cases were also provided. Furthermore, the

derivation of the algorithmically consistent tangent tensors made complete the numerical imple-

mentations. The accuracy and efficiency of the novel techniques were illustrated by performing a

series of numerical test examples including finite element calculations as well.

The main advantage of the new stress update formulae is that they are based on the exact

solutions of the corresponding constitutive equations. Consequently, their accuracies in numerical

calculations are apparent. In addition, the simple structure of the stress update formulae provides

their straightforward implementation in finite element codes. The new results may be usefully

utilized in obtaining exact stress or strain solutions for particular elastoplastic problems where

the exact solutions are needed to investigate the performance of other numerical schemes.

This work may provide a basis for other complicated models, where the exact solutions are

still not clarified.
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Thesis 1
I have derived the exact stress solution corresponding to the associative von Mises

elastoplasticity model governed by the combined linear hardening rule.

I have obtained the exact solution of the differential equation describing the relationship be-

tween the stress rate and the strain rate tensors. The new stress solution is valid under the

constant strain rate assumption and it take into account both the linear isotropic and linear kine-

matic hardening rules. The new solution method is based on the introduction of an angle-like

parameter in the deviatoric planes. I have solved the differential equation defining the evaluation

of this angle-like variable using an incomplete beta function.

Related publications: Kossa (2007, 2009); Kossa and Szabó (2007, 2009a,b)

Thesis 2
I have developed a complete stress update algorithm for the exact stress solution

considered in Thesis 1. Furthermore, I have constructed the explicit expression of

the corresponding consistent tangent tensor.

I have derived the discretized stress update formulae for the exact stress solution discussed in

Thesis 1. Besides the general loading case, I have presented the stress update formulae for pro-

portional loading. The new stress update algorithm is applicable to all possible loading scenarios

that can occur during the loading. I have developed an efficient numerical technique to invert an

incomplete beta function appearing in the stress update formulae. In addition, I have constructed

the consistent tangent tensor, which is crucial for finite element implementation in order to have

a quadratic rate of convergence. I have implemented the new stress update algorithm with the

consistent tangent tensor into the commercial finite element software ABAQUS via its user ma-

terial interface. The accuracy and efficiency of the new method has been proven by performing

numerical test examples.

Related publications: Kossa (2009); Kossa and Szabó (2009b, 2010b)

Thesis 3
I have obtained the exact strain solution for the associative von Mises elastoplas-

ticity model with combined linear hardening.

I have derived the exact solution of the differential equation corresponding to the inverse form

of the constitutive equation discussed in Thesis 1. The new strain solution has been obtained

assuming constant stress rate input and it takes into account the linear isotropic and the linear

kinematic hardening rules. The solution method utilizes the introduction of an angle-like variable

in the deviatoric planes. I have solved the evolutionary equation of this angle-like variable by

utilizing an incomplete beta function.

Related publications: Kossa (2007); Kossa and Szabó (2007, 2009b)
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Thesis 4
I have derived the exact stress solution for the non-associative Drucker–Prager

elastoplastic model governed by linear isotropic hardening.

I have solved the differential equation describing the relation between the strain rate and the

stress rate tensors. The new stress solution is valid under a constant strain rate assumption and

it takes into account the linear isotropic hardening mechanism. The solution method utilizes an

angle-like variable introduced in the deviatoric planes. I have obtained the solution of this angle-

like parameter using an incomplete beta function. I have derived the analytical stress solution for

deviatoric radial loading case. Furthermore, I have proposed an approach to solve the singularity

problem appearing at the apex of the yield surface.

Related publications: Kossa (2011); Kossa and Szabó (2010a); Szabó and Kossa (2012)

Thesis 5
I have developed a complete stress update algorithm based on the exact stress

solution discussed in Thesis 4. I have obtained the explicit expression of the corre-

sponding consistent tangent tensor.

I have constructed the discretized stress update procedure based on the exact stress solution

considered in Thesis 4. Besides the general loading case, I have presented the stress update

formulae for the deviatoric radial loading case and for the special loading scenario, when the

stress state is located at the apex of the yield surface. I have derived a condition to determine

whether the updated stress will leave the apex or will remain at that point. By exact linearization

of the stress update formulae, I have obtained the consistent tangent tensors for all loading cases.

Related publications: Kossa (2011); Kossa and Szabó (2010a); Szabó and Kossa (2012)

Thesis 6
I have obtained the analytical strain solution for the non-associative Drucker–

Prager elastoplastic model governed by linear isotropic hardening.

I have derived the analytical solution of the differential equation corresponding to the inverse

form of the constitutive equation considered in Thesis 4. The new solution is valid for linear

isotropic hardening under constant stress rate assumption. The solution method is based on the

introduction of an angle-like variable in the deviatoric planes. I have obtained the analytical

solution for this angle-like variable providing the explicit expression.

Related publications: Kossa (2011); Kossa and Szabó (2010a); Szabó and Kossa (2012)
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A
The incomplete beta function

A.1 Definition

According to Spanier and Oldham (1987), the incomplete beta function is defined by the indefinite
integrals

B (x, a, b) =
x
∫

0

ta−1 (1− t)b−1 dt, 0 ≤ x < 1 . (A.1)

An equivalent definition can be formulated as

B (x, a, b) = 2

T
∫

0

(sint)2a−1 (cost)2b−1 dt, 0 ≤ T = arcsin
(√

x
)

<
π

2
. (A.2)

For interchanging the parameters, the following intrarelationship holds:

B (1− x, a, b) =
Γ (a) Γ (b)

Γ (a+ b)
− B (x, b, a) . (A.3)

Thus, by combining (A.2) and (A.3) we have the expression

B (1− x, a, b) =
Γ (a) Γ (b)

Γ (a+ b)
− 2

arcsin(
√

x)
∫

0

(sint)2b−1 (cost)2a−1 dt. (A.4)

Introducing x =sin2θ we can reformulate the formula above as

B
(

cos2θ, a, b
)

=
Γ (a) Γ (b)

Γ (a + b)
− 2

θ
∫

0

(sint)2b−1 (cost)2a−1 dt. (A.5)
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Consequently,

θ
∫

0

(sint)2b−1 (cost)2a−1
dt =

1

2

Γ (a) Γ (b)

Γ (a + b)
− 1

2
B
(

cos2θ, a, b
)

. (A.6)

Evaluating the integral on the left hand side between limits θ1 and θ2:

θ2
∫

θ1

(sint)2b−1 (cost)2a−1 dt =

θ2
∫

0

(sint)2b−1 (cost)2a−1 dt−
θ1
∫

0

(sint)2b−1 (cost)2a−1 dt, (A.7)

θ2
∫

θ1

(sint)2b−1 (cost)2a−1 dt =
1

2
B (cos2θ1, a, b)−

1

2
B (cos2θ2, a, b) , (A.8)

where 0 ≤ θ2 < θ1 <
π

2
.

Remark: The incomplete beta function is defined for positive parameters a, b > 0. However,
its definition can be extedned, by regularization, to negative non-integer values of a and b (Gel’fand
and Shilov, 1964). In addition, when the parameter a equals to zero or negative integer, the
incomplete beta function has a singularity. The incomplete beta function, using the method
proposed by Özçag et al. (2008), can also be extended for zero or negative integer values of a. The
application of this method is presented in the paper of Szabó and Kossa (2012).

A.2 Differentiation rules

The derivative of the incomplete beta function B (x, a, b) with respect to its argument x is (Wol-
fram Research, 2010d)

∂

∂x
B (x, a, b) = x

a−1 (1− x)b−1
, (A.9)

whereas with respect to a and b, respectively, are

∂B (x, a, b)

∂a
= B (x, a, b) lnx− x

aΓ (a)2 3F̃2 (a, a, 1− b; a + 1, a+ 1; x) , (A.10)

∂B (x, a, b)

∂b
= Γ (b)2 (1− x)b 3F̃2 (b, b, 1 − a; b+ 1, b+ 1; 1− x)

−B (1− x, b, a) ln (1− x) +B (a, b) (Ψ (b)−Ψ (a + b)) , (A.11)

where Γ (•) denotes the gamma function (Abramowitz and Stegun, 1968; Spanier and Oldham,
1987; Wolfram Research, 2010b), 3F̃2 (•, •, •; •, •; •) stands for the regularized generalized hyper-
geometric function (Wolfram Research, 2010f), whereas Ψ (•) is the digamma function (Wolfram
Research, 2010a). Expressions (A.10) and (A.11) can be simplified to the forms

∂B (x, a, b)

∂a
= B (x, a, b) lnx− xa

a2
3F2 (a, a, 1− b; a + 1, a+ 1; x) , (A.12)

∂B (x, a, b)

∂b
=

(1− x)b

b2
3F2 (1− a, b, b; 1 + b, 1 + b; 1− x)

−B (1− x, b, a) ln (1− x) +B (a, b) (Ψ (b)−Ψ (a + b)) , (A.13)
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where 3F2 (•, •, •; •, •; •) denotes the generalized hypergeometric function (Wolfram Research,
2010c). Inserting x =cos2θ into the formulas above, we arrive at

∂B (cos2θ, a, b)

∂θ
= − 4

sin2θ
sin2b

θcos2aθ = −2sin2b−1
θcos2a−1

θ, (A.14)

∂B (cos2θ, a, b)

∂a
= B

(

cos2θ, a, b
)

ln
(

cos2θ
)

−cos2aθ

a2
3F2

(

a, a, 1− b; a+ 1, a+ 1; cos2θ
)

, (A.15)

∂B (cos2θ, a, b)

∂b
=

sin2b
θ

b2
3F2

(

1− a, b, b; 1 + b, 1 + b; sin2
θ
)

−B
(

sin2
θ, b, a

)

ln
(

sin2
θ
)

+B (a, b) (Ψ (b)−Ψ (a + b)) . (A.16)

A.3 Recursion formulae

Some useful recursion formulae are the followings (Spanier and Oldham, 1987):

B (x, a, b) = B (x, a + 1, b) +B (x, a, b+ 1) , (A.17)

B (x, a+ 1, b) =
a

b
B (x, a, b+ 1)− xa (1− x)b

b
, (A.18)

B (x, a, b+ 1) =
b

a
B (x, a + 1, b) +

xa (1− x)b

a
. (A.19)

These expressions can be reordered as follows

B (x, a, b) =

(

1 +
b

a

)

B (x, a + 1, b) +
xa (1− x)b

a
, (A.20)

B (x, a, b) =
(

1 +
a

b

)

B (x, a, b+ 1)− xa (1− x)b

b
(A.21)

and

B (x, a+ 1, b) =
1

a + b

(

aB (x, a, b)− x
a (1− x)b

)

, (A.22)

B (x, a, b+ 1) =
1

a + b

(

bB (x, a, b) + x
a (1− x)b

)

(A.23)

and

B (x, a, b− 1) =
a− 1

b− 1
B (x, a− 1, b)− xa−1 (1− x)b−1

b− 1
, (A.24)

B (x, a− 1, b) =
b− 1

a− 1
B (x, a, b− 1) +

xa−1 (1− x)b−1

a− 1
. (A.25)
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B
Solution of linear non-homogeneous differential

equations

A non-homogeneous linear differential equation is given in the form

ẋ = a (t)x+ b (t) , (B.1)

where a, b : I → R are continuous function on I. The general solution for this type of equation
can be written as a linear combination (Vrabie, 2004)

x (t) = A (t) xn +B (t) , (B.2)

where xn = x (tn), t > tn and

A (t) = exp





t
∫

tn

a (s) ds



 , B (t) =

t
∫

tn

exp





t
∫

s

a (τ) dτ



 b (s) ds. (B.3)

This general solution can be easily extended to second-order tensorial form as

ẋ = a (t)x+ b (t)C, (B.4)

x (t) = A (t)xn +B (t)C, (B.5)

where C is a constant.
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C
Detailed derivation steps for the von Mises model

C.1 Solution for ξ (t) in strain-driven case

From (4.11) it follows that

dt = Jdψ, J = − Sn (sinψ)
2b−1

2G ‖ė‖ sin2b
ψn
. (C.1)

The rate-form expression (3.58) can be written as

ξ̇ = 2Gė− 2G ‖ė‖ (1 + 2b)
cosψ

S
ξ. (C.2)

Thus, the solution method described in Appendix B can be employed here. Applying (B.4) on
(C.2) we have

a (ψ) = −2G ‖ė‖
Sn

(1 + 2b) cosψ

(

sinψn
sinψ

)2b

, b (ψ) = 2G. (C.3)

Then, by knowing that 0 ≤ ψ < ψn < π/2 we can evaluate

Aξ (ψ) = exp





ψ
∫

ψn

a

(

ψ̃

)

Jdψ̃



 =

(

sinψ

sinψn

)2b+1

. (C.4)

Furthermore, using (B.3) we have

Bξ (ψ) =

ψ
∫

ψn

exp







ψ
∫

ψ̂

a

(

ψ̃

)

Jdψ̃






b

(

ψ̂

)

Jdψ̂, (C.5)
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where

exp







ψ
∫

ψ̂

a

(

ψ̃

)

Jdψ̃






=

(

sinψ

sinψ̂

)2b+1

. (C.6)

Therefore the parameter Bξ (ψ) becomes

Bξ (ψ) =

ψ
∫

ψn

(

sinψ

sinψ̂

)2b+1

b

(

ψ̂

)

Jdψ̂ =
Sn

‖ė‖
sin (ψn − ψ)

sinψn

(

sinψ

sinψn

)2b

. (C.7)

Using the solution (4.10) we can simplify these parameters as

Aξ (ψ) =
S

Sn

sinψ

sinψn
, Bξ (ψ) =

S

‖ė‖
sin (ψn − ψ)

sinψn
. (C.8)

Consequently Aξ = Aξ (ψ) and Bξ = Bξ (ψ) in (4.15).

C.2 Solution for s (t) in strain-driven case

Integrating (4.17) yields

t
∫

tn

ṡ
(

t̃
)

dt̃ =





t
∫

tn

Ȧs

(

t̃
)

dt̃



 ξn +





t
∫

tn

Ḃs

(

t̃
)

dt̃



 ė (C.9)

=





ψ
∫

ψn

Ȧs

(

ψ̃

)

Jdψ̃



 ξn +





ψ
∫

ψn

Ḃs

(

ψ̃

)

Jdψ̃



 ė, (C.10)

where

As (ψ) =

ψ
∫

ψn

Ȧs

(

ψ̃

)

Jdψ̃ =
2G

(2G+ h) (2b+ 1)

(

(

sinψ

sinψn

)2b+1

− 1

)

, (C.11)

which can be simplified by inserting (C.8):

As (ψ) =
2G (Aξ − 1)

(2G+ h) (2b+ 1)
. (C.12)
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Furthermore, the second coefficient in (C.10) has the form

Bs (ψ) =

ψ
∫

ψn

Ḃs

(

ψ̃

)

Jdψ̃ (C.13)

=
2GSn

(2G+ h) ‖ė‖ sin2b+1
ψn

ψ
∫

ψn

cosψsin (ψn − ψ) (sinψ)2b−1 dψ̃

− Sn

‖ė‖ sin2b
ψn

ψ
∫

ψn

(sinψ)2b−1 dψ̃, (C.14)

where the first integral on the right-hand side becomes

ψ
∫

ψn

cosψsin (ψn − ψ) (sinψ)2b−1 dψ̃ = sinψn

ψ
∫

ψn

cos2ψ (sinψ)2b−1 dψ̃

−cosψn

ψ
∫

ψn

cosψ (sinψ)2b dψ̃. (C.15)

Applying the formula (A.8) we can evaluate the expressions above:

sinψn

ψ
∫

ψn

cos2ψ (sinψ)2b−1 dψ̃ =
sinψn
2

(

B

(

cos2ψn,
3

2
, b

)

− B

(

cos2ψ,
3

2
, b

))

, (C.16)

−cosψn

ψ
∫

ψn

cosψ (sinψ)2b dψ̃ = −cosψn

(

(sinψ)2b+1

2b+ 1
− (sinψn)

2b+1

2b+ 1

)

. (C.17)

Consequently, the first integral term in (C.14) reduces to

=

B

(

cos2ψn,
3

2
, b

)

− B

(

cos2ψ,
3

2
, b

)

2
sinψn −

(sinψ)2b+1 − (sinψn)
2b+1

2b+ 1
cosψn, (C.18)

whereas the second integral in (C.14) can be expressed using (4.12) as

ψ
∫

ψn

(sinψ)2b−1 dψ = −2G ‖ė‖
Sn

sin2b
ψn (t− tn) . (C.19)
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Finally, substituting (C.18) and (C.19) into (C.14) gives

Bs (ψ) =
2GSn

(2G+ h) ‖ė‖ sin2b+1
ψn

B

(

cos2ψn,
3

2
, b

)

−B

(

cos2ψ,
3

2
, b

)

2
sinψn

− 2GSn

(2G+ h) ‖ė‖ sin2b+1
ψn

(sinψ)2b+1 − (sinψn)
2b+1

2b+ 1
cosψn

− Sn

‖ė‖ sin2b
ψn

(

−2G ‖ė‖
Sn

sin2b
ψn (t− tn)

)

, (C.20)

Bs (ψ) =

GSn

(

B

(

cos2ψn,
3

2
, b

)

− B

(

cos2ψ,
3

2
, b

))

(2G+ h) ‖ė‖ sin2b
ψn

− Sncosψn
‖ė‖ As + 2G (t− tn) . (C.21)

The expression above can be written in a much simpler form. Applying (A.22) we can reformulate
the incomplete beta function terms as

B

(

cos2ψn,
3

2
, b

)

=
2

1 + 2b

(

1

2
B

(

cos2ψn,
1

2
, b

)

− cosψn (sinψn)
2b

)

, (C.22)

B

(

cos2ψ,
3

2
, b

)

=
2

1 + 2b

(

1

2
B

(

cos2ψ,
1

2
, b

)

− cosψ (sinψ)2b
)

. (C.23)

Thus, it follows that

B

(

cos2ψn,
3

2
, b

)

−B

(

cos2ψ,
3

2
, b

)

=
1

1 + 2b

(

B

(

cos2ψn,
1

2
, b

)

− B

(

cos2ψ,
1

2
, b

))

−2cosψn (sinψn)
2b

1 + 2b
+

2cosψ (sinψ)2b

1 + 2b
(C.24)

=
1

1 + 2b

(

−4G ‖ė‖
Sn

sin2b
ψn (t− tn)

)

− 2cosψn (sinψn)
2b

1 + 2b
+

2cosψ (sinψ)2b

1 + 2b
. (C.25)

Therefore, the following relation holds:

GSn

(

B

(

cos2ψn,
3

2
, b

)

−B

(

cos2ψ,
3

2
, b

))

(2G+ h) ‖ė‖ sin2b
ψn

= (C.26)

−4G2 (t− tn)

(2G+ h) (1 + 2b)
− 2GSncosψn

(2G+ h) (1 + 2b) ‖ė‖ +
2GSncosψ

(2G+ h) (1 + 2b) ‖ė‖

(

sinψ

sinψn

)2b

. (C.27)

Substituting back into (C.21) gives

Bs (ψ) = 2G (t− tn) +
2G (Scosψ − SnAξcosψn − 2G ‖ė‖ (t− tn))

(2G+ h) (1 + 2b) ‖ė‖ . (C.28)

Further simplification can be made by inserting (4.10) and (4.16)1 into the expression above:

Bs (ψ) = 2G (t− tn)−
2GSsin (ψ − ψn)

(2G+ h) (1 + 2b) ‖ė‖ sinψn
− 4G2 (t− tn)

(2G+ h) (1 + 2b)
, (C.29)
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then using (4.16)2 gives

Bs (ψ) = 2G (t− tn) +
2G (Bξ − 2G (t− tn))

(2G+ h) (1 + 2b)
. (C.30)

Consequently As = As (ψ) and Bs = Bs (ψ) in (4.19).
Remark: the expression of the parameter Bs published in the paper of Kossa and Szabó

(2009b) has a much more complicated form. However that result is identical to (C.30). It can be
simply proved, if we rewrite the term

B

(

cos2ψn,
3

2
, b

)

− B

(

cos2ψ,
3

2
, b

)

= 2

ψ
∫

ψn

cos2ψ (sinψ)2b−1 (C.31)

in (C.20). Therefore, in view of (4.12), the following simplification holds:

2

ψ
∫

ψn

cos2ψ (sinψ)2b−1 = 2

ψ
∫

ψn

(

1− sin2
ψ
)

(sinψ)2b−1 dψ̃ (C.32)

= 2

ψ
∫

ψn

(sinψ)2b−1 dψ̃ − 2

ψ
∫

ψn

(sinψ)2b+1 dψ̃ (C.33)

= −4G ‖ė‖
Sn

sin2b
ψn (t− tn)−

(

B

(

cos2ψn,
1

2
, b+ 1

)

− B

(

cos2ψ,
1

2
, b+ 1

))

. (C.34)

If we substitute back (C.34) into (C.20), then we arrive at the formula, which was published in
the paper of Kossa and Szabó (2009b).

C.3 Solution for ξ (t) in stress-driven case

From (4.89) it follows that

dt = Jdψ, J = −Snsin
M
ωn

‖ṡ‖ (sinω)−M−1
. (C.35)

The evolutionary equation (3.63)3 can be written as

ξ̇ = ṡ− 1−M

S
‖ṡ‖ cosωξ. (C.36)

Thus, the solution method described in Appendix B can be used. Applying (B.4) in (C.36) we
have

a (ω) =
M − 1

Sn
‖ṡ‖ cosω

(

sinω

sinωn

)M

, b (ω) = 1. (C.37)
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It follows from (B.5) that

A (ω) = exp





ω
∫

ωn

a (ω̃)Jdω̃



 =
S

Sn

sinω

sinωn
(C.38)

and

B (ω) =

ω
∫

ωn

exp





ω
∫

ω̂

a (ω̃) Jdω̃



 b (ω̂)Jdω̂ =
Ssin (ωn − ω)

‖ṡ‖ sinωn
. (C.39)

Thus, it follows that Aξ = Aξ (ω) and Bξ = Bξ (ω) in (4.92).

C.4 Solution for e (t) in stress-driven case

Integrating (4.94) gives

t
∫

tn

ė
(

t̃
)

dt̃ =





ω
∫

ωn

Ȧe (ω̃) Jdω̃



 ξn +





ω
∫

ωn

Ḃe (ω̃) Jdω̃



 ṡ. (C.40)

Parameter Ae (ω) is expressed as

Ae (ω) =

ω
∫

ωn

Ȧe (ω̃)Jdω̃ =
1− Aξ

h (1−M)
, (C.41)

whereas parameter Be (ω) is defined by

Be (ω) =

ω
∫

ωn

Ḃe (ω̃) Jdω̃ (C.42)

= −Snsin
M−1

ωn

h ‖ṡ‖

ω
∫

ωn

(sinω)−M−1 cosωsin (ωn − ω) dω̃

−Snsin
M
ωn

2G ‖ṡ‖

ω
∫

ωn

(sinω)−M−1 dω̃, (C.43)

where

ω
∫

ωn

(sinω)−M−1 dω̃ = −‖ṡ‖ (t− tn)

Snsin
M
ωn

(C.44)

and

ω
∫

ωn

(sinω)−M−1 cosωsin (ωn − ω) dω̃ = (C.45)
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= sinωn

ω
∫

ωn

(cosω)2 (sinω)−M−1 dω̃ − cosωn

ω
∫

ωn

cosω (sinω)−M dω̃ (C.46)

=
sinωn
2

(

B

(

cos2ωn,
3

2
,−M

2

)

− B

(

cos2ω,
3

2
,−M

2

))

− cosωn
1 −M

(

(sinω)1−M − (sinωn)
1−M

)

. (C.47)

Substituting (C.44) and (C.47) back into (C.43) gives

Be (ω) =
(t− tn)

2G
− Sncosωn

‖ṡ‖ Ae

−Snsin
M
ωn

2h ‖ṡ‖

(

B

(

cos2ωn,
3

2
,−M

2

)

− B

(

cos2ω,
3

2
,−M

2

))

. (C.48)

Using the formula (A.22), we can write the followings:

B

(

cos2ωn,
3

2
,−M

2

)

=
2

1−M

(

1

2
B

(

cos2ωn,
1

2
,−M

2

)

− cosωn (sinωn)
−M

)

(C.49)

=
1

1−M
B

(

cos2ωn,
1

2
,−M

2

)

− 2cosωn (sinωn)
−M

1−M
, (C.50)

B

(

cos2ω,
3

2
,−M

2

)

=
2

1−M

(

1

2
B

(

cos2ω,
1

2
,−M

2

)

− cosω (sinω)−M
)

(C.51)

=
1

1−M
B

(

cos2ω,
1

2
,−M

2

)

− 2cosω (sinω)−M

1−M
. (C.52)

Consequently

B

(

cos2ωn,
3

2
,−M

2

)

− B

(

cos2ω,
3

2
,−M

2

)

=

=
1

1−M

(

B

(

cos2ωn,
1

2
,−M

2

)

− B

(

cos2ω,
1

2
,−M

2

))

− 2

1 −M

(

cosωn (sinωn)
−M − cosω (sinω)−M

)

. (C.53)

In view of (4.91) and substituting (C.53) into (C.48) yields

Be (ω) =
(t− tn)

2G
+

Sncosωn
‖ṡ‖ h (1−M)

Aξ +
(t− tn)

h (1−M)
− Scosω

h ‖ṡ‖ (1−M)
, (C.54)

Be (ω) =
(t− tn)

2G
+
SncosωnAξ − Scosω + ‖ṡ‖ (t− tn)

h ‖ṡ‖ (1−M)
. (C.55)

By inserting (4.93) we have

Be (ω) =
(t− tn)

2G
+

(t− tn)

h (1−M)
+

Ssin (ω − ωn)

h (1−M) ‖ṡ‖ sinωn
, (C.56)

Be (ω) =
(t− tn)

2G
+

(t− tn)−Bξ

h (1−M)
(C.57)
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Remark: the expression of the parameter Be published in the paper of Kossa and Szabó (2009b)
has different form than (C.57). However that result is identical to (C.57). It can be simply proved,
if we rewrite the term

B

(

cos2ωn,
3

2
,−M

2

)

−B

(

cos2ω,
3

2
,−M

2

)

= 2

ω
∫

ωn

(cosω)2 (sinω)−M−1 dω̃ (C.58)

= 2

ω
∫

ωn

(sinω)−M−1 − 2

ω
∫

ωn

(sinω)1−M (C.59)

in (C.48). Therefore, in view of (4.12), the following simplification holds:

2

ω
∫

ωn

(sinω)−M−1 − 2

ω
∫

ωn

(sinω)1−M = − 2 ‖ṡ‖
Snsin

M
ωn

(t− tn)

−B
(

cos2ω,
1

2
,−M

2

)

+B

(

cos2ωn,
1

2
,−M

2

)

. (C.60)

If we substitute back (C.60) into (C.48), then we arrive at the formula, which was published in
the paper of Kossa and Szabó (2009b).

C.5 Consistent elastoplastic tangent tensor

C.5.1 General loading case

In order to obtain the expression of the consistent tangent tensor, it is required to compute the
derivatives of all the variables appearing in the stress update formulae. These derivatives are
summarized in the following.

∂c/∂∆e : The derivative of the yield function (5.15) written at the contact point yields

∂

∂∆e
(‖ξc‖ − Rn) = 0, (C.61)

∂ ‖ξc‖
∂∆e

=
ξc

‖ξc‖
:
∂ξc

∂∆e
=

ξc

‖ξc‖
:

(

2GcI + 2G∆e⊗ ∂c

∂∆e

)

= 0, (C.62)

∂c

∂∆e
= − c

Sc ‖∆e‖ cosψc
ξc (C.63)

∂ξc/∂∆e : Combining (C.63) with (C.62) gives

∂ξc

∂∆e
= 2GcI − 2Gc

Sc ‖∆e‖ cosψc
∆e⊗ ξc . (C.64)

∂ψc/∂∆e : The derivative of the angle ψc defined at the contact point can be obtained as

∂ψc

∂∆e
=

(

∂cosψc
∂ψc

)

−1
∂cosψc
∂∆e

=
−1

sinψc

∂

∂∆e

(

ξc : ∆e

Sc ‖∆e‖

)

. (C.65)
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After simplification, we arrive at the linear combination

∂ψc

∂∆e
= C1ξc + C2∆e , (C.66)

where

C1 =
2Gc ‖∆e‖ − Sccosψc
S2
c ‖∆e‖ cosψcsinψc

, C2 =
1

sinψc

(

cosψc

‖∆e‖2
− 2Gc

Sc ‖∆e‖

)

. (C.67)

∂ψn+1/∂∆e : Rewriting equation (5.11) for the case when elastic-plastic transition occurs yields
the expression

B

(

cos2ψn+1,
1

2
, b

)

− B

(

cos2ψc,
1

2
, b

)

=
4G (1− c) ‖∆e‖

Sc
sin2b

ψc. (C.68)

The derivative of all the variables appearing in the expression above have been already obtained,
except the derivative of the final angle. Taking the derivatives of both sides, the expression for
∂ψn+1/∂∆e can be obtained as

∂ψn+1

∂∆e
= D1ξc +D2∆e , (C.69)

where

D1 =
Aξ

S2
n+1

(

C1S
2
c − 4GbC1Sc ‖∆e‖ (1− c) cosψc − 2Gctanψc

)

(C.70)

D2 =
Aξ

S2
n+1

(

C2S
2
c − 4GbC2Sc ‖∆e‖ (1− c) cosψc −

2GSc (1− c)

‖∆e‖ sinψc

)

(C.71)

∂Sn+1/∂∆e : The derivative of the radius of the updated yield surface is computed using the
chain rule:

∂Sn+1

∂∆e
=
∂Sn+1

∂ψc

∂ψc

∂∆e
+
∂Sn+1

∂ψn+1

∂ψn+1

∂∆e
. (C.72)

After simplification, it reduces to

∂Sn+1

∂∆e
= 2bSn+1

(

D1

tanψn+1
− C1

tanψc

)

ξc + 2bSn+1

(

D2

tanψn+1
− C2

tanψc

)

∆e . (C.73)

∂As/∂∆e : By combining (5.8) an (5.12), parameter Aξ can be written as

Aξ =

(

sinψn+1

sinψc

)2b+1

. (C.74)

Thus it follows that

As =
2G

(2G+ h) (2b+ 1)

(

(

sinψn+1

sinψc

)2b+1

− 1

)

, (C.75)
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∂As

∂∆e
=

∂As

∂ψn+1

∂ψn+1

∂∆e
+
∂As

∂ψc

∂ψc

∂∆e
. (C.76)

Evaluating the derivative above leads the linear combination

∂As

∂∆e
= A1ξc + A2∆e , (C.77)

where

A1 =
2GAξ

(2G+ h)

(

D1

tanψn+1
− C1

tanψc

)

, A2 =
2GAξ

(2G+ h)

(

D2

tanψn+1
− C2

tanψc

)

. (C.78)

∂Bs/∂∆e : The derivative of parameter Bs is obtained as

∂Bs

∂∆e
=
∂Bs

∂Bξ

∂Bξ

∂∆e
=

2G

(2G+ h) (1 + 2b)

∂Bξ

∂∆e
, (C.79)

∂Bs

∂∆e
=

2G

(2G+ h) (1 + 2b)

∂

∂∆e

(

S

(1− c) ‖∆e‖
sin (ψc − ψn+1)

sinψc

)

, (C.80)

∂Bs

∂∆e
=

∂Bs

∂ψn+1

∂ψn+1

∂∆e
+
∂Bs

∂ψc

∂ψc

∂∆e
+
∂Bs

∂c

∂c

∂∆e
+

∂Bs

∂ ‖∆e‖
∂ ‖∆e‖
∂∆e

+
∂Bs

∂S

∂S

∂∆e
. (C.81)

The expression above reduces to

∂Bs

∂∆e
= B1ξc +B2∆e , (C.82)

where

B1 =
2GBξ

(2G+ h) (2b+ 1) (1− c)
×

(

2bD1

tanψn+1

− D1 − C1

tan (ψc − ψn+1)
− (2b+ 1)C1

tanψc

− c

(1− c) ‖∆e‖Sccosψc

)

, (C.83)

B2 =
2GBξ

(2G+ h) (2b+ 1) (1− c)
×

(

2bD2

tanψn+1
− D2 − C2

tan (ψc − ψn+1)
− (2b+ 1)C2

tanψc
− 1

‖∆e‖2
)

. (C.84)

∂sn+1/∂∆e : In case of elastic-plastic transition, the stress update formula for the deviatoric
stress is given by

sn+1 = sc + Asξc +Bs (1− c)∆e. (C.85)
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Consequently, the derivative of sn+1 is calculated as

∂sn+1

∂∆e
=

∂sn+1

∂sc

∂sc

∂∆e
+
∂sn+1

∂As
⊗ ∂As

∂∆e
+
∂sn+1

∂ξc

∂ξc

∂∆e
+
∂sn+1

∂Bs

⊗ ∂Bs

∂∆e

+
∂sn+1

∂c
⊗ ∂c

∂∆e
+
∂sn+1

∂∆e

∂∆e

∂∆e
, (C.86)

where the identity ∂sc/∂∆e = ∂ξc/∂∆e can be applied, resulting the expression

∂sn+1

∂∆e
= ξc ⊗

∂As

∂∆e
+ (As + 1)

∂ξc

∂∆e
+ (1− c)∆e⊗ ∂Bs

∂∆e

−Bs∆e⊗ ∂c

∂∆e
+Bs (1− c)I, (C.87)

which can be simplified to

∂sn+1

∂∆e
= a1ξc ⊗ ξc + a2ξc ⊗∆e+ a3∆e⊗ ξc + a4∆e⊗∆e+ a5I , (C.88)

where

a1 = A1, a2 = A2, a3 = B1 (1− c) + c
Bs − 2G (1 + As)

Sc ‖∆e‖ cosψc
, (C.89)

a4 = B2 (1− c) , a5 = Bs (1− c) + 2Gc (1 + As) . (C.90)

∂pn+1/∂∆ε : Since the solution for the hydrostatic stress is obtained using elastic law, it is clearly

follows that

∂pn+1

∂∆ε
= Kδ ⊗ δ . (C.91)

∂σn+1/∂∆ε : Combining (C.88) and (C.91), the consistent tensor can be obtained as

D
cons =

∂σn+1

∂∆ε
=
∂sn+1

∂∆ε
+
∂pn+1

∂∆ε
, (C.92)

D
cons = a1ξc ⊗ ξc + a2ξc ⊗∆e+ a3∆e⊗ ξc + a4∆e⊗∆e+ a5T +Kδ ⊗ δ . (C.93)

C.5.2 Radial loading

When the increment produces radial loading, then the stress solution for the elastic-plastic tran-
sition case takes the form

sn+1 = sc +
2Gh (1− c)

(2G+ h)
∆e. (C.94)

Using the identity ∂sc/∂∆e = ∂ξc/∂∆e, the derivative of the updated deviatoric stress is obtained
as

∂sn+1

∂∆ε
=
∂sn+1

∂∆e
: T =

∂sn+1

∂sc

∂sc

∂∆e
+
∂sn+1

∂c
⊗ ∂c

∂∆e
+
∂sn+1

∂∆e

∂∆e

∂∆e
, (C.95)
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∂sn+1

∂∆ε
=

2G (2Gc+ h)

2G+ h
T − 4G2c

Sc ‖∆e‖ (2G+ h) cosψc
∆e⊗ ξc . (C.96)

Then, by combining it with (C.91) we arrive at

D
cons =

2G (2Gc+ h)

2G+ h
T − 4G2

c

Sc ‖∆e‖ (2G+ h) cosψc
∆e⊗ ξc +Kδ ⊗ δ . (C.97)
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D
Detailed derivation steps for the Drucker–Prager

model

D.1 Solution for s (t) in strain-driven case

From (4.43) it follows that

dt = Jdψ, J = −
Sncos

2a−1

(

ψ

2

)

sin2b−1

(

ψ

2

)

4G ‖ė‖ cos2a
(

ψn

2

)

sin2b

(

ψn

2

) . (D.1)

The deviatoric strain rate (3.79) can be reformulated as

ṡ = 2Gė− 2G2 ‖ė‖
h̃S

(cosψ + V ) s. (D.2)

According to (B.4) we can introduce that

a (ψ) = −2G2 ‖ė‖
h̃S

(cosψ + V ) , b (ψ) = 2G. (D.3)

Consequently, parameter As (ψ) is computed as

As (ψ) = exp





ψ
∫

ψn

a

(

ψ̃

)

Jdψ̃



 = exp





G

h̃

ψ
∫

ψn

(

1

tanψ
+ V

1

sinψ

)

dψ̃



 (D.4)

=







cos
ψ

2

cos
ψn

2







2a+1





sin
ψ

2

sin
ψn

2







2b+1

=
S

Sn

cos
ψ

2

cos
ψn

2

sin
ψ

2

sin
ψn

2

, (D.5)
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As (ψ) =
S

Sn

sinψ

sinψn
. (D.6)

Similarly, parameter Bs (ψ) is obtained as

Bs (ψ) =

ψ
∫

ψn

exp







ψ
∫

ψ̂

a

(

ψ̃

)

Jdψ̃






b

(

ψ̂

)

Jdψ̂, (D.7)

Bs (ψ) = − Sn

2 ‖ė‖

(

cos
ψ

2

)2a+1(

sin
ψ

2

)2b+1

cos2a
ψn

2
sin2bψn

2

ψ
∫

ψn

1

cos2
ψ̂

2
sin2 ψ̂

2

dψ̂, (D.8)

Bs (ψ) =
S

‖ė‖
sin (ψn − ψ)

sinψn
. (D.9)

Thus, it follows that As = As (ψ) and Bs = Bs (ψ) in (4.46).

D.2 Solution for e (t) in stress-driven case

From (4.111) it follows that

dt = Jdω, J = −Snsinωn‖ṡ‖
1

sin2
ω
. (D.10)

Combining (4.79), (4.112) and (3.85) we can express s in terms of the angle ω as

s = sn +
Sn

‖ṡ‖
sin (ωn − ω)

sinω
ṡ. (D.11)

Inserting (D.11) and (4.110) into (3.85), the deviatoric strain rate can be written in the form

ė =
1

2G
ṡ+

‖ṡ‖ cosωsinω
2Snjsinωn

sn +
1

2j

sin (ωn − ω) cosω

sinωn
ṡ

+
αtrσ̇sinω√
2jSnsinωn

sn +
αtrσ̇√
2j ‖ṡ‖

sin (ωn − ω)

sinωn
ṡ. (D.12)

Integrating both sides, using (D.10), yields

e− en = Aesn +Beṡ, (D.13)

where the parameters Ae and Be, after simplification, become

Ae =
1

2j
ln

(

S

Sn

)

+
αtrσ̇√
2j ‖ṡ‖

ln





tan
ωn

2

tan
ω

2



 , (D.14)

Be =
(t− tn)

2

(

1

G
+

1

j

)

+
αtrσ̇ (S − Sn)√

2j ‖ṡ‖2
− Snsinωn

‖ṡ‖

(

Ae

tanωn
+
ωn − ω

2j

)

. (D.15)

Thus, it follows that Ae = Ae (ω) and Be = Be (ω) in (4.113).
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D.3 Solution for trε (t) in stress-driven case

Inserting (4.104) and (4.107) into expression (3.86) results in the differential equation

1

3
trε̇ =

(

1

9K
+
αβ

j

)

trσ̇ +
β√
2j
Ṡ, (D.16)

which can be simply integrated yielding the solution

1

3
trε− 1

3
trεn =

(

1

9K
+
αβ

j

)

trσ̇ (t− tn) +
β (S − Sn)√

2j
. (D.17)

D.4 Consistent elastoplastic tangent tensor

D.4.1 General case

This appendix presents the main derivation steps of the construction of the consistent tangent
tensor for general loading case, when the apex has not been reached. For this reason, the deriva-
tives of all parameters appearing in the stress update formulae have to be evaluated with respect
to the strain increment. These are presented in the following.

∂V/∂∆ε : The derivative of the parameter V with respect to ∆ε is computed as

∂V

∂∆ε
=

∂V

∂ (tr∆ε)
δ +

∂V

∂ ‖∆e‖
∆e

‖∆e‖ =
3Kα√
2G ‖∆e‖

δ − 3Kαtr∆ε√
2G ‖∆e‖3

∆e, (D.18)

which can be simplified by substituting V back into the expression above:

∂V

∂∆ε
=

V

tr∆ε
δ − V

‖∆e‖2
∆e . (D.19)

∂a/∂∆ε and ∂b/∂∆ε : The derivatives of parameter a and b with respect to ∆ε are given by

∂a

∂∆ε
=

∂a

∂V

∂V

∂∆ε
= − G

2h̃
V

(

1

tr∆ε
δ − 1

‖∆e‖2
∆e

)

, (D.20)

∂a

∂∆ε
=
a− b

2

(

1

tr∆ε
δ − 1

‖∆e‖2
∆e

)

, (D.21)

∂b

∂∆ε
=

∂b

∂V

∂V

∂∆ε
=

G

2h̃
V

(

1

tr∆ε
δ − 1

‖∆e‖2
∆e

)

, (D.22)

∂b

∂∆ε
=
b− a

2

(

1

tr∆ε
δ − 1

‖∆e‖2
∆e

)

., (D.23)

∂c/∂∆ε : The yield function written at the contact point is given by

Fc =
1√
2
Sc + 3αpc − kn = 0 (D.24)
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with

sc = sn + 2Gc∆e and pc = pn +Kctr∆ε. (D.25)

The derivatives of sc and pc with respect to ∆ε is calculated as

∂sc

∂∆ε
=

∂sc

∂∆e

∂∆e

∂∆ε
+
∂sc

∂c
⊗ ∂c

∂∆ε
= 2GcT + 2G∆e⊗ ∂c

∂∆ε
(D.26)

and

∂pc

∂∆ε
=

∂pc

∂ (tr∆ε)

∂ (tr∆ε)

∂∆ε
+
∂pc

∂c

∂c

∂∆ε
= Kcδ +Ktr∆ε

∂c

∂∆ε
. (D.27)

The derivative ∂c/∂∆ε can be obtained if we rewrite the yield function in the form

1√
2
Sc + 3αpc = kn. (D.28)

Then, taking the derivatives of both sides with respect to ∆ε gives

∂

∂∆ε

(

1√
2
Sc + 3αpc

)

=
∂kn

∂∆ε
, (D.29)

1√
2

∂Sc

∂∆ε
+ 3α

∂pc

∂∆ε
= 0, =⇒ ∂pc

∂∆ε
= − 1

3
√
2α

∂Sc

∂∆ε
. (D.30)

Extracting (D.29) gives

1√
2

∂Sc

∂sc
:
∂sc

∂∆ε
+ 3α

∂pc

∂∆ε
= 0, (D.31)

1√
2

sc

Sc
:

(

2GcT + 2G∆e⊗ ∂c

∂∆ε

)

+ 3α

(

Kcδ +Ktr∆ε
∂c

∂∆ε

)

= 0, (D.32)

(

sc : ∆e

Sc
+ V ‖∆e‖

)

∂c

∂∆ε
= −c

(

1

Sc
sc +

V ‖∆e‖
tr∆ε

δ

)

. (D.33)

Therefore, we arrive at the expression

∂c

∂∆ε
= −

c

Sc ‖∆e‖ (cosψc + V )
sc −

cV

tr∆ε (cosψc + V )
δ, (D.34)

∂c

∂∆ε
= − c

(cosψc + V )

(

1

Sc ‖∆e‖sc +
V

tr∆ε
δ

)

. (D.35)

∂Sc/∂∆ε : Using (D.26) and (D.34) we can write that

∂sc

∂∆ε
= 2GcT − 2Gc

Sc ‖∆e‖ (cosψc + V )
∆e⊗ sc −

2GcV

tr∆ε (cosψc + V )
∆e⊗ δ (D.36)

and

∂Sc

∂∆ε
=
∂Sc

∂sc
:
∂sc

∂∆ε
=

sc

Sc
:
∂sc

∂∆ε
. (D.37)
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Combining the two equations above, the derivative of Sc can be expressed as

∂Sc

∂∆ε
=

2GcV

(cosψc + V )

(

1

Sc
sc −

‖∆e‖ cosψc
tr∆ε

δ

)

. (D.38)

∂pc/∂∆ε : Combining (D.30)2 and (D.38) we arrive at the expression

∂pc

∂∆ε
= − Kc

cosψc + V

(

tr∆ε

Sc ‖∆e‖sc − cosψcδ

)

. (D.39)

∂ψc/∂∆ε : The derivative of cosψc with respect to ∆ε is computed by

∂cosψc
∂∆ε

=

∂

(

sc : ∆e

Sc ‖∆e‖

)

∂sc
:
∂sc

∂∆ε
+

∂

(

sc : ∆e

Sc ‖∆e‖

)

∂Sc

∂Sc

∂∆ε

+

∂

(

sc : ∆e

Sc ‖∆e‖

)

∂∆e
:
∂∆e

∂∆ε
+

∂

(

sc : ∆e

Sc ‖∆e‖

)

∂ ‖∆e‖
∂ ‖∆e‖
∂∆ε

. (D.40)

Using this result, the quantity ∂ψc/∂∆ε can be expressed with the linear combination

∂ψc

∂∆ε
= C1sc + C2∆e+ C3δ , (D.41)

where the following parameters are introduced:

C1 =
2Gc (1 + V cosψc)

S2
c sinψc (cosψc + V )

− 1

Scsinψc ‖∆e‖ , (D.42)

C2 =
Sccosψc − 2Gc ‖∆e‖

Scsinψc ‖∆e‖2
, (D.43)

C3 =
2GcV ‖∆e‖ sin2

ψc

Sctr∆εsinψc (cosψc + V )
. (D.44)

∂ψn+1/∂∆ε : For simplifying the presentation, the following parameters are introduced:

α̃c =

∂B

(

cos2
ψc

2
, a, b

)

∂a
, α̃n+1 =

∂B

(

cos2
ψn+1

2
, a, b

)

∂a
, (D.45)

β̃c =

∂B

(

cos2
ψc

2
, a, b

)

∂b
, β̃n+1 =

∂B

(

cos2
ψn+1

2
, a, b

)

∂b
. (D.46)

They can be computed according to the formulae (A.15) and (A.16), respectively. Therefore, these
parameters are calculated as

123



APPENDIX D. DETAILED DERIVATION STEPS FOR THE DRUCKER–PRAGER

MODEL

α̃c = B

(

cos2
ψc

2
, a, b

)

ln

(

cos2
ψc

2

)

−
cos2a

ψc

2
a2

3F2

(

a, a, 1− b; a+ 1, a+ 1; cos2
ψc

2

)

, (D.47)

α̃n+1 = B

(

cos2
ψn+1

2
, a, b

)

ln

(

cos2
ψn+1

2

)

−
cos2a

ψn+1

2
a2

3F2

(

a, a, 1− b; a + 1, a+ 1; cos2
ψn+1

2

)

, (D.48)

β̃c =
sin2bψc

2
b2

3F2

(

1− a, b, b; 1 + b, 1 + b; sin2ψc

2

)

−B
(

sin2ψc

2
, b, a

)

ln

(

sin2ψc

2

)

+B (a, b) (Ψ (b)−Ψ (a+ b)) , (D.49)

β̃n+1 =
sin2bψn+1

2
b2

3F2

(

1− a, b, b; 1 + b, 1 + b; sin2ψn+1

2

)

−B
(

sin2ψn+1

2
, b, a

)

ln

(

sin2ψn+1

2

)

+B (a, b) (Ψ (b)−Ψ (a+ b)) . (D.50)

The discretized form of the expression defining the final angle ψn+1, when elastic-plastic transition
occurs, is given by

B

(

cos2
ψn+1

2
, a, b

)

− B

(

cos2
ψc

2
, a, b

)

=
4G (1− c) ‖∆e‖

Sccos−2a

(

ψc

2

)

sin−2b

(

ψc

2

) . (D.51)

The derivatives of all the parameters appearing in this equation have been already obtained,
except the derivative of the final angle ψn+1. Consequently, by taking the derivative of both sides,
the derivative ∂ψn+1/∂∆ε can be expressed. After simplification it reduces to the form

∂ψn+1

∂∆ε
= D1sc +D2∆e+D3δ , (D.52)

where

D1 =
C1

k1
+
k4

Sc
− k5

Sc
, (D.53)

D2 =
C2

k1
− k2

‖∆e‖ +
k3

‖∆e‖ − 2G (1− c) sinψn+1

Sn+1 ‖∆e‖ , (D.54)

D3 =
C3

k1
+
k2 ‖∆e‖
tr∆ε

− k3 ‖∆e‖
tr∆ε

− k4 ‖∆e‖ cosψc
tr∆ε

− k5 ‖∆e‖V
tr∆ε

(D.55)
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and

k1 =
Sn+1sinψc

sinψn+1 (2G ‖∆e‖ (1− c) (a− b− (a + b) cosψc) + Sc)
, (D.56)

k2 =
2G (1− c) sinψn+1

Sn+1
(a− b) ln

(

tan
ψc

2

)

, (D.57)

k3 =
sinψn+1 (b− a)

(

α̃n+1 − α̃c − β̃n+1 + β̃c

)

4 ‖∆e‖ cos2a
(

ψn+1

2

)

sin2b

(

ψn+1

2

) , (D.58)

k4 =
4G2c (1− c)V ‖∆e‖ sinψn+1

Sn+1Sc (V + cosψc)
, (D.59)

k5 =
2Gcsinψn+1

Sn+1 (V + cosψc)
. (D.60)

∂Sn+1/∂∆ε : The derivative of the norm of the deviatoric stress at the end of the increment is

obtained, using (5.22), as

∂Sn+1

∂∆ε
= R1sc +R2∆e+ R3δ , (D.61)

where

R1 = D1n1 + C1n2 +
2GcV Sn+1

S2
c (V + cosψc)

, (D.62)

R2 = D2n1 + C2n2 −
n3

‖∆e‖2
, (D.63)

R3 = D3n1 + C3n2 +
n3

tr∆ε
− 2G ‖∆e‖ cV Sn+1cosψc

Sctr∆ε (V + cosψc)
(D.64)

and

n1 = Sn+1
b− a + (a+ b) cosψn+1

sinψn+1

, (D.65)

n2 = Sn+1






atan

ψc

2
− b

tan
ψc

2






, (D.66)

n3 = Sn+1 (a− b) ln







tan
ψc

2

tan
ψn+1

2






. (D.67)

∂As/∂∆ε : The parameter As for the case, when elastic-plastic transition occurs is calculated by

As =
Sn+1

Sc

sinψn+1

sinψc
. (D.68)
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Its derivative is obtained using the chain rule:

∂As

∂∆ε
=

∂As

∂ψn+1

∂ψn+1

∂∆ε
+
∂As

∂ψc

∂ψc

∂∆ε
+

∂As

∂Sn+1

∂Sn+1

∂∆ε
+
∂As

∂Sc

∂Sc

∂∆ε
. (D.69)

After some straightforward manipulation, we arrive at the expression

∂As

∂∆ε
= A1sc + A2∆e + A3δ , (D.70)

where

A1 =
R1

m1
− C1

m2
+
D1

m3
− m4

Sc
, (D.71)

A2 =
R2

m1
− C2

m2
+
D2

m3
, (D.72)

A3 =
R3

m1
− C3

m2
+
D3

m3
− m4 ‖∆e‖ cosψc

tr∆ε
(D.73)

and

m1 =
Sn+1

As
, m2 =

tanψc
As

, m3 =
Scsinψc

Sn+1cosψn+1
, m4 =

2GcV As
Sc (V + cosψc)

. (D.74)

∂Bs/∂∆ε : The parameter Bs is computed as

Bs =
Sn+1

(1− c) ‖∆e‖
sin (ψc − ψn+1)

sinψc
. (D.75)

Its derivative can be obtained using the chain rule:

∂Bs

∂∆ε
=

∂Bs

∂ψn+1

∂ψn+1

∂∆ε
+
∂Bs

∂ψc

∂ψc

∂∆ε
+

∂Bs

∂Sn+1

∂Sn+1

∂∆ε
+

∂Bs

∂ ‖∆e‖
∂ ‖∆e‖
∂∆ε

+
∂Bs

∂c

∂c

∂∆ε
. (D.76)

After simplification, the derivative of parameter Bs with respect to the strain increment is written
as

∂Bs

∂∆ε
= B1sc +B2∆e +B3δ , (D.77)

where

B1 =
R1

m5

+
D1

m6

+
C1

m7

, (D.78)

B2 =
R2

m5

+
D2

m6

+
C2

m7

− Bs

‖∆e‖2
, (D.79)

B3 =
R3

m5
+
D3

m6
+
C3

m7
(D.80)

and

m5 =
Sn+1

Bs

, m6 =
tan (ψn+1 − ψc)

Bs

, m7 =
(1− c) ‖∆e‖ sin2

ψc

Sn+1sinψn+1
. (D.81)
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∂sn+1/∂∆ε : The stress update formula for the deviatoric stress is given by

sn+1 = Assc +Bs (1− c)∆e. (D.82)

Applying the chain rule, its derivative can be obtained:

∂sn+1

∂∆ε
=
∂sn+1

∂As
⊗ ∂As

∂∆ε
+
∂sn+1

∂sc

∂sc

∂∆ε
+
∂sn+1

∂Bs

⊗ ∂Bs

∂∆ε
+
∂sn+1

∂c
⊗ ∂c

∂∆ε
+
∂sn+1

∂∆e

∂∆e

∂∆ε
, (D.83)

∂sn+1

∂∆ε
= sc ⊗ (A1sc + A2∆e + A3δ)

+As

(

2GcT − 2Gc∆e⊗ sc

Sc ‖∆e‖ (cosψc + V )
− 2GcV∆e⊗ δ

tr∆ε (cosψc + V )

)

+ (1− c)∆e⊗ (B1sc +B2∆e+B3δ)

+Bs∆e⊗
(

c

Sc ‖∆e‖ (cosψc + V )
sc +

cV

tr∆ε (cosψc + V )
δ

)

+Bs (1− c)T . (D.84)

∂pn+1/∂∆ε : The hydrostatic stress at the end of the increment is calculated as

pn+1 = pc + (1− c)K

(

1− 9Kαβ

h̃−G

)

tr∆ε− 3
√
2βK

2
(

h̃−G

) (Sn+1 − Sc) . (D.85)

Its derivative can be evaluated using the chain rule:

∂pn+1

∂∆ε
=

∂pn+1

∂pc

∂pc

∂∆ε
+
∂pn+1

∂c

∂c

∂∆ε
+
∂pn+1

∂tr∆ε

∂tr∆ε

∂∆ε

+
∂pn+1

∂Sn+1

∂Sn+1

∂∆ε
+
∂pn+1

∂Sc

∂Sc

∂∆ε
. (D.86)

Finally, we arrive at the expression

∂pn+1

∂∆ε
= Q1sc +Q2∆e+Q3δ , (D.87)

where

Q1 =
R1

m8
, Q2 =

R2

m8
, Q3 =

R3

m8
+K

(

1− 9Kαβ

h̃−G

)

, m8 =

√
2
(

G− h̃

)

3Kβ
. (D.88)

Consequently, the derivative of the updated hydrostatic stress tensor is computed as

∂pn+1

∂∆ε
=
∂pn+1

∂pn+1

⊗ ∂pn+1

∂∆ε
= δ ⊗ (Q1sc +Q2∆e+Q3δ) . (D.89)

∂σn+1/∂∆ε : Combining (D.84) and (D.84), the explicit expression of the consistent tangent
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tensor can be obtained:

D
cons =

∂σn+1

∂∆ε
=
∂sn+1

∂∆ε
+
∂pn+1

∂∆ε
, (D.90)

D
cons = a1sc ⊗ sc + a2sc ⊗∆e+ a3sc ⊗ δ + a4∆e⊗ sc + a5∆e⊗∆e

+a6∆e⊗ δ + a7δ ⊗ sc + a8δ ⊗∆e + a9δ ⊗ δ + a10T , (D.91)

where

a1 = A1, a2 = A2, a3 = A3, a4 = (1− c)B1 +
c (Bs − 2GAs)

Sc ‖∆e‖ (cosψc + V )
, (D.92)

a5 = (1− c)B2, a6 = (1− c)B3 +
cV (Bs − 2GAs)

tr∆ε (cosψc + V )
, a7 = Q1, (D.93)

a8 = Q2, a9 = Q3, a10 = (1− c)Bs + 2cGAs. (D.94)

D.4.2 Deviatoric radial loading

The stress update formulae for the case, when elastic-plastic transition occurs become

Sn+1 =

(

Sc −
3
√
2KαG

h̃
(1− c) tr∆ε+ q · 2G ‖∆e‖ (1− c)

(

1− G

h̃

)

)

, (D.95)

sn+1 =

(

1− 3
√
2KαG

h̃Sc

(1− c) tr∆ε+ q · 2G ‖∆e‖ (1− c)

Sc

(

1− G

h̃

)

)

sc, (D.96)

pn+1 = pc +K

(

1− 9Kαβ

h̃

)

(1− c) tr∆ε− q
3
√
2KGβ

h̃
(1− c) ‖∆e‖ . (D.97)

∂c/∂∆ε : Using (D.34) and the definition of parameter q, we can write that

∂c

∂∆ε
= −

c

Sc ‖∆e‖ (q + V )
sc −

cV

tr∆ε (q + V )
δ . (D.98)

∂Sc/∂∆ε : In deviatoric radial loading case, the derivative (D.38) becomes

∂Sc

∂∆ε
=

2GcV

q + V

(

1

Sc
sc − q

‖∆e‖
tr∆ε

δ

)

. (D.99)

∂pc/∂∆ε : The derivative of the pressure at the contact point reduces to

∂pc

∂∆ε
= − Kc

q + V

(

tr∆ε

Sc ‖∆e‖sc − qδ

)

. (D.100)
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∂sc/∂∆ε : Expression (D.36) becomes

∂sc

∂∆ε
= 2GcT − 2Gc

Sc ‖∆e‖ (q + V )
∆e⊗ sc −

2GcV

tr∆ε (q + V )
∆e⊗ δ. (D.101)

∂Sn+1/∂∆ε : Using the stress update formula (D.95) and the chain rule:

∂Sn+1

∂∆ε
=
∂Sn+1

∂Sc

∂Sc

∂∆ε
+
∂Sn+1

∂c

∂c

∂∆ε
+
∂Sn+1

∂tr∆ε

∂tr∆ε

∂∆ε
+

∂Sn+1

∂ ‖∆e‖
∂ ‖∆e‖
∂∆ε

, (D.102)

∂Sn+1

∂∆ε
= P1sc + P2∆e + P3δ , (D.103)

where

P1 =
2Gc

(

h̃−G

)

Sch̃
, P2 =

2G (1− c)
(

h̃−G

)

q

‖∆e‖ h̃
, P3 = −3

√
2KGα

h̃
. (D.104)

∂sn+1/∂∆ε : The derivative of the updated deviatoric stress is obtained using the chain rule as

∂sn+1

∂∆ε
=

∂sn+1

∂Sc
⊗ ∂Sc

∂∆ε
+
∂sn+1

∂c
⊗ ∂c

∂∆ε
+
∂sn+1

∂tr∆ε
⊗ ∂tr∆ε

∂∆ε

+
∂sn+1

∂ ‖∆e‖ ⊗ ∂ ‖∆e‖
∂∆ε

+
∂sn+1

∂sc

∂sc

∂∆ε
. (D.105)

After simplification, it can be written by

∂sn+1

∂∆ε
= a1sc ⊗ sc + a2sc ⊗∆e+ a3sc ⊗ δ + a4∆e⊗ sc + a5∆e⊗ δ + a10T , (D.106)

where

a1 =
2Gc

S2
c

(

1− G

h̃

)

− 2GcSn+1V

S3
c (q + V )

, a2 =
2Gq (1− c)

(

h̃−G

)

h̃Sc ‖∆e‖
, (D.107)

a3 =
3
√
2Kα

Sc

(

cq

q + V

Sn+1

Sc
− G

h̃

)

, a4 = − 2GcSn+1

S2
c ‖∆e‖ (q + V )

, (D.108)

a5 = − 2GcV Sn+1

Sctr∆ε (q + V )
, a10 =

2GcSn+1

Sc
. (D.109)

∂pn+1/∂∆ε : Applying the chain rule, the derivative of the pressure at the end of the increment
can be calculated by

∂pn+1

∂∆ε
=
∂pn+1

∂pc

∂pc

∂∆ε
+
∂pn+1

∂c

∂c

∂∆ε
+
∂pn+1

∂tr∆ε

∂tr∆ε

∂∆ε
+

∂pn+1

∂ ‖∆e‖
∂ ‖∆e‖
∂∆ε

, (D.110)

∂pn+1

∂∆ε
= a7δ ⊗ sc + a8δ ⊗∆e + a9δ ⊗ δ , (D.111)
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where

a7 =
−3

√
2KGβc

h̃Sc

, a8 =
−3

√
2GKqβ (1− c)

‖∆e‖ h̃
, a9 =

K (h− 9Kαβ)

h̃
. (D.112)

∂σn+1/∂∆ε : Combining (D.106) and (D.111), the consistent tangent tensor can be expressed as

D
cons = a1sc ⊗ sc + a2sc ⊗∆e+ a3sc ⊗ δ + a4∆e⊗ sc + a5∆e⊗∆e

+a6∆e⊗ δ + a7δ ⊗ sc + a8δ ⊗∆e + a9δ ⊗ δ + a10T . (D.113)

D.4.3 Special cases when the apex can be reached

D.4.3.1 General loading case

It is a possible scenario, that the nth state is located in the elastic domain and the stress path
reaches the apex. It clearly follows from the condition (5.30) that the new stress state in this
particular case cannot leave the apex upon further loading. Thus, the stress update formulae
become

sn+1 = 0, pn+1 = pa + (1− ca) (1− c)K∆ǫ

(

3− 27Kαβ

h̃−G

)

, (D.114)

where pa denotes the pressure at the apex. It is calculated as

pa = pc + ca (1− c)K∆ǫ

(

3− 27Kαβ

h̃−G

)

+
3
√
2βK

2
(

h̃−G

)Sc, (D.115)

where pc = pn + 3Kc∆ǫ is the pressure at the contact point. Inserting pa and pc into (D.114) we
arrive at the solution for the updated pressure:

pn+1 = pc + (1− c)Ktr∆ε

(

1− 9Kαβ

h̃−G

)

+
3
√
2βK

2
(

h̃−G

)Sc. (D.116)

The derivatives ∂c/∂∆ε, ∂pc/∂∆ε and ∂Sc/∂∆ε have been already obtained by (D.35), (D.39)
and (D.38), respectively. Using the chain rule, ∂pn+1/∂∆ε can be obtained as

∂pn+1

∂∆ε
=
∂pn+1

∂pc

∂pc

∂∆ε
+
∂pn+1

∂c

∂c

∂∆ε
+
∂pn+1

∂tr∆ε

∂tr∆ε

∂∆ε
+
∂pn+1

∂Sc

∂Sc

∂∆ε
. (D.117)

After simplification it reduces to

∂pn+1

∂∆ε
=

(

1− 9Kαβ

h̃−G

)

δ. (D.118)

It follows that the consistent tangent tensor for this case is given by

D
cons =

∂σn+1

∂∆ε
=
∂pn+1

∂∆ε
= K

(

1− 9Kαβ

h̃−G

)

δ ⊗ δ . (D.119)

130



D.4. CONSISTENT ELASTOPLASTIC TANGENT TENSOR

D.4.3.2 Deviatoric radial loading case

The stress update formula for the pressure, when elastic-plastic transition occurs is

pn+1 = pa + (1− ca) (1− c)K∆ǫ

(

3− 27Kαβ

h̃−G

)

, (D.120)

where

pa = pc + ca (1− c)K∆ǫ

(

3− 27Kαβ

h̃−G

)

+
3Kβ

√
2
(

h̃−G

)Sc. (D.121)

Combining the two equations above, the solution for the updated pressure reduces to

pn+1 = pc + (1− c)Ktr∆ε

(

1− 9Kαβ

h̃−G

)

+
3
√
2βK

2
(

h̃−G

)Sc. (D.122)

Since the stress update formula is the same as in case of general loading case, it can be clearly
concluded, that the consistent tangent has exactly the same structure as given in (D.119).

D.4.3.3 nth state is located at the apex

When the initial state is located at the apex and the new stress state remains at the apex then
the pressure, according to (5.29), is computed as

pn+1 = pn +K∆ǫ

(

3− 27Kαβ

h̃−G

)

. (D.123)

Consequently, the consistent tangent tensor is computed as

D
cons =

∂σn+1

∂∆ε
=
∂pn+1

∂∆ε
= K

(

1− 9Kαβ

h̃−G

)

δ ⊗ δ . (D.124)

If the updated stress is located on the smooth portion of the yield surface then the stress update
formulae, according to (5.31) and (5.32), become

sn+1 =

(

2G

(

1− G

h̃

)

− 3
√
2KGαtr∆ε

h̃ ‖∆e‖

)

∆e, (D.125)

pn+1 = pa +K

(

1− 9Kαβ

h̃

)

tr∆ε− 3
√
2KGβ

h̃
‖∆e‖ . (D.126)

Consequently, it follows that the derivative of the updated deviatoric stress is computed as

∂sn+1

∂∆ε
=
∂sn+1

∂∆e
:
∂∆e

∂∆ε
+

∂sn+1

∂ ‖∆e‖ ⊗ ∂ ‖∆e‖
∂∆ε

+
∂sn+1

∂tr∆ε
⊗ ∂tr∆ε

∂∆ε
, (D.127)

∂sn+1

∂∆ε
= 2G

(

1− G

h̃
(1 + V )

)

T +
2G2V

h̃ ‖∆e‖2
∆e⊗∆e− 2G2V

h̃tr∆ε
∆e⊗ δ, (D.128)
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whereas the the derivative of the pressure at the end of the increment is

∂pn+1

∂∆ε
= K

(

1− 9Kαβ

h̃−G

)

δ − 3
√
2KGβ

h̃ ‖∆e‖
∆e, (D.129)

∂pn+1

∂∆ε
= K

(

1− 9Kαβ

h̃−G

)

δ ⊗ δ − 3
√
2KGβ

h̃ ‖∆e‖
δ ⊗∆e. (D.130)

Combining (D.128) and (D.130), the consistent tangent tensor can be constructed as

D
cons = a1∆e⊗∆e + a2∆e⊗ δ + a3δ ⊗∆e + a4δ ⊗ δ + a5T , (D.131)

where

a1 =
3
√
2KGαtr∆ε

h̃ ‖∆e‖3
, a2 = −3

√
2KGα

h̃ ‖∆e‖
, a3 = −3

√
2KGβ

h̃ ‖∆e‖
, (D.132)

a4 = K

(

1− 9Kαβ

h̃−G

)

, a5 = 2G

(

1− G

h̃

)

− 3
√
2KGαtr∆ε

h̃ ‖∆e‖
. (D.133)
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E
Nested derivatives

E.1 Definition

This section presents the method proposed by Dominici (2003) to compute the series expansion

for the inverse of a given function.

Definition. The nth nested derivative Dn [f ] (x) of the function f (x) is defined by the following

recursion:

D0 [f ] (x) = 1, (E.1)

Dn [f ] (x) =
d

dx

[

f (x) · Dn−1 [f ] (x)
]

, n ≥ 1. (E.2)

Let

h (x) =

∫ x

x0

1

f (t)
dt, z̃ = h (x̃) , (E.3)

with f (x̃) 6= 0,±∞ and its inverse H (x) = h
−1 (x) . Then,

H (z) = x̃+ f (x̃)
∑

n≥1

Dn−1 [f ] (x̃)
(z − z̃)n

n!
, (E.4)

where |z − z̃| < ε, for some ε > 0.
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E.2 Application of nested derivatives in the stress update algo-

rithm proposed for the von Mises model

The most computationally demanding task during the proposed integration scheme is to determine

the value of the angle ψ at the end of the increment, i.e., Equation (5.11) has to be solved

for ψn+1, when elastic-plastic transition occurs. This involves the inversion of an incomplete

beta function. Closed-form expression for the inverse incomplete beta function does not exist,

therefore, a numerical scheme is needed. Here, an accurate algorithm based on the theory of nested

derivatives (see Appendix E.1) presented by Dominici (2003) is provided. Using this method, we

have a series expansion for the inverse incomplete beta function. The main steps of the proposed

technique are summarized in the following (Kossa and Szabó, 2010b).

Step 1: Input parameters are: G,H ,M , Rn, c, ‖∆e‖, ψc. First, the following material parameters

have to be calculated:

h =
2

3
H, b = − Mh

2 (2G+ h)
, m = 1− 2b. (E.5)

Step 2: Calculation of the l.h.s. of the equation (5.11) rewritten for the case, when elastic-plastic

transition occurs:

z = −2G (1− c) ‖∆e‖
Rnsin

−2b
ψc

. (E.6)

Step 3: Estimation of the final angle. A possible and efficient way to obtain this estimated value

is the following: First, the final radius of the yield surface is determined by using the formula

corresponding to the radial return method (Simo and Hughes, 1998):

R̃n+1 = Rn − 2b (‖ξtrial‖ −Rn) . (E.7)

Here, and in the following, overtilded characters mean estimated quantities. The solution of

the radius of the updated yield surface is obtained using (5.12) with the substitution ψn = ψc.

Inserting the estimated value (E.7) into this expression allows us to express the estimated value

of ψn+1 as

ψ̃ = arcsin







(

Rn

R̃n+1

)

−

1

2b
sinψc






. (E.8)

Step 4: Calculation of the r.h.s. using the estimated value (E.8) in expression (5.11) rewritten

for the case, when elastic-plastic transition occurs:

z̃ =
1

2
B

(

cos2ψc,
1

2
, b

)

− 1

2
B

(

cos2ψ̃,
1

2
, b

)

. (E.9)
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E.2. APPLICATION OF NESTED DERIVATIVES IN THE STRESS UPDATE

ALGORITHM PROPOSED FOR THE VON MISES MODEL

Step 5: Thus, the series expansion of the angle ψn+1, using nested derivatives, can be written in

the form (see Appendix E.1)

ψn+1 = ψ̃ + sinmψ̃
∑

n≥1

Dn−1 [f ]
(

ψ̃

) (z − z̃)n

n!
, (E.10)

where Dn−1 [f ] denotes the (n−1)th nested derivative corresponding to the function f (t) =sinmt.

Expressions of the first six nested derivatives have been obtained by utilizing (E.2):

D0 [f ] (t) = 1, (E.11)

D1 [f ] (t) =
mcost

(sint)1−m
, (E.12)

D2 [f ] (t) =
m

(sint)2−2m

[

2mcos2t− 1
]

, (E.13)

D3 [f ] (t) =
mcost

(sint)3−3m

[

2− 7m+ (3 + 3cos2t)m2
]

, (E.14)

D4 [f ] (t) =
m

(sint)4−4m

[

−4− 2cos2t+ (18 + 11cos2t)m− 46m2cos2t + 24m3cos4t
]

, (E.15)

D5 [f ] (t) =
mcost

(sint)5−5m [20 + 4cos2t− (114 + 32cos2t)m

+(228 + 101cos2t)m2 − 326m3cos2t+ 120m4cos4t
]

, (E.16)

D6 [f ] (t) =
m

2 (sint)6−6m [−4(33 + 26cos2t+ cos4t) + (912 + 792cos2t+ 44cos4t)m

+ (−57(43 + 42cos2t)− 197cos4t)m2 +
(

8cos2t · (668 + 233cos2t)
)

m
3

−5112m4cos4t+ 1440m5cos6t
]

. (E.17)

Remark: In the numerical evaluation, such as in a Fortran77 code, of an incomplete beta

function, the continued fraction representation is one of the most useful technique. The algorithm

given by Press et al. (1992) accepts values of a and b only from the the positive range. During

the proposed integration scheme, the argument b is negative in (E.9), therefore, the numerical

algorithm presented by Press et al. (1992) cannot be applied directly. To overcome this problem,

we can convert the incomplete beta functions in (E.9) to ones having positive b parameters, using

the transformation rule (A.17) as

B

(

cos2ψ,
1

2
, b

)

=

(

1 +
1

2b

)

B

(

cos2ψ,
1

2
, 1 + b

)

− cosψ

bsin−2b
ψ
. (E.18)

Therefore, the expression on the left-hand side in (E.18) is transformed to a formula, which

contains an incomplete beta function, where the term 1 + b has a positive value. Thus, the

numerical algorithm presented in Press et al. (1992) is now applicable for our problem.

135





Bibliography

ABAQUS: 2007, Version 6.7, Dassault Systèmes.
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Szabó, L. and Kovács, Á.: 1987, Numerical implementation of Prager’s kinematic hardening model

in exactly integrated form for elastic-plastic analysis, Computers and Structures 26, 815–822.

141



BIBLIOGRAPHY

von Mises, R.: 1913, Mechanik der festen Körper im plastisch deformablen Zustand, Nachrichten

von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse

1913, 582–592.

Vrabie, I. I.: 2004, Differential equations, World Scientific Publishing, Singapore.

Wallin, M. and Ristinmaa, M.: 2001, Accurate stress updating algorithm based on constant strain

rate assumption, Computer Methods in Applied Mechanics and Engineering 190, 5583–5601.

Wang, X. and Chang, L.: 1985, Exact integration of constitutive equations of kinematic hardening

material and its extended applications, SMIRT-8, Brussels, Proc. Paper L2/3.

Wang, X. and Chang, L.: 1987, Exact integration of constitutive equations of kinematic hardening

materials and its extended applications, Acta Mechanica Sinica 3, 139–149.
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