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CHAPTER XII.

THE OLDER GERMAN ELASTICIANS : F. NEUMANN,
KIRCHHOFF AND CLEBSCH.

SECTION I.

Franz Neumann.

[1192.] WE have already had occasion to deal with three

important memoirs of F. Neumann's, which fall into the period

occupied by our first volume, and we have now to turn t a work

ot his which, if only published in 1885, still in substance mainly

belongs to the years 1857-8. To Franz Neumann's teaching in

Konigsberg is due much of the impulse which mathematical

physics received in the fifties in Germany; the most distinguished
man physicists of the past forty years have been nearly all

pupils of Neumann's, and tins remark is specially true in the field

of elasticity. Of those who attended his lectures on this subject

and received probably from him their first stimulus to original

investigations, we may name Kirchhoff, Strehlke, Clebsch, Bor-

ehardt. Carl Neumann and Voigt as among the more important
1

.

nz Neumann > !<< -ture.s on elasticity were given in Konigsberg
:inVr-nt time> Iron. |s:>7 to 1*71. and in 1885 were published

under the Mip.-i \ isi.n >t' (I Iv Meyer of Hiv-laii with the title:

iiber die Theorie der Elaxticitdt der fasten Korper

> O. . Meyer in. lu.l. -s in the list Von der Miihll, Minnigerode, Zdpprits,

IM, Saaluchutz, Wangerin and Baumgarten : Me preface to the
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uml des LiclUdtfiers. The volume contains xiii+374 pages, and

is based on the notebooks of the brothers L. and O. E. Meyer for

the years 1857-60, and those of Baumgarten and W. Voigt for

the years 1869-74. According to the Editor the work contains

all that was of importance in Neumann's lectures. The exact

amount of originality in the several investigations I shall endeavour

to point out in the course of my analysis, and I content myself

here with the following remarks from the preface :

Zu den Gebietcn, mit wclchen Professor Neumann sich in jiingeren und

spateren Jahren mit besonderer Vorliebe beschaftigt hat, gehort auch die

Theorie der Elasticitat ;
es konnte daher nicht fehlen, dass seine Vorlesungen

iiber diesen Gegenstand haufig eigene Arbeiten betrafen. Seinem ausgespro-
chenen Wunsche, dass alle in versehiedenen Semestern vorgetragenen eigenen

Untersuchungen in di* - \Vn-k aufgenommen werden sollten, bin ich gern
aoweit nachgekommen, als es mir zu erreichen moglich war (S. v-vi).

The work is divided into twenty-one sections of which we note

the important points in the following articles.

[1 193.] In Section 1, Einleitung (S. 1-7), we have first some remarks

on the origin of the theory of elasticity. Neumann attributes it not so

much to a development from the isolated problems of Bernoulli and
Euler as to the impulse given by FresnePs new theory of light. He
says:

Die exacte Beurtheilung seiner Beobachtungen fiihrte Fresnel zu That-

Bachen, welche im geraden Widerspruch standen zu den anerkannten

Principien der Wellenbewegung in elastischen Medien. In der Schallwelle

ist die Bewegung der Theilchen parallel dern Strahl, die Welle eine longitudi-
nale ; Fresnel fand, dass in der Lichtwelle jene Bewegung senkrecht gegen

3 rahl gerichtet, die Welle also eine transversale ist, und doch soil der
Unternchied der Eigenschaften beider Medien, der Luft und des Lichtathers,
nur quuntitativ, nicht qualitativ sein. Die Mechaniker jener Zeit laugneten
li- Moglichkeit einer solchen Bewegung, weil sie unvertraglich sei mit den

hydrodynamischen Grundgleichungen, welche auf elastische Fliissigkeiten, auf
Luft

apswandt nur longitudinale Wellen kennen lehren. Fresnel, sich

vertheidigend, machte darauf aufmerksam, dass moglicherweise in diesen

GBeichuDgen nicht alle Krafte beriicksichtigt sein mochten, welche in
elaHtiHchen Medien zur Wirkung kornmen konnen. Er fand in der That,
<l.i>s in den hydrodynamischen Gleichungen nur solche inneren Krafte
enthalten wind, welche aus einer Verdiinnung oder Verdichtung des Mediums
eotltobfla un.l welche wiederurn eine Aenderung der Dichtigkeit hervorbrin-

llto sich daher die Frage, ob es in einem elastischeu Medium
.iiilTi-ii Kriifte gebe, ob in einem solchen System, wie es die Theilchen

eincH elaMtischen Korpers bilden, nicht auch Krafte entstehen konnen aus
riiM-r Vertohiebonfl der Theilchen, durch welche die Dichtigkeit nicht geandert
winl. \\'io jet/t die S.ichen liegen, ist es leicht, den Staudpunkt, auf den
Fresnel sich stelltc, klar zu machen (S. 1-2).

This account of the origin of the theory of elasticity, attributing it

to the inability of the hydrodynamical equations to offer any explanation
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of the phenomena of light, has been accepted by several writers (see
the review of our first volume in the Bulletin des sciences mathetnatiques
T. 12, p. 38, 1888), but it must l>e distinctly borne in mind that

the first propounder of the theory was Navier, an elastician of the

old, or Bernoulli-Eulerian school, who both in theory and practice had

fivijiuMitly di'.ilt with clastic stresses by the old methods, and whose
memoir of 1827 was preceded not by optical investigations but by

arches on the elasticity of rods and plates.
Neumann after briefly referring to the labours of Navier, Poisson

and Cauchy concludes his first section by defining stress on their lines,

i.e. by supposing inter-molecular force central and a function only of

the central distance.

[1194.1 The second section is entitled: Allgemeine Lehrsdtze uber

die Dni'-kkrafte (S. 8-25) and develops the usual stress equations
without regard to any molecular hypothesis. The third section (S. 26-

36) discusses Gauchy's and Lame's ellipsoids of stress and the principal
tractions without reference, however, to those writers : see our Arts.

610*, (iv), and 1059*. The fourth section entitled: Das System der

DUatationen (S. 37-51) deals with the geometry of small strains, and
discusses the ellipsoids of strain and the principal stretches. The fifth

section is entitled : Beziehungen zwisehen den Di^uckkrdften und den

Verrtickungen (S. 52-9). It deals only with uncrystalline and pre-

sumably homogeneous and isotropic bodies. Neumann remarks that

experiment shows us that stress and strain vanish and arise coevally ;

hence he argues that one must be capable of being mathematically
expressed as a function of the other. He then states that there can
be no doubt that in uncrystalline bodies the axes of principal stretch

and principal traction must coincide, and lie continues:

\nnahnie, da>s die Dilatationcn kleinc <iros>en scicn, folgt,
dass die Druckkrafte, welche wir als Functionen jencr aii/n-.-lu-u hal>m, in

dcr Gestalt eincr Kntwirkelnng nach Poten/en dcr Dilatationcn dar^estellt
wenlcn koimen. Da ferner nach iiuserer Annahme die Dilatationm >.. k

^en *ind, daxs wir nnr ihrc erste Potonx x.n iMTiiek-iehti.u'm l>rauchon, so
! uiptdruckkraf'tc HIKMIV Kunrticncn d<T Dilat.it mum -in ; nnd

init jcncn zugleich vensc-hwindcn, ..line Hin/ufiigung
eines r- < ;ii-d'^ ilmm cinf.ioh proporti'iial /u s.-t/cn sein (S.

Obviously here Neumann falls into the s --i/nitxr as Cauchy
in his memoir >t' 1>-J7 !> our Art. 614*), as Max w, -II in 1850 (see
cur

.*), or lAm6 in 1 WJ ,s ......ur An. 1051*), Neumann then

obtain- 1'V tran-t-'i-niation tlie ordinary stress-strain relations and the

body-shift equations f,,, .,,, isotropic elastic solid. He employs A for

onr 0, A - H for our
-J/i.

and II tor our A. Kurth'-r he uses pressures
not traetinn^ tln-ou^lmut liis \v..rk.

Tin- Sections 2-5 of Neumann's work form an elementary theory of

elasticity, at least so far as isotropic bodies are concerned. They do
not possess any particular advantages in the present state of our

science.
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[1195.] Tho sixth section of the work (S. 60-6) is entitled

Jfavier'i Differentialgleichungen. It deduces the body-shift equations

directly by Navier's method (see our Art. 266*) ;
this method leads to

uni-constant iaotropy and avoids all introduction of the stresses. In

starting with Navirr's investigation Neumann adopts the historical

plan. He points out the objections to Navier's process (S. 66 : see our

Art*. 531*-2*), and then turns to Poisson's and Cauchy's treatment of

tin problem in his seventh section entitled: Poisson's Ableitung der

aUgctHfitien <;/,,'</< tuiyen (S. 67-79). Neumann's investigation follows

fairlv closely Poisson's of 1828. He deduces the shift-equations for

the cases of isotropy and of three rectangular axes of elastic symmetry.
The latter system he speaks of as crystalline, although it is often

produced by working in bodies without crystalline structure. He says :

Zu diesen Krystallen, deren Zahl sehr gross ist, gehoren alle Fornien des

regularen, vicrgliedrigen /wei- und zweigliedrigen und sechsgliedrigen Systems
f.isnahnie gewisser, hemiedrLscher Formen, bei deneu die parallelen
iltiachen iehlcn, /.. B. beini regularen Tetraeder. Wir nennen diese

F>nuen die geneigtfliichigen Hemieder. Ferner findet eine solche sym-
iiirtnsche Vcrtlieiliing nicht mehr statt bei alien Krystallen des zwei- und

eingliedrigen und des eiu- und eingliedrigen Systems (S. 75).

The resulting equations involving six independent constants agree
witli those which would be obtained by substituting the stress-strain

relations of our Art. 117 (a) with the rari-constant conditions d = d',

e = e', f=f, in the usual body stress-equations.
The seven sections with which we have already dealt belong to the

1857-8 notebooks. Section 8 is taken from a notebook of 1859-60,
and is entitled : Entwickelung der Gleichungen aus dem Princip der

virtttelleti Geschwindiykeit (S. 80-106). This is a reproduction of

the method of Carl Neumann's memoir of 1860 : see our Art. 667.

F. Neumann, I think, supposes the first application of the principle

of virtual moments to the theory of elasticity to have been made in tlic

above memoir, but this is hardly correct : see our Arts. 268* and 759*.

The method of the Vorlesunyen is somewhat clearer and briefer than

that of C. Neumann
;

it is also applied to bodies with three axes of

ic symmetry.

[1196.] Section 9 (S. 107-20), taken from a notebook of 1857-8,
deals with the thermo-elastic equations in the method previously adopted

1-y hul'umel and Neumann himself. We have seen that Neumann in

1841 (see our Art. 1196*) claimed priority in the deduction of these

equations, and the Editor of the Vorlesungen (S. vi) apparently looks

uj>on this section as an original part of the present work. The results

do not seem to be more general than those of Duhamel (1838, see

our Arts. 868* and 877*) and in all cases of doubt, priority of publi-
cation must be decisive.

Neumann like Duhamel limits his equations to the range in which
extension is proportional to rise in temperature. His body-stress-
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equations involving thermal effect (2) and (3), S. 113, are equivalent to

Equations (2) of our Art. 883*; his surface stress-equations (1) and

(2), S. 114, to Equation (3) of the same article; his remarks on the

relations between temperature and normal pressure, and between the

th.-i mo-elastic-constant, the stretch-modulus and the thermal stretch-

coefficient are equivalent to those of Duhamel in our Arts. 875* and

888*.

[1197.] 58 (S. 115-8) is entitled: A'r</*t<i!lini8c?ie Korper. In

uiiKinn questions whether the thermo-elastic constant is in crystal-

line bodies the same for all directions. He suggests equations of the

form (KM cur Art. 883*):

cK? d3 <f dq
<te

+
dj

+
fc'P'dc'

dZ$ <%y <i& dq

in whieh he assumes, I suppose, the body to have three rectangular
of elastic symmetry, coinciding with the thermal axes. The

surface stress-equations will now be given by:

X' =
(

-
/?,#) cos I + 7$ cos m + cos n,

T = 7} cos / + (n -
fitf) cosm + ^ cos n,

Z = Z* cos I + J? cosm +
(

-
/3gq) cos n,

so that it is obvious that a rise of temperature is no longer equivalent
to a uniform surface traction : see our Arts. 684-5.

1 1 ierauf beruht die Entscheidung durch die Beobachtung. Man best! mint
durch directe Messung die Aenderung der Winkel, wenn der Druck auf die

Oberflache de U geandert wird, wenn man ilm /. 1'.. aus dem Drucke
r Atuiowphare in den von 10 AtrnosphJiren odor in den luftleeren Haunt

bringt. Auf dieselbe Weise misst man die Winkel-inderung, welche durch

hung der Temperatur, /. 1>. v..n i auf KXI , luTvori:l.raeht wird.

dt man l>eide Male ein entnprechendes System von \Vinkclandcrungen,
HO sind alle drei Werthe von /9 unter sich gleich ; befolgen die Aendenn

1

iesetze, so sind sic ver.schieden (S. 1 16-7).

Neumann th'-n d. -scribes a method of making the needful nn -a

!! oife :.. MUM'! M- ..f M i! -ch- i-!;.-l i .1
; ;

, tingen der

Berliner Akademi'. 1815, S. i.'PJ) uj>on calcspar. This mat. rial , \j,ands
in the direction of its axis owing to a rise of temperature and contracts

perpendicular to the axis. The stretch for 100 C. increase of tempera-
te nid to be -00286 and the squeeze

- -00056. Thus the
dilatation was '00174. A similar result was exhibited by gypsum
which in three ditl'Tent dj had dill-ient stretches or 8qi
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Neumann does not cite any experiments to determine how far the

thermal results for these crystals are in accordance with those which

would be produced by uniform surface tractions. He merely remarks

that rods might be cut in certain directions from such crystals so that

they would not change their length with change of temperature :

Hier lost also eine krystallinische Substanz ein Problem, dessen Losung
oft aehr gewiinscht wird (S. 118).

The section concludes with a paragraph deducing the amplified form

of Fourier's differential equation for the conduction of heat. This is in

accord with Dnhamel's results cited in our Art. 883*, Equation (i).

[1198.] The tenth section of the Vorlesungen is entitled

Kirchhofs allgemeine Lehrsdtze (S. 121-32). Of this section 60

reproduces Kirchhoff's proof of the uniqueness of the solution of

the equations for the equilibrium of an elastic solid: see our

Art. 1255 : 61 (S. 125-8) extends the proof of the uniqueness of

the solution to the case of vibrations. This, I think, had not

been done by either Kirchhoff or Clebsch and is original
1

.

Neumann, as in the previous paragraph, supposes isotropy. We
will indicate his method of proof. If there be two solutions, then

their difference, given say by the shifts U, V, W, must satisfy

the body- and surface-equations with abstraction of body-force
and surface-load.

Consider the quadruple integral

M
/ (PV (XTy

dyy_
dyz\dY

f
\
P

~dt*
+

~dsc
+
d^

+
~fa) ~dt

T^v -J"~~ J*~~-\ ,71uz* dyz u zz \ CL \

r ~*~ i "* r I ^i . r i

aa; ay a / at }

which is zero owing to the body stress-equations. Integrate the stress

terms by parts ;
the surface integrals then vanish owing to the surface

stress-equations. Substitute for the stresses from the stress-strain rela-

tions, and the whole will be found a complete differential with regard
to the time. Integrating out with regard to the time we find :

1 The whole of this section is due to the lectures of 1859-60, and thus precedes
Clebflch'fl Treatite. Kirchhoff's investigation was first given in the memoir of 1858 :

see our Art. I
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.

Hence it follows that all the squared terms must separately vanish at

all points of the body. \Ve see then that U, V, W are not functions of

tin- time and that they can only express a translation and rotation of

the body as a whole.

[1199.] 62 of the Vorlesungen is entitled : Verallyemeinerung ties

AVy.>7/////'. It is a not very satisfactory extension of tin-

proof of the preceding section to bodies for which the stress-strain

relations an- of the form :

to hod its for which we can assume rari-constancy ami

pos8'** /A/-*- rx-titii'iii far axes of elastic symmetry. Even it' we suppose
rari e.,n>tane\ . >uch bodies an- by no means the only existing type of

tal. Further Neumann's proof depends on the conditions that

a>e+f, b>f+dt
od + e .................. (i).

Neumann demonstrates this as follows. Crystals, he states, do not

according to experiment differ widely from isotropic bodi< we
inn t have :

3X = a - K
I

= b - KS = c - K
S ,

X = (I vrl= e - ur2=y* tDr3 ,

wln-n- K:

,
K

. K, -,. tr,, ars are very small (juantiti.-s as compared with A.

II- :<< it follows that the relations (i) above must !, true. This

supposes again the limit to le uni-constaiit is. .tic;
i ion

to this sort of proof is that relations :il<in to (i) may hold, and certainly
tin- imiijiu-nr.ss of thr solution must hold, for wood ami other i

in which then- i^ no approach to isotropy at all. Nfiimunn's conrludinu

M to Hlgged that hr 00 'he proposition pr-
ior aU bodfei whi.-li OOOOf in Ottmrt, In a footnote tin- r.-mark is i

ih it the laws of doul.le refraetion rccjtiire that in t he caso of the , t h. i

hoiihl have

a. 3 (*+/-''). '> = 3(/+</ ). -3(r/4--/)

and ih.r Iftf ODlj
' llM '

; tor the ether. Thai lelations (u) .,., ,,/ al-,,!ul.U

i. i:. IT. 11. 2
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on the elastic jolly theory of the ether has been indicated in our Art.

148 A more complete proof of the uniqueness of the solution of the

t iciiy is -iven in Kirehhoff's Vorlesungen
1

: see our Arts.

1-jln. 1-J.V) and 1278.

[1200.] 63 (S. 129-32) belongs to the lectures of 1873-4.

It is an investigation of the elastic energy of the stresses for an

isotropic solid
;

it is so far more general than that to be found in

the usual text-books, in that it regards possible changes of tem-

ire dm- to the strain.

Let X, 7, Z be the body-forces at the point x, y, z of the solid,

and A', )", %' the surface-load at the element dS of the surface. Then

n deduce from the thermo-elastic equations (see our Art. 1197) the

following relation :

-(SH*)'}***

lffp(Xu+
Yv + Zw)dxdydz

!t(x'
du

+ r- + # d
-}ds

JJ\ <" dt dt)

-f -v + + V + ft (o-,,
2 +^ + or,,/)} dx,lydz

..(lii),

ur Art. 885*).
Now if X', V, Z' are independent of t, i.e. if the surface load be

i'ln;i
;in tlie same, we may integrate the whole of this with regard to t

except the last term of the last line. This last can be integrated easily

in two ens

(i) Steady temperature, or q no function of t. We have :

/// p (Xn + Yv + Z,r) ,r.,'.t,/flz + ff(X'u + Y'v + Z'w) dS
'

-VW ; V + *) + A* (y? + <r?J +

1 The importance of this proposition lies in the result, that if any partirulm-
isfiofl allIK- fotiiul which satisfiofl all tho conditions of an elastic problem, this

eolation ia the only iultnissililc on.
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(ii) Suppose we neglect the first term on the right-hand-side of

equation (iv), as for example in Newton'.- hypothesis as to the velocity
of sound, then wo have :

= /// p (Xu + Yv + Zw) dxdydz + //(JTu + TV + Z'w) dS

J / {A* + 2/i (** + I/ +O + ft(V + er' 4-

[1201.] The eleventh section (S. 133-163) is entitled: An-

wex< '"f imkrystallinische Korper, and is occupied with the

application of the equations of bi-constant isotropic elasticity to

certain simple problems. The object of this section, we are told,

is to clear up the doubtful points of those theories which star

from the molecular hypothesis reach uni-constant isotropy. Neu-

mann ht-iv. however, does not seem to lay sufficient stress on tin-

l> ->il)ility of various distributions of elastic homogeneity in the

rods, wires, hollow cylinders and spheres of which he treats. W-
may note one or two pointa

(a) He refers (S. 136-8) to the experiments of Cagniard de la

Tour. Ile-nault, \Vertheim and himself on the magnitude of the stretch -

s.piee/.e ratio: see our Arts. 368*, 1321*, 1358* and 73G. He himself

had found that for iron-wire iy= 1/4 nearly, but that it was m-nnr 1/3
for other substances, which he unfortunately does not specify.

(l>) On S. M1--J Neumann i^ives a theory of Wertheim's cylinder
in. t hod of determining 17: see our Art. 802. He remarks on the

me importance of ascertaining the value of rj
for truly isotioj.i.

ln.di.-s. a> tin- development of the molecular theory dt'jxMids so entirely

upon it. in investi^atini; on S. 1 1 I ." tho stress in a hollow cylinder due
to internal pre.sMiiv, Neumann takes a stress-limit of strength and

applies the theory of elasticity to rupture. Both ( DO to me
unjustiliahle: see our Art. 5 (a) and (c), 169 (c) and 320-1.

153 deal with the oftrconsidered problem of the hollow

.ph'-rieal shell. Neumann discusses Oersted's theory of the pie/...m.

and MOW Colladon and Sturm were correct in supposing that a
hollow sj.herical >li-ll witli ejual internal and external prpRHUrofl
ontractH as a solid sphere would do under t,ho same external presu-
me our -<G*-C90*. He a|.pli.-,

the tlu-ory to th.-rmoin

liullts, and in particular shows how tl ^ of the them .....

with the tul.e iii a \erti. -al than \\ith the tul.e in a hori/outal

owini^ to the internal In- |uiek sil \ , i ]\ thel.iill.

2
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being greater in the former case. He shows by a numerical example
"the ditH'ivnee of the reading in the two positions might amount

C.

Bei Thermometorn, welche Cylinder statt Kugeln haben, ist dieser Fehler

nirht so bedeotend, wril sic in der Regel cine starkere Wand besitzen.

llierin liegt ciner der Vorziige der Cylinderthermometer (S. 151).

The consideration (S. 151-3) of the strength of an isotropic

spherical shell and its comparison with the strength of a cylindrical

. is for reasons we have frequently referred to, very questionable
\\lirn applied to glass vessels : see our Arts. 1358* and 119.

(rf) 74 (S. 153-5) deals with the problem of an isotropic solid

tic sphere surrounded by a shell of different isotropic elastic

material, to the outer surface of which is applied a uniform pressure.
NY umaim finds that the solid core will contract more or less than it

would do, if the external pressure, were directly applied to it, according
as 3A + 2/x for the core is greater or less than it is for the shell.

(e) 8 75-76 (S. 155-61) are introduced by the Editor, and give
methods of determining the elastic constants by torsion and uniform
flexure (i.e. flexure by a couple). These are practically the methods

adopted by Kirchhoff and Okatow to determine
rj

: see our Arts. 1271-3.
The final paragraphs of this section (S. 1613) entitled : Beobachtunyen
zur Bestimmung des VerhdUnisses der beiden Elasticitiitsconstanten are

also mainly due to the Editor and give a short resume of the various

experimental determinations of
rj

due to Cornu, Mallock, Kirchhoff,
< )katow, Schneebeli, Kohlrausch, Loomis, Baumeister, Rontgon,
Amagat, W. Voigt, Littmann, and Everett. Accounts of the re-

searches of these writers will be found under their names in our

index, and the results of later researches under the title stretch-squeeze
r>'tio. We can only remark here, that several of them still leave open
to question the true isotropy of the materials experimented on, and

they cannot thus be said to have finally settled the elastic constant

-mtroversy : see our Arts. 925*, 932*, 192, 800, and 1271.

[1202.] The twelfth section is entitled: Elasticitdt krystal-

Stoffe and occupies S. 164-202. This section is taken
from lecture notes of the years 1873-4. Neumann here rejects
the rari-constant equations for crystals with three axes of elastic

symmetry such as he had previously adopted in his work, and on
S. hi/i expresses the stresses in terms of the strains by linear

relations involving 36 constants. Thus he writes :

'!<; Kl.usticitJitscoustantoii la.sscn sich im Allgcmeincn nicht auf eine
ihl /uriirkfiihren. Jedoch verringert sich in den allermeisten

l-n ilnv Zalil sdii- ci-lM'l.lidi, wenn der Kry.stull in Bezug auf eine oder
mehrere Ebenen syrnmetrisch gebildet ist. Nur in den seltener vorkommeu-
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den Fallen dcs fin- und cingliudrigcn S.-t^m>. wiu /. B. beim Kupfervitriol,

liegt kein theoretiacher Gruiid fur erne Veruiinderung ihrer An/ahl vm-

(S. 165).

This statement of course is hardly true, for the principle of

work It-ads us at once to the reduction of the 36 constants to 21.

Notwithstanding this necessary modification (S. 179 ftn.), the

section contains a good deal of valuable and, till 1885, unpublished
work of Neumann. The results should be compared with those

t Ranking : MJU our Arts. 450-1.

[1203.] We reproduce briefly Neumann's stress-strain relations

in our own notation and with the additional relations between the

-tants due to Green's principle: see Arts. 78, 117, etc.

(a) Crystal with one plane of elliptic symmetry, taken as that of

zx. (Zwei- lutd eingliedrigen oder inonoklimschc, Krystatte. S. 1G8.)

M = 08X +f'sy + e'sz + Ajo-se,

+ d'8z + h
9
<r

!a: ,

+ d"s
u
+ as., +k^rtmt ^ = k"trxy + d<r

yz ,

Neumann has thus twenty constants, hut we ought to put

and /,', //.', A;,'-/*!, h,
y

7t3 re.si>ectively, or leave only thirteen constants.

(6) Crystal with two planes of elastic syntin'tr
n as zx and yz. (Zwei- und zweiyliedriye Krystalle. S. 169.)

,

Tin-- .

ijuaiions also hold for crystals with tJn-fi- planc.s of

ni -try, and have twelve constants according to Nnnnami, Inn ire

ought to put d" = d\ e"=e' and/" =/', which leaves only n uts.

(c) Crystal with two equal ti.w#, taken as those of x and y.
iatte des viergliedrigen Systems.)

Tin-so equations ju-.-..rdini; to Neumann havo seven oonstauts, IMI!
"
=*e so that wo have only six constants.
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(*l) Kryular Crystal*, or those having three rectangular equal axes

taken MS those of x, y, s.

=
(rt -/') 8Z +f'0, 7y=."

These have tfiree independent constants.

[1204.] Neumann now passes to hexagonal and rhouibohedral

crystals.

(e) Hexagonal Crystals. (Sechsgliedrige Krystalle.)

( M these Neumann writes :

11- bleiben noch die Krystalle dos hexagonalen Systems zu untersucheu

iibrig, deren Gruiidform die auf einem regularen Sechseck stehcnde gleich-

M-itige Doppelpyramide ist. Die drei Diagonalen dieses Sechsecks bilden die

drai gleichwerthigen Axeu der Krystallform, deren vierte Axe von jcnen ver-

soliicilen ist Um die Gesetze dieser Art von Symmetric auf ein rechtwinkliges

Coordinatensystem zu beziehen, benutzen wir die Formeln [Art. 1203 (6)],

welchc gUltig sind, da die beschriebene Krystallform durch drei auf einander

rechtwinklig stehende Ebenen symmetrisch theilbar ist. Dazu kommt als

/wc'ite Art der Symmetric, dass eine Drehung um 60 zu einer von der

unspriinglichen nicht unterschiedeneu Stcllung fiihrt (S. 174).

Turning the axes of x, y through 60 round z, calculating the

corresponding stresses and strains and causing them to have relations

of the same form as in Art. 1203 (b), we find that we must have :

/"=/', a = b, e = d, 2f=a-f, d" = e" and d = e.

\\Y thus obtain the system :

^ = (2/+/') sx +f'sy

A. ,<,!( ling to Neumann there are thus six constants: but Green's

principle tells us that e" = e also, or leaves only^e constants.

(/) Rlwmbohedral Crystals.

Neumann remarks that a similar process to that of (e) enables us

to obtain formulae for a rhombohedral crystalline system

(Jriindform als cine dopi>eltc dreiseitige Pyramido auf/ufasson ist,

jodoch mit cinci- Milclu-n licstimmung iibcr das Gcsetz der Symmetric, dass

ciut-r I'liidic der ol>eren Pyrarnide nicht cine gleiche der untercn cntspricht,
soiidcni dasH cine Fliiche der oberen mit ciner Kante dor iiiiteren Pyramids
auf dei-nellxin Scitc des Krystalles liegt, und umgckehrt. Ein Rhomboeder
int also nicht durch mehrere auf einander rechtwinklige Ebenen symmetrisch
theillxir (S. 176).
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Neumann takes the chief axis of the crystal for axi.s of ~ and the

plane of zx perpendicular to the face of one of the pyramids and so that

an edge of the second pyramid also lies in it Then zx is the only
coordinate plane which is one of symmetry, and the formulae (a) hold for

this case. A rotation, however, of 120 round the axis of z cannot
affect the form of the stress-strain relations. This leads to the reduction

of (a) to the types :

V />r +/'** + *'";

-.- /ttr
.

TV =/'* + (?/'+/') *, + 68, + /MT

e"sx + e"s

. >

II re Neumann has eiy/U constants, but Green's principle shows that

e" = e', and h" = h or leaves only six. If we put h = h" = we obtain
the hexagonal system as a particular case.

[1205.] Neumann now turns to some interesting problems on

crystals involving the above formulae. These problems have been

tin- .starting-point of several important experimental investigations

by Voigt, Baumgarten, Coromilas and others, and therefore deserve

can-ful study.

85 (&. 179-81) is entitled: ZunamHtendrticfaiHy eiiies

<ln fh nil*' it'xjen Dmwk. Let p be the uniform pressure applied to the

Mil fact of a crystal, then the surface-stress equations will be satisfied it

ff =

and thcsr will obviously satisfy also the body-stress equations. Hence
a possible and therefore the only solution is to suppose the shifts linear

functions of the coordinates x
t y, z. Suppose we tak<- :

U = J/.r, V = JT//, W = Pz,

then from Art. 1203, (d) we find for a regular crystal :

tin 1 eiliiet of uniform j>ressure on a re^ul il i> only to

its boundary to a similar form.

Suppose we t

n=J///, v /'.,

and apjily these ID t he e|iiat ion.-, .f Ail. I L'n | < /'i t.,i , ( \ hoiiil.nhi .lr..l

1 1, we h,

./,.:/ /.
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Tim itraction of a rhombohedral crystal (or of a hexagonal,
since the result does not involve h: see our Art. 1204 (e) and (/)) is

.lit!', rent for different directions. A spherical surface becomes an

i-llips-
olution. It is also possible, Neumann thinks, that M

and /' may be of opposite sign. Since y* and f are probably not very
different from each other and from e (ff on the rari-constant

hypn thesis), this would seem to involve c<e', or a given stretch ,s

would have more effect in producing lateral than longitudinal stresses.

Neumann adds :

I'.inn wiirdc der allseitig gcprcsste Krystall sich in eincr Richtung /usam-

nirii/.iehen, wiihrend er sich in einer andern ausdclmt, analog der schoncn von
Kilhard Mitechcrlich gcmachtcn Entdeokung. dass cin Krystall durch Er-

wiiriming .sich nicht allcin unglcichmiissig ausdclmt, sondern sogar in gewissen
Kichtungon sich xnsammenziehen kann (S. 181).

[1206.] Neumann next turns to the still more interesting

problem of a crystalline prism in the shape of a right six-face

under uniform tractive load on a pair of parallel faces.

Suppose a rectangular coordinate system x, y, z to have relation to the

axes of the crystal, and a second
, 77,

to give the directions of the
of the prism, so that the tractive load T is applied to the faces

parallel to
i?

or in the direction of Then it will be found that

the body-stress equations and the surface-stress equations can all be
satisfied by taking the stresses equal to the constants as follows :

= T cos2

(fe x) t & = T cos (, y) cos (, z),
j

Ty = T cos-
( y), Tx = T cos (, z) cos (& a?), I (i).

Tz = T cos2
( ), Zi = T cos

( a;)
cos (, y) \

The shifts are thus linear and of the form :

u = MX + p'y + nz

= MX + J (p +p') y -f | (n + n) z-{ (p -p) y+^ (n
-

ri) z,

.*; 4- Xy + m'z

-^(p + p')x + Ny + \ (m + m') z-\(m m') z +
-J- (p j)') x,

w = n'x + my+J ':

-
J (n + ri) x + J (m + m') y + Pz -

J (n
-

ri) x + % (m
-
m') y

Tht second method of writing these equations shows that we can only
bo del ennine the six quantities M, N, P, ^(m + m f

), ^(n + ri),
A ( /> +;/) by substituting in

(i) ;
for the terms with

...(ii).

1
i fly a rotation of the prism as a whole.
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Neumann first considers the case of a regular crystal. We have at

once from Art. 1203 //:

T cos'-' (, *) . (a -/') ^ +/'*, <*
(

+ "0 = ^ cos (, y) cos (fc s),

/' cos' (fc y) = (a -/') .V +/'0, ^ (H +
/*')

- Tcos (fc s) cos (f, *),

/' cos2

(, c)
= (a -/') /' -f f'O, d (p + ;/)

= r cos (f, )
cos (6 y),

W1H , J/ =

Let r be the stretch in the direction r having direction

/,, M,, /*,, with regard to x, y, z, then we easily find from our Art. 54*:

*r - ~, l'
2 cos2

((, x) + m* cos2

(& y) 4-< cos2

(f, s)
--~

This may he compared with Neumann's investigation of 1834
our Arts. 795*-9* and Con^igenda to Vol.

I., p. 3, and compare our
An. 309.

Suppose we wish to find $, then, I,
= cos (, 2), "i - cos (, y),

7*,
= cos (, ^) ;

and after slight reductions we have:

* = T
{(
JL _

i^) (cos^
(fc x) f cos^ (f, y) + cos^ ({,

,))

This n-sult was published by W. Voigt as from Neumann's
(in /'nt/t/.-tn/ni-i/s Annalen, Ei-<i<tn-.niuj8-]>and vil., S. 5, 1{S7C>) ami has

experimentally verified for alum by BeckenkftBp; % -iV.-r// ///>/'///

A'/7/x/"//< "//"/>/,//, lid. In, 8. 41, 1885. From the above equation
find at oner Neumann's biquadratic surface for the stretch-modulus

T/st) : see our Art. 799*.

In the ease in whi<h the prism is cut parallel to an axis of tin-

crystal, we have for the stretch-modulus

<+

whidi \alue <>f E stands in a >impl' relation to the dilat.it ion modulus

Up, B85J deduced from the Equations (iii) of tl,
- as :
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[1207.] Neumann next investigates the directions in which the

it-modulus as given l>y (iv) takes maximum or inininium values.

To obtain these values Neumann transfers to polar coordinates with

the axis of 2 as polar-axis, or he takes :

cos (, x) = cos a, cos (& y) = sin a cos <, cos (, z)
= sin a sin <.

He thm olitains the following directions in which the stretch-modulus

is a maximum or minimum, namely the normals to the faces of the

following geometrical crystalline forms :

(i)
The cube

sin a = 0, l a+f
cosa-0, cos<

cosa-0, sin<

(ii)
The octahedron

j
1 1 1

tau'a = 2, tair< =
1, /

~ ~
3(o + 2/')

*
3d'

(iii) The rhombic dodecahedron

tan2a = 1, cos =
0,

taira=l, sin < = 0,

cos a = 0, tan2 = 1,

We easily find :

D

\\ln-nce the relative magnitudes of Ec ,
E

,
ED) may be determined

according as 2d is > or < a -f. Since we have \JEC + 3/.#
= 4/A^, we

cannot determine the three elastic constants a, /', d by ascertaining the

values of the stretch-moduli Ec ,
JS0) ED .

[1208.] In the following paragraph ( 89, S. 188-90) Neumann
j;alcs the lateral squeeze which accompanies a longitudinal

'ii. In this case lit nilt ^ of our Art. 1206 are subject to the

condition :

and the formula
(iii) of that article can then be thrown into the form :

.' = T
|(a \fl

- 1
) (l?

cos= (f , x) +< cos2

((, y) -t- n? cos2

(,

denoting the lateral stretch, which is here a squeeze.

(a) 8up])OBC the prism cut in any way parallel to an axis of the



1209] F. NEUMANN. 19

crystal, then two out ot the three /,, //tn i^ are zero and we have from

(v) and (vi):

-

a-f
Hence the stretch-squeeze ratio is in this case constant in all directions

perpendicular to the traction, and by aid of the value of E in Art. 1206

we see that it is given by:

v =//(+/')

Suppose the traction in the direction of a normal to the octa-

hedron, then

cos2 (f, x) = cos2
, y) - cos' (fe )

= 1/3,

and therefore from (iv) :

~ r
(2rf~

'I'his i .suit differs from that given by Neumann on S. 189. The stretch-

queen modulus is here more complex, but is still constant for all

directions in the plane of the cross-section.

(c) Suppose the traction in the direction of a normal to the

rhombic dodecahedron, then cos- (, a;)
= cos2

(, y} - ,
and cos (, z)

- 0,

and if x l>e the angle the direction of the squeeze makes with the

of z we have :

Thus the squeeze varies with the direction in the cross-section.

(li>o!).] ji DO (S. 190-5) entitled: At.'wt.-rnwj far Winkel eines

;
i*t'ilU durch Druck deduces expressions in terms of the

nits for the changes in the angles of a crystalline prism
under uniform lon;/itudinal traction. By simple optical methods, which

indicated by Neumann, these changes can be easily measured and
\\e thus have a further means of ascertaining the elastic constai

I'misider a plane whose direction-cosines with regard to x, y, . in

tin- unstrained condition are given by cos a,, cos/?!, cosy,, and hi

tor strain become cos (a, + 8a,), cos (/?, + 8)3,), cos (y, + Sy,).
Then with the notation of our Art 1206 Neumann easily shows that:

cos (a, + 80,) = (cos aj
- M cos a,

-
/> cos ft

- n' cos y,) 7, ,
\

cos (ft + 5ft )
-

(cos ft
-

;/ cos a,
-N cos ft

- m cos y,) 7. ,

|
cos (y (

+ 8y,) (cos y,
- n cos a,

- m'cos ft P cos y,) 7, )

^h-
ulding, neglectiuu' th-

res of small (

|
uan tities and taking the root, to be :

1 .l/cc s
a, + ^cc*

3
ft + /' cos^, 4- (m +

;/*')
coe ft cosy,

+ (n + n') cos y, cos a, + (/t + p) cos o, OOH ft ...
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Let a second plane be given by coscu, cos ft, cosy., in the unstrained

.u id < Mi(eu + 8u), cos (ftj + 8ft), cos (y3 + Sy.j)
in the strained position,

thru \v h ,.\. -. if <r, <r be the angles between the two planes after and

:;iin, from equations of the type (i):

COS V = {COS <T - 2 (ifCOS Ot COS 03 + JV COS ft COS ft + P COS y:
COS y,)

-
(111 + m) (cos ft cos y3 + cos

ft.,
cos y^

-
(u + n) (cos yx cos cu + cos y2 cos a,)

-
(P + P) (

cos a
i
cosA + cos 2 cos

7 i^ an expn-ssion similar to q1
in

(ii) but involving cu, ft, y2 .

Nruinann Ukes only the special case when the planes are originally
at right angles and therefore <TO

= 90, cos <T
O
= 0. Hence, if <r = o- + 8<r,

we may replace cos o- by So-, and substituting the values of the

constants given in our Art. 1 206 we reach the result :

2T
&r = 77 {cos

2

(, x) cos a
x
cos cu + cos2

(^, y) cos ft cos ft

+ cos2

(, ^;)
cos yj

cos
y.,}

T
+ ^ {cos (, y) cos (^, z) (cos ft cos y, + cos ft cos y,)

+ cos (^, s) COS (, a) (cos yx
cos a., + cos y2 cos t^)

+ cos (^, a;)
cos (ft y) (cos c^ cos ft + cos a2 cos ft)} ...... (iv).

Neumann takes two special cases of this :

(i) C/uinge in angle between the two rectangular faces of a prism
which are jyarallel to the direction of the traction.

Here:

hence multiplying these together, we have by (iv) :

+ cos2 (ft y) cos ft cos ft + cos2 (ft 3) cos y l
cos y2 {

............ (v).

If the traction be in the direction of an axis of the crystal or of a
normal to the octahedron, it is easy to shew that 80- =

;
if in the

direction of a normal to the rhombic dodecahedron we have :

whm;
a, ^90 -a,.

(ii) Cliange in angle between a loaded face of the prism and a free
face.
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Here a,, ft, y, are (, *), ( y), (, 2;) respectively, hence

1) /> \ fcosa/i (C08 ft

}
= cos(, *)

|cosj + co. (*, jr)
{ww

and by multiplying these and using (iv) we find :

s)cosyj ............... (vi).

Various special cases are deduced from this general formula, S. 194-5.

[1210.] Neumann noxt indicates methods of dealing with the like

problems in the case of prisms cut from rhombohedral crystals. He
takes in 91 (S. 195-9) the case of a uniform longitudinal tractive

load applied to such a prism. We have now to solve equations
liko

(i) of our Art. 1206, when the values of the shifts (ii) in that

article are substituted in the stress-strain relations (f) of our
Art. 1204. Neumann gives the values of J/, JV, P, w + w', n + n',

p + p' on S. 195, and taking the chief axis of the rhombohedral crystal
an polar axis, so that

cos (& z)
= cos y, cos (, x) = sin y cos

<f>,
cos (, y) = sin y sin fa

lie obtains for the stretch s$ in tbe direction of tin- traction /

in Art. 1206:

^ T - + sin' y + -- cos< y
- - - sin2 y cos2 yK

a/ K, \K, *J

+ sin3

y cos y cos 3< I ........................ (
\ i i ),

Thus the reciprocal of the stretchmodulus \[Et( s^T) is ji\en

tor e\ery dirt-ction. Putting \JE^ proportional to 1/r
4
,

\\li i

radius-vector we have a biquadratic surface, the pn.pri-tii^ of which

maun discusses at some length (S. 196-9). Perpendicular to the

chirf axis (z) the equatorial section ia a circle ; the section by a plane
thioii'_rh the axis of z making an an^h- of I'.n with the I ami

that by tin- plane //- are alike and are oval omnrea of the tyj>e

4

y /<<-, A

M r.iiiia or minima of r are given by < = 0, GO and 120; and for < -0
Bn i he |.lane o) theae are investigat

. -. I by Neumann. It is found

that in general there are in that plane three direetions of maximum
or minimum /. Kvperim. me^aiien on calcspar (Poggfmdorffs

I

1

,. I 161 . 1874) and OoromflM on gypsum and i

(/. //-/,/-,/> /',/, K ,,!*(, ill,
.iir.ti.l,;,',

I'.d i

,

-
-pear to some exf.-nt to

nann's theoretical result*. We note from ejn.in..n <\n>
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however, that only four relations between the six constants of a

rhomlrthedral crystal can be found by pure tractive experiments.

[1211.] The next problem dealt with is that of a rhombohedral

crystal under uniform surface pressure ( 92, S. 199-200). Substitute

th. \.ilut-s (ii)
of Art 1206 in (/) of Art. 1204 equating the tractions

to ;> and the shears to zero, we find :

M (2/+f) N+e'P + h (n + n'),
= h(tf- M) \-d(n + n'),

-p = *'M+e'N + cP, =f(p+p') + h (m + m).

Win-nee we see that m + m' = n + n' = p + p = N- M= and

M P -p
c-e' 2(f+f'-e') 2 {(/+/') c -**}'"

a result agreeing with that in our Art. 1205.
/

nj
v

Further the piano -j
+ ^ + -^= 1 is converted by the uniform pres-A MJ \j

. into the plane + + ~=l, whence wo can

ascertain the change of angle between any two planes as in our

Art. 1209. The dilatation will give the value of 2J/+P, the change
in angle can be so taken as to give M-P, whence it follows that M
and P can be found. These are not functions of the coefficients which

occur in (vii) of our Art. 1210. Thus we obtain two further relations

to determine the six elastic constants. Neumann, who has eight and

not six constants, does not shew how the remaining two relations

are to be found. He concludes this section with the words :

Eine experimentclle Untcrsuchung dieser Verhiiltnisse wiirdo auch fur

dio Beontwortung dor Frage von Bedeutung sein, ob die Ausdehnung eines

Krvstalbi durch Wa'rme und .seine Zusammenziehung durch Abkiihlung
li-nselben Gesetzen folgt, wie seine Fomiveranderung durch Vermindemng

Steigening des Dmckes. Findet man, dass beide Vorgange in glcidin-
vor sich gehen, und dass das Verhaltniss von M zu P bei Erwarmung
x-ii mnstanten Worth annimmt, welchen es bei Zusammendiiickung

v.t, so wiii-do daraus folgen, dass die in . 58 (see our Art. 1197) /ur

I Minition 1 <>S thcnnischen Dmckes eingefiihrten Constanten ^,t , /3y , ^I andi

in rincin Ixrystalle fiir drei Axenrichtungen den gleichen Werth besitx(Mi

WO).

[1212.] This section of the lectures concludes with a

(5^ 93, S. 201-2) added by the Editor and entitled: Neuere Unter-

auchungen itber die Elastidtdt der Krystalle. The Editor remarks that

Neumann, besides the problems on crystals considered in the present
l< < tint- (see our Arts. 1202-11), has also dealt with the two important

problems of tin- iloxure and torsion of small prisms cut in any direction

from a crystal : see our Art. 1230. The results of his researches
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have been published by W. Voigt, who has himself written many
valuable memoirs based upon Neumann's investigations

1

,
which fall into

a later period than that of our present volume.

For rock salt Voigt has found (last memoir cited in our footnote) in

terms of the constants for regular crystals given in our Art. 1203, (</):

a = 4753, /' = 1313, rf=1292,

wln-iv a stress of one kilogramme per square millimetre is taken as

the unit. Here we have almost exactly f' = d, i.e. \xjryy . < in th<

tant notation, thus the additional condition of rari-con-

< v is nearly satisfied: see our Art. 116, ftn. It is very doubtful

if this holds for all regular crystals. Voigt found for fluorspar:

a = 14550, /' = 2290, </=3380,

while for the same material Klaug with an inferior theory and method
ll'i.'tlemanns Annalm, Bd. 12, S. 331, 1881) :

o=13200, /' = 4250, rf=3300.

II. .th oUservers therefore agree in the inequality of/' and </, but in

>.vite senses. Although numerous other regular crystals have had

their elasticity investigated, there is still scarcely material enough for

us to consider the iniilti- or rari-constancy of crystalline structures

as finally determined 2
.

[1213.] The next five sections of Neumann's lectures (S.

'KY.\ :>!)!)) are entitled: Gesetzefilr die Fortpilau -uncj ebener \Ycllctt,

:in<l belong properly to the History of the Undulntory Theory of

Lii^ht. \Ve shall therefore here only briefly refer to their

contents. Neumann proceeds in his usual semi-historical UK tho. 1

:in<l with his characteristic clearness; hence these hundred pa

accompanied as they are by editorial references to later work, an-

most instructive, and the student is hardly likely t find a better

intioduetion ti the elastic jelly theory of the cth-r.

(Ull.| 13(8.203-40) is entitled: Theorie der II ://.>',.-

nd <ler Molekularhi/potkese (Lecture Notes of 1857-8). This

d'-als with tin- laws of polarisation ami double -refrart ion of li^li
1

j.r-\ ioii.lv in\csti^at-d by Cauchy (
Mf-mnir^ \ \

p. 293.

-')!) and Netiniann himself (Poggtmdorffk AnitcUeii, Bd.

1832) on the rari-constant hy|>othesis. Neumann explains

1
Poggendarfft Annakn, Erganzungs-1'.m I vn. S. 1 u. 177, l*7r, :

21X,W n. I If-. 1HM2; Sit:un<i<l>,Tic l,t,- ,1.

'U,nd, 1884, 8. 989-1004, and many others of later date.

An iiiiiHiitiiiit OMi indeed made ly NYmimm. rs : namely
illy fall crystalloRraphicnlly and rlantically int.. tho *amt claaMR.

For example, i- it '/
priori

'

it-iin tl>at a regular crystallographic cryntal inani-
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in the following words why he starts from this narrow basis, instead

of the more general crystalline equations which he has given in the

previous section:

Wir than das nicht nur in Rucksicht auf die geschichtliche Entwickelung
lor Thoorion, welche uns jetzt besehiiftigen werden, sondern auch doshall,

weilcM nil-lit imthwcndig ist anzunehraen, aass die Bewegimgen des Lichta'thers

in Krv>tallcn genau dflOttlbeo Kraften und Gesetzen unterliegen, wie die

wagbare Substanz des Kcrpers selbst (S.
~

Neumann starts from elastic equations involving only six constants,

or from the equations of the stresses as given in our Art. 1203 (6),

\\ li< Te on the rari-constant hypothesis all the accents are to be removed,
ie. = ' = ",/=/'=/" and d = d' = d". He determines in the usual

manner three pairs of waves, each pair having a different velocity but

its members consisting of waves propagated with the same velocity in

opposite directions. He shows (S. 207-8) how the arbitrary functions

may be determined in terms of the initial disturbance
;
and further,

how for each pair of waves the direction of the shift is different, but

for the same pair is the same at all places and for all times, and is

independent of the initial disturbance (S. 210-11). He then investi-

gates (S. 211-13) the ellipsoid of wave-propagation (Fortpfotna-

ungsellipsoid), and discusses some interesting general problems of

wave-motion (S. 215-23), concluding this part of the section with a

determination of the wave-velocities (S. 225). He next turns to the

more purely optical applications of his formulae, especially to Fresnel's

laws of double-refraction and of the polarisation of light in crystals.

II- remarks that (on the rari-constant hypothesis) the formulae of our

Art. 1 203 (b) must for various optical media be thus simplified :

(a) Uncrystalline medium a = b = c = 3d = 3e = 3f,\ ( e = e' = e",

(b) Regular crystal a = b = c, d = e=f,
[

and J/=/ =/',

(c) Uniaxial crystal a = 6, d = e, ) ( d = d' = d".

(d) Biaxial crystal e = e' = e", /=/=/", d = d'=d".

After an investigation of wave-motion in uncrystalline media (S.

227-8), Neumann deduces Fresnel's laws for the velocity of propagation
in biaxial crystals, provided the plane of polarisation be defined (tx fh>'

l>
In in' throuyli the direction of the wave and the direction of tJie vibration.

The plane of polarisation is thus perpendicular to that given \>y

I'Yi-.-iml's definition, and the above is usually spoken of in Germany
as Neumann's definition (Neumanrische Definition) of the plane of

polarisation. The deduction of Fresnel's laws even with this definition

requires the following relations to hold among the six elastic constants

>n Ait. 148):

d) = 4d?
t (a-e)(c-e) = W, (b-f) (a-f) = 4f* -,

\\lii li, neglecting the squares of the differences ofd
t e,f, may be replaced

by:
a=3(+/-d), 6 = 3(/+rf-e), c =- 3

(rf + -/),
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see our Art. 1199. Neumann remarks that the differences of d, e, /are
small as they depend on the differences of the refractive indices of the
two rays

1

,
and neglecting the differences of d, e, f he demonstrates

the transversality of two of the waves (S. 229-240). Of the third or

!"iiiritudinal wave he gives no physical account in this section.

[1215.] In Section 14 entitled: Theorie der Lichtwellen im i<>

i Aet/fi- (S. 241-56; Lecture Notes of 1859-60) F. Neumann
follows Carl Neumann 8

in supposing the ether incompressible and so

disposing of the longitudinal wave. He remarks :

'iirvhfuhrung dcr auf der Hypothese der Incomprossihilitiit
rs lieruhondon Reehnun:: win! uns nur auf tran>ver>al Wellen

fiihren und Restiltate liefern, die sich mit don licMiltatcn der Beolvu'htun
vollknmmener Ciiiiu-idonx liciinden (S. 241-2).

This seems too strong a statement.

Carl Neumann's equations are of the type :

d?u d?u f d~u d*u ... d?v / tli>

p -T = -. . +/ -i-,- t,
+ e -^ -i- 2/

- + 2e -
-f- ,

</.'-
*

tbj- dz*
J
dxdy dxdz <lx

to the condition

du dv dw
-j- + j- + -7-

= 0.
dx dy az

involving this condition, the theory introduces the terms

dp dp dp

into the iM-dy shift equations of the previous section. F. Neumann
remarks of these, equations :

Men ein^efiihrt' hat eine iKMimmte j<hysikali>ehe IVdoutuiuj.
Sie i>t diT duivh die liewe^un- elitstehende

//j/itruxtit',' !>'(. Denn die

fttbttMftan I hllerential^leiehun^en sind im (irunde nur die hydr>d\na-
hen, in welche au er den au>-eren Kraften n<>ch die inneren Slolekular-

kraf irt >ind, wiihrend die in jenen < Ileiehun^en vorkommenden
der Gteechwindigkeiten dem (:nindpnnci|K der 111 ustidtMtstheorie

nre,-liend f.,rt fallen ;S. '1
If)).

lii tl of the flection it is shown that :

dx
'

dy
J

i

1 Those differences do not always seem small, e.g. in the case of Iceland Spar.
does not seem by an

3 The Mr l^tmctly states that Se -ti-n 1 I is tukeu from the Lev
Notes < ' ction itm-It ruferenoe to Carl Neumann M the

<>f the theory of an I ut th. earliest reference
to a paper l.y him i- l'*>:t i/-.- m.i.nt. t.^he Drehwi natiotuetxnf

1 1 Carl Neumann communicated the idea to
.!.. .in.-, i.. fore 1859?

r i. ii. :\
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so that for a non-crystalline medium p = a constant :

und dieser con>tante Worth muss, p= 0, gleich dem Worthe im Welten-

rauiue >ein. tit wir UIIM den letzteren mcht al* /usammengedriickt vorstellen

. 253).

It does not, however, seem more difficult to suppose the ether in

space under high pressure, than to suppose it rigidly fixed at an

infinite distance as required by the recent theory of Sir William

Thomson (Phil. Mag. November, 1888).

F. Neumann deduces the laws of Fresnol from the above type of

Ixxly-shift equations, provided the same relations as in the previous
section hold among the elastic constants (see our Art. 1214) and

provided the plane of polarisation is parallel to the vibrations. The
advance made by C. Neumann's hypothesis is confined to the dis-

appearance of the longitudinal wave and to the exact transversality
of the other two waves. F. Neumann (see his S. 252) seems especially

satisfied with the hypothesis of an incompressible ether and he remarks

with regard to the coincidence of the planes of polarisation and vibra-

tion :

Hierauf ist besonderes Qcwicht zu legen, weil die entgegengesct/te Ansicht
iHK-h selir verbreitet ist. Alle strengen Durchfiihmngen der Theorie alter

fiihren /u dem von der gewohnlichen Meinung abweichenden Resultate.

Some judicious remarks, due I think to Neumann's Editor, occur on

S. 256. We ought not to expect the same relations necessarily to hold

for the elastic constants of the ether in a crystal as hold for the elastic

constants of the crystalline material itself. The vibrations of the

material and of the ether may follow quite different laws. For ex-

ample, an optically uniaxial crystal possesses the same optical elasticity
for all directions perpendicular to the optic axis. Hence for the ether

in such a crystal, Neumann's Editor considers that the relations ef,
b = c = 3d, must hold. But such relations do not hold for the elastic

material of the crystal itself, for were its elasticity the same in all

directions round the axis, its crystalline form could only be cylindrical.

[1216.] Section 15 is entitled: Theorie transversaler Welien in

KrystaUtn (S. 257-75). Neumann here deals with Lame's theory of

the ether in crystals
1
. He remarks that the theories we have pre-

viously considered have been theoretically deduced only for media

symmetrical about three rectangular planes, but experience shows that

Fresnel's laws are true also for unsymmetrical crystalline forms. Such

crystals may have three rectangular axes, in relation to which the

medium is optically symmetrical. Hence a generalisation of our theory
in very desirable. Neumann gives Lame's theory with considerable

There is a mere footnote reference to Green's memoir of 1839: see our
Art. '.(IT
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modifications and I think improvements. The hypotheses from which
he starts are the following :

(ft) the medium possesses the property of

propagating />A(/<> waves; (b) accurately transverse vibrations are

ible in it; (c) there are stresses in it which arise and disappear
with the strains; the stresses obey the general laws of statical

equilibrium ;
and (d) they are assumed to be linear functions of the

strains.

These hy|K)theses enable us to reduce the 36 constants to 12, and
Neumann puts the body-shift equations into the form :

d*u . de tie _ de dv d\v
P i .

= A -f + Lf . -=- + Z>, -.- H ;

df- dx l

ay
'

(/-. '/: ///

<p* n do D de
,

./ ,n\- .ii-

ft n - v
, "5- + " T + A

, -7- + =

(ft'
'

ttx </// <<-. </.c ,/:

de . de tie du dv
P ~1 i

~ &
i 1 ^ i ~T~ 4- C/ -r- -f j -9- ,

ff-
' ax dy az di/ il.r

F=-yryz

w=-i

\-pressing the twists,
- ('

'

- V and the dilatation

a.s usual (S. 2G1). Neumann apparently treats these equations as if we
hal \'l independent constants, but if we apply Green's principle to the

stresses on S. 261 we find :

>r, we have only .wen indej>endent constants.

N. HIM i :n s. LM.-J-7) shows that by a transformation of the

linatc axes \ve can '^-i r'nl either of the coefficients A
}

, B^ y C
t

or of
the e<.ellieients a, ft, y, and that the axes for whieh tin's.- Croups

!y vanish are not necessarily the same. II. Kmarks:

I'lisere
Betrachtun^

fiihrt uns also auf einc I)"piMlnatur des Me<liuni>,
iii-of.-rn niiinlich, . h.it'tru \er-<-lii.',lenei- Art sieh auf vrr-i-hi^lenr

Axeiiaystemn ImKiclu'ii knnen, ein 1'uukt, atif den \vir /uriirkkoiiinie!;

Neumann later in his work makes a iHe point <f this

double sy.st.-n, ,,f axes, but it seems to me that it' the principle of the

-r\ation v applies to the ether in a crystal, thru (ii) must
hold ami HO A^ = /?,

=
C,

= for all axes.

Tin- t\|... ,,t' bodj -liiff eqii.itiMns. when \\e t niMsfunn them n that

./, /i,
-

f \ uii^h, is ^iv'ii by :

*/-'i/ . dB
,

,/<> ,/r,.
f
, . . A -j- + C, /

,

Ii d* </,,

32
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[1217.1 In 122 (S. 267-8) Neumann deals with the Mongi-

tmlinul wave'; it is not exactly longitudinal unless
(ii) holds, but is

m-irki'd by the existence of a dilatation
;

it would thus be better

ftmtd the presaural wave. In 123 (S. 269-71) the problem of

tnUYene waves is dealt with. The wave surface deduced is accurately

Duel's, and his laws are shown to be absolutely correct provided we

'inn's definition of the plane of polarisation. In 124

- 7 i Neumann supposes the ether incompressible and puts =
;

In- thru introduces terms into equations (iii) corresponding to a

hydrostatic pressure and writes them in the form :

d~u_ dr^ drxy dp
( }^*ar d,, ~TX--

These practically agroe in form with Carl Neumann's equations, only p
has a slightly different meaning. F. Neumann seems to see in such

f<iuations a completely satisfactory system giving only two waves

and tli.-s.- with purely optical properties:

welche in jeder Hinsicht den durch die Erfahrung gelieferten Geset/en

niNprechen (S. 272).

[1218.] We have considered somewhat at length Neumann's treat-

ment of Lame's theory because in 125 (S. 272-4) he takes the double

system of axes of Art. 1216 as the basis for some important considera-

tions with regard to the different kinds of axes in crystals. He remarks

that the properties of the longitudinal and transverse waves seem to

depend upon different systems of rectangular axes, and hence lie

argues that the different physical properties of a crystal can be dis-

tributed symmetrically about different systems of rectangular planes.

We have seen (Art. 1206) that so far as this argument is based on

there being different sets of axes for longitudinal and transverse waves,

it is only valid if we suppose the ether in a crystal not to obey Green's

Principle. Neumann thinks that these systems of axes will fall to-

gether only when the material of the crystal is symmetrical about tinvc

rectangular planes, in which case, he adds, experience shows that the

optical elastic axes 1 coincide with those of other kinds of physical

symmetry.
If this triple-plane symmetry does not exist in the crystal, it is still

theoretically possible that the various systems of axes may coincide, but

tliis is not the result of experiment, so far as concerns at least the

optical and thermal axes (axes of greatest and least stretch by heat).

Neumann here refers to his memoir of 1833 : see our Art. 788*, in

which he had shown that the difference between the thermal and optical
s was for gypsum not sufficiently great to be measurable, but he

1 I use the term 'optical axes' for the three rectangular axes about which the

rtlier in a crystal is optically, or, on the elastic theory, elastically symmetrical.
They are not necessarily the elastic axes of the crystalline material, and must not

be confum-cl with the 'optic axes' or normals to the circular sections of the optical
'

ellipsoid of elasticity.' The optical axes are the axes of this ellipsoid.
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luul in Ji lat-r research (Pogymdotfft Antta/'tt, IM. o5, S. 81-95 ' and

5, 1 >.'.">) omvino-d himself that this result could only be an

approximation to the truth:

cincr genaucrcn Untcrsuchung dcr v<>n Mitschcrlk-h cntdcckten

Thatsut-he, das.-, die iptischcn Axcn eines BWQUudflQD Krystalls ihrc Lagc gcgcn
i.ci Knviirmung <>dor Alikiihlung wKodern, InMnrrkto dor \Yrl

U-idiMi Axen sich mit ungieicher Gcschwindigkcit bcwcgcn, und
mai-hto damit die Kntdet -kun^, dass nicht bloss die beidcn Kichtunp-n

her Liichtbrechung, s<.nd<Tn an<-h d;us rcchtwinklige Axcnsy.stem, v<>n

linn <lic optischen Eigcnschaftcn ahhiingcn, cine mit der Tenmentur
idorlirhe L-o- ini Kry.xtall hat. Ilieraus folgt, da.ss die <>pti>rliri,

a niclit lci jeder Teinperatur mit den thcrmi.schcn zus.-immi-M-

fallen koniicii. Es giebt also in der That in dcrartigen Krystallcu xwei

.ic renduedeDflr Richtung (S. 273).

Our stiitcmcnt therefore of Neumann's results in Art. 792* must be

corrected in the sense of this later conclusion of the same scientist.

[1219.] Neumann then briefly refers to the other systems of

ialliiu- a\ s which have been investigated. Pliicker found that the

diai Magnetic phenomena in crystals depend upon their optical axes (see

<jrffs Amutlen, Bd. 72, S. 315-50, 1847, and Plucker u. Beer:

IM. 81, S. 115-62, 1850, Bd. 82, S. 42-74, 1851), but Angstrom has
shown that the chief axes of conduction of heat (directions of maximum
and minimum capacity for propagation of heat), which also form a

nu'ular systrm, do not coincide with the optical axes (see our
Art. US.")). Similar results were obtained by Seuarmout (Comjttes

retulus, T. xxv. pp. 459-61, 1847, Annales de <-h /////, T. x\i.

pp. 457-470, 1847 and T. XXH. pp. 179-211, 1848 a
).

The
want of coincidence appears to be true for the axes of

liution (Wiedemann : Foggendorjfs Anniil,-^ I'.d. 76, S. 404-12,

1849, lid. 77. s. 534-7, 1^ tamKmi : Amides de Mmie,T. 88,

pp. L'."7-78, 1850), of distribution of hardiu-ss (sc.- ,.ur Art. US/i) and
"f aiiiiosphrrir disintegration (Papc : Pofffpnd&rfft Annalen, IM. 1'JI,

1865, Bd. 125, S. 513-63, 1865, Bd. 133, S. 364-99,
186S, and IM. l:J5, S. 1-29, 1868), which have all relation to dill..

ntly situated systems of axes.

kHuiig dcr Verhiil? \Vahr-

:iilirh*t<v:
'

1T dii'MT IMC \ \\ eincin

.iii.l' -.-m al'hiin-t, Jails nirlit schun eiii-- der ^enannten ji

(S. 274).

1 This paper is entitled: Utbcr die optitchcn Eigcntchaftcn /r hem iprism- >

'"///;'.// /. 'id Neumann snows in it that there b a
>u' of the optic axes of elasticity (in Fresnel'a sense of the won!). Thun

each colour has its own axes not only in magnitude but in position (gypsum).
Further these axes change with the temperature and each differently (gypsum,
borax, adularia).

9 Sc'narmont shows that in gypsum and crystals of the unsymmetrioal prismatic
system there i \<\o relation between the position and magnitude <>:

thermal axes and the axes of optical elasticity.
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[1220.] The final paragraph of this Section (S. 274-5) is entitled :

Ueber die Aenderung der ojjtisc/ten Axen mil der Temperatnr. This is

an attempt to explain the alteration of the optical axes with the

temperature on the basis of Lame's theory as Neumann has developed
it. It assumes not only that the formulae of Lame hold for the motion

of the ether in crystals, but also that equations of the same form hold

for the elastic deformation of the crystalline material. Further it

supposes a change of temperature to have the same effect as a uniform

surface pressure: see our Arts. 875* and 1196. Suppose p to be this

pressure equivalent in effect to the temperature change. Neumann
holds that the axes for which the a, ft, y of our Art. 1216 vanish are

the optical axes. Then we must have stress relations corresponding to

tin- 1

>ody-shift equations of type (iii) in our Art. 1216
;
these give us :

- p = AO-csu
- AN

,
= A

,-0
+ -i oy. ,

-p = nO - asz- c.v, .,
- B,0 + i&ov,.,

-p = CO- bsx
- os

,
= Cfl + ^ca-xu .

To satisfy these take

v = .jc

w - h
z
x + hjj + II

'

3z.

We easily tind :

(a
1 + 62 + c

2 - 2ab - 2bc - 2c) p
-c)- 2abc

'

Afi B4 C

Hence, Neumann remarks, since A,, A
2 ,
A3 do not in general vanish,

tin- axes of the stretch ellipsoid corresponding to u, v, w do not in

general coincide with the axes of coordinates, i.e. the optical axes.

Now the axes of this stretch-ellipsoid are the only lines which do not

alter their position with the dilatation, so that it follows :

daws durch einen allseitigen Druck auf die Oberflache einew Krystalls die

|.tiM-ln'ii Hmipt.-ixen deflM&en und also auch die optischen Farbenazen ihrc

Lage a'ndern werden (S. 275).

Thus on the assumption of identity in effect between pressure and
tt mpcrature, the proposition appears proved. We observe, however,
that the principle of energy seems to require, A l

= B
l

=
(7,
= 0, and that

then the optical and crystalline elastic axes would coincide. As they
do not, it seems probable that the assumption that the formulae of

Lame* hold both for the elastic deformation of a crystalline material

and for its bound ether is inoorrcct.
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[1221.] Neumann next turns to the problem of '/ . In

Section 16 (S. 276-89) he gives very clearly and concisely Cauchy's

explanation of the dispersion of light. He remarks, however, that

Cauchy's theory would lead us to expect dispersion as well in gases and
in space itself as in solid and fluid bodies, since the dispersion depends

only on the action of the more distant particles of ether and not on
that of the particles of matter. Neumann himself in 1841 (Die Gesetze,

der Dopi&lbr- '* Lichtes..., Abhandlunyen der Berliner Akadeinie

</. Wissemchaft, 1841, Zweiter Theil (Footnote), S. 28-32) was among
the fir^t to attribute dispersion to the influence of the ponderable

particles on the particles of ether. (O'Brien, as Neumann's Editor

marks, had reached almost simultaneously the same explanation : see his

On t/te Propagation of Luminous Waves in tJie interior of Transparent
r><fies: Cambridge Philosophical Transactions, Vol. vn. p. 397, 1842.)

rdingly Neumann in Section 17 (S. 290-9) develops his own theory
of dispersion, as depending on the action of the ponderable particles,
lie considers only the case of an uncrystalline medium. The general
remarks jj

136 (S. 296-7) are given just as they were delivered in

the lectures of 1857-8, and at that time they were full of suggestion
tor further researches in dispersion based upon Neumann's theory.
Such researches, inspired doubtless by Neumann's work, have been
made by Ketteler, Sellmeier, Lommel, Voigt and others (S. 137), but

these fall far beyond our limits and we must refer the reader for their

discussion to the Report on Optical TJieories by Glazebrook published in

the llritish Association Report for 1885.

In concluding my brief analysis of Neumann's application of the

theory of elasticity to light, I must again express my sense of its value

and clearness. As an introduction to elastico-optic theories for the use

of students the lectures of 18579 seem to me still unequalled.

[1222.] Sections 18-21 (S. 800-74) are entitled: GY

ttewegunyeti diinner Kiirper and deal with >irm_;, membra

and ioLs. Section 18 (S. 300-17) deals with the vibrations of

strings. \Ve may note several points in this section.

(a) Neumann obtains for a perfectly flexible string defined as a
. of prismatic form, which is HO thin that we can takr I .>int

of one and tin- MOM OHM section the same value of the molecular forces

th following equations (S. 303):

d / ^

/V .A </ / - *
r
) sv' ;

. / di
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Here to is the cross-section, p the density, da an rlriurnt of length
of the string, and X, Y, Z the components of body-force per unit

muss upon it. Among the stresses Neumann finds the following rela-

tions to hold :

.TT M "zz 7z ." ,..v

(dxY
"

(dy)*

"
(c&)

a
~
dydz

~
dzdx

~
dax/>,

(b) For the special case of a string without body-forces, stretched

in the direction of the axis of x, we may neglect for small oscillations

the squares of dyjdx and dz/dx. Hence it follows that M =

approximately, and

^x-E du/dx ;

whence we reach for a uniform cross-section the equations (S. 304) :

^-F d*v_ d^/dudv\ ^

p d?~"dx p d?
~

dx\dx dx)
'

d'
2w d fdu dw

p d?
=&

dx(dx

There is a good deal that seems original and valuable about Neumann's
deduction of these equations.

(c) S. 305-311 are occupied with a discussion of the wave-motion

involved in an equation of the type d2

u/dtr
= a2

d*u/da?. Neumann theii

passes to the vibrations of a stretched string consisting of two diverse

pieces, and deals with the problems of the wave reflection and 'refraction'

which occur at the junction. The work is clear but does not present

anything of special note.

[1223.] The nineteenth section (S. 318-31) treats of the

vibrations of a stretched membrane. Neumann's deduction of

the equations is very similar to Lame's: see our Arts. 1072*-6*.

He deals with several simple problems and then discusses the

nodal lines of square membranes. His treatment here again

corresponds closely to Lame"s : see also our Art. 825 (e) and

Lord Rayleigh's Theory of Sound, Vol. I. pp. 250-92.

[1224.] The twentieth section is entitled : Theorie des geraden
Stosses cylindrischer Stdbe (S. 332-50). Neumann remarks that

the ordinary theory of impact between elastic bodies is given in

mechanical text-books as if it had a simple and correct basis. He
reproduces it but without the Newtonian modification to account

for the loss of energy: see our Arts. 35* and 217. Neumann
remarks that such loss of energy generally does take place and
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that investigations ba>ed <n the theory of elasticity lead to results

often in direct contradiction with those of the ordinary Newtonian

theory. Neumann then proceeds to investigate the longitudinal

impact of two right-circular cylinders. He does not at first rediu <

tin- problem to the simple case of the impact of two thin rods,

th- particular problem which was later dealt with by Saint -

Venant : sec our Arts. 203-20.

Let r\ IM the radial shift at a point distant r from tin- a.\i> ami ./

from one end of the cylinder, u the corresijonding longitudinal shift,

then we have the following equations to determine % and u for one

eylindrr :

+ +* + r +'>

\ -imiliir i>air with different dilatation coefficient and slide-modulu>

hold tor tin- seeond cylinder.
Further at the curved surfaces of the cylinders we must have

conditions of the type :

\\liil. at (In terminal cross-sections of both cylinders we must have

the stresses of type :

, ithrr /.-in, or e.jiial
for (he two cylindi-r- ai thrir r..iiiiii.in

This is tin- ni">t ^nn-ral >tat< iiient of the proMem, u and y and thrir

time lluxions hrin^ supposed initially ,M\-M.

/'lit, (/V\p = u( + r-^)r
\dr dx) )

[1-J25.] Neumann does not solve the problem in all it* generality.

1 1 nefl first:

+ ......

,| '

where we , M,, f ,...Xo, X. X."-an> f"" rti "" s " nl
.

N nt
'

J
'

;ill(1 ''"' '

'fh. of (iv) in (i), shows thai all tin- OOeffideiUi oi
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powers of r must vanish. Neumann then contents himself with values

of the form :

(v),

which he seems to think will be approximately true if the cylinders he

f/iin enough. There seems to me to be exactly the same strong

objections to this method of treatment as Saint-Venant has raised

jigainst Cauchy's method of dealing with the problem of torsion : see

our Arts. 661*, 29 and 395.

Neumann says the terms in r~ will give a tir*t approximation if the

cylinder be thin, but he does not justify this statement. Why should

not u
4
or u

6
be large as compared with u

a
1 This case is what actually

occurs in Cauchy's attempt to investigate the torsion of a rectangular

prism by an expansion of this kind (Saint-Venant, Lemons de Navier,

pp. 621-6, footnote). We have a priori nothing to show that the

arbitrary functions uot u.2 ..., x , x2 ... do not vary inversely as the

dimensions of the cross-section. Clearly the ratio u.
2lll/u2m_ 2 as to its

order is the inverse square of a line, but for aught Neumann says to

the contrary this line may be the radius of the cylinder and not its

length.
If we substitute (v) in (i) and (ii) and now neglect terms in r

2

we find:

d-u . d*u
ft v dYf.

p - (\ + 2M)
- * 4M ,

+ '2 (A + f.) -g ,

)

Eliminating ^ ,
u

2 ,
we have from the first of (vi) :

the ordinary equation for the longitudinal vibrations of a thin rod.

Further : Tr = ^ fau, +^ r, - by (vi),

and -

Thus rr-0, at the surface, if we again neglect the square of the

external radius in the stresses, which Neumann appeal's to think we

may do to the required degree of approximation. The relation between
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X 2
and ?<

2
cannot be so chosen as to make tin t. mis in r3 vanish.

says (S. ;;iO) :

class auch den Bedingungen fur die Cylindortliu-hc insweit geniigt wird,
alu es bei dem erstrcbtcn Grade der Annaherung crfordcrlich M.

Tli us liis degree of approximation is not really to r*.

Kurt her we have:

cting the terms in

Thus Neumann reaches in (vii) and (viii) tin- ordinary equation*.
tin- longitudinal vibrations of thin rods, but I do not Bee that Jiis

gives these equations with any greater accuracy or any leas

of assumption than the usual one. Proceeding from these

equations he deals on S. 340-9 with the longitudinal impact of two
tree rods and of one fixed and one free rod. This section is taken
tVoin the Lecture Notes of 1857-8, and thus Neumann's discussion

of the problem precedes Saint-Venant's by ten years ;
but although he

reaches some of Saint-Venant's results, his processes, analytical and

_'i-aphieal, are far less complete, and his discussion more sjMvi.il.

I ii vi.-w of the excellence of Saint- Venant's work and the space we have
i <1 to it, we |>ass by Neumann's pages with the mere reo>ur "ition

of his priority. A reference to experimental work in this field added

ly his Kditor, does not cover much more ground than our Arte. 203-4,
ml 214.

[1226.] The twenty-first and last section of Nt uinaiin > \vrk

:J51-74) duals with the elasticity of thin rod& h beloagi i,.

thf L< ,-tuiv Nnt-x of the years 1850-60. Tin- Kditor oomiden
tliis portion of Neumann's work original (S. vi), but I think it

corresponds very closely to the methods jvdopted by Poisson ami

f'auchy: see our Arts. 4(5('* and (ii^o*. Neuiiiaiui su|po>-s id.

thin ro.l of uniform cross-section :md with its axis initially in

the udfl of ./. // "pfK.srs that (he shift* can be expanded in

v of the assumed small fincur 'litnetirion* of the

cross-section. \Vc have air. -inly noted (see ..ur Arts i;i||* an.l

th.' iihj.-eti.nis to such an assumption and

t h a<ls in the case of torsion: see our Arts. 805, 1225

and the ivf.-rences tli
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Neumann obtains for a rod of ehvular cro.Ns-scction of radiu.s //,

a.-ted upon by body-forces A', 7, Z, the relations :

d"
' ~

(/.v/.'-.l

(')

...
, "-* I

-</rcfeJ }

These equations are to hold only for y = z = 0, or at the axis of the rod,

but they are true for all manner of elastic distributions.

[1227.] Neumann then treats especially the case of isotropy. He

neglects in the stresses all the terms multiplied by R* and so finds

and further :

i/77 dPv we* j,d~w

dy dy? dz dot?

whence he obtains also for y = z :

d'-v

The reader will find that Neumann's reasoning is almost identical

with that of Poisson and Cauchy (see our Arts. 467 and 620*), but it

is by no means sufficient. The results (ii) only hold under certain very
narrow limitations, and equations (iv) require at least a discussion like

that of Kirchhoff or of Clebsch to justify their adoption : see our Art.

1251. Thus this portion of Neumann's work seems neither original
nor valid. On S. 362-4 a similar process for a rod of rectangular cross-

section is given ;
this again corresponds to Cauchy's work : see our

Arts. 618*-624*.

According to Neumann's Editor (S. 355 ftn.), Neumann had also

obtained by a similar method the equations for a crystalline rod, and his

results have been published by Baumgarten and Voigt in the memoirs

referred to in our Arts. 1210 and 1212. But I see no reason why his

method should be more satisfactory in the complex than in the simple
case.

[1228.] On S. 364-8 we have the simple case of a doubly -

supported bar with an isolated load, and on S. 368-73, the trans-

verse vibrations, tones and nodes of a thin rod discussed,

without, however, anything of novelty. The volume of Vorles-

ungen concludes with a brief note by Neumann's Editor of earlier

and of more recent work on the theory of rods.
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The general impression left on my mind after the perusal of

Neumann's lectures is that they form the best elementary treatise

on elasticity and its relation to light that I have met with in the

German tongue. They contain a good deal of original matter and

without the difficulties of Clebsch's analysis, or the monotony
of Lame"s isotropic solids.

[1229.] Of some other memoirs of Neumann's bearing on

ticity we have treated in our first volume, namely in An-.

7ss*-801* and Arts. 1185*-1213*. Further memoirs belonging

essentially to the theory of light, but appealing to that of

elasticity, are the following:

'e der doppelten Strahlenbrechung : Poggendor/s
,</, Bd 25, 1832, S. 418-454. This deduces the laws of

double refraction from the equations of elasticity.

(6) Theoretische Untersuchung der Gesetze nock welchm </</>

/ ht an tier Grenze zweier vollkommen durclts'n'lt'>

reflect irt and gebrocheu wird: Abhandlvngen der Berliner Aka-

</t'mie, is:r>, MtitlieiiKitische Kktsse, S. 1-160. E\|.eriniei.t:il

Its bearing on this theory were published by Neumann in

fnrf* Annalen, Bd. 42, 1837, S. 1-29.

(c) Reproduction der FresneVscJien Formeln iiber tntufc AV-

flexion. Poggendor/s Aiuutlen, Bd. 40, 1837, S. 497-514. Tins

deduces the laws of reflection and refraction including the case -t

! ivil.Ttinn 1 1 oi n the theory of elasticity. Experimental n-suhs

are giv.-n.

('/) The memoir entitled: Ueber die optiscl

ktmiprismafochen 6Vy.vM/r in /'.///'/r/^//;//\ ^.fuialMi, lid

is:;:., S. si !K and S. 203-:>, should be taken M nodifyil^ the

results ,,f the memoir of 1834 state<l in om Arte W It

aniH.iineev the diaCOYOry of the dispersion ol the ..ptieal a\.

inn and the dependence .f their po>ition mi the teniperatnie

\~2\^ ..r Neumann- > iiber die Theari* der

ElcuticMt, S. ^73.

Neiiinann'> I' <(>r thtOrttMu Optik edit, d ly

t. Dom, L.'ip/i-. |SS:, r,,i,trihul,- in .tl.ii.^ U) the cfustir tli-

ofligbt; the brief application of thai il..-..i\ .-n ^ ',
'

to \
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A criticism of Neumann's elastic theories of light will be found

in Glazebrook's Report on Optical Theories, especially in the parts
of that Report referring to MacCullagh, whose theories are closely

allied to Neumann's.

[1230.] Voigt in a paper entitled : Bestimmuny der Elastid-

ti'itscuiistduten des Steinsalzes published in Poggendoi^ffs Annalen,

!:,-<! "mzungsband vii., 1876, S. 1-53, and S. 177-214, gives two

results due to Neumann. The first (S. 5) is given in Neumann's

Varlesungen, S. 185 (see our Art. 1206), and gives the stretch-

modulus for a prism cut in any direction from a crystal of the

regular system with equal axes. The second result is for the

angle of torsion r per unit length of a prism cut from a like crystal.

It is given without proof. If / be the length of the prism, a x

its rectangular cross-section, M the applied couple, the formula is:

_ ?^ [*'+* i /_L
l

\

~a*F\ d *\2d a-f)
x [cos

2

(I, x) (a
2
cos

2

(a, x) + /3
2
cos

2

(ft, x))

+ cos" (/, y) (a
2
cos

2

(a, y) +& cos
8

(ft, y))

+ cos
2

(I, z) (a
2
cos

2

(a, z) + ft
2
cos

2

(ft *)

where a?, y, z are the directions of the crystalline axes, and a, f, d

the constants of our Art. 1203, (d).

Take the axis of the prism in the direction of x, and we have

+ P
>
or for the square>

=

Saint-Venant's formula cited in our Art. 30 gives

6M
T =

so that this would give an error of about 18 p.c. in Neumann's

formula. I suspect Neumann deduced his formula from, or by a

method similar to, Cauchy's erroneous investigation of the torsion

of a rectangular prism, which leads to a result like (i). Anyhow
the formula is I think incorrect, and so probably are all the

numerical determinations based upon it.
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SECTION II.

[1231.] The contributions of Kirchhoff to our snhjert

nt five r six memoirs published in various journals from 184iS

and nearly all reprinted on S. 237-339 of the Gesaimnelte Allmml

Imi'H'H (hereinafter referred to as G. A.) edited by KuvhhotV

liimst-lf. Lrip/i-, 1 ^2, of three or four memoirs (1SS2-4) reprinted

in Boltzmann's Nachtrag to the Abhandlunyen, Leipzig, l.S'.'l,

and of five lectures in the Vorlesungen uber matheiimtMie Phyxik:
.M-linnih\ of which a first edition appeared in Leipzig, Januan

,

ii and a second in the November of the same year. Tin-

contain a good deal of the material of the earlier

memoirs in an improved form, but it must be confessed that

KirehhotV's methods seem, at least to the Editor <t the present

\\urk, frequently obscure and occasionally wanting in strictness.

His contributions, however, to the theory of elastic wires and >!

thin plates are of such importance as to give him n permanent

place in the history of elasticity.

[1232.] We give the titles only of the two raili.M -lastu-

l>y our author :

Xntu relative a la tJteorie d>> I'-'quHHtrc. et ilu iiwun -m'-iit a'nn>

tftutique: <'O/////AX ,- u<fu., T. L'7, pp. :'.'.i|-7. Paris, iMv
.\'<>f>- *nr I'* i-ilirnfitHi* tfunf j>/ntjif f/Vc// ///// . (',,ijttf rent/n I

i"., pp. 7:.:i-G. Paris, 1849.

1 In Mikstanco of these papers, which are not free from misprint...
:nlodii'd iii the inciiioir of 1850, considej-ed in our lu-xt artii-le.

[1233.] Ueber das Gleichgewicht und die Beweg\tng einer

r,r//,-.s- Jt,,,rn,,l
t Bd. 40, S. :, 1

ss U.-rlin.

|s:.o. (0. A. S L':}7-79.) The author was at this time ,

nt in the JJerlin University.

The aim of the m.-nmir is twofold: (i) to obtain th

no account of Kirdil. .. IT

-

s lif,. ami lahour* will be foond in a Nffrolofw by
,n in tin- !" lit. <: . Jahrn. *'

December, 1887, S. 2771 7 ami m u noim-what tl..,.,i I. li\rrod at Grm on
IU.IDM enl ''*o/, n. I

I.MI.I.
h.-.i i.'l.lK.fTdiedOoiotier 17, 1887.
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equations, especially those at the boundary, for the equilibrium

and motion of an elastic plate: (ii) to determine if possible

from a comparison of the theory with experiments on the nodes

and notes of vibrating plates whether Poisson's or Wertheim's

value of the stretch-squeeze ratio t] is the correct one. The

memoir consists of five sections preceded by a short historical

introduction.

[1234.] In the introduction Kirchhoff refers to the memoirs

of Sophie Germain and notes that Lagrange first gave the correct

body-shift equation for a thin plate : see our Arts. 283*-306*.

He notes the errors into which Sophie Germain fell and demon-

strates them by applying her equations to a particular case : see

his S. 51-4 (G. A. S. 237-40). The theory of Poisson (see our

Arts. 474*-93*) is then referred to and Kirchhoff remarks :

Aber auch diese Theorie bedarf einer Berichtigung, und dieselbe zu

geben, ist eben meine Absicht. Poisson gelangt, indem er seine allge-

meinen Gleichungen des Gleichgewichts elastischer Korper auf den Fall

einer Scheibe anwendet, zu derselben partiellen Differentialgleichung,
zu welcher die Hypothese von Sophie Germain gefiihrt hat, aber zu

andern Grenzbedingungen, und zwar zu drei Grenzbedingungen. Ich

werde beweisen, dass im Allgemeinen diesen nicht gleichzeitig geniigt
werden kann (sic!)-, woraus dann folgt, dass auch nach der Poisson'schen

Theorie eine Platte im Allgemeinen keine Gleichgewichtslage habou

miisste (S. 54
;
G. A. S. 240-1).

Kirchhoff certainly emphasizes Poisson's error a little too

strongly considering he does not indicate any mistake in Poisson's

process. The real difficulty lies of course in the exact amount

of ' thinness
'

to be attributed to the plate, and we have already

pointed out how Thomson and Tait have practically reconciled

Poisson and Kirchhoff, while the researches of Saint-Venant and

Boussinesq have put the whole matter into a clearer light : see our

Art. 394 and Chapter XIII. The points raised, however, by Kirch-

hoff's investigation have been extremely valuable and important,
and have led to much good work. Like problems with regard to

the boundary conditions for thin shells have recently been discussed

in instructive memoirs by Love, Lamb and Basset.

[1235.] The first section of the memoir occupies S. 54-60 (G. A.

S. 241-7) and deals with the general equations of elasticity. Kirchhoff
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shows that a single variational equation contains in itself the six

body- and surface-equations of elasticity.
Let SU denote the virtual moment of the applied forces during strain,

an element of volume of the elastic body, then this equation is :

-
""'I

"' **\ /*

when- ,, &,, 83 are the principal stretches 1

,
the body is supp- -d

pie, and the integration taken over its whole volume.

I'.y means of the discriminating cubic Kirrhhoff expresses

X .

.,)+ or(i + *2 -H*3)
2h= n 8ay

in terms of the three stretches and three slides for any set of rectangular
. and thru shows that the development of the variations lead- i

thr ordinary six equations of elasticity. He remarks that Green had

ahvady ^iven equation (i), without, however, usinir thr principal
tehee: see Kirehhoff's footnote S. 56 (G. A. S. 243) and our

Art. 918*.

Kirchhoff having deduced the elastic equations proceeds to a

proof of equation (i):

Irh wrrde jetzt cine Ableitung der Glcichung (i) gelx>n, ans welcher

lirrvfir^'lirn \vinl, da-^ >ir rinr allgcmeinere GUltigkeit hat, ;iK dir ( ilrirhun-

i) [i.e. the. >ix njuatinns <>t cl;isticity]. P>etrachtuni;rn, dir drnrn, wrli-he

liirr n/ iihnlirli sind, liat L.-i-iMim'r nirhnnals in >rinn- Mr. -lianik,

/. I'.. i.*-i drr Ilri-lrituii'4 tier Gleichgewichtsbedingung rii ln-n

igcstcllt (S. 589; (J. A. S. 246).

Thr proof dor> not seem to me very conviiu-inu'. Kii-rhhofT prai-ticallv
that the virtual moment of the stresses on f/.iv ///./: must lo of

thr t'onii

-
dxdytls (Sfa + A'a&ra + SjkJ,

and t'urilrrr that ,s'M X,, N. must be symiiu-trii-al funrtions of tlir t\p-

I I, In-ill-^ 'l.istir constants. I do not think thr proof ran l.r r..n

d i

i.!<id.

[\ -i:\Ct.
|

In the secoihl seotioi^ whidi otvupics S. 60-63 (0. A.

'17 251), Kirchhoff < Ira Is with tin- pmhlriu of an infinr

tliin plat- l)oiindr(l by par.ill.-l piano and any cylindrical -nrfa08

^ t n.rators are perpendicular to thene plane
i

u -, A fur our /i, and for our X/(2/i), while he takes f = our K
\ 4- R^

tit
, Imt he UHCR

/
r mime al<> <>n I

i \ . i-i. n. 4
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supposed strained by body-forces, and by surface-forces on the

edge only, the plane faces having no load. The strains are

supposed infinitely small but the shifts are not necessarily so.

The plate is supposed isotropic. In order to apply equation (i)

Kirchhoff makes two assumptions which, he says, are to be

regarded as results of experiment and which correspond exactly

with those which James Bernoulli made in regard to an elastic

rod (S. 00; G. A. S. 248 and our Art. 19*).

These assumptions are the following:

(i) Every straight line in the plate which was originally

perpendicular to the plate-surfaces, remains straight after the

strain and perpendicular to the surfaces which were originally

planes parallel to the plate-surfaces.

(ii) All elements of the mid-surface (i.e. that surface which in

the unstrained condition of the plate was plane, parallel to the

plate-surfaces and half-way between them) remain after strain

without stretch.

Kirchhoff makes no appeal to any definite experiment as

confirming these assumptions, and the reference to James Bernoulli

is distinctly unfortunate. It is true that the Bernoulli-Eulerian

hypothesis leads to an equation, which Saint-Venant has shown is

really true for the flexure of long bars, but the assumptions by
which that equation is reached are not true, and it seems unad vis-

able to make assumptions, which, even if true for certain types of

strain, need not be true for all types which lead to Lagrange's

plate equation : see our Arts. 70 and 79. The assumptions which

it is really needful to make and the arguments in favour of them

have been dealt with by Boussinesq and Saint-Venant : see the

memoirs on plates of the former discussed in our Chapter XIII.,

and our Arts. 385, 388 and 394.

Kirchhoff's treatment must therefore be looked upon as in-

teresting and suggestive, but not as rigid or final.

[1237.] On S. 61-2 (G. A. S. 248-9) the values of the principal
stretches are deduced, and equation (i)

of our Art. 1235 is reduced to

the form :
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Here </tu is an element of the mid-surface, and the axis of z is taken

perpendicular to this, plt p.,
are the principal radii of curvature of the

mid-surface at </o>, and dq/dz is really the stretch in the direction z at

tin point distant z from Ao. Kirchhon" goes through a rather long
-at ion on S. 62-3

((,'.
A. S. 249-51), which I do not find very

clear, to prove that

Tin- physical meaning of equation (iii) is, however, that the stress

perpendicular to the plate faces, is to vanish at every point of the

plate. Since the plate is supposed infinitely thin and to have no 1

on its surfaces, this seems, at any rate as an approximation, a reason-

able conclusion.

P.y the aid of equation (iii) and integration with regard
Kirchhi.tr reduces (ii)

to the form:

Jt is the thickness of tlio plate.
Tliis is I l.dicve the \\\^i occasion on which the work done in

l.'-ndini4 a thin isotropic elastic plate to curvatures l/plt l/pt
at an\

poii .-d in terms of those curvature. ; ,ii<l this is one of th

Kiivhhoil"s

Tli- third section of the memoir (S. 63-70; G. A.

'"I 9) deduces by variation of equation (iv) the equation for

transverse shift at any p<^int of the niid-snrtace and the

iMHiixlary or edge conditions of the plate. KirohlmtV deals only
with tlie ease treated by Poisson, namely when the mid-surface

shift is very small. He obtains the two edge conditions and the

shift -equation in the manner which is now to be found in se\< ial

t-books: see Lord Rayleigh's Theory of Sou ml. Vol. i. pp. _'

300, and compare Thomson and Tait's Autm-nl Pk&OIOpky, Part

II. pp. 181-DO. The equations agree with tlnse obtained l.\

at-Venant and Boussinesq much later ind.'ed. but b\ \

DM t.. me vi-v much more conclusive reasoning: see our A

8 and 394.

In the last pages of this section (S. G7-70; 0. A. &
that the two boundary conditions -i"d tl"

[nation are sufficient to determine c'-mph 1. 1\ tb- tn

be plate as a wb-. pted)
tin- \alue -! th.

: I,,, tli.'in Hi's e.piatioi,, can ..nly In- sati
|

4-2
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in special cases, as they involve an additional equation. For the

exact meaning of Poisson's boundary conditions, see our Arts.

488* and 394.

[1240.] KirchhofTs proof of tho uniqueness of the solution of the

plate equations is of interest, as it is, I think, the first nppcai-.-mrr
of a method afterwards extended hy himself and then by Olebsrh :

see our Art. 1255. In general terms it may he indicated as follows :

Consider the double integral

n'= + * f *

over the mid-surface of the plate. If ds be any element of the edge, and
dn an element of its normal measured inwards, < the angle between the

normal at ds and the positive direction of the axis of x, then this

integral may by partial integration be expressed in the form (S. 70
;

G. A. 258) :

7 4 i-o-o-- -r-
dx4

dx*dif dy
4
)

2 (A + /u) r/(Pw d?w\ / d?w d*w\ ,
H

( T 3 + -,j~ 2 )
cos

<J>
+

( jin + -J-* )
sin ^>X + 2/x L\^ dxdy

2
/ \da?dy dyj

d T cPw . /(Pw d2w\

ds [_dxdy
(C S * - S1U * + - C S mn

X /d*w
cos <f> sin

/d*w tPw\ d*w _

( T > + -3-3)+ TT cos"

</>
+ 2

2 2\ ^ T > ^y-
)\\+2iJi\dx

2

dy
2
/ dy? dxdy

d'w . dw

Now suppose two solutions wl and w
a
of tho plate equations possible

and let w1
w

z
= w. Then if we subtract the body shift-equations for

w
l

and w
2
from each other, and each of the corresponding boundary-

conditions likewise, the applied forces vanish and we obtain, with

constant multipliers, exactly the three expressions in the curled brackets

in the value of / equated to zero. Hence / must be xero, whence it

follows that throughout the plate

dhn d*w tfw
=' =

' '

or, wl
w2
= Clx + C.$, C1

and (72 being constants; that is to say the

shift difference corresponds to a translation of the plate as a whole.

The reader may convince himself that the expressions in curled brackets

are really identical with the body and boundary equations by reference

to our Arts. 392-4.
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[1241.] Tin- fourth section of tin- iiirinoir occupies S. 70-81

(G. A. S. 259-71). It deals with the vibrations of a free circular

plate, without surfac. --load or body-force. The solution is in

ml than Poisson's, as it does not suppose the vibrations to be
tin- same along all radii. The initial shift and shift-velocity at

any point of the plate are supposed given in terras of the radius-

ud the vectorial angle. For a complete plate the solution i-

rxpn-xsed in a doubly-infinite series of functions akin to Bessel's

functions, there being a constant to be determined as one of tin-

roots of an algebraic equation of infinite order. The analysis is

too lengthy to be reproduced here, but it possesses considerable

interest. I may note especially the manner in which the equation

(15) mi S. 74 (G. A. S. 263) is transformed on S. 74-7 (G. A.

S. 2G4-0) to one proceeding by ascending powers of the variable.

IMiy-h-ully the must valuable part of the memoir lies in the di>-

*

ry of the equations for the frequencies of the notes and tin-

ions of nodal lines.

Tin- form of tin- transverse shift for a single tone is given by

w = {(A cos iuj/ + B sin
n\f/) cos (\\-tnnat)

+ (Ccosn^ + J) sin nty) sin (4A
3

Mwo*)} UHm ...............
(i),

our

: J, /;, C, D are constants ultimately depending on tin- initial

conditions, I is the time from the epoch, \j/
the radial angle, n a |o.siti\.-

-(= Q ,
// being the plate-modulus of

A + '_
/

' p op
'., p the density and 2c the thickness of the plate), and

-R

)

'

\yl?)XW-R
d
,* \dh J(*-A fc)

/ IN-MI;; an\ ladin > Vector, and It tin- radin.s !' UK- plat- , fui i

w\ //"r. /.

<">J ?! L
fc

1T(ST 1)

+
1.2.(n+l)(n + 2)
/

' i

*n
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and finally A i> tlu- will root of
k=<*>

0-(4y-l)**(n- !)+(- 1)*^
where A' = X

MJI16,
-...(iv).

[1242.] The fifth section of the memoir which occupies
S. 81-88 (G. A. S. 271-9) deals with the numerical solution of

the equations we have given in the previous article, and implies
a very great amount of laborious calculation. The tones are com-

pared with those obtained by Chladni and the nodal lines with

those obtained by Strehlke with two circular glass plates. We
will cite some of the results of Kirchhoff's investigations.

(a) First with regard to the notes, their periods are obviously given

by 7r/(2X'-,m ).
Kirchhoff calculates (S. 84-5 ;

G. A. S. 275-7) the

values of Iog10 (X^ft)
4 from equation (iv) and finds for these values :



Kllli'HIK'FF. ^7

Tin- fivqtinieirs of tin- hiu'h ry B& \\m, or as (M+L
and thus (Jhladni's experiments so far agree with KirchhofFs theory.
Kiivhh"lV thru compares Chladui's results for the lower tones with those

calculated first on Wertheim's hyi>othesis (X= 2ft) and then on Poisson's

(A = fj.)
for the case of a plate whose lowest tone is taken as C'. 11

MMimei that C'hladni's results were all obtained for the same constant

attire. The results of Poisson's hypothesis are closer than tlu^e

of \\Yrtheinj\s to Chladni's observations, but the divergences are so

in both cases that no conclusions can be drawn with regard
to tin- relative value of the hypotheses. The frequency of the tone,

.illy for large values of in and n, varies so little with the value of

A
//,

that experiments on plates can hardly be crucial between the two

hypoth

(!>) Secondly with regard to the nodal lilies. These are given by
tin- values of r and ^ for which, independently of the time, 10 = 0.

Cl.arly from equation (i) we have the radii of the nodal circles given

by the values of r (<b) for which UHm = 0, and also the nodal diameters

11 by the values of ty
for which

A cos n\]/ + B sin
tt\f/

= 0, (7 cos nty + D sin nty 0.

Thus there can be no nodal diameters unless the plate be so diMurl><-d

that A \ T> :: C '. D. If this equation holds we have n nodal diameters,
a.-h adjacent pair separated by the angle ir/n. n and m may thus be

considered as giving the number of nodal diameters and nodal circles

-ly which can occur in connection with the tone defined

I'.v A,im .

K irchhoff says with regard to this :

allgemcinen Resultatc der Theoric sind im We^ntlichen n.

'iruiix in ri'lNMviii.Ntimiimnx. Der Versuch zcigt. l\n<teiilinien

-on bestchcn, die mit der Peripherie der Schcita concentric h sind,

und in .i;lei-hc Theilo thcilen, wenn man vmi

>.scn Vcrzemingen absieht, die diese Linien erlcidcn und die, wic mir

ut, h.ui]it-;i'-lilirh darin ilin-n (Inuul halcn, dass die Schcibc nieht

vollkiuiinn-n tr 16 ie vm- U-r

.in, :.. einem Tom, U-i dcm /.uweilm |)iuvlime.^er .d- Knotenlinien

v.irkMiiniu-n, di<> DurrlimesM-r /uwcilcn fehlen. I'elilen M, >> nln '

- heibe gestreute Sund /war auch in I)urehmes.sfni an : die-

ircndder BewegungderSc-hcilK-, smidern oM-illimi. (S. 88 ;

To this general rxpri-iiiH-ntal con ti niiat ion of the theory Kiivhholl

b a comparison of the radii of the nodal dculatrd

and \\
"

Tih. -im'x hyjiotheses with UIOHO obtained exporimontally
kr from t\\.. IK -ular glass plates (Art 359*), and by Savmri

Oil three su.'h platrS (Alt. 320*).

1
1 1 may be also questioned whether any such perfectly Uotropic ami komogtneo**

plate as is 8uppnned in the theory can be really prepared
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I plaiv lclow liis comparison of rxpi'i-imriital ami throivlk-ul numbers

for the ratios of the radii of the nodal circles to the radius of the plate :



diameters, the period of a single conv>pondinu' vibration is taken a>

tin- unit of time, ami KiivhhofT finds the numbers of vibrations corre-

sponding to the sub-tones which take place in this unit of time. The
numbers thus obtained are the same for all plates what.-\n th.-ir

substance and dimensions, provided we assume any fixed relation

brtw.vn X and
/x. The sub-tones are more fully calculated on Poisson's

hypothesis (X = ft) than on Wertheim's (X 2/*), and they are given here
t>! reference :

Ratios of Frequency of Sid-tone to tfuti offundamental Note.

m = .

m = !

1-6161

15-9031

n = l
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lor the number ^V of vibrations in unit time corresponding to the fun-

damental note of a circular plate of radius b and small thickness 2e :

*V=
1-04604^

,
for A =

/x,
and = 1-02357 ^-> for ^-'2P

our Arts. 511* and 518*). He remarks that, so far as he fs aware,
no experiments have as yet been made to test these results.

[1244.] Uber die Gleich ungeu des Gleichgewichtes eines elasti-

achen Kurpers bei nicht unendlich kleinen Verscliiebungen seiner

Theile. Sitzungsbericlite der mathem.-naturwiss. Classe der k.

Akademie der Wisseuschaften, Bd. ix. S. 762-773. Wicn, 1852.

Kirchhoff did not republish this in his Gesamnielte Abhandlunycn,
and therefore was possibly dissatisfied with its method and results.

He commences his memoir by referring to the paper of Saint-

Venant discussed in our Art. 1617* (I.) et seq. Saint-Venant

had briefly indicated a method of finding the equations of elas-

ticity when the shifts are not infinitely small. Kirchhoff remarks:

Diese Gleiehungen habe ich auf zwei verschiedenen Wcgen abgclcitct, von
dcncn der erste ini Wesentlichen mit deui von St. Venant angedcutetcn
ubereinzukoniinen schcint, der zweite auf der Entwickelung einer friiher von
mir (Crelles Journ. XL. [sec our Art. 1235]) aufgestellten Formcl beruht

'(S. 762).

[1245.] KirchhotF takes as his variables not the shifts u, v, w of the

point x, y, z but the coordinates of the point x, y, z, after sliift, or

= x + u, rj
= y + v, = z + w. He then states rather than proves that

body- and surface-stress equations of the usual types, namely
1

:

v dxx dxy dxz

pX+-j- + -j^ + -^-
= 0,

dx dy dz

+ Hxz

hold, where, however, the stress symbols have not their usual meaning.

They denote stresses parallel to the coordinate axes across planes

originally but no longer parallel to the coordinate planes. Thus
relations of the type

xy = yx

will no longer be true. (Diese neun Drucke sind im Allgemeinen schiej'

yegen die Ebenen gerichtet, gegen die sie wirken, und es sind nicht drei

von ihnen dreien anderen gleich, S. 763.)

1 It should be noted that we use tensions where he uses pressures.
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[1246.] The
j.

is t> BZpreM these ni i-s in terms of

the three principal tractions. This occupies S. 764-7. In the course of

tin- investigation the following process occurs. Let r be the direction

of an dement of a line in the unstrained state which takes the direction

r' in the strained state; let e be an element of length of / defined by its

terminal coordinates a:, ?/, z and x + 8x, y + 8y, s + &s, then if e becomes
e with terminals given by , 17, ,

-f 8, rj
+ 817, + 8, we have :

... e cos (/, x-)
=
ej^r

cos (r, a;)
+
^-

cos (r, //) +^ cos (/,

with similar e. [nations for teos(r', y) and cos(r', c). Kiivhhoif ,

c and on either side, which is allowable he says "ivenn wir beriick-

s'u'lit it/en, doss e von e nur unendlich wenvj verschieden int" (S. 765).
Now it is not shown that the terms Kiruhhoff is thus neglecting are nut

of the order of the quantities he proposes to retain. In fact, if r \te

taken to coincide with x, he finds the cosine of the angle between the

strain* -d and unstrained directions of a: to be d/dx=l+ux, which
is <juite incorrect. If we keep e/c in, we should have it as a factor

of the right-hand sides of equations (6) of S. 765. Thus in KirchhoH"s

expressions on S. 766 for the stresses, we must read for his principal
ure* /*,, /'.,, P3 the quantities

A !/!> r -' -

< '

or, if *,, n.2 ,
83 be the stretches in the directions of the principal pressures:

otivelj. ( Kiivhhoff uses Xn X..,,
X3 for our *lf w,, t

[

1 '2 17.
|

Kirddioir next assumes that the principal pressure* will bi-

linear functions of the principal stretches, or that

/', =-2/|^
+',

He writ.-- A" for p above, and for X'(2/x'), using tin- same let!

and d nils as he had used in the memoir of l

x "'

II Ait. 1 L' ."
"'). lie is justified in doing this becaiis*- he neglects

of the strain. If we i- tain the Mpiare i.f th- -tr.iin, lUld

still assume the prim-ipal pressure- linear functions of the principal

H-S, then A and
ft!

will not be the A and
/i

of our nrdinar\

notation. 'I'liM- Sir \\'. 'I'homs.in in hi- memoir of IM'L(

(/'////. Trail*.

1- 812, or Treatise on Natural Philosophy, Part II.
j

i- marks :

And it may U- i-.tu! to ,,ber\'e that f<r .ill valuer of

;t [the strain cne.rgy] must then-fon- le e\pnv^il>le in tho aoi

utw, ooch of which is always iimtc, f.. r all valuot <>f tho
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Here 4 1, #-! G\^ , 6, c are the generalised components
of strain, and it has just been noted that if these arc infinitely small
tlu- strain-energy may be expressed as a homogeneous quadratic function

of them with ro/ixtattt coefficients. Hence Sir W. Thomson considers

that the coefficients of elasticity vary as the strain increases in magnitude
and thus for finite strain may no longer be represented by X and

/n.

[1248.] To be more general then than Kirchhoff, that is to deal

with any magnitude of strain, we ought to replace in the equations (7)
and (8) of Kirchhoff's S. 767, the quantities Plt 1\, 1\ by expressions
of the type

1\ = - 2// sj + -, (sl
+ s., + ,)

These will agree with Kirchhoff's values if the strains are so small that

the products of the principal stretches may be neglected.

Neglecting the square of 8lt etc. Kirchhoff finds values for slt *2 ,
sa in

terms of quantities which he denotes by the letters L, J/, J\r
, /, in, n.

These quantities are related in the following manner to Thomson's

A, By C, a, b
y
c and to the e^, c

tf ,
cz , rjuzj rj^., r;X!/

of our Art. 1619*:

21 = a = 17^, 2m = b =
r},,x ,

2n = c =
r)xu .

But it must be noted that while all these quantities are generalised

components of strain, Kirchhoff's expressions for s
i ,

s2 ,
s3 in terms of

Ly M, N and therefore his expressions for the stress in terms of these

strain-components are true only for infinitely small strains.

[1249.] Expressed in the notation of our work we have according
to Kirchhoff the following expressions for the stress-symbols as defined

in our Art. 1245:

--
2/i

{(1
+ tO

(c,
+ A (ex + c,

4-

+ ux)
r

>j>
+ u

l,(<u
+ A (

with others written down by proper cyclical interchanges. These

results, as we have seen, are obtained on the assumption that the

square of the strain may be neglected. Now Kirchhoff's last set of

equations on S. 769 shows that slt s2 ,
s3 are of the same order as

*x> //j
c
;.>

and therefore these latter quantities are also small
;

but

fx = ux +^ (u/ + VK + wx
2

),
and therefore if ux be positive, ux and c,. must

be |)ractically of the same order, hence it is difficult to see how as ;i

rule we can neglect s and retain products like u^ But if we do

not reject ^
2 Kirchhoff's investigation is invalid. Thus it does not

seem that much importance can be attributed to the expressions given
above for the stress-symbols in terms of the generalised components
of strain
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More weight is I think to be laid on Kirchhoflf's second
method of investigation, which at any rate, till it assumes the strain

to be a quadratic function of the principal stivuli-s, does not

the strains necessarily small.

. then in our notation KiivhhulV finds for

lues of the stress-symbols as defined in our Art. 1 1! 1 ."

_ dW <nv ,/ir

~j >
rn =

~j > fz
,

,1,1 dn 'in

__</!!' ~_*W dW
dvx

9 dv
v

J

dvM
'

dW _ r/ir dW
uc j , zy . , ;,* = -j .

,/,/

But IF^a function of x , , cz ,
rj^, 17^, 17^.,,,

\vh. i. thflM

straiu-compoiK'iits liavr tin- values u i\cn in our Art. 1G1D*.

it follows that :

dW dW d^ <lWd^f dWdt
du '/c dum drjzs dn </,,

dW n dW dW
Or (1 + Ux) + -=--- U- + -y

Mr
dt .l n d^

_ ,nv
S.nula.lv r,= u,+

dW dW dW,, "
} -

Sul)stitut tlirsr < -\prosHions in the body-stress equations of Art. 1 _'!."

and we have precisely the generalifled njuations ui\-n l.\- ('. Nrumaiui
in L860(ee our Art. G70) and by Thomson in 1862 <

/'A/

p. ;il. -\'"/. /'/,//. Part II. p. 463). Thr>- .

,,,!:.'
'luis in\,

in Kin-lili.tl"s results on S. 77'J and 789, although IK- pnMOTl them by to

Bm tli.- vain.- i,f 1C in tin- doubtful form :

IT= M (

on tin* a.-vsii nipt ion tliat tin- sipian-s if tin- strains ma\ !,
n-<j;Ivt<-.l.

[12">1.] L'hcr I'ichgewiclt mnl

xlfi'r/t tliinncn ' : ('relics .1 \'

lin, 1S.>

Tliis iin-iiioii U siihst.'inti.'illy rrju-d.lin-r*! in tli. t 'btli

r>f Kiiclibotrs .I/. with

ni".|itiraii..i,. ;iinl iiiipriiM-niciit< l\ ir.-lili, -tV's tb-..ry in both
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places is owing to its brevity and generality rather hard reading.

It is given in a somewhat simpler and clearer fashion by Clebsch

in his Elasticitdt, S. 192 et seq. It belongs to a branch of our

subject that Kirchhoff was among the first to treat with any
\ ictiu'ss, namely the equilibrium and motion of elastic bodies

having one or two dimensions infinitely small, i.e. thin rods, wires,

plates and shells. The subject is a difficult one, and it is only the

confirmation, which the results reached receive when we approach
them as limiting cases of bodies of finite dimensions (as, for

example, has been done for certain cases by Clebsch), that enables

us to set aside the doubts raised by some of the processes adopted.

[1252.J The memoir opens with the following historical account of

its object :

Poisson hat in scincm Traitt de mdoaniqiie cine Theoric der cndlichen

Formiinderungen entwickelt, die ein unendlich diinncr, urspriinglich gorader
cxler krummer, elastischer Stab durch Krafte, die theils auf sein Inneres, tlieils

auf seine Enden wirken, erfahrt. De Saint-Venant hat jedoch nacheewieaen,
dass die Voraussetzungen, von denen Poisson dort ausgegangen ist, theilweise

unrichtig sind, uud hat zum ersten Male die Torsion und Bicgung oinrs

unendlich dtinnen Stabes von beliebigcm Querschnitt, von den Grundgloi-

chungen der Theorie der Elasticitiit ausgehend, mit Strenge untersucht. De
Saint-Venant hat dabei aber nur den Fall bchaudelt, class der Stab urspriing-
lich cylindrisch ist, dass die Formanderungen unendlich klein sind, uud dass

die Axe des Stabes eine Axe der Elasticita't ist. In der vorliegenden Abhand-

lung untersuche ich, von den Gleichungen der Theorie der Elasticitiit

ausgehend, die Formiiuderungen eines unendlich diinnen Stabes von libel-all

gleichem Querschnitt ohne diese beschrankenden Anuahmen. S. 285
((/'.

J.

S. 285-6.)

[1253.] The first section of the memoir occupies S. 286-93 (G.

A. S. 286-95) and relates to certain general principles which are

afterwards applied to the special problem of the thin rod. Kirch-

hoff first proves a principle which Clebsch has termed Kirchhoff'8

Principle and which he has thus stated in his Theorie der Elastici-

tdt, S. 191 :

Die innern Verschiebungen eines sehr kleinen Korpers sind nur ab
von den Kraften, welche auf seine Oberflache wirken, nicht aber von dmjcnigen,
welche auf sein Inneres wirken, vorausgesetxt, dass die letzteren nicht gegen
die erstcrn ausserordentlich gross sind.

Kirchhoff's demonstration of this principle is given in ana-

lytical form on S. 286-90 of his memoir (0. A. S. 286-91) and is

repeated with slight variations on S. 407-9 of the VorlesuiKjcn.
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After studying both demonstrations I am obliged to confess that

they carry no conviction to my mind. Clebsch after citing the

principle as due to KirchhofT adds:

von dessen Richtigkeit man sich leicht von vorn herein iiberzeugt (S. 191).

Clebsch's statement of the proof is as follows :

sieht dioscii S.-itx sofort ein, wenn man foment!. ng anstellt.

Xehmen \\iran.ilas- .lie < lro>se der auf dan Aeussere wirkemlen K

;iuf <li<- Flarhenoinhoit, und die ( ln>s>e oVr auf da> Innere wirkenden Ki

uf dio Volumeneinheit, entwetler verjeirhhar M>irn. ooVr i

r grass gegen letxtere; nur der umgekehrtc Fall >! Loosen, 1 >ann

rosse der wirklu-h auf die Oberfliiche des klcinen K outers wirkenoYn
M( )1 KM tliiche oder einem Theil desselben pr- >\* >rt i< .nal, erhiilt

jedenfalls einen Faktor, wek-her von der Ordnung der Grosse dieser OU-rt:

absolute Grosse der auf das Innere wirkeudcn Kraft hin^e;_;en \\ird

jti-oportional mit seincm Volumen. Sind nun die Dimensionen des kloinm

K.i-jKT> kloine Grossen erster Ordnung, so ist seine Fliiclie von der xweitcn
( Mil; VolunuMi von d-r dritten

;
der Faktor also, mit welcliom die auf

-ivwirki-ndtiii Kr;iftebehaftetsind,ist urn eine Ordnung ni,

. mit \vclrlu-ni die auf das Innere wirkenden Kritfto Miai'tH >ini.

Sind a No nur die letzten nicht an sich gegen die erstem sehr gross, so \\inl ilm-

NN'irkuni; >< -hr klein gegen let/tere und ist somit xu vernat-li Irh

IM-II. -elbe Princip bereitsim Anfan;^ ui i-< !(! I'ntrr-u, lnin^
IxMiutxt wunlo, indem man dir inncni VerschitOumgen einos Klemont> mu
(It-it Oberfliiche wirkenden Spannungen, nicht abor von dm ;uif -rin

lnnnv> NvirkiMidcn Kriiften al>hiingig machte (S. 191-2).

This statement of Clebsch's appears to contain all tli. nr-rui unite of

Kii-clihotrs analysiH. But I do not see any reason why exactly tin- sam.-

argument should not be applied to the elementary right six-face from

which \vc dt-diu-f our fundamental elastic equations; ind-cd the l:i>i

Nvipl> of ('! -l.sch >. in to indicate that in some fashion \\- <!. aj.j.h it.

Tin- n-asi niiug does not seem to me to clearly explain why for a l>o<l

infinitesimal dimensions we may neglect the right-hand sidr of tin-

t \
J.i.

al r.jiiation I

'/r

but not th- right-hand side of the typical equation for the surface-load :

Hex + m*y + n** =. .V ...... (ii).

loubtful whether if ott the dimensions of the body are made
infinitesimal the prineijilr has any real meaning. If we are deal

however, \\ ith a \\ ire or thiii plate, it is the shifts of points <i

B irire or the mid
j.
lane >f the j.late that WC are anxious to dl8C'

i.
IM ii.l upon the rewltant body and refulton/ BUI-

wire or plate. In the case of a win-

dim> .ss-BCction of win. h are f, an. I of which S* ill an

..lit ..f len-ih. th.. ,, .ult.mt bod >"<! tin-

'/r (<l-n
\

L +_ mpi . -A
)

... ..... (l),
'/// dz '

\<lt- )
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resultant surface force of order c&^Y,,; hence, if pX be not very great as

compared with X
,
the former term vanishes as compared with the latter

when is extivmrly small. Tn the case of the plate, if r be its thickness

and 8a> an element of its surface, these resultant forces are of the order

T&I) (pX) and &aXn respectively, and, if pX be not very great as compared
with X

{t ,
the former vanishes as compared with the latter, if r be

extremely small. Thus for wires and thin plates we may put the right-
hand side of equation (i) zero, if we are merely seeking the shifts of

points on the central axis or mid-plane; but if we were to suppose
these bodies to have a sensible, if very small cross-section, then it smns
to me that for the relative shifts of points on the same cross-section

there is no reason why the body- and surface-forces should not have
like effect. On the whole the method by which Boussinesq and Saint-

Venant approach kindred problems seems to me slightly more convincing
than tho somewhat vague reasoning of Kirchhoffand Clebsch : soc our

Arts. 384-94 and Chapter xm.

[1254.] The next general principle considered by Kirchhoff is

similar to tbat of his memoir on plates. He states that the six

stresses expressed as linear functions of the six strains would

involve 36 constants, but that 15 of these are equal to 15 others

because the expression

xxdsx + yydsy + *zzdsz -f- i/zdo'yz -\- zxd<rzx -\- ^ijda'yy

must be the complete differential of a homogeneous function F of

the six strains. He remarks in a footnote that this follows easily

from the mechanical theory of heat and explains why this is so,

concluding with the words :

Diese Betrachtung ist, wie ich glaube, schon von W. Thomson iin Quarterly
Mathematical Journal (April, 1855 1

) angestellt ;
ich habe die citirte Stello nu -h't

.ins.-hen konnen (S. 290
; G. A. S. 291).

The strain-energy leads Kirchhoff to the equation of variation :

&U-SfffFda;dydz=iO ........................(i),

where SU is the virtual moment of the external forces. A similar

form of this equation occurs in the memoir on plates (see our

Art. 1235) and had already been given by Green and others.

[1255.] From a certain property of the function F, Kirchhoff

proceeds to show that the above equation, or the general equations
of elasticity, determine uniquely the values of the shifts u, v, w, the

1 Mathematical mid 1'lnjxical Paper*, Vol. I. pp. 300-5.
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translation or rotation of the body as a whole being negleo'
This general proof of the uniqueness of the solution of the equa-
tions of elasticity has been adopted by Clebsch and Boussinesq
(see our Art. 1331 and Chapter xm.), and was probably >u^ >tr,l

by Saint-Venant's memoir on Torsion : see our Arts. 6 and 10.

Suppose there are two solutions of the equilibrium equations of

elasticity. Substitute the shifts in the three body- and three siirface-

e.jnations ami subtract the corresponding equations for either system of

solutions, tli-n there must he values of u, v, w (lin"rriii< from

(i.e. tli,. ditleivnee of the two systems of shifts) for whieh the right-
hand sides of the six equations vanish, or which satisfy equations of
the type

"T7 dZy d
j

+ ~r~ + i~~
- v.

clx dy dz

/f7 4- iii7!j + n7z = 0.

Multiply the first of these equations by udxdydz, and the corresjxmdini,'

^nations by vd# <!}//-. and n',f., ,li/dz respectively ;
add and int-i:i-:iti'

l.y parts over the whole volume of the solid. Then by im-ans ..f th.-

second or surface set of equations we easily find

0,

or fffFdxdydz = ........................... (ii).

Now for an isotropic Ixxiy

F =
p. (8X

*
4- if 4- 8*) + Jft (or^ 4- <T

8
4- <T

r(/

2
)

4- U (^,. 4- * 4- 8,)*.

ll.-nee for an isotropic body we must have :

be stiains all zero. Thus the two systems of shifts can only litl. i

by a translation or rotation of the body as a whole.

K in -hlioil
1

adds to this proof for isotropic bodies :

.l.i l,,-i .!, i, welche in verechiedenen l!i< -litun^en eine

hi.-ili-n.- I''.!. i-' . die Untersrliiede ! tiit nur klein

,in aniM-liincn djiriVn, dsuss U-i ullcn in d<r N.itur v..rk.miuen-

d.-n K ... j,-m /''dieselbe Eigenschaft hat (S. 291
; (J. A. S. 293).

The Eigenschaft in question is that of never being negative ami only

vimishini,' when the six strains are each separately zero. That bodies

with aeolotropic elasticity (e.g. wood) have hi fact only 'small dr

thrir elasticity
' seems more than doubtful, but Kii.-ld

,,,.,,, ai ,i leak witb

problem of the union.- solution, and HHHert* \\itl.out further proof

i. IT. II.
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that F must be a positive quantity and that its vanishing involves the

vanishing of the six strains individually. Clebsch may only be thinking
of the form of F for isotropic elastic solids

;
its form for aeolotropic

solids requires some further discussion. At any rate Kirchhoff's

argument from nearly equal elasticities does not seem conclusive. A
modified proof is given by Kirchhoff on S. 394-5 of his Vorlesungen,
which does not exclude the case of aeolotropic bodies, although any
reference to them is omitted. He states however that for a compressible,
frictionless fluid, F will take the form given by JJL

= and A finite, in

which case the vanishing of F does not involve u = v = w for the case

of no motion of the fluid as a whole, i.e. the slides may be finite.

[1256.] KirchhofF concludes the first section of his memoir by
throwing equation (i) into a form suitable for a body in which the shifts

are not very small, but the strains in each elementary portion arc

small. We have only to sum F for all these elementary portions, and
we have :

Q ........................
(iii).

If the body be in motion and T be its kinetic energy this equation
becomes " durch ein bekanntes Prinzip der Mechanik "

:

fdt{8T+SU-$2fffFdxdydz} = ................ (iv).

The application of these equations to the case of a thin rod or wire is

made in the following sections.

[1257.] Kirchboff's second section occupies S. 293-302 (G.A.
S. 295-304) and is substantially reproduced on S. 410-19 of the

Vorlesungen. Clebsch on S. 190-202 of his Treatise deals with

the same matter, but soon forsakes Kirchhoff's processes for

deductions based on his own solution of Saint-Venant's problem.
We shall return to Clebsch's work later (Art. 1359), but may
remark here tbat it is in some respects more, in others less, satis-

factory than Kirchhoff's original investigation of the problem.

Kirchhoff supposes the rod to be initially right-cylindrical, and
in this initial state takes a rectangular system of axes at the centroid

P of any cross-section consisting of the axis of the rod (1) and the

principal axes of the cross-section (2, 3). Let x, y, % be the coordinates

of any point of the rod relative to these axes before strain and x + u,

y + v, z + w be the coordinates after strain relative to rectangular axes

x, y, z, of which the axis of x is the strained position of 1, and the axis

of % is perpendicular to the plane through x and 2. Now if x, y, z be

supposed to receive only values of the order of the linear dimensions
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of the cross-section, then .r, y, z, i/, r, ware quantities which fulfil the

conditions required for the equation (iii) to hold. Let
17,

be the

coordinates of P after strain referred to any rectangular axes in space,
and let the former set (x, yt z) make the system of angle
direction-cosines are given by

<*o, ft, 7u

, ft 72
with the axes

, iy, .

Tin -n the coordinates of the point x
t y, z after strain with regard to

& 17,
are given by three equations of the type

(+,(*+)+Oi()r+9)+i(*+w) .................. (v).

If s be the distance of the point P from an end of the rod in its

unstrained condition, quantities like (v) must be functions of 8 + x, or

th<-ir j.-irtial differentials with regard to 8 and x must be equal. Since
,

id the direction-cosines are not functions of a: we find :

dajds
(s -I-

(vi).

Multiply these c-quations respectively by o^, )3 , y,,,
then by a,, ft, y, and

then by a.,, ftyj y.,
and add in each case, and wr find aft. r certain

IdllS

5

Clearly retch in </x, and the ml hold

62
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Further p, q, r are given by the following expressions :

.)
d

[1258.] Kirchhoff now remarks that -
, ,

are infinitely groat

as compared with u, v, w, if we only give to x values of the order of

the linear dimensions of the cross-section; further, if -=-, y- ,

- ;nv
ds ds ds

not infinitely great as compared with u, v, wt
these differentials with

regard to s will be infinitely small as compared to those with regard
to x. Thus by neglecting infinitely small quantities of the higher
order we have :

du

dv

dw
dx

= qx-py

(ix).

For the proof of these assertions Kirchhoff refers rather vaguely to his

first paragraph, and there is a similar reference in the Vorlesungen, S.

412 (Gestutzt auf die am Ende des vorigen gemachte Bemerkung).
Clebsch in his Treatise, S. 202, puts the matter thus :

Bemerken wir nun, dass bei der Differentiation nach x sich die Grossen
u

t v, w immer um eine Ordnung unendlich kleiner Grossen erniedrigen, was bei

der Differentiation nach s im Allgemeinen nicht geschehen wird, und dass u, r, ir

klein gegen x, yy z, so reduciren diese Gleichungen sich auf (ix).

The argument does not seem to me by any means clear, and T think

equations (ix) would be incorrect if there were an appreciable longi-
tudinal or buckling load.

[1259.] By integrating (ix) we find

u = u + (ry
-
qz + e) x, ]

v = v + pzx -

where u
,
vn ,

?# are quantities independent of x.
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By forming the expressions for the strains it will le found that

they are all inde|endent of x, so that the body-stress equations reduce

to:

,

-J + -3

dy dz

-=
dy dz

and the surface-stress equations at the curved surface to

^dg dg
jcy -j- + zjc -.- = 0.

dy dz

.(xi).

yy -j- + v* -r
dy dz

yz ~ +
dy

ẑz j
=

dz

win-re.
<j -0 is the equation to the contour of a cross-section, and there-

i function of z and y only. Further (xii) supposes no forces to

act on the surface of the rod except at the terminal cross-sections.

The arbitrary constants in the values of u, v, w may be determined

by the conditions that for y = z = 0,

.110 = 0, * =
0, ^ = 0, = ............... (xiii).

1 _ We easily find for the strains

dvn

dw

.**.

dua

'I'he stresses are given as linear funetinns in terms of these strains, th-

t'orin .f tin- functions depmdinir on th- ehi.stii- nature of th.- r...|. It

tin- axis of ill.' ni.| In-
jiai-allel to an axis of elasticity \\- ha\i- f.-rm

of tin- following type, whi.-h Kir> hhoff cites frnni I t im inoir

by Kankin. ( Art 418) in the FortochriUe der rkysik, 1850-1, 8. 244-9 :

>JCXJK\

IfWl 8, -f-
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where the constants have the usual meaning .md inter-constant relations :

see our Art. 78, p. 77, footnote, and Vol. I. p. 885.

The first body-stress and first surface-stress equations, (xi) and (xii),

easily give us :

n n n
\SJC:JT\

- + 2 \zjrjcif\ -=' + \xyjry\ . = ......... (xVl),dv dydz dif
and

These equations with the first of (xiii) determine fully uu ,
arid the other

equations of (xi), (xii) and (xiii) determine v
rt
and w . Thoy should

be compared with those obtained for the case of a rod of finite cross-

section by Saint-Venant and later by Clebsch : see our Arts. 17, 83
and 1334.

Even if the axis of the rod be not parallel to an elastic axis and

(xv) do not hold, (xi), (xii) and (xiii) determine u
,
v

,
w uniquely and

as linear homogeneous functions of p, q, r, : see Kirchhoff 's S. 297-8

(G. A. S. 299). If the values of u
,
v

,
w thus found be substituted

in (x) we have u, v, w as linear homogeneous functions of p, q, r, e.

The coefficients of these quantities will be independent of s and thus

if dp/ds, dq/ds, dr/ds, de/ds are not infinitely great as compared with

p, q, r, respectively, equations (x) satisfy the hypothesis we have made
in Art. 1258 with regard to du/ds, dv/ds, dw/ds.

[1261.] The strains will be given by (xiv) as linear homogeneous
functions of

/;, q, r, also. If these functions be substituted in the value

of the strain-energy F, we obtain F as a quadratic function of these

quantities, which is independent of x. Integrate this over the cross-

section and suppose jjFdydz =f, then we may write for equations (iii)

and (iv) respectively :

$U-8ffds = Q ........................... (xviii),

fdt{ST+SU-SJfds} = ..................... (xix).

It may be noted that Thomson and Tait start from f as a quadratic
function of p, q, r, e : see their Natural Philosophy, Part II. J 592-5.

Kirchhoff describes a general method of calculating the values of the

coefficients of this function in terms of the usual elastic constants, but

it is one which it would not be easy to apply except to special cases.

[1262.] Kirchhoff remarks on S. 299 (G. A. S. 301) that the

equations (xi), (xii) and (xiii) can be satisfied by the hypothesis made

by Saint-Venant in his memoirs on Torsion and Flexure, namely :

W = Isz = yz = 0.

See our Arts. 77 (ii),
316-8 and 1334.
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He shews, imlr.-.l. that tliis hy^thesis gives a possible solution, l.ut

IK- d<>< -s not |.r<>v- that it is the only one. His discussion does not blUf
v.-ry much confirmation to Saint-Venant's theory and hardly justifies

note on p. 616 of Moigno's Statique; still it is of value as shewing
the relation between the two investigations a relation which has been
still more clearly brought out by the researches of detach: see our
Arts. 1 334-7 \

[1263.] Kirchhoff next investigates an expression for tin- kin. ti.

-ncrgy T. After some analysis which involves a rather difficult

consideration of the relative magnitude of various quantities, IK- finds:

whnv uK'

and

This might I think have been deduced from general dynamical
prim -ij'h's rather more briefly than by KirchhofTs analysis: see his

J9-301 (G. A. S. 301-3).

[12G4.] The second section of the memoir concludes with the
iision of the previous results to rods whose unstrained form is

curved, the cross-section, however, being the same throughout :

t'ntcr dieser Bedin&iuig wird der Stab durch passcndc, auf sein Inneres
wirkonde Kriifte

cylindrigch gemacht werdcn komim ; dal.ei wcr-i-

Theile unendlich kleine Dilatationen erleiden : Uv.icht man die Gritacn

x,y,
f den Zustand, in dem der Stab sich dann befindet, statt auf

11 natiirlichen Zustand, und bezeichnet durch
it', ',

uf tl . die

w, ,
w annehmen, wenn man den Stal> in scincn natiirlichen Zu>-

in cine belicbige Lage ubergehen l;i.s.st,
.so werdcn die Oleichungon (iii) und (iv)

man in F statt M, v, w setzt : u-u'
t vv'r w-irf. Dalicr

l<:n die Glcichungen (xviii)-(xx) auch jetzt geltcn, wi

/>, </, r, t ^csctxt hat : /^-7->', q-tf, r-r', <-', wo t>', ^ r', c' di-

'lic/;, y, r, t annenmen, w-nn man don Stab in soinon n

;d und in cine beliebige Ijagc llbergehea i

dieeem Falle u-u'
y v-tft

w-vJ dicHolben linearcn Funkti- P~P'*
'-i/

, ',
wie in dem friihcrcn Uj v

t
w von />, y, r, (S. 302 ; O. A.

process here is a very general extension of that ly which w.-

tin- bending-tnoment at any point of a piano curved rod

E<OK* (l/p- l/pn) from the value JCD*C
S
/P in the case of a straight rod :

see our An j:>7* and compare Arts. 619-20.

1 A Rood deal of Kirohhoff's later work depend* upon the rappodtion that
- = is true for rods. Kirohhoff's method of reaching thin retail hat been

atejj criticised by Saint-Venant : see nil Cltbtch pp. 178-81, ospoouUly | 7,

and our Art. 316.
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[
1 265.] The third section of the memoir further develops equation

(xviii) on the assumption that the only external forces are those acting
on the terminal cross-sections (S. 302-8, G. A. S. 304-11). We

to seek by the processes of the Calculus of Variations four

functions />, 7, r, e of s, but these quantities are defined by differential

coefficients of
, rj, ,

a
() , ft, y , a,, ft, yn a,, /?,, y,, between which

certain relations hold. Kirchhoff adopts the method of indeterminate

multipliers and uses A, B, (7, M ,
J/n J/

3 to denote respectively the

multipliers of the three relations (vii) bis and the three relations (viii).

He finds by the ordinary processes of the Calculus and by the elimina-

tion of the other multipliers the following sets of equations :

-* =* -* ..................
< xxi) -

(=tf, say) .................. (xxii),

.
*=<- S

Q

ds *q
~

lT*

,(xxiv).

~ 2 =MlP
-M

Qq + (Aa, + Bfr

Kirchhoff then deduces the following simple meanings of the quantities

A,B, C, M Mlt M2
:

A, J3, C are the sums of the components, parallel to the axes of

, rj, respectively, of the elastic stresses which act upon the cross-

section determined by s, from the side of that portion of the rod which

corresponds to greater values of s; Jf
,
J/ 1} M 3

are the moments of the

same stresses about the axes of x, y, z respectively ;
these moments are

positive when they correspond to a right-handed screw motion round
the corresponding axis, such a motion round the aj-axis turning a point
on the z-axis into the y-axis.

In the Vorlesunyen, S. 419-21, Kirchhoff starts with these mean-

ings of A
9 B, C, J/

, MI, Mz
l and deduces from statical considerations

equations (xxiv) and then equations (xxi) and (xxii). The former set

is given more easily by the statical process, the latter by the Calculus

of Variations
;
both processes are instructive especially when compared.

Still a third process, more symmetrical and, perhaps, simpler than

either of Kirchhoff's, is given by Clebsch in his Treatise S. 204-9.

1 J/
, 3/j, 3/2 are replaced by Mx ,

Mu , Ms respectively in that work.
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[1'266.] Sine* 1 f is a quadratic function >f
/< //, 7 q\ r-r, and

-', it follows from equations (xxi) and (xxii) that .!/... J/,, M and
$ can be expressed as linear functions of those quantities. Kirchhoff

uses the following system of coefficients :

p-p
1

00

M,
S

m

r r c c

OH

w l...(xxv),

where ^

Kirchhoff remarks that these a's are not all of equal order since
- is a mere number, but p-p, q-q', r- r are the reciprocals of a

length. Hence the a's involving one 3 as subscript must be one linear

dimension lower than those containing no subscript 3 and one linear

dimension higher than that containing two subscripts 3. The linear

factor can, moreover, only be a linear dimension of the cross-section of

I, and so an infinitely small quantity. Thus coefficients with one

suKseript 3 are infinitely small as compared with 033 and infinitely

great as compared with those with no subscript 3. Thus we cannot

neglect the terms in c -
'

in the expressions (xxv), for, although c - e'

may be very small as compared with p-p', q q\ r r', still its

coefficients are infinitely greater than the others.

From the value of S' indicated in (xxv) we find :

a(p -p') (q -q') + a^ (r
-

r')
- 6'

- ;
" ~"~

"-

0*3

iin<l it' this value of c - * be substituted in the first tlnvr r\|,r, ->xins \\v

see that unless S is infinitely great as compared with .'/ , .!/.. M \\.

may neglect the terms in
*S',

thus we find expressions of the form :

,,
=

too (p - - q) r -

\\hi-i- and (lie //s are easilv c\]u-c.'.l a .s t'uiu-(i)ii-> f

Ki.vhh..ir .hows on S. 307 (G. A. S. 31<>) that X is i

a.> r.iinpan-.] \\itli .!/ . .!/ . .!/ . only wlim th,- .lirrdion of thn

of tli- fOTCei .1. A', C liH'.-r> r\rry\vin-rr infinitely little from
thai of tin- tangent to tli :' th- n<l.

M. |iuitions [i.e. (xxi)-(\\\ i

>|
t hi-or.-t

i.-ally sulli.-init to fully solv.- th-

i have now been found.

In tin- last paragraph if this suction Kiivlili..iV |'int ,

a \.TV iii tico-kinrtic analogy s ^ t

pooe tin- rod iii its unstrained -oiidiii..n |{ ,

that p'
=

q'
= r' = 0. Tlirii if we substitute the values of tin M
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from (xxvi) in (xxiv) we obtain the same differential equation
those lor the rotation of a heavy body about a fixed point. The

symbols used in our clastic investigations must be interpreted in

the following manner for the rotating body :

The axes f, ij, f are axes fixed in space, the axes #, y, z are

a\ s fixed in the body at time s, the origin of the latter system is

the fixed point of the body and the axis of x passes through its

centroid
; A, B, C are the components of the weight

of the body parallel to the axes of f, 77, f, multiplied by the

^-coordinate of the centroid
; finally if ra be an element of the

mass of the body which has x, y, z for its coordinates, then we

must have :

Sra

To determine the form of the elastic rod, when the correspond-

ing problem of the rotating body is solved, requires us only to

perform the three integrations which give the coordinates of a

point on the axis of the rod, namely :

f = fads, TJ
= f@ ds, f= fy ds.

Here the longitudinal stretch e is neglected.

Kirchhoff's elastico-kinetic analogy has been discussed by
several later writers : see Thomson and Tait, Natural Philosophy
Vol. II. 609-13; Hess, Mathematische Annalen, Bd. 23, S.

181-212 and Bd. 25, S. 1-38, 1884-5
; Greenhill, Proceedings of

tJie London Mathematical Society, Vol. xvin. p. 278, 1888.

[1268.] The fourth and last section of Kirchhoff's memoir is devoted

to the following special case : the rod in its original unstrained state is

a wire of circular cross-section and its axis has the form of a helix.

The rod is supposed to be of homogeneous and isotropic elasticity. See

S. 308-13 (6?. A. S. 311-316). Kirchhoff easily deduces the following

expression for the f of our Art. 1261 where the notation of the elastic

constants is that of the present work 1
:

/= M>2 + E 2

(f -f ra

) + e' ............ (xx vii),

where <*>K* = //(/ + z*) d<* = 2/jy-Wco.

1
. op

1 Our w, /x, E, wK'2 , stand for the X, K, 2-^ K,(j.of Kirchhoff 's memoir.
1 + A"
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Equations (xxvi) take the form :

(xxviii).

69.
|

Km-hhotr now takes 0' for the angle a tangent to the helix

makes with tin- axis, in the unstrained condition, sin 0' for the radius
H

of the cylinder on which it lies, and for the unstrained coordinates he

]>ut> :

' ^ * cos 0', n = - sin & sin ra's,

' = --
,
sin & cos n's,n n

win -i i< we obtain for a/, ft,', yt/ the values:

aj = cos &i ft,'
= sin 0' cos ns, y

' = sin 0' sin raV

the cross-section is circular, one of the six quantities a,', ft', y,',

a./, /?.,', y.,' may be assumed to be an arbitrary function of 8. Kirchhoff

takes:

o,
f = sin 0' cos I's,

/ is an arbitrary constant. Hence, after some analysis, he deduces:

' = I' - n cos &, o' = -?t'sin O'cosl'g,} . .

> IXX1XL
'

ami's )
'

These equations might have been deduced by other consideration-.

Now assume y, , a,,, J3 , y , a,, ft, y,, a.,, ft,, y3 equal to the expres-
sions for the same quantities with dashes, only replacing the constants

0*, n', I' by new constants 6, n, I.

It will be found that all the equations of the proMem are satisti.,1

except (xxiv) whatever be the values of 0, /*, /. Further using (xxviii)
it will bo found that (xxiv) can be satisfied if we take :

Tin- tuiidition /?"C = denotes that l/te force acting (U tJte end of tike

/telical wire mut have t/ie direction of
'

/// '// Jtclvx. This is cn<

i.f tin oonditioni that the values of ^,17, shall be those assumed, or

bfl liolix shall be strained into a second h. li\.

lunations (xxviii) give US

ne-nnn^coHl'g.l (xxxi);M%
= - N (n sin - n sin &) sin ta )
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whence if J/^, J/,,, .!/;
!>< the couples which act upon the end of the

hrlix with ix-sjHict to the three axes, we easily find :

J/f = - (L(n cos -n cos 6') cosO+N (n sin 6- ri sin &} sin 0\.\
1Y A> Kf J-...(XXX11),
J/, = 4, M{ = -Ari J

v

where A is given by (xxx) and
rj,

refer to the end of the wire.

The last two equations of (xxxii) evidently give a second condition

for the preservation of the helical form, namely : t/tat the couples M,, and

Mf must be exactly equal to tJiose couples which theforce A would p)'oduce
round axes, parallel to rj and through tlw end of tJie wire, if A's point

of action were a point of tJie axis of tlw Mix rigidly united to tJie end of
t/te wire.

Thus the helical wire remains helical in form only when the

system of force applied at one terminal consists of a force A in

the axis of the helix and a couple M% about this axis. If A and

MS are given, equations (xxx) and (xxxii) give the values of the

constants n and 6 which occur in the values of f, 77, f. Finally we
note that the elongation of the axis of the helix is given by
6- (cos 6- cos &), and the rotation of the terminal round the axis

by s (n ri), where s equals the total length of the helix.

The whole of this investigation deserves careful comparison
with the methods of Giulio, J. Thomson and Saint-Venant : see

our Arts. 1219*-1223*, 1382*-1384* 1593*-1595* and 1608*

KirchhofF remarks that J. Thomson has considered the case in

which M$= :

aber die Betrachtungen, die er iiber denselben anstellt, sind nicht

strenge, und das Resultat, zu dem er gelangt, ist nicht genau. (S. 313 ;

G. A. S. 316.)

[1270.] Special examples of KirchhofFs method have been

given by himself in the Vorlesungen: see our Art. 1283, by
(Jlebsch: see his Treatise 51-3, and by numerous other writers.

Thomson and Tait, after referring to the elastico-kinetic analogy
as a beautiful theorem due to Kirchhoff, continue :

"
to whom also

the first thoroughly general investigation of the equations of

equilibrium and motion of an elastic wire is due." See Natural

Philosophy, Part II. 609.

The present memoir of Kirchhoff's has been made the basis of

much of Clebsch's work and has suggested the methods of several

later writers. As the most important of Kirchhoff's elastic papers,

we have given it fuller treatment than, perhaps, the space at our

disposal warranted.
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[1271.] Ueber das Verhdltniss der Qiiercontraction zur Lanffen-

dilatation bei Stdben von federhartem N<i}>/ : Poggendorffs AnnulCH,

Bd. 108, S. 369-392 (G. A. S. 316-39). Leipzig, 1859.

This memoir is an attempt to settle by direct experiment the

problem of uni-constancy. Kirchhoff states the object of his

experiments as follows :

Nach theoretischen Betrachtungen von Poisson sollto dus \ i

hiiltniss der Quercontraction zur Langendilatatitm iimner 1/4 sf-in .

NNYrtheim schloss aus seinen Versuchen, dass d:is>ellu- 1 3 ist
;

narh
in r nu'hrfach ausgesprochenen Ansicht liat es weder don cinm noch
dm andern Werth und ist verschieden bei verschiedenen Substanzen.

Bei den meisten Korpern, bei denen man eine gleiche Elasticitat in

hii-denen Richtungen annehmen kann, stellt sich der experimen-
tdlcn I'estiimmmg dieses Verhaltnisses der Umstand hindernd in dm
\\ . -. dan i-ri ihnen, auch bei sehr kleinen Fonnanderungen, bleibende

Dclinung und elastische Naclrwirkung in erheblichem Grade sich x<-i^cn.

I !- ist dieses der Fall bei ausgegluhten Metalldrahten und Glassstaben.

Bei hart gezogenen Metalldrahten ist eine bleibende Dehnung und eine

elastische Nachwirkung viel weniger bemerklich
;

aber bei ihnen ist

siclnT die Elasticitat in verschiedenen Richtungen verschieden. ! i

geharteten Stahlstaben dagegen kann man wohl mit Wahrscheinlichkeit
eine Gleichheit der Elasticitat in verschiedenen Richtungen vorans-

setzen
;
und da diese iiberdiess mehr noch als hart gezogene Drill it c

incra idealen elastischen Kbrper ahnlich sind, so erscheinon sir

vorzugsweise geeignet zu Versuchen iiber den Werth jenes Verliiilt

niaaes. S. 369 (G. A. S. 316-7.)

These words of Kirchhoff appreciate so fully the real difficulties

of settling the constant-controversy by experiment, that \\v lia\v

reproduced them. It is a pity that they have not been always

sufficiently regarded by the many elasticians at home and abroad

who have sought to solve this moot-point by experiments <m

< v. KirchhofTs own rods of 'federhart' steel were, h>\\t -\ <i,

i'-ns of drawn wire, and there may indeed be a suspicion as to

whether they can be considered to represent accurately eunuch
the ideal isotropic elastic body ;

even Kirchhoff himself wem
bave h id doubts on this point : see our Art. IL

[1272.] I cannot in this History enter at len-th ii

description of KirehlmlVV experimentjil inethods. Thej are

in^eniniis ;UH!
.-v.-ry precaution seems to have boon tak.-n t.

eliminate experimental sources ..( ,-m .r. Kiivl,|,,,tt im<>9 a
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method of combined torsion and flexure. He supposes that his

rods are not truly circular but elliptic, and that the square of

the eccentricity may be neglected. He does not, however, take

into account the distortion of the cross-section, and it seems to

me thnfr this might possibly introduce errors whose magnitude
is as great as those Kirchhoff so ingeniously seeks to eliminate.

For three steel rods he finds for the stretch-squeeze ratio rj

r)
= -293, -295 and -294,

respectively : or the mean, rj
= '294.

This is almost a mean between Wertheim's and Poisson's

values of 77 (i.e. 1/3 and 1/4).

For a hard drawn brass rod Kirchhoff found 77
= '387, but he

remarks that no great stress can be laid on this result, as the

elasticity of such a rod is certainly different in the direction of the

axis and in the plane of the cross-section.

[1273.] Of the results for the steel rods Kirchhoff writes :

Es ware von Interesse zu priifen, ob bei Btahlstaben von anderem

Querschnitte, als die hier untersuchten ihn haben, das genamite
Verhaltniss sich eben so gross findet. Ware das der Fall, so wiirde

dadurch die hier gemachte Annahme bestatigt werden, dass ein

geharteter Stahlstab als homogen und von gleicher Elasticitat in

verschiedenen Richtungen betrachtet werden darf. Gegen diese An-
nahme lassen sich Bedenken erheben

;
in der That kann man sicli

vorstellen, dass bei der Hartimg, bei der die Warme von der Axe nach
der Peripherie hin abfliesst, die Elasticitat in der Bichtung der Axe
eine andere wird, als in den auf dieser senkrechten Richtungen, und
dass die Molecule in den ausseren Schichten eine andere Anordnung
annehmen, als in den der Axe naheren. Findet dieses statt, so findet

es aber aller Wahrscheinlichkeit nach in verschiedenem Grade statt

je nach der Dicke des Stabes, und es wird jenes Verhiiltniss anders bei

dicken als bei dunnen Staben sich ergeben miissen. S. 391. (G. A.

S. 338.)

It will thus be seen that Kirchhoff himself doubted the

absolute isotropy of his steel bars, and as no further experiments
on rods of other cross-sections seem to have been made, those of

the present memoir do not allow us to form any really definite

conclusion as to the truth or falsehood of the uni-constant

hypothesis.



1274] KIRCHHOFF. 71

[1274.] We may note here a paper of Kirchhoff's which is more

closely associated with the theory of light than with that of elasticity.

It is entitled : T
r
i>1n>r 'tie Reflexion und / I/n-ldea an der

*fnt/it, ).</! r M'tffcj and was first published in the Abhand-

lungen der Bei-l (1876, S. 57-84, G. A. S. 352-376). We
may very briefly indicate its general object (compare Glazebrook's Report
on Optical Theories, p. 180). F. Neumann was the first to attempt to

apply the theory of elasticity to the reflection and refraction of wav -s

of li.^ht at the common surface of two crystalline media: see Poggen-
Annalen, Bd. 25, 1832, S. 418-54, and Abhandlungen der Berliner

//lie, 1835, S. 1-160. Neumann supposes no body-forces to act

upon the elements of the ether, but he does suppose surface-forces to act

all surfaces which are the boundaries of different media. In
his theory the direction of vibration makes a small angle with the

wave-face, but a slight modification of the theory as noted by Neumann
himself allows of exact parallelism. MacCullagh proceeds from a

totally different hypothesis; he assumes a form for the potential of the

forces acting on an element of the ether which does not arise from an
exact elastic theory ;

the vibrations in this case are exactly parallel
with the wave-front. But an examination of MacCullagh's potential
shows that considered with regard to a small portion of the ether in

a homogeneous medium, it may be supposed due to surface-forces acting
on the surface of this portion. Thus the theory of MacCullagh in

reality rests upon the assumption that, besides the ordinary elastic

stresses, no other forces act upon the ether except at the boundaries
of different media. This is exactly Neumann's hypothesis and tin-

object in both cases is the same, i.e. to get rid of the longitudinal waves.

Kin hhoff holds that: Die beiden genannten Theorien diirfen daher at*

voUkoinmen iibereinstimmend angeseften werden, S.58-9 (G. A. S. 352-3).
Kirchhoff's own memoir is to be looked upon as a generalisa lion

anl Amplification of Neumann's and MacCullagh's work. He obtains

:^ht waves, four in either crystalline medium. This

i is dealt with for certain special cases, but not with much detail.

ivs special stress on his method of defining a ray : see S. 69
i'/. J. S :i62-3). In the course of his work he refers to the labours

'Carnb. P/iif. Tnnis., Vol. vii. 1839, pp. l:M-ln.

'1-311, and our Art. 917*) and Lam6 (Lemons i

Uieori' >*ticite, pp. 231-4, and our Art. 1097*) ;
he cites Green

.is deducing a t-.n.i of elastic potential which leads to results agr. -. -in-

with Knsn.-r.s, and Lam for a particular form of the elastic c.|uations.
Mi- do-s not dfexUH the .juestion of the plane of polarisation nor tin-

in whi.-h MacCullagh's and Neumann's theories are not wholly

in agreement with \p-rin l

. /.ebrook (op. cil. pp. 1-7 :'.

To olit tin his own results he put- the dil ro and
introduces extraneous surface-forces at the Ix.imdarv "t the two i

on s .;t
(ft A. S. 358) he write* :

larf man u, dam bei jedem Kryntall
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der Elasticitat des Aethers nur wenig von den Wcrthen abweichen, die sie in

einem isotropeu Korper haben konnen, und dass daher von den drei Wellon,
die in ihm in einer Richtung sich fortpttan/cn, <lio iino naho/u longitudinal

ist, die beiden andern nabo/u transversal sind, und dass die let/teron <lir

Lichtwellen ausmachen.

How far this near equality of the crystalline constants with those of

isotropy is really needful, and how far the hypotheses of zero dilatation

and extraneous surface-forces are legitimate, it is for those to judge who
are better acquainted than the present writer with optical principles.
Certain points of KirchhofTs paper, not very fully noticed by Glaze-

brook, have been here indicated as possibly of value to those physicists
who still seek aid from the theory of elasticity in expounding the

theory of light.

1275. Vorlesungen iiber mathemaiische Physik von Dr Gustav

Kirchhojf (Professor der Physik an der Universitdt der Berlin), Bd. I.

Mechanik.
This work is in large octavo, and consists of x + 4G6 pages. The

volume waa published in three parts, two of which appeared in 1874
and the third in 1876. In a prospectus dated February 1874 the title

is given thus : Vorlesungen iiber analytische Mechanik mit Einschluss

der Hydrodynamik und der Theorie der Elastizitat fester Korper. Thus

Elasticity is expressly included in the volume, and we may expect to find

it treated with some detail: S. 96-124 and 389-466 relate to our

subject. A second edition of the book appeared in November, 1876,
a third in 1883.

1276. The tenth Lecture occupies S. 96-109. This is purely geo-

metrical, and relates to changes in position of the particles of a body,
without any reference to the forces which produce these changes. Let

a?, y, z be the coordinates of a particle of a body ; suppose that after

a certain time these coordinates become respectively

Aj + a^x + agj + a
3z, h2 + b^x + b$ + b3z, h3 + CLX + c$ + c&t

where h^h^h^^... are functions of the time but independent of x,y,z:
that is, suppose we give the body a homogeneous strain. The terms

^i ^2 ^a correspond to a displacement of the body as a whole. It is

shown that the aggregate of the other terms amounts to stretching the

body in three directions at right angles to each other, and to rotating
the body as a whole round an axis. In fact we have thus nine

quantities at our disposal which we can express in terms of the nine

quantities a^ az .... For there are three dilatations, there are three

angles which fix the directions of the axes of dilatation, and there are

three constants involved in rotation round an axis. This indicates the

nature of the main subject of the lecture, but does not reproduce quite
the method in which Kirchhoff treats it. [The treatment can hardly
be considered as so luminous or suggestive as Thomson and Tait's method
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of discussing a homogeneous strain : see their Natural Philosophy, Part

J
180-5. Kirchhoff concludes thia Lecture by demonstrating that in

tli.- case of continuous motion the surface of any body always contains
the same material points, S. 108-9.]

[1277.] The eleventh Lecture occupies S. 110-124. It establishes

the equations for the equilibrium or the motion of any body whose

parts are capable of relative motion. Thus Kirchhoff is able to

deduce the equations both for a fluid and for an elastic solid from
the same investigation. He deduces the principal properties of the

composition aud resolution of stress, but he uses pressures instead of

tractions. If Tlt T^ T9 be the principal tractions and J,, Wj, n,,
J2 ,

w
?

> NSI 4> w*3 * the cosines of the angles they make with the
coordinate axes, Kirchhoff deduces on S. 116 equations which in our
notation are of the type

He also deals with the properties of the stress-ellipsoid.
On S. 116-9 it is shown that the Hamiltonian principle applied to

bodies whose parts are capable of relative but continuous motion leads

to an equation of the form :

") (),
'

where the integration is for the interval of time t to /,, while T the

kinetic energy of the body, IT - the virtual moment of the applied forces,

finding the value of F' in terms of the strains, Kirohhoff assumes that

the principal pressures (i.e. negative principal tractions) are for an

isotropic body in the same directions as the principal stretches, and are

linear, homogeneous functions of these stretches. As in the memoirs he

uses K for our /* and for our A./2/x. KirchhofTs treatment of the

fundamental equations does not possess special advantages, but it leads

him fairly directly to the Hamiltonian equation (ii), which is the

starting-point for most of the physical investigations dealt with in

Yorlesungen.

[1-7*.] KirchhofTs twenty-seventh Lecture occupies 8. 389-406.

re is littl*- to n mark upon in his general treatment of the elastic

equations or of the strain-energy. The reader must, however, be careful

to note that KirchhofFs/in this Lecture is the expression

He uses pressures where we use tractions. Henco it is equal but

He in sign to the F of our Arts. 1254 and 1256. To the proof of

K. IT. II. 6
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the uniqueness of the solution of the equations of elasticity which

occurs on S. 392-5 we have already referred: see our Art. 1255.

What is substantially added to the former proof is this : the elastic

solid is supposed to be in stable equilibrium when there is no body- or

surface-load. From this it follows that

Mfdxdydz

must be a maximum when the shifts u, v, w are all zero, that is, when
the strains vanish. This maximum must also occur for zero values of

the strains when sxt sy ,
sz ,

<r
yz , or^, o-^ are treated as variables independ-

ent of u, v, w.

Da nun / eine homogene Function zweiten Grades der genanntcn Argu-
mente ist, so ist dieser Ausspruch gleichbedeutend mit deni, dass/ nie poxifir
ist und nur verschmndet, wennjedes seiner Argumente verscJiwindei (S. 395).

This proof that the strain-energy (i.e. f in KirchhofFs notation) is

always positive failed in the memoir of 1858 so far as applies to

aeolotropic bodies. The proof here appears perfectly general : see, how-

ever, our Art. 6.

[1279.] On S. 396-9 Kirchhoff investigates the dilatation-modulus

and the stretch-modulus : see our Art. 1065*. There is no novelty to

note. On S. 397-9, he deduces the six conditions of compatibility.
These had already been given by Saint-Tenant and proved by Bous-

sinesq : see our Art. 112.

[1280.] Kirchhoff, having obtained the six equations just noticed,

proceeds (S. 399-403) some way in the solution of Saint-Venant's

Problem (see our Arts. 2 and 1333) by a method which while in-

vestigating flexure and torsion at the same time, is still somewhat
briefer than that of Clebsch. He only finds, however, expressions for

the three finite stresses, and does not determine the shifts. The equa-
tions (22) which he arrives at on S. 401 for xz and ^ agree with

Clebsch's on S. 79 of his Treatise (see our Art. 1336). We must
note that Kirchhoff's O differs from Clebsch's by a term of the form

cx (a? 3#2/
2

) + c2 (jf 3?/aj
2

) ;
their agreement will then be seen on sub-

stituting Kirchhoff's (22) in his (23) and comparing the result with

that given by Clebsch as (67) in his Treatise, S. 80. Kirchhoff's

investigation was evidently suggested by Clebsch's, and we must refer

to our Arts. 133445 for a fuller consideration of the subject. He
applies his results (S. 403-4) to calculate the stress in a right-circular

cylinder under combined flexure and torsion.

[1281.] On his S. 405-6 Kirchhoff takes the simple example of

a hollow sphere subjected to uniform internal and external pressures.
This had already been dealt with in slightly different methods by various

writers: see our Arts. 1016*, 1094*, 123 and 1201 (c).
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1282. The twenty-eighth Lecture occupies S. 407-428. This relates

to rods having an indefinitely small transverse section. Clebsch says
on S. 190 of his Treatise that Kirchhoff was the first who gave a rigorous

theory of the subject : Clebsch's S. 190-222 correspond with this part
of K in -hhofTs work, which is founded on the memoir in Crelle's Journal,
Bd. 56 (see our Arts. 1251-70), but is in some respects improved. It

is however still difficult; it will be necessary to compare it with the

discussion given by Clebsch, to notice what is obscure, and to point
out its merit as contrasted with what had been given by Poisson and

Observe that Kirchhoff passes in the next Lecture to the case

in which the shifts are very small : see his S. 429. Clebsch adopts a
similar course for the problem; see his S. 233: and also for the problem
of ;m elastic plate : see his S. 264. Kirchhoff refers on his S. 456 for

the case of the finite shifts of an elastic plate to Clebsch, who was the

first to treat of them : see our Art. 1350.

[1283.] The differences between the memoir and the lecture may
be noted. The first two sections of the latter agree almost entirely
with the memoir except for some changes of notation.

(a) The third section (S. 415-7) opens with an example which

does not appear in the memoir, but is practically suggested by Saint-

Venant's work, namely, the determination of the w
,
v

,
M7 of our Art.

when the cross-section is the ellipse

\vln-re I preserve the notation of that article.

Tin- system of stresses

where c is an arbitrary constant, and the stretch

will l>e found to satisfy the equations of Art 1259 and lead to the

result :

n
i j 2/>
dy dz

f>r the determination of c.

Kii l.hoil indicates in general terms how the values off*,, vt , v>9

may then be found.

S. 417-21 are practically reproductions of the memoir, In:

a sli-l.t i, ...I ..l.icod. Equations (xxi) of our Art
are differentials of a fum-tion / of

Equations (xxvi) give ua, however, values of M9 , Mlt A/,

62
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from which the c which appears in (xxv) has disappeared. Kirchhoff

now supposes G to be the function of p, q, r which / becomes when we
eliminate e by means of the fourth expression of (xxv). Then :

= _

dp dp d dp
*

But since we may as a rule (see our Art. 1266) neglect S in the values

of the JTs, we may put df/dc
= S = in the above equation, whence

it follows that

Similarly,

or, the M'a are given by the differentials with regard to p, q, r of the

function G.

The equations (xxiv) of our Art. 1265 may then be written :

d_/dG\_ dG_ dG

Js\dp)~
q dr

T
~dq

d dG dG dG
ds

d

Kirchhoff now deduces the elastico-kinetic analogy from these equations

by taking G as the kinetic energy of the rotating body : see our Art.

1267.

(c) On S. 423 Kirchhoff notes that the problem of the heavy body
rotating about a fixed point is not always solvable; but that it is

solvable, when the weight is negligible, or again when the body is a solid

of revolution and the fixed point about which it rotates is a point on its

axis of revolution. Kirchhoff then demonstrates that the elastic problem
analogous to the solid of revolution is that of an isotropic rod of circular

cross-section.

In the latter case he really falls back on the early part of the treat-

ment of the helix in the memoir : see our Arts. 1268-9. He obtains the

value of f we have given in equation (xxvii) of Art. 1268, and the

corresponding value G is then given by
1

A special case of the rotation problem is now taken, which had been

worked out in the fifth Lecture. Kirchhoff assumes the axis of the

solid of revolution to describe a right cone about a vertical line. In

1 Note that the/ and F of the Vorlesungen are interchanged with the F and/ of

the memoir. Further their signs are reversed. In our discussion of Kirchhoff F
is used for the strain-energy per unit volume (

= -/ of the Vorlesungen and F of the

memoir) and/ is used for the total strain-energy per unit length of the rod (= - F
of the Vorlesungen and/ of the memoir).
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this case (f + i* and j? are both constants, and the olastico-kinetic

analogy is that of a straight rod of circular cross-section bent into a
helical shape. He gives as T in equation (43), S. 425, and as J/y,
S. 426, the values of the force and couple which will suffice to bend a

straight rod or wire of circular cross-section into a helix of any required
pitch and radius (equations (45) and (46), S. 426). If 6 be the angle
between the thread of the helix and its axis, a the radius of the cylinder

upon which it lit >, KirchhofTs results may be expressed as follows:

The force parallel to the axis of the cylinder on which the helix

lies

,
.

cos sin20-

and the couple about this axis

=--"-- sin8 -

where p remains an undetermined constant. Since (Kjaf is generally

extremely small we have at once J. Thomson's theorem that helical

springs act chiefly through torsion: see our Art. 1382*, and compare
the results of our Arts. 1220* and 1608*.

Kirchhoff takes a special case in which p is chosen equal to

(cos sin 6)/a : see his S. 426-7. The remainder of the chapter treats

a problem similar to that of our Arts. 1268-9 but with a different

notation and method.

[1284.] The twenty-ninth Lecture deals with the equations
for the equilibrium and motion of an infinitely thin rod originally

cylindrical, when the shifts are extremely small. It occupies
S. 429-449 and contains a number of interesting points. The

equations obtained for various special cases had all been previously

considered, but not so directly from the general equations of

elasticity, i.e. as a rule only from the Bernoulli-Eulerian hypothesis.
\V proceed to note its contents.

[1285.] In 1 Kirchhoff deals with the problem of the equilibrium
of an initially straight rod <f uniform srrtim, when the load is not

infinitely nearly in the direction of its axis; no forces are supposed to

act except on the terminals of the rod.

In thi. MM pt ,/.
/ will be very small quantities, and the equations

of our Art. 1283, (b) become :

d (dO\ d (dG\
sU) * H- ......... (l) '

where A lt A t may be looked upon as constant**, sincv (h* Im-ction of

MS an ..nu'l'- with the axis of the rod, which varies only
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intmitesimally. Equation (i) gives JJ/
, J/,, A/2 as linear functions of s,

and the arbitrary constants may be determined by the values of

M (=dG/dp), M
1 (=dG/dq), M,(=dG/dr)

at a terminal of the rod.

If axes
, r/,

in space be taken so that the axes x, y, z at each

point of the rod differ infinitely little from them, we have

nearly. Hence we find by Art. 1257 :

ds

Hence by equations (vii) bis of our Art. 1257 we have, neglecting
small quantities of the second order, and writing (3a

=
ij/:

P= ds

Taking y and z for the principal axes of the cross-section and writing

ffifdydz = wKi
2
, JS^dydz = o>/v, ffdydz = w,

we have by assuming w = Tz yz = and supposing isotropy :

^_ (iv).

[1286.] That this assumption is made is not very clear from
Kirchhoff's text. He merely refers in vague terms to 6 of the

previous lecture (Eine Betrachtung, die dknlich der im Anfange des 6

der vorigen Vorlesung durcJigefuhrten ist, lehrt u. s. w.). 6 appeals

again without any further qualification to an equation (20a) of 3.

Now at (20a),
S. 416 we are merely told that ^ =^ = ^ = satisfies

the equations. This passage corresponds to S. 299 of the memoir (see
our Art. 1262) where there is a reference to Saint-Venant and there

is a more hypothetical statement of these conditions as a possible
solution. That they give the only possible solution is not shown by
Kirchhoff and the difficulty is nowhere dealt with by him. This seems

to me to form a very weak point in his theory. The matter will be

found further discussed in our Arts. 316-8 and Chapter xin.

[1287.] Assuming (iv) to hold, equations (xvi) and (xvii) of our

Art, 1260 give us for isotropy :

_ \ dg /duQ \dg. =Py
) dz

+
\dy

+ pZ
)dy

_
dz*~ dy*

~
>

\dz dz \dy

The last result follows from differentiating the identity a^ + ft^ +y^= 0.
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These are Saint-Venant's torsion equations, and from them we learn
that u must contain p as a factor : see our Art. 17. Thus from (iv) of

Art. 1285 and (xiv) of Art 1260 we find

X
-o)-,- *x + //"

**~ 'I
(v),

<rn =
erf), v^

-
c^p

Cj and ca being functions of y and z.

Hence forming the expression for the strain-energy, we have :

F=%E(ry-qz+?

Integrating over the cross-section we find :

X =

Thus x is the factor found for many sections by Saint-Venant. Kirch-

hoff merely indicates in the briefest language how / may be obtained.

He uses a different notation : see our footnotes, pp. 826 and 836.

Now G is to be found as in our Art. 1 283, (6) by putting df/dt =
and eliminating c, whence we have :

Equations (i)
now give us :

\\'lience, if the moments of the applied system of force at = /are
/ ;il)out the axes of x, y, z respectively, and if we writ.-

A
l
- Z\ A 3

= 7', we have by (iii) after integration :

.(ix).

tirst two are the usual equations of flexure and the third that of

i. The process by wlii. h \ \\.-\- are obtained is more aatisfactorj
than the Bernoulli-Eulerian method, but the assumption referred to

1JH6 requires more consideration than is given to it 1 v

Kirohhoff,
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[1288.] 2 of this Lecture (S. 432-4) removes the restriction of

the previous paragraph about the force not being nearly coincident with

the direction of the axis of the rod. If it be nearly coincident, the ex-

pression we have found for/in (vi) is still true, only we must substitute,

if $ = s + x, for the stretch

rl

Kirchhoff then applies the principle of virtual moments to 8 I fds and
Jo

deduces
Eut=X' ............................. (xi),

where X' is the load-component in the direction of the axis of the rod

at x. The equation of torsion remains the same as in (ix), but the type
of flexure equation becomes

with the conditions for s = I that

(xii).

^ds*
= M *>

~ X>
~ds

These equations agree with (ix), if we may put X = 0.

[1289.] In 3 Kirchhoff deals theoretically with a method for

finding the stretch-modulus suggested by s'Gravesande. In this method
a thin rod is stretched between two clamps and loaded in the middle,
the stretch-modulus is then to be found from the observed central

deflection.

At a clamped end of the rod there will act a couple, a shearing force

and a tractive force. The shearing force, neglecting the weight of the

rod, will be one-half the weight suspended from the centre. Kirchhoff

appears to take it equal to the whole weight. Suppose the plane of

the bent rod to be that of r), then the problem is the same as if we
took a cantilever of length I = to half that of the rod and supposed the

end s = Q built-in, but to the free end s = l applied a couple Jfa', a

traction X' and a shear Y' = P/2, where P is the applied central load.

The first equation of (xii) applies and we have :

3?=*'S <
xiii

>'

where hz = C/K^ from (xi).

At s = 0, rj
=

0, and drj/ds
= 0, hence the required form of solution

is given by :

17
= d (e

1" - hs - 1) + C2 (e-* + hs - 1).
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Put hi = 2p, apply the latter two equations of (xii) and we get:

)^ J/f
'

.................. (xiv),

)
= -iP .................. (xv),

it' we remember that drj/ds
= when a =

I, which further involves :

-hl)
= ......... (xvi).

For the central deflection
17,

of the rod (corresponding to the deflection

at s = I of the cantilever) we have

Whence after some reductions :

This gives rjt in terms of E, when p is known. Kirchhoff has 4

instead of 8 in the denominator of the right-hand of (xviii).

To find p we must return to (x) and note that I -=- ds is a known

quantity, or if 11' be the natural length of the rod

t
where y is the uniform stretch of the rod between the two clamps
before the mid load is put on. Hence we have

K i rehhoff deduces:

f
2 cosh 2p + 4 - - sinh 2p

1 v
( cosh p flinhp }

and then shows that to a close approximation in the special case*, when
K,* is very small as compared with eithor or both of yP and

i/j

1
, or when

p is very large, 77,
and p are given by the equations :

B placed these results here as they seem to suggest a method of

_c the stretch-modulus, which is not without iU advantagon. The
in (xiii) differs from that obtained by Poisson in his ifAamiyw,

Vol. i.
]>. 007, who replaces the right-hand side by a term of the form
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[1290.] In 4, S. 437-8 of this Lecture, Kirchhoff works out the

case of a heavy rod stretched between two clamps. The method is

precisely similar to that of our previous article, except that now the

equations become:

2A_ f ^l_9P_
1

efc
4 d#

~
E '

and, dc/ds = 0,

where p is the density and g gravitational acceleration.

Kirchhoff solves only the special cases in which K
a

2
is infinitely great

or little as compared with cf
2
. It seems to me that in many practical

cases they would probably be of about the same magnitude.

[1291.] In the remaining sections of this Lecture Kirchhoff

deals with the vibrations of infinitely thin rods. Only the

method by which he has obtained his equations seems to present

novelty. I do not think any of his results are new. The following

is a brief resume of the contents.

(a) 5 (S. 438-441). Discussion of the equations for the longi-

tudinal and torsional vibrations of a cylindrical rod of infinitely small

cross-section deduced from the Hamiltonian principle : see our Art. 1277,

equation (ii).

(b) 6 (S. 441-444). Discussion of the equation for the transverse

vibrations of a similar rod. Reference is made to Strehlke for the cal-

culation of the frequencies of the notes : see our Art. 356*.

(c) 7 (S. 445-6). Deduction of the equation for the transverse

vibrations of a stretched string, when the longitudinal traction due to

the stretching is not immensely greater than that due to the transverse

shift. Let y be the permanent stretch of a string of length I, and 77
its

shift at distance s from one terminal, then Kirchhoff- gives an equation
of the form :

As a particular solution assume

.

ir)
= u si

then u = b cos am h (t 1
()),

mod. K,

. ns
= u sin -y TT,

and u be an integer.
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Thus we see that the period in this case is a function of the amplitude
b of the vibration.

(d) 8 (S. 446-9). Consideration of the equation for the trans-

verse vibrations of a very tightly stretched string and the modes of

solving it by Fourier's series or by arbitrary functions.

[1292.] The thirtieth and last Lecture of Kirchhoff occupies
S. 450-66. It is devoted to a discussion of plates and membranes.

The methods adopted by Kirchhoff are decidedly superior to those

of his memoir on plates (see our Arts. 1233 and 1237-8), but the

book was published after the Treatise of Clebsch and the memoir
of Gehring: see our Arts. 1325 and 1411-15. The first section

closely resembles Gehring's work but Kirchhoff does not quote him.

Gehring may of course have been much influenced by Kirchhoff's

oral lectures, and the method naturally flows from that used in

the memoir on thin rods: see our Art. 1251. Kirchhoff himself

remarks :

Aehnliche Betrachtungen, wie wir sie in Bezug auf einen unemllieh
< hi nnen, elastischen Stab in den letzten Vorlesungen durchgefiihrt

haben, lassen sich auch in Bezug auf eine unendlich diinne elastische

Platte anstellen. Mit dem Gleichgewicht uud der Bewegung einer

solchen Platte wollen wir uns jetzt beschaftigen, dabei aber alleiii den
Fall ins Auge fassen, dass dieselbe in ihrem natiirlichen Zustande eben
ist (S. 450).

[1293.] In 1 Kirchhoff obtains the equations for the finite

shifts of an infinitely thin plate, each element of which is,

however, subjected only to very small strain. The method is

similar to that of Clebsch's Treatise, S. 264 et seq., where in a foot-

note its application to the small shifts of thin plates is attributed

to Gehring, who, Clebsch remarks, followed up a hint given by
KiivhlmfT in a footnote to his memoir on rods (see Crelles Journal,

IM 08, or G. A. S. 311). It is just possible that Kirchhoff

practically gave the substance of the method in oral lectures

appearance of Gehring's dissertation; he certainly

corrects Gehring's errors, and it seems therefore in place to indicate

>t th- investigation.

Knvhlmtt, aft. i deducing an expression for the strain energy in

case of an infinitely thin plate with finite shifts, remarks:

Auf diesen Fall guhfii ir ni-ht nali.-i tin, ^ml. n. verwciaou in
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Bezug auf ihn auf die Theorie der Elasticitdt fester Korper von Clebsch,
der zuerst die endlichen Formanderungen unendlich diinner Flatten

untersucht hat (S. 456).

When applied to finite shifts we may perhaps speak of it for

convenience as the Kirchhoff-Glebsch method, and, when the

equations for the small shifts of infinitely thin plates are deduced

from it, as the German method, in order to distinguish it from the

French method, or that due to Boussinesq and Saint-Venant : see

our Arts. 384-8 and Chapter xm.

[1294.] Let s
lt

sz be the coordinates of a point P in the mid-plane
of the plate referred to rectangular axes in that plane, when the plate is

unstrained. At P consider in the unstrained state a system of rect-

angular axes 1, 2, 3 in the material of the plate, of which the first two
are parallel to the axes sl9 sa and the third perpendicular to them and
so to the mid-plane. After strain take a rectangular system #, y, z at

P, so that x is a tangent to the strained position of the line 1 at P,

y lies in the tangent plane to the mid-plane at P and z is perpendicular
to this plane ; y and z will thus make small angles with 2 and 3. Let

x + u, y + v, z + w be the coordinates after strain of an element of the

plate in the immediate neighbourhood of P referred to these axes, and
so that x, y, z are the coordinates of this element when there is no

strain, or the x, y, z axes coincide with 1, 2, 3. Further u, v, w are

such functions of x, y, z that for x=y=z=Q
dv dw dw A=0 .........W .

Let
, 77,

be the coordinates of P after strain referred to any axes

fixed in space. Let the cosines of the angles between the axes x, y, z

after strain and
, 17,

be given by the scheme :
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*, and x
t
and with regard to s and y, must be equal each to each.

Thus we have six equations of the types :

(du\
dv dir du dv dw

1 +

da,

du / dv\ dw _ du dv dw
1

dy *\ dy) dy dst ds
a

'

</>.,

d da, . . da* . x da. .

+ -j- + -j-^ (x + u) + -J-? (y + v) + ~P (z + w)
ds3 ds9

v
'/x,

c

cfet
v

Here a, may be changed into ft i; or y, without alteration of the

subscripts. Kirchhoff writes :

1+0"! =

and remarking that the axis of x coincides with the direction of the line

1 after strain we have :

,)
...... (v).

Further -=- - equals the cosine of the angle between the line 2 after
cfea 1 + <r,

strain and
,
or cos (2, ft. For the value of cos (2, ft Kirchhoff refers to

some results of his tenth Lecture, but we easily find from projection that

cos (2, ft
= a, + Oi =

a, + alT, say,

where r is the vanishingly small angle by which (1, 2) differs frni .1

right angle after strain. Thus we have equations of the form :

(vi).

Kirchhoff writes
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where the subscripts 1, 2 are to be attached to p, q, r according as they
are attached to s.

By multiplying both types of equations (iii) first by ttl , ft, y1? secondly
by a &> 7a and finally by 03, $,, y3 ,

and adding in each case, we obtain
the system :

du/dx = dujdsi + q1 (z + w)- r
v (y + v

) + (r
l ,

dv/dx = dv/ds1 + rl (x + u)
-
p^ (z + w),

dw/dx = dw/ds1 + Pi(y+v)- ql (x + u),

du/dy = du/dsz + qa (z + w)
- i\ (y + v) + T (1 + o-2),

dv/dy = dv/ds., + r2 (x + u)
-

p.2 (z + w) + o-
2 ,

dw/dy =dw/ds2 +p2 (y + v)
-
qz (x + u).

Neglecting terms of the second order of infinitely small quantities as
in the case of the rod 1

(see our Art. 1258), and remembering that we
must have d?u/dxdy, etc. the same whichever system we derive them
from, we find ultimately that rl

= ra =0, pL + qz
= Q and :

du/dx = q1z + <r
l
, du/dy = -Plz + r,

)

dv/dx = -pft dv/dy = -p# + o-2 l ......... (viii).

dw/dx =p1y-q1x, dw/dy=p#+ plx
j

Whence by integration

u = U -p$z + q^zx + cr^ + ry,
j

/, I .................. (ix),

where u
,
v

,
w are the values of u, v, w for x = y = 0.

The strains are easily seen to be given by the following expressions,
which are independent of x and y :

sx = qlz + o-l ,
8v
= -p& + ara ,

sx = dw /dz,
|

, ,

<r
yz
= dv /dz, o-gx

= dujdz, orxv
= - 2p^ + T )

'

The body stress equations now reduce to :

d(Tz, T*, )/dz
= Q ........................ (xi).

[1295.] From equations (xi), which should be compared with the

equations of our Art. 388 obtained by the French method, Kirchhoff

argues as follows :

Nun wollen wir annehmen, dass auf die beiden Oberfliichen der Platte

Druckkrafte von solcher Grossenordnung wirken, dass sie bei einem Korper,
dessen Dimensionen alle von gleicher Ordnung sind, nur Dilatationen

erzeugen wiirden, die unendlich klein sind gegen die Dilatationen, die in der
Platte stattfinden. Man darf dann, zunachst fur die Oberflachen der Platte,
und dann in Folge der abgeleiteten Gleichungen allgemein

^ =^=^=0 ................................. (xii)

1 As in the case of the rod so here I do not follow Kirchhoff's reasoning. A. E. H.
Love in a Note on Kirchhoff

1

s theory of the deformation of elastic plates (Cambridge
Philosophical Society, Proceedings, Vol. vi. pp. 144-55, 1889), has endeavoured to

strengthen Kirchhoff's process, but I think he leaves it still open to question,
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setzen ;
man vernachlassigt dabei in den Dilatationen und in dem Ausdrucke

des Potentials dcr durch dieso er/cugten Krafte, den wir zu bilden liabeu

werden, nur Glieder, welche unendlich klein sind gegen die beibehalteiu n

(S. 454).

This reasoning is more complete than that by which equations
similar to (xii) were dealt with in the case of a rod : see our Art. 1 _

1 1 is not, however, quite clear what the nature of the surface-forces are

which will fulfil the condition imposed by Kirchhoff 1

,
and both this

matter ami that of the approximation in the preceding article require
further consideration than is given to them in the Vorlesungen : see our
Arts. 1262 and Chapter xin.

[1296.1 Equations (xii) and
(i)

suffice to determine MO, t?
,
w . If

the material of the plate be isotropic we have

whence : dujdz = 0, dvjdz = 0,

(xiii).\ (.
dw /dz = x-^- |(ft

-ft)*-rt-

Substituting from (xiii) in (x), and then the values of (x) in the ex-

pression F given in our Art. 1255 for the strain-energy of an isotropic

solid, we find :

p+*i)P+(jV-

\

Integrating this for the thickness (2/t) of the plate from z = - /* to A, we
have finally tor/:

.

v)

Tin- integral fjfdgld8t
taken over the whole mid-plane gives the entire

strain energy of the plate*.
The six quantities tr,, <r,, r, ;>,, pt , ql

are all functions of *, ,
at and

can l><- expressed in U-rms of the ilillerentials with n-^anl to x, an.l > .f

1 No doubt Z, T and 17 are small as compared with the maximum value* of 2,
7, and 5, but not necesHarily as compared with all values of the latter. This at

least is the conclusion I have drawn from considering the exact magnitude of the

tiOMQi neglected in the similar case of rodt : Quarterly Journal of Mathsm.

pp. 68110. London, 1890.

xhould be observed that we have interchanged Kirchhoff / and F to

preserve the notation of the memoir; further Kirchhoff in bin \\trlttungtn uses

potential-energy and not strain -energy, so that he has -/and - F for oar F and /.

Compare our footnote
\
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, 77, . Since r is the angle by which 2 has approached 1 owing to the

strain, we clearly have by (v), etc. :

d d d-n drj dt Jt
(1 +o-.)(l +<ri)T=--j!L + -^ -^-+ -= --^ ......... (xv).

[1296 bis.] A result of the same form as (xiv) has been

obtained by A. E. H. Love for the strain-energy of a thin shell

(The Small Free Vibrations and Deformation of a Thin Elastic

Shell. Phil. Tram., Vol. 179, A. pp. 491-546, 1888. See p. 505).

His result has been called in question by A. B. Basset (On the

Extension and Flexure of Cylindrical and Spherical Thin Elastic

Shells. Phil. Trans., Vol. 181, A. pp. 433-480, 1890. See p. 433),

and the validity of the criticism has been admitted by Love

(Proceedings of the Royal Society, Vol. 49, pp. 100-2. London,

1891). Basset gives on p. 443 of his memoir an expression for

the strain-energy of a distorted cylindrical shell. In this ex-

pression there occur terms multiplied by hs

involving not only
the quantities by which the bending is specified but also products
of the extensions and of quantities depending principally on the

bending. We might therefore be inclined to question whether

such terms may not arise in the case of the plate, that is whether

(xiv) represents sufficiently closely the strain-energy of a thin

plate. Without discussing at this point Basset's method of

investigation (which is open to the same sort of criticism as

the method of Cauchy and Neumann considered in our Arts.

805 and 1225), we may still ask whether the terms it adds to

the strain-energy are of importance in the case of the plate.

To do this, we have only to make the radius of Basset's cylin-

drical shell infinite. It will then be found that Basset's expression
for the strain-energy gives the following additional terms to the

expression for f in (xiv) of our Art. 1296 :

These terms do not therefore in the case of the plate involve the

products of extensions and quantities specifying the bending.

They form only an addition to the
' membrane terms

'

in the
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second line of / and one of the order h* and therefore negligible

as compared with those terms. Hence Basset's correction of

Love's extension to shells of Kirchhoff's formula does not appear
to have any bearing on the correctness of Kirchhoff's results

I'm-
jilat

[1297.] If the plate has finite bending, we may neglect <r,, <rs and
T as infinitely small, or put:

(xvi),

instead of (iv) and (xv).
These equations express the condition that the mid-plane remains

unstrained, or that it should be a developable surface. In this case the

iu-energy contains only the first line of the right-hand side of (xiv).
For Clebsch's discussion of this case of finite bending, see our Arts.

5-8.

[1298.] In 2 of this Lecture (3. 456-9) Kirchhoff proceeds to

tind an expression for the strain-energy/, when the plate is very slightly
Kent. In this case we cannot in general neglect <rn o-2 and T. Now
however, x and y may be written for

,

and 8 ,
and the system & 17,

may be chosen so that and
rj

differ infinitely little from x and y,
while is infinitely small

;
thus we may put = x + u and

ij
= y + r.

Kirchhoff now supposes that u, v and are infinitely small as
e mi pared with h :

Aimalime, die deshalb cine wesentliche ist, well vn lu-iden (i!;.

'I'-nen /'[sco (xiv)] sirli /iisaninien^rt/t, da> cine den l-'acti-i-

nur dm l-'ai -tut- /, hat. .-r Annahme i>t e> au^reichend,
(Jliedeni lilir die cl-sten I'.iten/ell der I Mtlerei it ial(jlU t irnten \

KTiick->i<-hti-en (S. 457).

Kcjuations (iv) and (xv) then i^ive us:

(T
l
= du/dx1 0-3 -->/<'</,/, T iln ilif

* ,lr ,l.r (\\

and e.|ii:itions ( v )
and (vi) :

A = y,- I, a, =-, = -<&/(&, o, = -
yi
= -^

A = -y, = -c^
\\ hen.

p^cPy,/ p = ^CW, q^-tfitldaf ...... (xviii).

If we no\\ make the assuiiiptinn that u, V, are infinit. 1\ sin:ill an

e.,ni|,ared \\ith //, we can use i

P, </,.
^hieh <K-. ui only in tlu- tvrniH of/ multiplied 1>\ />

, Imt we must

I. I.. I'l. II. 7
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proceed to terms of a higher order in the values of o-1} a-., and T. Wo
find, if wt' krop tin' products and squares of differentials of :

d +' *-*-'
(xix).

du rfv dt dt_ _ __
|_
_ I _~ __

dy dx dx dy

If the values given in (xviii) and (xix) for p lt p , 7,, <r,,
<r and T In*

substituted in fin (xiv), we shall he neglecting only those portions of f
which are infinitely small as compared with those retained (S. 157).

[1299.] The terms of /depending on h* are then :

( *:

an expression which agrees with that contained in the memoir of 1850,
and of which Kirchhoff (S. 458-9) proceeds to take the variation in the

same manner: see our Art. 1237, (iv). The variation of the second

line off in (xiv) is given on S. 459 without, however, the intermediate

stages. For comparison with the results of Clebsch, of Boussinesq and

Saint-Venant, I cite it here, dl is an element of the perimeter of the

plate, <f>
is the angle between the axis of x and the normal, drawn

inwards, to the perimeter; for brevity X/(X + 2/x,)
-

rj/(l -17) is written

v. The required part of/is the following expression multiplied by 4/x/> :

[fj j /^"i i
^T ^ (^i + r

'>)\
I \dxdy (

- - + J -j- + v
v

,
-

1

JJ
y
\dx

2
dy dx J

jdl fa-
1
cos ^> + J T sin $ + v

(<rl + o- ) cos <f>\

drff, /d<T . dr ^(o"i + o- )\o
I \dxdy (

-=-= + I; + v \ -'} Bv
JJ

9
\dy

* dx dy )

jdl /o"
2
sin < + JT cos < + v

(o-j + <r2)
sin
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[1300.] In the following paragraphs Kirchhoff makes special

applications of these expressions for the several parts of the

variation of the strain-energy.

(a) 3 (S. 459-60). A plate has no load on its faces but its

<lu
r

- i> tixed, i.e. u and v are given there. The variational equations
lead to 0, and to the 'membrane* equations for M, v, which follow

from the 1st and ."ml lines of (xx). These agree with those given by
Cauehy aii.l Lame : see our Arts. 640*, 1072* and 389.

(f>) $ 4 (S. 460-65). This deals with the transverse vibrations of

plat _ives briefly certain portions of the memoir of 1850: see

our Arts. I-J33 et seq.

(c) $ ^
(S. 465-6). Kirchhoff concludes his Lectures by in-

i Bating the differential equation for the transverse vibrations of a
membrane stretched in any manner. In this case u, v are any shifts

which satisfy the differential equations for equilibrium of a stretched

membrane given in our Arts. 389-391. If these shifts are considerable

as compared with the thickness of the plate, we need only retain the

portion of f indicated in (xx), putting therein 8v = 8u = Q everywhere
and 84' along the perimeter. If u and v are also so great compared
with that we can neglect the second approximation in (xix) and u^,

(x\ii), we have:

d rdu d . du

dxj dx \dx dy) e/y

This for example is the proper equation for the small vibrations

of A very tightly but irregularly stretched drum head of any form

u and v are independent of the time and may be any of the

numerous functions that satisfy the equations for the equilibrium <>t ;>

mi mbrane. Kirchhoff cites the special case of an uniformly stretched

membrane for which /' /, v -
y, a being a constant, and deduces

tin- usual equation.

KirehhofT's method should be carefully compared with that of

Boussinesq : see our Chapter x 1 1 1 .

[1301.] A second and posthumous volume of KirchhofFa Vor-

ngen Ober in<ttt,cnw,t\8che Physik entitled Mathemati8c1n o//i'A-

.UK] c'dited by K. Hcnsel was published at Leipzig in I vl. In

tbis volume K i rchhotf bases his theory of li^ht np-n the e<|uati

Hi tdastic inediiun. This naturally leads him to Neumann'*.

72
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hypothesis, i.e. that the vibrations take place in the plane of

polarisation: see our Arts. 1214 and 1217.

Die FresnePsche Annahme ist aber nicht vertraglich mit der

Hypothese, welche wir an die Spitze imserer optischen Betrachtungen
stellten und die sich durch ihre nicht zu iibertreffende Einfachheit

empfiehlt, mit der Hypothese mimlich, dass der Aether in den durch-

sichtigen Mitteln in Bezug anf die Lichtbewegung sich verb alt wie ein

elastischer fester Korper, auf dessen Theile keine anderen Kriifte wirken,
als die durch die relativen Verschiebungen erzeugten (S. 141).

Kirchhoff does not discuss how far Neumann's hypothesis leads

to results in accordance with experiment, nor does he consider the

objections which have been raised to it on several sides : see

Glazebrook's Report on Optics, pp. 169, 180 and our Art. 1274.

Valuable as many parts of these Lectures on Optics are, they
do not, so far as the theory of elasticity is concerned, add much to

the researches of F. Neumann : see our Arts. 1213-22.

[1302.] Ueber die Transversalschwingungen eines Stales von

verdnderlichem Querschnitt: Berliner Monatsberichte, Jahrgang

1879, S. 815-28 (G. A. S. 339-351).
The type of rod which Kirchhoff proposes to deal with is

defined in the following words :

Es werde zunachst ein Stab ins Auge gefasst, dessen Querschnitt in der

Richtung der Lange beliebig, nur so variirt, dass alle Querschnitte unendlich
klein sind, ihre Schwerpunkte in einer Geraden liegen und ihre Hauptaxen
die gleichen Richtungen haben. Ein solcher Stab kann unendlich kleine

Schwingungen ausfiihren, bei denen die Verschiebungen immer in einer dieser

l>eiden Richtungen geschehen ;
um solche Schwingungen soil es sich handeln

;

die Differentialgleichung derselben ist bekannt und leicht mit Hiilfe dos

Hamilton'schen Principes abzuleiten (S. 815; G. A. S. 340).

Kirchhoff cites Lord Rayleigh's Theory of Sound, Vol. I. p. 240,
as giving the equation for the vibrations. If be the shift at time t

of the centroid of the cross-section distant z from one end of the rod,
the equation for the vibrations parallel to one system, x, of principal
axes of the cross-sections is, in the usual notation of our work :

see our Art. 343, equation (i), putting in it for u, pug for p, and g = 0.

Taking a simple tone, or putting = uainpt, p being a constant, we
have
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The conditions to \>e satisfied at a terminal of the rod, whether fixed or

free, are :

d f d?u\ ~ _
.,
cPu ~ du

\vhrru 8 is the usual symbol of variation.

[1303.] Kirchhoff renuirks that equation (ii) can be solved in

X' n.ml (runs \\hrii the coordinates x and y of the boundary of the

cross-section are of the form :

any variable quantity and /",, y*3 given functions of it. In this

case we easily find, being parallel to x, and * the swing-radius about //,

i ud OJ,,K (I

-' are the values of <o and <OK
J for z=l.

Kq nation (ii) now becomes :

(iv),
i** /

and may be solved by a series of the form :

]<>\ided h satisfies the equation

h (h
-

1) (h
- 2 + 3/>t + ii) (h

- 3 + 3m + M) = 0.

/. A. S. 341).
Kin hhotf discusses the relations between the consta n t s J, .1,, Jo, etc.,

and the special cases which can arise according as in, is > - or < 2

517-8, '/..is.!-'). He does not, however, enter into special

details except for two interesting cases, namely :

(a) when m 1, n - ".

(4) >-l, -l.

In loth these cases the integrals admit of being expressed by Bessel's

functions with real or imaginary arguments. We devote the following
four articles to a consideration of Kirchhoff's results.

[1304.] Caw (a). If m -
1, n = 0, and x be a constant, then tl..-

cross-section is rectangular, and the rod is l> >un<l d by two parallel

planes and a pair of planes per|-ii<li -ul u to thaMt If thu latter meet
at a ..ill angle, the rod may be looked upon as a very thin
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Equation (iv) will now be found to be satisfied by cither <>f tin

alternuth.

1 d ( ,t

or, if (-

d~u _ d

The first forms of solutions, answering to the + and -
signs respectively,

are

}
= 1 ^)2+ (-^ f}

,
where

J

The second forms of solution involve log ,
and are thus unsuitable

if the end z = of the rod be free. Therefore u is of the form :

This must satisfy (iii) at the free end =
0, which requires :

to be fulfilled.

At the base of the wedge, if we suppose it built-in, we must have

du
u = Q, and , .

dz

This leads to :

whence, by writing down the differential equations satisfied by </>
and

if/,

we find that for the base value of z

This is the equation from which the frequencies of the notes must be

1 By taking z' = ljz the equation reduces to the form -,, = /3V~
3

, /3
2
being a

constant. This is a case of Biccati's equation and may be solved by Bessel's

functions : see Forsyth's Treatise on Differential Equation*, 111.
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dedueed. KirchhotHinds the value of^ in a series exactly as he found
initial- product in his memoir on plates (see our Art. 1:211), namely

by ascertaining tin- differential equation which the product must satisfy.
Tim* he obtains

"

and In no- for tin- frequencies we require the roots of:

f* {

~JT(fiy*!rT^~7Tfy*
...... ~ ........ (viii) *

If I l.e tin length of the wedge he deduces for the fundamental note,

and if -la be the depth, parallel to the direction of vibration, of the base

of the wedge, we have

"= 5
a

t>\/i (>

K..r a prismatic rod of uniform rectangular cross-section of depth
_". we should have had :

= 3-516S ./I!- ...(x).

supplying the material and the fixing the same. Hence the fundamental

i ni! of the wedge is higher than that of a rod of uniform rectangular
cross-section equal to its base.

[1305.] Kirchhoff next proceeds to tind how great the shift at tin-

free end of the wedge may be without danger to its elasticity, when tin-

wedge is vibrating solely with its note of lowest pitch. Let * be tin-

limiting safe stretch, then we must have the maximum stretch at every

point of the wedge less than this. But this maximum stretch occurs

at the contour of the cross-section, and for a cross-section distant z from

(tz cP a>z c/*u
ih. five end is = j

* = -r ^ sin;^, or giving sin pi its maximum

value and substituting tor i in terms of
,
we must have

. o^ /~p~cPu
the maximum of j 1> *J -, ~^

<^

or, substituting for
j>

from (ix),

the maximum value of 5*315 = {^ < *-
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Kirchhoff calculates the maximum value of -=- for the funda-

mental note (S. 823-4
;

G. A. S. 347) and shows that it equals

4-992 C,

where U= 19-563 C is the maximum shift at the free end. The
maximum stretch occurs at the cross-section for which = 3-688,

O./*QQ /
fll f

or z=
'

y~^-.9
or substituting from

(ix), at the point = -694Z.

Thus with the wedge the greatest strain is not at the built-in

terminal, and further the position of the section of greatest strain

varies according to the note the wedge is sounding.
The safe shift of the free end is found for the fundamental note to

be given by

< 3-919 -\/~.p V 3P

For a rod of uniform rectangular cross-section we have the correspond-
ing expressions :

Hence if we take a prismatic rod of the same material, of the same

length and on the same base as a wedge, the free end of the latter can

make, in the case when both swing with their fundamental notes,
oscillations of 2*6 times the amplitude of the former. If both be of the

same material and have the same fundamental note
(i.e. p the same

for both) but be on bases of different size or shape, then the wedge can

safely receive oscillations at its free end of nearly four times the

amplitude of those of the prism.
These results seem of considerable interest and possibly possess some

practical application.

[1306.] Case (b).
Kirchhoff next passes to the case: m = n=l.

This corresponds to the rod having the form of a very sharp cone.

The differential equation (iv) now takes the form :

or if = zp .
-j 8

we have to find solutions of :

d?u _ du
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Kirchhotl shows that the complete solution in this case is of the form

^ <*v
i

~d?
*
d?'

where
<f>
and

\f/
have the values given in (vi).

Ill |iiatimi for the frequencies of the notes, the terminal conditions

-ill^ M in tin- previous case, is:

d

-0.
,! 1! 3! 5! -2! 4! 7! 3! 5! 9!

Tin least root of this is
,

= 8-718, and we find for the fun.dam* ntal

note

If K be the swing radius of the base, or for z = /, we have K : K
O

: : I : 1,

and ;>
=
8-718^ ,./

-
...(xii).

For a cylindrical rod of the same material and base we should have had :

Tli us the frequencies of the fundamental notes of a sharp conical and of

a cylindrical rod of the same length and on the same base are in the

ratio of 8-718 : 3-516.

[1307.] Finally Kirchhoff proceeds, as in the corresponding case of

our Art. 1305, to measure the safe amplitude for the fundamental vibra-

tion at the free end of the cone. He finds with the same notation as

in that article, a now denoting the maximum distance of any point
on the fixed base from the neutral axis :

U< -790* -,
a

/I
pa V p

'

For the cylindrical rod we have :

< 6-889
-

pa V p
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we conclude that for a cylinder and a very sharp cone of

the same material and length and on the same base, the cone can have
at its free end amplitudes of 2'8 times the magnitude of those of tin-

cylinder, when both vibrate with their fundamental note. If the bases

be of the same shape but different size, and the fundamental notes be
the same, then the cone can have at its free end amplitudes nearly 7

times those of the cylinder.
The fail-point of the cone for its fundamental note is on the cross-

section given by
=4-464,

* =
P P

Thus, the fail-point of the cone is about its mid-section.

[1308.] Benierkunyen zn dem Aufsatze des Herrit Voigt:
"
Theorie des leuchtenden Punktes." Crelles Journal fur die

Matliematik, Bd. 90, S. 34. Berlin, 1881. (G. A. Nachtrag, S.

17-22.) Voigt deals with an infinitely extended isotropic elastic

medium surrounding a rigid sphere at the surface of which

there is no slipping. Supposing the sphere to have an in-

finitely small oscillatory motion it is required to ascertain the

vibrations of the medium. He applies the conclusions to be

drawn from such a mechanism to the theory of an incandescent

point. Obviously the most complex oscillatory motion can be

constructed from : (a) an oscillatory rotation round a diameter,

and (6) an oscillatory translation of the sphere as a whole.

Kirchhoff shows that the solutions for these special cases can

be obtained by an easier method than that of Voigt's memoir.

[1309.] The expressions for the shifts u
t v, w at any point of the

medium may be put into the form

dP dV dW dP dW dU dP dU dV
tt = + --

,-
-

t
= -7- + j

---
r > W -7-+-1---r~

due dz dy dy dx dz dz dy dx

where P is a solution of

and U, V, W are solutions of

a and b being the velocities with which longitudinal and transverse

waves are propagated. These equations are attributed by Kinchhoff to
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Cl-l.s-li. lait they had U-MI previously given by Lame in his Le$on* >>//

Vekixt '*'>> ". ]]'.
11 l-G. In the notation of our work 3 = (A+ 2p)/p and

6* = ft/p: M-O nir Arts. 1078* and 1394.

Kirchhoffnow obtains a solution for Case (a) by taking

P=Cr=r=Oand W=-F(r-bt),

win -re / is the distance of any point of the medium before strain from
tin >. ntre of the sphere, and F is an undetermined function. If R 1><

tin- radius of the sphere a,ndf(t) the angle of rotation from x to y at

time t, we easily find that for r = /i', we must have :

Tin- solution of this equation is given by :

If f(t) = Q, when <<0, then the above solution supposes W and

dW/dt-Q for -0 and ?>.#, that is the medium is supposed to lu-

st iii its unstrained position before the vibration of the sphere

begins at time t = 0.

[1310.] Let the motion in Case (6) be parallel to the axis of c,

then a suitable solution will be obtained by taking

dQ dS ,IH
I ^ ,

C' ^^ . '""" "'
"

dz dy* dx'

win n
, /', iiiul /',. l>eing undetermined functions:

t

It \vr put r /.', u = v = and v*-f(t\ we obtain after some analysis

/; (A - at)
= 2*F,(Jt- bt) +WR I* dt f f(t) <U,

\\ IH-I.

x W =/W *

and A M A, an- tin- roots of the qiiadmti. :

a
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By writing t + (Jt-r)/a and t + (R-r)lb for t in l<\(R-at) und
Ft (R bt) respectively, we obtain the values of Q and IS from these

results.

As before, if f (t) for t < 0, it will be found that these results

suppose the medium at rest in its unstrained position before the sphere

begins to oscillate.

Voigt's solution for this case may be obtained from Kirchhoff's by
supposing a infinitely great.

[1311.] Zur Theorie der Lichtstrahlen. Siteungsberichte der

k. Akademie d. Wissenschaften, Jahrgang 1882, Zweiter Halbbaiul,

S. 641-69. Berlin, 1882. Annalen der Physik, Bd. 18, S. 663-

95. Leipzig, 1883. (G. A. Nachtrag, S. 22-54.)
This memoir belongs properly to the theory of light. It starts,

however, from the basis of an isotropic elastic medium, in which

the dilatation 6 is put zero. Kirchhoff remarks :

Die Schlusse, durch welche man, hauptsachlich gestiitzt auf Betrach-

tungen von Huyghens und Fresnel, die Bildung der Lichtstrahlen, ihre

Reflexion und Brechung, sowie die Beugungserscheinungen zu erklaren

pflegt, entbehren in mehrfacher Beziehung der Strenge. Eine vollkom-

men befriedigende Theorie dieser Gegenstande aus den Hypothesen der

TJiidulationstheorie zu entwickeln, scheint auch heute noch nicht

moglich zu sein
;
doch lasst sich jenen Schliissen eine grossere Scharfo

geben. Ich erlaube mir der Akademie Auseinandersetzungen vorzu-

legen, welche hierauf abzielen, und deren wesentlichen Inhalt ich in

meiiien Universitatsvorlesungen seit eiiier Reihe von Jahren vorge-

tragen habe. Das gleiche Ziel in Bezug auf die Beugungserscheinungen
ist inzwischen. in einigen verbfFentlichteii Abhandlungen von den Herren
Frohlich und Voigt verfolgt (Berichte S. 641; G. A. Nachtrag, S. 22).

[1312.] In the course of his work Kirchhoff gives a proof of

a generalisation of Huyghens' Principle which was first stated by
Helmholtz (Journal fur Matliematik, Bd. 57, S. 1. Berlin, 1860.)

Let < be a solution of the equation

on which the transverse vibrations of the medium can be made to

depend, and let a- be a closed surface containing none of the points of

disturbance ;
let dn be an element of the normal at der measured inwards,

and let r be the distance of do- from a chosen point inside <r. Lastly
let d$ldn = f(t).

Then Kirchhoff deduces from Green's Theorem (Mathematical Papers,

p. 23) that
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wh-iv fi

and < is the value of
<f>

at (S. 646; G. A. Nachtrag, S. 28).
Thus it is always possible to replace the system of disturbing points

l>y a new distribution of disturbing points over the surface a- (sup-

posed to contain none of the old points), provided we know the values

of
<f>
and r/< Jn due to the old system over this surface, and that tin-

point lies inside it.

Kirchhoff discusses further what modifications are introduced when
a disturbing point lies inside the surface <r.

The major portion of the memoir is too closely associated with

tbe theory of light to be discussed here.

[1313.] Ueber die Formdnderung, die ein fester elastischer

l\ rper erfdhrt, wenn er magnetisch oder dielectriscl/ fiultintdrt

<1. Sitzungsberichte der k. Akademie d. Wissenscli often,

Jahrgnng 1884, Enter Halbband, S. 137-56. Berlin, 1884. An-
" der Physik, Bd. 24, S. 52-74. Leipzig, 1885. (G. A.

N"rhtrag, S. 91-113.)

Sir William Thomson and Clerk-Maxwell have both discussed

the mechanical forces called into play in a body when placed in an

electro-magnetic field, and Helmboltz bas extended their results

by introducing, besides the constant of induction, a second constant

which is to be determined by the changes which result from a

< li.mge of density in the medium. Kirchhoff proposes to still

further generalise their conclusions by introducing a third constant

t" express the changes experienced by tbe induction owing to

tli. existence of tbe most general form of strain, when tbe body is

tie, Lorberg in an article entitled: Ueber Electrostricti<>i/

0ft der Physik, Bd. _>!. S. :;<><) :>!>, issM siiiiult,-ui-..usl\

1 1 e(l by different considerations like results.

Kirchhoff1 concei '.-uu-ntary sph-iv of iron, \\hii-h

upposes isotropic, to ha\- undnx'MMr th.- unit'onn n< tches
,, f,, 3

in tin-.',- irccinu'iil.-ir din-.-ti..n-. Then, if A,,, //, Cn
!>< tin- OOmpOO

1
I have partially changed KirchhofTa notation to agree better with tbe customary

no of Maxwell. He n*e* X, . ^, Ma, *. * A % ' '*. c*

/V '*! ""!
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of the magnetic intensity, due to constant magnetic forces J^ ./!,, Ja

acting in tlirsr diivctions, Kirchhoff takes, if s
l
+ s.2 + *. :

Next taking this sphere as an infinitely small part of a finite mass

of iron, which has been magnetised by given external forces, he puts :

where vlt v2 and ** are tne directions of the principal stretches alt x._,, x,,

and < is equal to the sum of V
t
the potential due to external magnetism,

and Q, the potential of the whole magnetised mass of iron, at the element.

Substituting (ii)
in

(i)
and neglecting the terms involving the squares

of the strain we have three relations of the type :

4-(-M-tfh) .................. (Hi).

Here *, k' and k" are constants, functions of p, p' and p", and taken as

depending solely on the nature of the iron. In a second paper (see our

Art. 1319) Kirchhoff states that although the theory supposes K a

constant, it really varies immensely with the value of

/MV
V (dvj

+
\,<w

Calling this expression R we have by (iii)
and

(ii), supposing the strain

terms zero or small as compared with K, and taking ./= V'A
2 + /2

2 + ^3
2
i

In some experiments of Stoletow (Annalen der Physik Bd. 146, S.

4G1, 1872) cited by Kirchhoff in his second paper, K for soft iron rises

from 21 '5 to 174 as R varies from '43 to 3'2, and sinks to 42'1 as R
increases further to 30-7. Ewing (Phil Trans. 1885, p. 548) has

shown that the fluctuations in the values of K (Maxwell's 'coefficient

of induced magnetisation') for soft iron largely exceed even those Kirch-

hoff cites from Stoletow. The bearing of this variation of K on the

fundamental differential equation is not considered by Kirchhoff in his

memoir.
Further it is more than doubtful whether experiments in the case of

soft iron, nickel or cobalt justify Kirchhoff's neglect of the terms in-

volving the square of the strain. His equations and conclusions are

therefore given here with every reservation.

[1315.] Reducing the above results for the principal stretch-axes

of each element to general axes #, y, z in space, parallel to which the
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components of magnetic intensity at the point x, y, z are A, /?, C,

tin. I- :

=-(*-k'6-k',-)'< \ I ,
'+ U

'it
'

c

H now proceeds to determine the general differential equation
for

<t>.
Since

tft
= V+ Q, and Q is given by:

-
.!(')*'!('))"-

where '/re- is an clement of the mass of iron, and 7* the distance <>f this

clement from the point at which Q is the potential, we have :

<>r, by integrating the expression for Q by parts :

II- r<? A
t /?, ^' must be given the values in (iv) above. Following an

ili-:i of Ilclinholt/'s, Kirchhoff supposes the iron to change not abruptly
but j^radusilly to air, so that K, &', k" take values varying from those

they have in iron to those for air, or zero, through a thin shell over the

surface of the iron-mass, this shell bring ultimatelv reduced to an infinite

thinness (Berichte S. 140-1
; G'. A. Nachtrag, S. 95).

Kirchhoff shows how (v) may be replaced by an equation expressing
that the variation of a certain integral vanishes, but to disruss this

integral would carry us beyond our limits (S. U 1 1 : '/. .1. J\*^ /,//,/

96-101).

[131G. ]

If /' . /' , /' represent the terms that must be added t.> the

/>.V. /. )', pZ in the body-stress cMpiations .f t yj.e :

x ty zx ,, _

T- + j
- + ~j +pX = 0,dx dy <l;

to reprenent the effect of the mognetisat iun, and
/',., /*

ff P, the terms tint

: tin* iron mftBS itHolf V?
I' o, :uid if /.' and A" were to be n

M mall compared \\itli K we nhould have the URiial equation
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must be added to the surface-stresses JT
,

}
r

, ^ in the surface-stress

equations of type

.T7- cos (iix) + ^ cos (ny) + r cos (nz)
- -3T

,

where n is the normal to the surface measured inwards, then Kirchhoff

shows (S. 146-8 ; G. A. Nachtrag, S. 102-4) that :

and

with similar values for Py ,
Pz and Pv ,

Hero R 2
represents as before

These results agree with those of Helmholtz if k' and k" be put zero.

[1317.] Kirchhoff remarks (S. 149; G. A. Nachtrag, S. 105):

Die in Bezug auf einen Eisenkorper angestellten Betrachtungen lassen

sich auf ein Dielectricum iibertragen, wenn dieses an Stelle des Eisens und
ein electrisirter Nichtleiter an Stelle des Magnets gesetzt wird. Der Nicht-

leiter kann aber auch durch Leiter ersetzt werden, da es fur die Kraffce, die auf
ein Element des Dielectricums wirken, gleichgiiltig 1st, ob die electrischen

Fliissigkeiten, von denen diese Kriifte herriihren, soweit sie in endlicher

Entfernung von dem Elemente liegen, in ihren Triigern beweglich sind, oder

nicht.

On S. 150-2 (G. A. Nachtrag, S. 106-9) Kirchhoff points out how
another method, which has been, indeed, adopted by Boltzmann, does

not lead to the correct equations.

[1318.] Finally Kirchhoff works out the case of a spherical
condenser of glass bounded by two concentric surfaces of radii r

x and

r
2 (r2

>
7*j).

These surfaces are provided with conducting coatings, the

inner of which is maintained at potential < and the outer at potential

zero, and pressures on these coatings are supposed to be at once trans-

ferred to the glass surfaces. Kirchhoffagreeing with Korteweg (Annalen
der Physik, Bd. 9, S. 48-61, 1880) finds that the extension of the

internal radius is given by :

r/l_
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where E is the stretch-modulus and A and ft the usual elastic coeffi-

cients.

The K, k' and k" of this article are of course not those of Art. 1314,
but constants of the dielectric, 1 + ITTK being the K of Maxwell, or the

specific inductive capacity. It is an analytical not a physical relation,
which enables us to apply the results for magnetisation to the case of a
dielectric : see our Art. 1317.

[1319.] Ueber einige Anwendungen der Theorie der Formdn-

derung, welche ein Korper erfdhrt, wenn er magnetisch oder dielec-

trisch polarisirt wird. Sitzungsberichte d. k. Akademie der Wissen-

iften, Jahrgang 1884, Zweiter Halbband, S. 1155-70. Berlin,

1884. Annalen der Physik, Bd. 25, S. 601-17. Leipzig, 1885 (G.

A. Nachtrag, S. 114-31).

The only portion of this memoir which concerns elastic solids

is 5, which deals with the change in form undergone by an

isotropic iron sphere of radius r when magnetised by a constant

magnetic force of intensity J in the direction x.

In this case at a great distance from the sphere the centre being the

origin, and the notation that of our Art. 1314 :

<t>=-Jx,
and inside the sphere :

*=-TTlS*
Whence from equations (vi) of our Art. 1316 we have to find the strains

in an elastic medium subjected to no body-forces, for Px = Py
= P9

= 0,

but to the surface- stresses Px ,
P

yj
P9 given by:

ft
=

The surface-stresses consist therefore of :

(a) A uniform surface traction =
J/? (* k').

(b) A variable surface traction =
27r/?K* cos

1
^, where ty is the angle

the outwardly directed normal at any point makes with the direction of

magnetisation.

(c) A variable surface pressure parallel to the direction of magneti-
sation = i#fc"cos^.

T. i: ri. ii. 8
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We can easily ascertain the corresponding shifts and strains :

(a) This corresponds to a uniform dilatation of the sphere and to

a radial shift U at central distance r given by :

and consequent dilatation :

(b) If p be the distance of a point from the axis of x, the shifts

u, V
y
at x, p parallel and perpendicular to the axis of magnetisation are

given by :

u = Oof5 +

where Kirchhoff finds for the constants the values which in our notation

are expressed by :

7-617 7 + 3>7
-
27

2

(c) This gives us shifts parallel and perpendicular to the axis of

magnetisation measured by

The combination of these cases gives the total strain due to the

magnetisation.

[1320.] If we suppose, that * is immensely greater than k' and

k", we have only to consider the shifts given by (b).

Assuming the uni-constant isotropy of the sphere, or
rj
=

J, we have
then by neglecting K as compared with /c

2
:

The extension of the radius parallel to the magnetic force

153 J\



13211322] CLEBSCH. 107

while the radii perpendicular to this undergo the compression

27 J\
1767T ~W '

[1321.] In the course of his discussion Kirchhoff refers to the

great variations in the value of K : see our Art. 1314. He points

out that the uniform magnetic force might be obtained by placing
the iron sphere in the axis of a coil, but that the extension of

the radius in the direction of this axis would probably be far

too small to be capable of measurement. Finally he refers to

Joule's measurement in 1846 of the extension of an iron bar

placed in such a coil : see our Art. 688.

Shelford Bidwell has, however, shown that an iron bar will

shorten when the magnetising force is sufficiently increased, so

that it is difficult to see the application of Joule's result to

Kirchhoff's theory. Further J. J. Thomson (Applications of

Dynamics to Physics and Chemistry, p. 54) has shown from

E wing's experiments on the relation of strain and magnetisation
that Kirchhoff's results in the previous article sometimes give a

very small part of the total strain in soft iron, the chief part being

really due to the terms which connect the intensity of magnetisa-
tion with the strain (compare the k' and k" of equation (iii) of our

Art 1314). It is not possible to discuss these matters here at

length, but the reader is warned that Kirchhoff's results are not a

complete representation of the relations between magnetism and

strain brought to light by recent experimental researches.

SECTION III.

Ckbsch 1
.

[1322.1 The first memoir due to Clebsch is entitled: Ceber die

Oleichgewichtsfigur eines bicysanuni Fadeni. CrelUs Journal fiir die

angeioandto Mathematik. Bd. 57, 1860, 8. 93-1 10.

1 For an account of Clebsch's life and work see the Alathrmatitcht Annalen
f..un i, 1 i.y i .m, Bd. vi. 8. 197-203 and Bd. vn. 8. 1-66. Clebtoh died Nov. 7,

1872, aged 89.

82
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1-7 of this memoir are occupied with the equilibrium of an
inextensible but flexible string; 1 gives the general equations (S.

9^-5) )
2 deals with a uniform heavy chain (S. 95) ;

3 considers the

equilibrium of a string under the action of '

centrifugal force
'

produced
by rotation; a solution is obtained in terms of elliptic functions (S.

95-101); 4 supposes the string constrained to remain on a given
surface (S. 101-2), while 5-7 take the special cases of any surface ot

revolution, a sphere, and a string on a sphere under the action of centri-

fugal force due to rotation respectively (S. 102-7). The equations are

integrated by a process due to Jacobi.

[1323.] The remaining sections of the memoir deal more closely
with our subject. 8 is entitled : Gleichgewicht dunner elastischer

Faden (S. 107-9). Clebsch supposes a force-function to exist and the

cross-section to be so small that the string is perfectly flexible as well

as elastic. He obtains his equations by making the integral

- - U] da-

taken throughout the length a of the string a minimum, E being the

stretch-modulus, 8 the stretch in the element c&r, and U the correspond-

ing force-function per unit length of da: Clebsch reduces the general
solution to the' discovery of a solution V of the partial differential

equation :

2

The last section of the memoir is entitled : Gleichgewicht eines

diinnen elastischen Fadens unter dem Einfluss der Schwere (S.

109-110). The statement is so brief that it is difficult to follow the

reasoning of this last section.

[1324.] Theorie der circularpolarisirenden Medien. CreUes Journal

fur reine u. angewandte Mathematik. Bd. 57, 1860, S. 319-358. This

memoir does not properly proceed from an elastic hypothesis, and the

necessary optical terms are introduced into the equations by assuming
a type of intermolecular force which has not received any physical

explanation. Thus Clebsch's hypothesis is the following (S. 322-3) :

Nehmen wir an dass zwar in jedem Augenblick die Molecule sich nach einer

Function f (r) der Entfernung anziehen, dass aber ausserdem durch die

Bewegung selbst auf irgend eine Weise in denselben in jedem Augenblick
eine (nicht wieder verschwindende) Kraft erregt wird, welche senkrecht

gerichtet sein soil gegen eine der Verbindungslime und der relativen Geschwin-

digkeit gleichzeitig parallele Ebene.

Further :

Dass die gedachte, in jedem Augenblick entstehende Kraft proportional
ist einer Function der relativen Entfernung F(r} und derjenigen Componenten
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...lor relativen Geschwindigkeit, welche gegen die Verbindungslinie senkrecht
1st.

The resulting equations are not elastic equations, but similar to

the optical equations of Cauchy, MacCullagh and Neumann, and the

methods adopted arc akin to those of the tractate on optics referred to

in our Art. 1391. There is thus no need to consider the memoir at

length under the history of elasticity.

1325. We have next to consider the work entitled: Theorie

der Elusticitdt der fester Korper von Dr A. Clebsch, Professor
<ler Polytechnischen Schule za Carlsruhe. This was published

in large octavo at Leipzig in 1862, and contains xi. + 424 pages.
The preface states briefly the object of the work

;
this may be

said to be to furnish a sound basis for practical studies and

applications. Accordingly the mathematical processes are kept
as simple and elementary as possible ;

the general investigations

given by Lame' and also any applications to the theory of light

are omitted. On the other hand the researches of Saint-Venant

on the Flexure and Torsion of Prisms, and those of Kirchhoff with

respect to very slender rods, are fully considered. The work is

divided into three parts; S. 1-189 treat of bodies having all

their dimensions finite; S. 190-355 treat of bodies which have

one dimension or two dimensions indefinitely small
;
S. 256-424

are devoted to applications. The work is subdivided into 92

sections.

[Notwithstanding Clebsch's preface and his position at Carls-

ruhe his book is certainly not suited for the technicist; the

htest comparison of his pages with those, for example, of his

successor Grasshof will sufficiently demonstrate this fact. It is

to the mathematical elastician that Clebsch in reality appeals, and

the chief value of his book lies in the novelty of his analytical

processes and his solutions of new elastic problems. Throughout
tin- work Clebsch practically uses only the equations for isotropic

materials, and this deprives the work of much physical and tech-

1 interest. In the French translation due to Saint-Venant and

:ii.int, suitable distributions of elasticity replace this isotropy
he original work. The copious notes of Saint-Venant and the

correction of many of the innumerable errata of the original so

the value of the translation, that it is safe to predict that

the future Clebsch will be chiefly read in the French edition
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(see our Arts. 298-400). For our present historical purposes,

however, we follow the original, giving under the letters " F. E."

the corresponding pages of Saint-Venant's version.]

[1326.] The first seventeen sections of Clebsch (S. 1-50
;
F. E.

pp. 1-113) contain a general theory of elasticity, which does not

possess much novelty. The statements on S. 7 and 10 with regard
to the numerical limits of the elastic constants

1
are only true for

the isotropic materials of theory and not for the usual materials of

construction : see our Arts. 169 (d) and 308 (b). The definition

of the elastic limit, S. 4, requires modification, but the remark on

S. 3 as to the fitness of excluding caoutchouc from the substances

to which the theory of elasticity in its present form can be applied
deserves notice. As a novelty we may refer to S. 23-7, where

the reader will find Lamp's ellipsoid of elasticity and the stress-

director-quadric (see our Arts. 1008* and 1059*) expressed in

tangential coordinates-, the analysis has probably more interest

than the result practical value.

The linearity of the stress-strain relations is practically as-

sumed by Clebsch, as he appeals to a mathematical process and

not to experimental facts : see our Arts. 928*, 1051*, 1064*, and

299.

Clebsch terms the stresses Spannungen and the strains Ver-

schiebungen*, he uses Zugkraft also in the sense of Spannung, but

it would I think be better to confine it to what in this volume

we term tractions. He represents the stress system by tu , t^, t
s&)

**>> <si *i2
and the strains by a, /3, % <, %, ^.

[1327.] Clebsch next passes in 18 to the special case of the

equilibrium of a hollow spherical shell subjected to uniform

surface-tractions. This has been fully considered by other writers

(see our Arts. 1016*, 1093*, 123, and 1201 (c)), and their results

should be compared with those of Clebsch, as there are misprints
in his work. He uses also, here, as throughout his book, the

maximum stress not the maximum stretch to suggest the fail-limit

or condition of rupture : see our Arts. 4 (7), 5, 169 (c) and 320-1.

The following section 19 (S. 55-61) deals with the radial

1 Clebsch uses /* for our 77 and F for our /* ; he uses E, as we do, for the stretch-

modulus.
2 He also uses Verschiebungen occasionally for the shifts, e.g. S. 25.
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vibrations of a sphere, and does not add much to Poisson's treat-

ment of the like problem in his memoir of 1829 : see our Arts.

449*-463*.

These sections occupy S. 114-126 of F. E.

[1328.] The next subject to which Clebsch turns is of more

interest. 20 (S. 62-67
;
F. E. pp. 126-132) is entitled : Ueber

die Wurzeln der transscendenten Gleichungen, welche die Unter-

suchung von Schwingungen elastischer Korper mit sich fuhrt, and

its object is to show the reality of the roots, or the stability of

the small vibrational motions. I reproduce the substance of

Clebsch's investigation here, as it appears to be original, and

is of considerable importance.

1329. Let us suppose that for small vibrations the values of the

shifts U) v, w can be expressed in series of simple harmonic form. Thus
w- may put

M = H! sin kjt + MS sin kj + u^ sin kj +

+ w/cos k^t + Wj'cos kj + MJ'COS tyt, + ,

with similar expressions for v and w. But as the treatment of the

terms which involve cosines is the same as that of the terms which
involve sines, we will omit the cosines entirely. Hence we take

u = w
t sin k^t + u* sin kj + 1^ sin k3t +

v = v
l
sin k^t + v2 sin k^t + vg sin k^t +

w =
t0! sin k^t + w9 sin kj+ws sin tyl+

Now similarly each of the six elastic stresses will take the form of

such a series
;
we will thus suppose that corresponding to

un sin knt, vn sin k^ wn sin kntt

we have for the three tractions :

and for the three shears :

T! sin kHt, TS sin knt, rs sin knt.

Then sir _' in the body stress-equations, and supposing no
external forces to act, we have

</r, </r,

l.i- (It/ </Z

...(l).

-
.;
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The values of vx ,
va,...are connected with un ,

vn ,
wn by the same

relations as the stresses are connected with the strains. Also we have
the following equations holding at the bounding surfaces, supposing
there to be no load and a, /?, y the direction-angles of the normal :

vl cos a + rt cos j3 + ra cos y = 0,

TS cos a + va cos ft + T! cos y = 0, V (2).

-0,1

-0,1
-ofra cos a + TJ COS /? + vt COS y

It will be observed that (1) and (2) are derived from the general body
and surface stress-equations; each of these equations breaks up into

sets obtained by considering separately the terms which involve

Now let umi vm ,
wm correspond to sin kmt in the values of u, v, w,

where km is different from kn . Let the corresponding forms of (1) and

(2) be what we get by putting v instead of v, and T' instead of T.

Consider the triple integral extended over the whole body

J = If! (
umUn + vmvn + wmwn) dxdydz.

By means of (1) this gives at once, if p be constant :

drs dv2 c?rA /c?T2 C?TJ dv,\} .

j-
2 + ~r + ~T )

+ wm ( -r + ~r + -r* ) t dxdydz.dx dy dzj
m
\dx dy dz )}

Now by integration by parts, the triple integral can be transformed
into a certain double integral extending over the boundaries, and a
certain triple integral extending throughout the body; the double

integral vanishes by (2) ; and we are thus left with the result

dvm /dwm dum\ dwn fdum dvm+
*d?

+ TaU +
ar)

+ "s -ar
+ r> (ny

+ -

Now in precisely the same way as this result has been obtained, by
applying (1) with respect to um ,

vm ,
wm instead of with respect to

un> vm wn we obtain

,dvn , (dwn dun\ ,dwn ,+v
> ^ +T*

(<fo-
+
-&)

+ "
-&

+r>

1330. But the right-hand members of the last two equations are
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the same. For we know that there is a certain homogeneous function

of the second degree involving the six quantities

dul dv*
+
dw

dx ' dz (I >i

such that its differential coefficient with respect to .-
11

is v,, its
ax

differential coefficient with respect to - - + -j-
5 is T, ,

and so on
;
and

in like manner similar considerations hold when we form the same
function of the six quantities

dum dvm dwm
dx

'

dz <ly

.ce it will be found, as asserted, that the right-hand members of

these equations are the same. Thus we have

and since kn and km are different it follows that J must be zero,

that is

JfJ(umun + vmvn + wnwn)dxdydz = Q ............... (3).

This result enables us to show that the quantities k*, A^
2
,
...... are

all real. For suppose one of them were of the form p + q ,J 1
,
then

another would be of the form p q*Jl', let then um ,
vm1 wm cor-

respond to the former, and un ,
vn ,

wn to the latter. Then um and UH
will be conjugate imaginary expressions of the forms Pi+qij-l
and /?! ql J 1

;
and so their product would be the sum of two

squares. The like would hold for vmvn and for t0mt0n ;
and thus the

integral in (3) would be nece*sarily a positive quantity, and so could

not vanish as it must by (3).

Glebsch then proceeds to show that A;,
2
, kj, ......must all be positive

quantities. For put

the integral extending throughout the whole body; thus J* denotes

what J would become if we put un ,
vnt WH for umi vmt wm respectively.

Then transforming this as we did J we get

(4),

where F is that homogeneous function of the six quantities

dun dvn dwn
d> dz~

+

to which we have already referred.
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Now Clebsch says, in substance, that the right-hand member of (4)

must be a positive quantity. It is really the strain-energy corresponding
to certain small shifts

;
hence since J' is necessarily positive it follows

from (4) that &n
2 must be positive also. Clebsch should have referred

to some standard treatise on Mechanics for the proposition which he

here asserts [see our Art. 1278]; his own words after arriving at

equation (4) are

Das negative Differential des dreifachen Integrals rechts bedeutete aber die

Arbeit, welche die innern Krafte bei einer kleinen Verschiebung leisten, daher

stellt das Integral selbst, rnit entgegengesetzten Zeichen genommen, die Arbeit

dar, welche die innern Krafte leisten, wenn der Korper aus seiner naturlichen

Lage verschoben wird, bis er die Verschiebungen uny vn ,
wn erhalt. Diese

Arbeit ist ihrer Natur nach negativ, genau entgegengesetzt der ihr gleichen

positiven Arbeit der aussern Krafte, welche zu einer solchen Verschiebung
nothwendig ist. Das dreifache Integral ist also nothwendig positiv ;

aber

auch J", welches eine Summe positiver Glieder ist, daher muss denn auch &n
2

nothwendig positiv sein, was zu beweisen war (S. 65-6).

Clebsch applies the results obtained to the problem of the vibrating

sphere in order to justify an equation there assumed to be true.

1331. The twenty-first section consists of a demonstration that

the problem of the equilibrium of an elastic body is a determinate

problem. (S. 67-70; F. E. S. 132-6.) This is a modification of

Kirchhoff's proof: see our Arts. 1255 and 1278.

Suppose if possible that such a problem admitted two solutions,

one in which the shifts are u', v', w, and another in which the shifts

are u", v", w". Write down the body and surface shift-equations, first

with respect to u', v', w'
t
and next with respect to u", v", w". Make

subtractions of corresponding equations ;
for the result we obtain

equations of elastic equilibrium, with no applied forces whatever, and
where the displacements are denoted by u u", v v", w' w" respec-

tively : it is our object to show that the displacements in this case must
all be zero, that is

u'-u" = 0, v'-v" = 0, w'-w" = 0.

If this be shown it amounts to establishing that there is only one

solution of the problem of equilibrium.
Let us then suppose that no applied forces whatever act, and let us

denote the shifts as usual, by u, v, w. If we proceed as in our last

article we have results like those obtained there, provided we put km
2

and kn
2 zero

;
for now as we are supposing no motion, these quantities

do not occur. Thus corresponding to (4) of that article we have
now

........................... (1).

But this integral owing to its physical meaning has a positive value
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and cannot, therefore, be zero unless F be zero. This can only be the

case when all the variables in F vanish, that is when :

.(2).

dv dw
f.

dw du du dv _

-j- + -j- = j- + -j-
= 0, -j- + j- =dz dy dx dz dy dx

It seems to me that these equations are not obtained in a very
convincing manner : compare our Art. 1278.

The values of u, v, w which satisfy these equations are of the

following forms :

\vliL-re a, b, c, a, ft, y are constants. These are easily shown to follow

from (2). For from the first three of these we see that u cannot
involve x, that v cannot involve y, and that w cannot involve z; then
from the last ot them dujdy cannot involve y, and from the fifth of

them du/dz cannot involve z : in this way the assigned formulae are

obtained.

Now the equations (3) exhibit only such motions as the body can
take as a whole, and which consequently do not give rise to any relative

shifts, and so do not call out any stresses. For a, b, c correspond
to shifts parallel to the axes of x, y, z respectively ; a, ft, y correspond
to a small rotation of the body round a straight line inclined to the axes
at angles whose direction cosines are proportional to a, ft, y respectively.
The conclusion is that any problem relating to the equilibrium of an
elastic body becomes perfectly definite if we exclude all such shifts

as the body could take as a whole.

[1332.] S. 70-148 of Clebsch's treatise are occupied with

what he has termed Saint- Venant's Problem, that is to say with

the torsion and flexure of prisms. This forms Chapter II. of the

French edition (pp. 137-294). Clebsch's treatment is very in-

structive, as he combines in one investigation the general results

of Saint-Venant's two classical memoirs : see our Arts. 1 and 69.

At the same time the slight value of his book for technical

students is well brought out by the fact that he passes over all

the important practical examples (the elliptic cross-section alone

excepted) which Saint-Venant has given of his theory (see our

At ls-49 and 87-97), and devotes himself especially to th.

case of a prism bounded by two confocal elliptic cylinders. Th.-

i- interesting, but the practical application is small. \\V

IM ve here a good example of how the love of original investigation
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may render it impossible even for a mathematician of genius to

write a textbook especially suitable for a particular class of students.

In this respect his very originality may handicap him, and Clebsch's

treatise has never won for itself the same type of readers as those

of Navier, Lame' or Grashof : see our Arts. 279*, 1043*.

[1333.] Clebsch states Saint- Venant's Problem in the following

manner (S. 72-3) :

Welches sind die Gleichgewichtszustande eines cylindrischen Korpers,
auf dessen cylindrische Oberflache keine Krafte wirken, und dessen

Inneres keinen aussern Kraften unterworfen ist, bei welchen die den

Korper zusammensetzenden Fasern keinerlei seitlichen Druck erleiden.

Welches sind die Krafte, welche auf die freie Endflache wirken miissen,

um dergleichen Zustande hervorzurufen.

1334. We will now indicate Clebsch's method of investigating

this problem. To free the shifts from pure translational and

rotational terms we may fix a point in the body and a linear and

a planar element at that point. This Clebsch does in the following

manner.

Suppose the body of any cylindrical form. Take the axis of z

parallel to that of the cylinder, so that originally a section at right

angles to the axis is parallel to the plane of xy. We shall suppose that

the origin is a fixed point, so that we have u = 0, v = 0, w = at this

point, that is where a;, y, z vanish. For a point in the plane of xy

very near the origin the displacements parallel to the axes of x, y, z

respectively may be denoted by

fdu\ /du\ /dv\ /dv\ , fdw\ , fdw\
(
-.-

)
dx + ( y- ) dy, (

-=-
)
dx +

(
-=-

} dy, ( -7- I dx +
(
-=-

) dy.
\dx/9 \dyjo

'

\dxjo \dyJ
*

\dxjo \dyjo

Suppose then that (-r) =0, and (-=- J
=

;
this amounts to assuming

\dxJ Q vfy/o
that an infinitesimal element originally in the plane of xy remains

in that plane, or that there is no rotation round an axis in that plane.

Let us further assume that
(^- j

=
;
then there is no motion parallel

to the axis of y of any point of the infinitesimal element which is on the

axis of x, and so there can be no rotation round an axis perpendicular
to the plane of xy.

We take then these six conditions to hold when x = Q, y = 0, z = Q:

-*.-o.-*-o, f=o,
*-o (i).

These conditions in fact make the six constants of (3) in our Art. 1331,
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namely a, b, c, a, ft, y, all vanish. The six conditions might be assumed

differently ;
thus for instance, instead of -=- = we might take -=- = 0,

keeping all the others : but we shall adhere to the form adopted in (1).

We assume that no body-force whatever acts
;
and that there is no

load on the curved boundary of the cylinder, but only on the terminal

cross-sections. The direct problem now would be to let given forces

act at the terminals and then seek to determine u, v, w ;
but instead of

this Clebsch follows Saint-Venant in an indirect course. He proposes
to seek the conditions that must hold, and the forces that must act on
the body, in order that throughout the body we may have

The assumptions made that r, ^p, ^ shall all vanish amount
to supposing the cylinder to consist of slender 6bres, rectangular
if we please, and that these fibres exercise on each other no stress

perpendicular to their length. As no transversal stress exists on such

a fibre we must have

du dv dw
and -j-

=
-j-

=
rj -y- (3).dx dy dz

These relations flow at once from the conditions

~ = 0, ^=0,
as we see from Art. 78.

The condition that Ty = leads to

^+^ = 0... (4)
dy dx

The body-stress equations now take the form

"' d
=0

' dx
+ ^ +

d*z

=
(5) '

Substitute the values of P7, <*, ,
and these become, supposing the

elasticity to have a planar distribution perpendicular to the axis of the

prism :

T7II +^= S + T-:r = (
6
)dz9 dxdz da? dydz

d*w

where E, /x and
17

must be now regarded as independent elastic

constants
1

: see our Arts. 310-3 and 321 (d).

1 We have here followed Saint-Vonant in extending Clebach'g retulU to a planar
elastic distribution. Clebach aapponefl the body iaotropio and therefore has 9 for oar
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The conditions relative to the cylindrical surface reduce to

= 'zx cos p + yz sin p,

where p is the angle that the outwardly directed normal makes with
the axis of x.

1335. The twenty-third section proceeds to the solution of the

equations just obtained.

The equations to be discussed are the following :

dudv dw .

- + = 0... ...(2),
dy dx

dydz

E

(4)

Differentiate (5) with respect to z
;
and subtract (3) differentiated with

respect to x, and (4) differentiated with respect to y ;
thus

"V da? dxdz* dydz*
'

Hence by (1) we find :

Differentiate (3) with respect to y, and (4) with respect to x, and add :

thus

dau dsv d3w
dxdz* dxdydz

the sum of the first and second terms vanishes by (2) ;
and thus

dxdydz

Differentiate (5) with respect to z, and use (6) ;
thus

dzdx*
+
dzchf^

'
''
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Differentiate (3) with respect to x, and (4) with respect to y ;
the

first terms are equal by (6), and we have

d?w

Comparing this with (7) we see that

<Pu> _ A <P

dx*dz~ dtf

Thus we have shown that the following differential coefficients of

duo

-j-
must vanish :

d^ fdw\
d*

fdw\
d*

fdw\
<P

fdw\
dz* \dz)

'

~dx* \dz)
'

dtf\dz)' dscdy \dz)
'

On account of the first three of these dw/dz cannot contain x, y or

* to a power higher than the first
',
and on account of the last dw/dz

cannot contain xy : hence

l i ............... (8).

From this we have by (1)

du dv

Integrating the last two equations we get

u = -
rj (ax +

a

^-
+ a&y\ -

t]Z (bx +
-^- +b^cy\ + < (y, z),

v = -
r) (ay

+ aw +^j -rjz(by + lvxy + -^Q
+

<f, (x, z),

where
<f> (y, z) denotes some function of y and s, and ty (x, z) some

function of x and z : these must now be determined.

From (3) and (4) we have

cPu tt-v

thus < and
i/r
do not involve any power of z higher than the third

;
also

the coefficients of z* and 2* are constants in each.

It follows from
(2), combined with the expressions obtained for tt

and v, that y in
<f> (y, z) and x in ^ (a?, *) cannot occur to a power

higher than the second. Thus for the forms of
<t>
and

\f/
we obtain

* + a,'y

'

^ (x, z)
= o" + a, ,
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The equations (3) and (4) are now fully satisfied by the values of u
and v which we have obtained. Substitute these values in (2), and we
find that the following relations must hold among the constants:

Put of = cti"
= V = V =

X

^~ + a&y\-r)
z (bx + ^

and we obtain finally

...(9).

1336. These formulae satisfy equations (1), (2), (3), (4), and they
constitute the most general solution of them

;
it will be seen that they

fully determine u and v, except that they each involve some arbitrary
constants. We proceed to find w, which has to satisfy (5) and (8).

By integrating (8) we get

3sw = z(a + a1x+ ay) +
-^

(b -f bjX + b&) + F(x, ?/),

where F (x, y) denotes some function of x and y. Substitute in (5),
then we get

E

Assume

where fi denotes a function of x and y ;
then the equation becomes

(10).

This equation will not fully determine 12
;

as we shall see, the

condition holding at the cylindrical surface will aid in this. Introduce

now the expressions found for u, v, w in the stresses, and we have the

following set of formulae :
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u and v as given by (9),

*

(
+ (1& + a$) + -

(b

-b'x-b"y;

= 0, ^ = 0, p = 0,

To determine Q we have equation (10); while equation (8) of our
1334 now becomes:

"

- 3

(12).

1337. The twenty-fourth section relates to the functions which
have to be determined in the solution of Saint-Venant's problem.

T)i<> first thing to be shown is that fi is fully determined by (10)
and (12). If there were two different forms of fl which satisfied

conditions, then their difference which we will denote by would

satisfy the two conditions :

-TJ +
-3-^=

0, at every point of the cross-section ......... (13),

fxjv Ij

cos;/ -f sin/> 0, ;it every point of its contour ...(1 h.

Consider now the following int.-.'i-al T i-\tend. -lit-

cross-section :

I!!

1

*or
i i i-i. n
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By a process frequently exemplified, this can be transformed into

i'
/d d .T = @ a C08* +

d
8m "

where ds denotes an element of length of the contour of the cross-

section, the first integral being taken round the whole contour, and
the second over the whole cross-section. But by (13) and (14) the

light-hand side is zero, and therefore T is zero
;
but this cannot be

unless d/dx and d/dy vanish at every point ;
so that must be a

constant. Hence it follows that the two values of O which will solve our

problem can differ only by a constant
;
so that if we add the condition

that fi shall vanish at some point, as for instance at the origin, then fl is

fully determined. We can impose this condition on O without any loss

of generality, because in passing from F to fi in Art. 1336 we have in-

troduced an arbitrary constant c.

1338. Thus since fi is fully determinate any form which we can

give to it so as to satisfy the conditions (10) and (12) of the preceding
section may be taken as the necessary form. Assume then

where B, j5
,
Blt B2 all separately satisfy (10); and let us add the

following special conditions round the contour, so that (12) .may be

satisfied :

dB dB . / E\ ,-*m p =
(
x cos P + y sm p)>

dB dB, .

-j cosp +
j-^sinp

= x smp y cos;;,

E \
-

rj
1 xy sin p,

dB.

Thus B, B ,
Bly Bz are fully determinate

;
for each has to satisfy the

general differential equation (13), and each has to satisfy round the

contour the appropriate equation from (15).

1339. Clebsch now shows that b must be zero. Consider the

expression

ll (
C

.-j
+ -=-a

) dxdy,
taken over the cross-section

;

this must be zero by virtue of (10), if b be not zero. Integrate the first
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once with respect to x, and the second term once with respect to

then according to a very common process we have :

By the first of (15) this leads to

= f(x cos p -f y sin jo) c&.

But by such a process as we have just indicated, this can be

from

that is Q = 2ffdxdy,

but this is impossible, for the integral is obviously equal to double the

area of the cross-section. Thus as the only escape from this contra-

diction we must have 6 = 0.

We learn then that the solution which is furnished by equations (9)
and (11) involves only the constants

, ,, cr2 >
a

'

a"> aot ^i> ^2* &' ^"> ^o c

which all enter in a linear form; and besides these there is nothing

arbitrary. For the function fi is expressed in the form of a linear

function of three of these constants, namely 6 , &,, 62 ,
and involves

nothing else which is indeterminate for a given cross-section. But
th.-s- fcorfn constants will reduce to six, if we make use of the six

conditions contained in (1) of our Art. 1334. These conditions

to

&' = (^r-= 0,

where in the last two equations the subscript indicates that we are to

put x and y each zero after differentiation.

The values of u, v, to as furnished by equations (9) and (11) take

th<-n tin- following simpler forms:

& / /* \

(a + 0,0- 4- a^/
-- ^y) -

( 2

' -
^J

(6,y
8 + /'

(16)
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1340. The twenty-fifth section (S. 85-7) proceeds to the discussion

of the solution.

There are six constants in the solution ;
we may then suppose them

all to vanish except one, and so obtain an idea of the meaning of this

constant. This Clebsch proposes to do. There would then be apparently
six cases to discuss, but by a slight modification of the process it

is found that a smaller number of cases is sufficient.

When any system of shifts occurs in a rod there are two points
which deserve especial attention. We may determine the form

assumed by a 'fibre' which was originally a straight line parallel to

the axis of %
;
and we may determine the form assumed by a section

which was originally a plane at right angles to this axis. Suppose now
that x', y' t z, denote the coordinates of a point of which the original
coordinates were #, y, z

;
then

x' = x + u, y'
= y + v, z' = z + w (1).

In order to determine the form assumed by a ' fibre
' we treat x and y

as constant, and eliminate z between these three equations. Neglecting

quantities which are small in comparison with those which we retain,

this amounts to putting z' for z in u and v; denote the results thus

obtained by u' and v' respectively : then we obtain

x' = x + u', y'
= y + v' (2).

In order to determine the form assumed by a cross-section we treat

z as constant, and eliminate x and y ;
this amounts approximately

to putting x' and y' for x and y respectively in w : and the result may
be expressed thus :

z' = z + w' (3).

1341. As the first case to be considered we will suppose that all

the constants vanish except a; then equations (16) of Art. 1339 reduce

to

u =
rjax, v = yay, w = az.

The stresses all vanish except *, and this is equal to Ea. The
result corresponds to a simple longitudinal traction. Every straight line

parallel to the axis of z becomes (1 + a) times its original length, while

a transverse line is reduced to (1 ~rfa) times its original length.

1342. The twenty-sixth section (S. 8791) continues the discussion

of the results, which was commenced in the twenty-fifth section.

Suppose that all the constants in equations (16) of our Art. 1339
vanish except a^ and blt Then
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+ zb, -r ...(1).

Further from (11) of our Art. 1336 :

E dB.

1 he equations (2) of Art 1336 then become

The second of these equations represents a plane, so that a ' fibre
'

which was originally parallel to the axis of the prism remains in one

plane ;
the first of these equations is that to the projection on the

plane of xz of the curve which the * fibre
' becomes

;
the curve is one of

tin- third degree, which reduces to the common parabola when b
l

is

zero. The plane denoted by the second equation is parallel to the

axis of x
; in a particular case this plane will also be parallel to the

axis of z, namely when

th, -n the equation reduces to

Thus the 'fibres' which remain ath-r <l^pla.-,-inriit in a plain-

il-l to the axis originally constituted a hyixsrboliu cylinder doter-

1 by (4).

lit'.. The amount of tin- brndin^ may be estimated by tin- shift

of th' cud of the fibre determined by x = 0, y = 0. 3up|io0o / the

In the value of w Clebsch hai inted of our

his dimensions in and w different

twenty-sixth section.

B
T "

U*
the mistake prevails throu

ibis
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length of the cylinder
1

,
and uh vlt the corresponding values of u

and v ; then

..(5).

Clebsch also deals (S. 88-91) with the distorted form of the cross-

section.

If instead of
.,, 6j we cause all the constants except a.,, bz to vanish

we obtain precisely similar results except that the bending now takes

place in the plane yz.

1344. The twenty-seventh section (S. 91-4) continues the discus-
sion commenced in the twenty-fifth.

Suppose that all the constants in equations (16) of our Art. 1339
vanish except 6 . Then

&A/'

Further from (11) of our Art 1330 :

If we shift the origin of coordinates, and put y1
for y + ( ~

J ,
and

\ UX / o

7-for x -
(-7-) >

the values of u and v become

and then we see that they correspond to a torsion. The angle which

expresses the amount of twisting is denoted by b^, and so it varies

as z.

Clebsch shows that the 'fibres' which originally were on the

curved surface of any right circular cylinder of radius r

will after strain lie on a hyperbole id of one sheet.

He says with respect to this section and the two which precede it :

So sind denn bei der Discussion dieser Resultate die drei Hauptfornien,
unter welchen ein elastischer Stab sich darstellt, sofort zu Anschauung

1 Clebsch uses I without stating what it means
;
and he seems to say on his 8.

88 that the bending takes place in the plane of xz : that is he treats vt as if it were
zero.
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inliirii : J//.W- / uinl Tnrm'u/t. Zuglcich i>t 1'iir tlic alinah-

cmdc Behandluni; windicher IVoblcinc cin sichercr Auqgaugspunkt ge-
WMMIICU, und damit die Basis gegel>en, uuf wclchc cine minder strenge Fort-

entwieklung sich stiitzen kann (S. 94).

[i:>4.">.] The whole of the above investigation is concise, clear,

and instructive, especially from the mathematical standpoint. It

gives us the most general solution of the differential equations of

ticity subject to certain conditions, in particular the vanishing
of the stresses , w and xy. It thus embraces Saint-Venant's

results both for flexure and torsion and throws light on their

mutual relationship : see our Arts. 17 and 82. It does not bring
out to the student, however, quite so clearly as Saint-Venant's

treatment the reason for these assumptions as to the stresses, and

requires therefore to be supplemented by such considerations as

w<> have referred to in our Arts. 77, 80 and 316-8. See also

Saint-Venant's Clebsch, pp. 174-190. Certain misprints of Clebsch's

been tacitly corrected in our reproduction.

[184(5.] Clebsch's twenty-eighth section is entitled :

crte Anwendunfj auf wirkliche Probleme (S. 94-8, F. E. pp. 169-

1 74). The discussion in this section does not seem to me to bring
>ut fully the relationship between the theoretical surface stresses

and such loads as can be applied in practice. Namely it is almost

impossible to apply in practice any distribution of force which can

be exactly represented by theory, we can only hope to obtain

i' ally equivalent systems of loading : see our Arts. 8, 9, 21 and

100.

Clebsch supposes a statical system given by the force-coinpoiifnts
A, /!. C j-aralM to the axes of x, y, z (origin the terminal, ^ H) ;md

a couple system A . #', C' about those axes, applied to the terminal

cross-section z-l. He takes the axes of x and y to coincide with the

l>rin< i|al axes of inertia of a cross-section, and we may write :

ffdxdy = u, jjx*dxdy=K*<a, fjifdxdy **
*?<*.

\\\ the aid of these we can express the undetermined constants a, 6,,

in terras of A, 7f, C, A', K, C' as is done by Clotach on
111' equations he gives contain int. -^rals ni\<>lvin^ differentials

if 12. Put it is shown in tin- f<>ll<>\s \\\^ or t u<nt\ ninth section (8.

L09, / I-'-.
]>i>

I'-'l
) that although O may not have been dct< -i-min. !

thesr intr^r.il- -Mil I"- -In. i-min.-.l \\\\\\ one exaction in terms of the
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cross-section and independently of O. Thus ('lebsch deduces the follow-

ing values for his constants (S. 102, F. E. p. 194) :

a =

dto d

Thus a, &i, Oi, 63 , Og are given each in terms of a single element of

the load system, but b is given in terms of three, namely C", A and B.

Clebsch says :

" nur die letzte Gleichung enthalt claim noch sammtliche

Grossen, so dass 6 sich durch alle mit Ausnahme von C ausdriickt."

This seems to me incorrect, as b does not involve A' or B'.

[1347.] The thirtieth section is entitled : Symmetrische Querschnitte,
and occupies S. 102-6 (F. E. pp. 198-202). Here Clebsch investi-

gates how the equations of our previous article may be simplified if the

cross-section be symmetrical about two rectangular axes. Here after

some reductions and for the case of a single force P acting parallel to

the axis of x at the centroid of the terminal cross-section, z=l, we have:

Z-x-(

\ _ tf_ /E

^ (E

...(9).

These values should be compared with those given in our Arts. 17,

83 and 84. Clebsch has an erroneous value of w in his equations (88)
and (89) on S. 105. The error arises from the wrong value of w, already
referred to (Art. 1342, ftn.), given on S. 87 in equation (75 a), and
its influence extends to S. 110 of the Treatise.

[1348.] The following seven sections may be dealt with more

briefly. They occupy S. 107-138; F. E. pp. 202-252.
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(a) 31 treats the case of the prism of elliptic cross-section : see

Saint-Venant's results in our Arts. 18 and 90. There are errors on

S. 110.

(b) 32. General remarks on case of a hollow prism with, 1

think, wrong equations for c, &', and b" : see our Art. 49.

(c) 33. This contains I believe the first introduction of wbat are

really conjugate functions into Saint-Venant's problem. Clebsch trans

forms the equations for Q, i.e. for the J?'s (see our Arts. 1336 and 1338),
into curvilinear coordinates in the plane of the cross-section.

The investigation has since been more elegantly carried out by
Thomson and Tait : see their Treatise on Natural Philosophy 2nd Edn.,
Part II. pp. 250-3, but the idea is due to Olebsch : see our Art. 285.

(d) 34. This develops the transformation of the preceding section

for the case of elliptic coordinates.

(e) 35 applies the whole investigation to the case of the )>nrc

torsion of a hollow cylinder the section of which is bounded by two
confocal ellipses.

If the confocal ellipses be given by

+ 04

**

GO n + OQ

Clebsch 1 finds for the value of

;

TT (w*-n*)
3

(Vw
a + Q! + Vn* + cii)

3 - (Vm
3 + OQ + Vn*

aj
2 + (\

Thus all the constants of the problem (see our Art. 1341) an- dfti-nniiuMl,

and 6 the angle of torsion per unit length of cylinder is given by :

b
,' + *,)<>-/}'

values of K,
3 and K,* are easily expressible in terms ,,t tho axes of

tin- two rlli|M-,.

I'h is i-esult may be compared with Saint-Venant's for a hollow

PIIMII l.-nuidod by similar and similarly situated elliptic cylin
Clrbsch's analysis is int< -i-.

.-.ting, but to make the cro8s-secti"u with

confocal instead of uiinilar elliptic I><>undarie8 possesses no

1 Clcbsch (and Saint-Vuuant editing him, p. 239) h*ve 8 instead of I in il>.

denominator of /, but thU appears to be an error. Clobsoh further drops tha w u
the iiuincrutur.
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practical advantages, and the theoretical results are far more com-

plicated. See also Saiut-Venant's note on the subject pp. 240-2 of

his edition of Clebseh.

(y* )
An instructive conclusion can, however, be drawn from Clebsch's

result as to the possibly delusive character of torsional experiments uj>on

liars which are not absolutely free from Oaws. Suppose the inner elliptic

surface to reduce to a thin cavity almost coinciding with the plane area

iHitweeii the focal lines of the outer elliptic surface. We thus have theo-

retically a fair approximation to the case of the torsion of an elliptic bar

with a Haw along its axis, or with a rotten core, a not infrequent case in

castings. If M' (- G') be the couple required to produce an angle of

torsion T (= 6
) per unit length of a bar with cross-section and semi-axes

b and c (= \/m~ + Oj and /n'- + c^), we easily find from the above results

by putting *Jn~ + a = and *Jm
s + OQ= \/6

3 - c
s
,
that :

1 1' M be the couple producing the same torsional angle in a sound

bar of the same dimensions and material we have by Art. 1 8 :

__.

Thus: .

We n'nd that this ratio varies from 1 to '75, i.e. :

b/c=2,

It would thus appear that the determination of the slide-modulus

from torsional experiments on cast bars may be liable to considerable

error, if there be flaws, as so frequently happens, in the core of the bar.

The maximum slide cr might be calculated for this case from the

formula :

a

b

r
2

( . ., / dB, dB9\ (dBtf fdB- = max. {x
1 + y + 2 iy -j-

- x -=
)
+

[ 3-*] +
[

-.
- -

;
2

I V dx dyj \dxj \dy

and its value compared with that given for the case of a sound bar in

Art. 18. The analysis would be somewhat lengthy, but it would be

interesting to compare the result with Mr Larmor's conclusions :

Philosophical Magazine, Vol. 33, p. 70, 1892.

(y) In 36 we have a discussion of the SUuticitateettipsoid for a
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like tin- prrsrnt when the three stresses *x, w and Ty are zero.

The principal tnictions are now

r-=o, r=

Obviously 7" ami T" are always of opi>osite sign, or one principal
trartinn i- n< Dative aud the other positive.

(Mrl.scli gives an elegant geometrical construction for determining
i IK- position of the ellipse to which the ellipsoid reduces and so the

directions of the principal tractions. His consideration, however, of

tin spot at which the danger of rupture is greatest (S. 132) seems to

nit invalid as it is based on a maximum stress limit.

(/<) The same objection applies to his 37 entitled: G'retizcii ./"/'

frrotue der ausneni Krafte. The concluding paragraph of that section

/'. A', p. 252) contains several statements which do not seem in

accord with experience, and a very loose conception of the limit of

elasticity as well as of the different practical effects of pressure and

\hibited: see our Arts. 164, 321 and 7U9 10.

[1349.] The next or thirty-eighth section of Clebsch's Treatise

1 1 1 it 1
< 1 : Veryleich //////

/// it der gewohnlichen Th curie. Grundlagen
tr weitere Anwendungen (S. 139-48; F. E. pp. 283-94). This

compares the theory just developed for flexure with the Bernoulli-

Kulerian, and for torsion with the extension of Coulomb's theory
to prisms of other than circular cross-section. Clebsch criticises

with cMiisiderable severity the earlier theories. He remarks that

even Saint-Venant's theory only covers the special case of flexure

in which constant forces act upon a free end and continues :

A inl rim; weitere Aufgabe der strengen Theorie sein, almluhr

hun^-ii fur all^-mrincrr Fallo aufzustellen. Da dies in/wisrhrn

hishrr iiicht gelungen ist
1

,
so wild man rin.st wrilrn jrnrr (Ileichungcn

i aii<-h f"i-tfahrrn /u l.r<lirm-n, wrnn das Innere des Korpers durch

ifle ergriflrn wird, odn- wrnn an \riM-liiedenen StelK-n drs Koqjera
Kinzelkrafte angreifen. Man wird sich alrr dabei den Man^rl an

Strrngr nii'ht vcrlirhlm dnrtrii. In einem spatern Abschnitt wird sich

reigen, dass fur stJir kleine l^u*TM -hnittr \ rfahreii alien!

is. i IL'. /: /;. p. 287),

1 Ti tin jtrr^i'iit work in t
j>;irt

of whirli

in tin- M,,.
,,;,-,///

.J..n,,,.i-
-.1, hat dealt with the case of a

uniform body-force and continuous surface- load.
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Clebsch's remark on S. 142 as to a failure of the ordinary

theory does not seem fully justified. The theory had in respect
to the non-coincidence of loading and bending planes been cor-

rected by Persy in 1834 (Art. 811*), and he had been followed by
both Saint-Venant and Bresse with full consideration of this very

point. Clebsch while reproducing results exactly equivalent to

theirs makes no reference to their writings : see our Arts. 1581*,

14, 171, 177, and 515.

The section concludes with a very severe criticism of that

modification of the torsion theory of Coulomb, which supposes
the stretch in the longitudinal

'

fibres
'

of a prism under torsion

can affect sensibly its torsional moment. I can only suppose the

gewisse Kreise Clebsch spends his satire on are composed of the

authors, whose papers on torsion are referred to in our Arts. 481,

581 and 803. The criticism is severe, but perhaps not unjustified.

[1350.] S. 148-99 (F. E. pp. 295-374) of Clebsch's work

deal with the subject of thick plates, the edges (not the faces)

of which are subjected to load. I believe the method here,

as well as several of the results, are original. In the French

edition these pages appear as a separate chapter entitled : Plaques

d'epaisseur quelconque. Clebsch in this portion of his work applies

the semi-inverse method of Saint-Venant (Arts. 3, 6, 9, 71, etc.) to

the problem of thick plates. Suppose the normal to the plane
faces of the plate to be taken as the direction of the axis of z,

and the plane of x, y to be the mid-plane of the plate. Then
Clebsch assumes:

^ = "#!?= s!s = (1),

i.e. he causes the other three stresses to vanish, not those assumed

by Saint-Venant for his rod problem : see our Art. 1334. Besides

no load on the faces of the plate Clebsch supposes no body-forces,

and he then inquires what solutions of the equations of elasticity

are possible under these conditions and what system of load they
connote on the cylindrical boundary of the plate.

With regard to (1) Clebsch merely writes :

Diese Gleichungen gelten zunachst nur fur die Werthe vou 3, welche

den Grenzflachen der Platte entspreclien. Ich werde aber nur diejeni-

gen Zustande uutersuchen, fur welche diese Gleichungen fur jeden
Punkt der Platte erfullt sind. Man sieht, dass dann jedenfalls die
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anf die cylindrischen Seitenfliichen wirkenden Krafte keino der 7- Axe

parallele, also zn der Platte normale Coinpononto liefern diirfen, weil

sonst wenigstens am Rande jene Spannnngen nicht verscliwindi-n

wiii-d.-ii (S. 149, F. E. p. 296).

[1351.] The body stress-equations are now obviously :

Following Saint-Venant's modification of Clebach and supposing tin-

jlatc to possess a planar distribution of iRotropy, we liav. t ns< tli-

- strain relations:

du ., dv ,, dw ^ fdv dw\
+

^)'|
l ......... (3),

,dx dy dz

du dv\ dw ^ du

where a = 2/+/' : see our Art. 114 and 117, (b).

H. nee we have by (1):

dv dw A dw du A du dv c dw
, +-5-=^>-J- + J-=0>J~ + J-=-dz du

' dx dz
' dx dy

and by (2) :

,(d*u d*u\ .ddu dv
f( j^ + j-1

(4) and (5) by eliminating u
t
v we find .

d /d*w\ d d*w\ d

ThiiH w must be of the form :

where F and f are arbitrary functions of x and y, and the last term is

taken out of f for the convenience of analysis.

Differentiating equations (5) with regard to x and y respect i

adding, and r-placing du/rtx + dvjdy in it by its valin from tin- third

of (-1). w.- find l.y aid of t lie first two of

'dto\ d* /dw\
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or from (7) :

But differentiating the third of (4) with regard to z, and using the first

two of (4),
we have :

d*w d zw _ c d

~<h?
+

7ty>~ d' M '

whence from (7)

Now determine it and v from the first two of (4) and we have :

di c
-

where < and ^ are arbitrary functions of x, y.

Equations (7) and (10) satisfy identically the first two equations of

(4) ;
the third equation of (4), however, introduces a relation between

< and
\f/.

Substitute (10) in that equation, and substitute u, v and

w in (5) after using the third of (4), then remembering (8) and (9) we
find:

d<fr d^j/
c ri \

dx
+
fy

=
d''
c /ff

d^ d^c_(H_ \d_F_
dx?

+
dif

+
d'(f ) d

}

dy

where // is the plate-modulus
= 2/ + /' - d'*/c : see our Art. 323.

The last two of these equations evidently contain (8).

Eliminating F by the first of (11) we find from the last two

equations :

77 ^72j. fJI^L /JT \ x72./,

=_l __
I

I I II I

/ %2 v / <fady

Equations (12) and (9) suffice to determine <, ^ and f and so solve the

body-shift equations.
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Any values therefore of f, < and
\j/ satisfying (9) and (12) give the

following expressions for the shifts :

.(13),

d'z*/d*<l> d*t\ /cK c Cx\ \

75U? +^/ + *~ s
v&~rf' r;v

-~ __
c 2 dxd d d d' 2

c---~~ + +

provided the stresses on the cylindrical face of the plate be given by :

"' >S*<"-

_
:

\ ../^ ^_9/-
)

* J
\dy

+
dx)

*J~~

c WarVy dxdif \dy dx
~

dxdy*

where

Saint-Venant (p. 302) puts if'/(I -if) for d'/c, and C/if' he replaces by
another -(distant C" (C' in his notation); 2/* he puts = ff/(l +/')
wlu-iuv IM- finds, since 2/" + /' -

d'-/c
= ^/(l -

//

i />/ /i . /\ ^

1 1 n -nits then agree with Clebsch's if the accents bo removed from E
and

i/,
and we note that Clebsch's /*= Saint-Venant's and our y.

See Clebsch, S. 148-52 and F. E. pp. 295-302.

[1352.1 Clebech next turns to th<- boundary conditions. Suppose
forces X, i to act at the point a?, y, z of the cylindrical boundary and

tli< (uifuardly measured normal make an angle p with tin- r |

-n \v- must

.V ^!r COS /> irp Sill y%|

Y = i7 cos /j + ^ sin
/^ J

the stresses contain only powers of z
ii|>

to the >.-, ,,i,,|.

ll in .- .V. }' inu-i IM- ..f tin* form :

x .v A \M
Y r Tf
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Whence we obtain as the boundary-conditions by substituting

(14) in (15):

fd' (/d*<f>
cos P + r^r

dxdy

fd' (/ d 3
<h d'ty \ / d*d> d s

\l/\ . }Yz
= r + -=. -

}
cos p +

(
-= -. + -r-^ I sin p I

c \\dtfdy dxdf) \dxdy* dif )
J

)
}

Here are six equations with only three functions <, i^, f, hence the six

quantities JT
,
T0t Xlt Tlt X2 ,

72 cannot in general be independent.

[1353.] Clebsch now proceeds to an analysis of these separate
results. He considers first the terms:

These do not change when z is changed to
,
so that the boundary

forces are symmetrical about the mid plane of the plate. The condition

of the plate is thus stretch without flexure. The shifts will then take

the forms :

w = - w
>*\ (19).

Consider first the terms U
Q
and v only, or let uz

= v2
-

;
these lead

us from (13) by aid of (11) almost at once to :

dd> d\l/ dd> d\lf

dx dy
'

dy dx

where K and K are constants.

KX +
Hence

where U, V are solutions of

dU dV
"7
--

1
--

T~
=

dx dy

dU dV
~T~

~~
~j~

dy ax

(20),

.(21).
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(a) Neglecting U and V for a time we note that in w
,
v

, the

terms in K correspond only to a slight rotation, and those in K to a

uniform stretch =
*c/2 in all directions parallel to the mid-plane, and

since ** = 0, to a uniform squeeze perpendicular to it equal to icd'/c.

The load necessary to produce this is (H -
f) K along the normal at

each point of the cylindrical boundary.

(b) Neglecting this uniform strain and turning to that depending
on U and V we find from (21) that

U+ Fi = x- -
(22)

Hence \i an(^ X with the assistance of the K terms can be so deter-

mined as to solve the following problem :

A plate is to be so stretched by forces acting on its cylindrical boundary
that the squeeze normal to its faces shall be everywhere uniform,

i.e. dw/dz= - (d$!dx+d^ldy)d'\c= -td'lc,

but all the generators of the cylindrical surface receive arbitrary shifts

perpendicular to their length.

Clebsch discusses this problem on S. 158-60, and investigates the

required values of JST
,
Y for arbitrary shifts when the cylindrical

boundary is right circular in 42, S. 160-4 (F. E. pp. 312-16). The

problem is of more analytic than practical interest, as it would be

extremely difficult to pull out the edges of an actual plate to any chosen

change of form.

[
1 354.] The following section is of more practical value. It is

entitled : Anwendung auf angendherte Losung allgemeiner Auf-
gaben (S. 164-6; F. E. pp. 316-19). Clebsch notes that the

general problem : Given the load on the cylindrical boundary
to find the shifts and stresses in the plate is not solvable under

the conditions (1) of Art. 1350, for the reason we have given
i in mediately after equation (17) in our Art. 1352. Let us, however,

suppose the plate to be of small thickness h, and let us apply the

]>i-inciple of the elastic equivalence of stain-nil >i >/n'fClient loads

(see our Arts. 8, 9, 21, 100).

Let A ini'l H be the components of the load on a strip hds of the

cylindrical l>oundary, where da ia an element <>t tin- . ,,nt.,ur <>f the mid-

plane. Then by the above principle we have from (16) :

A-

T. E. IT. II. 10
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Hence we see that JT, and Y
l
do not occur, and further that the six

equations (17) reduce really to two, i.e. we are thrown back on (15).

We have indeed

dx '

dy

y...(34).

K__
* ddt ,. d<f>\ . fd' / e?

3
< d 3

if/\ hs

dy
+

(
H~^

)
*+V (d^ + $) 12

These with equation (12) fully determine < and
\j/. u, v, w will

then be found by retaining only the terms in (13) involving <

and
\f/.

[1355.] In the following section (S. 167-81
;
F. E. pp. 319-33)

Clebsch solves the equations of the previous article for the case

of a circular plate. That is to say he supposes the circular plate

stretched by any system of load parallel to the mid-plane imposed
on its cylindrical boundary. The solution is only approximate,
as it proceeds on the assumption of the elastic equivalence of

statically equipollent load systems, but it would be more and more

nearly true as the thickness of the plate became small as com-

pared with its radius. The investigation is a very fine piece

of analysis, but the complexity of its results renders it of little

physical value, except perhaps in some one or two special cases,

when the results might probably be reached by other and simpler

processes. Clebsch concludes with the remark :

Es ist ohne Zweifel moglich, das entsprechende Problem auch fiir

andre Formen der Platte zu losen, als fur die hier angenommene.
Indess wird es geniigen, in einem Fall Weg und Auflosung vollstandig

dargestellt zu haben, zumal schon dieser einfachste Fall nicht ohne

Verwickelung erscheint (S. 181).

[1356.] 45 of the treatise (S. 181-4
;
F. E. pp. 334-7) is

concerned with the terms corresponding to X
t
and Y

v
in equa-

tions (16).
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We have 1

, retaining only these terms, for the shifts :

c Cx\ fdi c

where

and for the stresses

**?

139

.(25),

(26).

Here the stresses all change sign with z, hence the forces which act

on the edge of the plate are equal and opposite on either side the mid-

plane. Thus the character of the above solution is one offlexure by
couples. In the mid-plane itself there are no stresses.

Clebsch treats (S. 1 83) a special case of this, namely when f = 0. This

corresponds to the case we have dealt with in our Art. 323 where the

plane faces become paraboloids of revolution. Saint-Venant's Note
( /'. E. pp. 337-68) which we have analysed in our Arts. 323-37 treats

the whole subject much more fully and satisfactorily.

[1357.] The values of X
1
and F, given by the second pair of

equations (17) are not perfectly arbitrary, as there is only one function

f at our choice. Hence it follows that Clebsch's investigation leads to

no solution of the problem of flexure for an arbitrary system of load

i.les round the boundary. Clebsch in 46 (S. 184-9; F. E. pp.

368-74) mentions the following however as one of the problems which
can be solved by the aid of (25) and (26) :

Durch passende, in der angegebenen Weise wirkende
Kraftepaare

soil <lio

Platte so gebogen werden, dass die Peripherie der Mittelfla'che nach der

Biegung auf eiuer beliebig vorgeschriebenen, der urspriinglichen Peripherie
sehr nahe kommenden Obernache liegt (S. 185).

Let x (*, y, )
= be the given surface, then we must have in the

mid plane at the contour w x dyjdz = ~X;
S 8Oon * ^ constant C is

chosen, the value of f becomes determinate. Clebsch works out the

particular case of a circular plate (S. 186-8, F. E. pp. 371-3).

i These results differ from Clebsch's.

by Saint-Venant (F. K. p. 884, footnote).

The errors of the latter are corrected

102
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He notes in conclusion that the value of the dilatation deduced from

(25) for any form of plate is

and thus is independent of f. Thus there is only one way of solving
the above problem, when we attach to it the condition that there shall

be no dilatation (i.e. C =
0).

The problem suggested by Clebsch does not seem one capable of

practical realisation in any but a few special cases, which are more

easily dealt with by other processes.
With this section Clebsch's treatment of thick plates closes.

[1358.] S. 190-355 of the Treatise are entitled : Theorie elas-

tischer Korper, deren Dimensionen zum Theil sehr klein (unend-

lich klein) sind (F. E. pp. 407-806). The first separate portion
of this deals with thin rods, and occupies S. 192-263 (F. E.

pp. 409-631). Of this S. 242-261 deal with the vibrations of

such rods. The second separate portion, S. 264-355, deals with

the theory of thin plates, S. 331-55 being especially occupied
with a discussion of their vibrations.

Clebsch attributes the first exact theory of bodies having one

or two dimensions very small to Kirchhoff (see our Art. 1253), and

proposes to follow his methods with certain modifications. In

particular he deals only with homogeneous isotropic material.

This restriction is removed in the Annotated Clebsch of Saint-

Venant, where isotropy is assumed in the plane of the cross-section

only. Clebscb begins his general investigations with the statement

of Kirchhoff's principle which we have cited in our Art. 1253,

and which does not seem to me so obvious as both Clebsch and

Kirchhoff appear to consider it.

[1359.] 48 (S. 192-7) of the Treatise commences the

discussion of the problem of the thin rod of uniform cross-section,

initially straight and acted upon solely by terminal loads. Clebsch

supposes such a rod built up of small elementary cylinders placed
end to end, and only acted upon at their terminals by the elastic

stresses of the adjacent elements. To each sucb cylinder he applies

the formulae obtained in his solution of Saint-Venant's problem
and in justification of this he remarks :

Zwar waren jene Formeln nur bei einer gewissen Vertheilung der
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Krafte strung richtig, aus welchen jene Componenten und Dreh-

ungsmomente sich zusamraensetzen. Aber die dabei eintretende CJn-

genauigkeit wird oflenbar um so grosser, je grosser der Querschnitt

1st, und wird verschwindend klein, wenn der Querschnitt selbst

verschwindend klein ist, wie in dem vorliegenden Fall. Wie also

auch dann in Wirklichkeit die eintretenden Spannungen iiber den

Querschnitt vertheilt seien, immer wird man sie sich bis auf Grossen

hoherer Ordnung so vertheilt denken konnen, wie die oben in dem de

Saint-Venant'schen Problem erhaltenen Formeln sei ergeben. Man
karin also jene Formeln sofort auf die kleinen Verschiebungen anwen-

den, welche im Innern eines der gedachten Elemente auftreten (S.

193).

Now the principle of the elastic equivalence of statically equi-

pollent load systems here appealed to depends for its accuracy on

the smallness of the loaded surface as compared with the other

dimensions of the body; i.e., if I be the length and e a linear

dimension of the cross-section of a cylinder, e/l must be small in

all practical applications of Saint-Venant's results. Hence when

Clebsch applies these results to an elementary cylinder of length

&s, we must have e/Bs small in order that the application may be

legitimate. Now Clebsch takes x, y, z to represent the coordinates

of any point in an elementary cylinder referred to axes attached

to this element, thus it is obvious that the x and y can be of the

order e, and z, being taken in the direction of the axis of the

cylinder, can be of the order 8s. Thus z must be capable of

taking values which are great as compared with e, but on S. 195

Clebsch writes:

Es ist vor allem wichtig, sich ilber die Ordnung der in diesen

Formeln auftretenden Grossen zu orientiren. Bezeichnen wir durch
c eine Zahl, welche von der Ordnung der Querdimensionen des Stabes

ist, so sind xt y, z von der Ordnung .

This seems to me a grave fault in Clebsch's method of

approaching Kirchhofa Problem. He assumes x, y, z all of

til- same order and this order to be that of c, but if he is to

apply the results of Saint-Venant's problem, **, yz and xz can be

far higher order than x*
t xy and y*. The terms retained on

Clebsch's S. 197 do not thus seem necessarily of the same order.

It will be remembered that Kirchhoff himself adopts a different

mode of procedure. He obtains equations (see our Art. 1 '1^1 > I'm
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the internal shifts of an element w, v, w, which are true indepen-

dently of the hypothesis

avr = w = xy = 0*

(such equations are in part given by Clebsch on S. 202). He
then states that his equations agree with Saint-Venant's if this

hypothesis holds, and in his special examples assumes it to hold: see

his Gesammelte Abhandlungen, S. 301 and 311, and the Vorle-

sungen, S. 415, 416 and 423. Thus in Kirchhoffs investigations
we come at the values of u, v, w last, and on a clearly stated

hypothesis, but in Clebsch's we have apparently perfectly general
values given for u, v, w, deduced by making a cylinder of finite

cross-section dwindle to one of infinitely small cross-section
;
these

values, however, are in reality only particular cases of the equations
afterwards given on S. 202, and they are obtained by diminishing

indefinitely the length of the cylinder, so that their application
without further investigation seems to me illegitimate.

In order the better to exhibit Clebsch's procedure and the

manner in which he deduces and expands Kirchhoffs results, I

cite in the following article Clebsch's expressions for the shifts

in an element deduced from the values he has obtained in his

treatment of Saint-Venant's Problem. I give them, however, in

my own notation and with the modifications introduced in the

French Edition for a planar distribution of isotropy.

[1360.] Let axes x, y, z be chosen in an element, so that if the

rod returns to its unstrained condition the z axis coincides with the axis

of the rod, and those of x and y with the principal axes of the cross-

section. Suppose for simplicity that the cross-section is symmetrical
about these axes. Then let u, v, w be the shifts referred to these

axes of coordinates of a point x, y, z, in the immediate neighbour-
hood of their origin. Let P, Q, R, be the components of the total

statical load applied parallel to these axes on a terminal cross-section,

and /", Q' y
R' the moments of this load about the same axes

;
let w be

the cross-section and KI} K2 its swing-radii about the axes of x and y
respectively ;

let E be the longitudinal stretch-modulus of the rod, 17
the

stretch-squeeze ratio for a longitudinal stretch, and
/w,

the slide-modulus

parallel to the cross-section, then Clebsch finds (S. 197) :

1 x and z in our notation are interchanged in that of Kirchhoff 's Abhand-

lungen.
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where

and ^
,
B

l
and -ffa are to be determined by the equations of

our Art. 1338.

Now Clebsch notes that KI} K2 and x are &M of *ne order e, and he

says that x, y, z are of the same order, hence in the first place he

neglects in u, v
t
w the expressions in the curled and in the square

brackets, i.e. he retains only the first line of each. He remarks that if

R is much greater in magnitude than the other forces, then the terms
in curled brackets must be retained

;
if P and Q on the other hand

are extremely great then the terms in square brackets must be retained

(S. 197; F. E. p. 415). It seems to me that equations like (i) are

better deduced as special solutions of the equations for M, v, to obtained

in the following section on the express assumption that

*x =w = *J = 0.

[1361.] In the following section Clebsch deduces Kirchhoff's

equations (ix) of our Art. 1258. Changing the x on the left-hand

of these equations to z, and on the right-hand side the c to <r, after

sporting it to the third equation; further changing q to r, and /*

to r,, we have Clebsch's equations of 8. 202 (F. E. p. 421) in his

own notation:

tfc

./

dv

.(ii).
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Now substitute the values of u, v, w from
(i)

in
(ii), we find :

Ry Q'z r f tf-tf Qxy-

...(iii).

If we neglect the terms in square brackets, we have with Clebsch :

Here <r is by previous assumptions small as compared with r^c r$j.
Further we suppose P and Q not to be so great that the terms in the

square brackets need be retained.

But suppose P, Q are so great that these terms must be retained
;

then since r, r
l ,

r2 are not functions of x and y, it is obvious that the

equations (ii) can no longer hold. But to obtain
(ii),

Kirchhoff (see
our Art. 1258) and Clebsch (S. 202) not only neglect u, v, w on the

right as compared with x, y, z but also du/ds, dv/ds, dw/ds. The reason

given for this neglect is not very clearly stated. Saint-Venant however,
in a footnote (F. E. pp. 420-2), endeavours to put the reason for the

neglect of the s fluxions of the shifts in a clearer light. He says that

since the changes in u are continuous and never very rapid, the order of

du/ds for example is (ut
uQ)/l where I is the length of the rod and uh u

the terminal shifts measured from axes near these terminals
; similarly

du/dz is of the order (u'v
- u'

)/i', where I' is the length of the little

elementary cylinder (i.e. ds), and u^, U Q the terminal shifts. Now the

numerators, he says, are of the same order of magnitude, but I' is

infinitely small as compared with
I, whence we may neglect the s fluxions

as compared with the z fluxions of the shifts. But neither Olebsch

nor Saint-Venant fully explains why, when the terms in P and Q are

great, the above reasoning no longer holds and why we must then
retain du/ds, dv/ds, dw/ds in the equations (ii).

Clebsch merely says
that they must be retained if P and Q are great, and that then the terms

drjds, drz/ds in them will be very great as compared with rlt r2 ,

whence he says it follows that:

= -_ -
ds EUK*> ds~

I imagine that these equations are supposed to be deduced in somewhat
the following fashion : Substitute the values of P', Q', R' as a first

approximation from (iv) in the last equation but one of (i)
and we have :

w = r - r- z + r + <rz
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Substitute this, remembering that r2 , rj and r are functions of
tt,

in

dto dw

V*.*T~r* + *'

and we have :

z /Px Qy\ /c?r2 dr, \
-5 + -?)= (-r *--r y) a +

i
/;

Aw XKa"
1

Kf/ \cfe da
y
) ds

and therefore :

* p * '

ds~

These equations do not seem to me based on very satisfactory

reasoning, supposing the above to be really the method of finding tliem

which Clebsch had in view. We have not yet shown them to be

consistent with the first two equations of (iii) when we introduce the

terms du/ds and dvjds into those equations, but on substitution they
will be found to be so. Kirchhoff in his investigations does not appear
to touch upon this point, although the equations (v) are of real

importance
l

.

[1362.] Clebsch gives the following interpretation of the first two
results in (v)' (he does not refer to the third one, which obviously
denotes the constancy of the torsion along the length of the rod) :

Diese Erscheinung hat eine einfache Bedeutung. Man sieht daraus, dass
dor Stah im Allgemeinen bestrebt sein wird, eine Qestalt anzunehmen, in

welcher fiir keinen seiner Querschnitte die seitlichen Gesammtcomponenten
nnverhiiltnissmassig gross werdeii. 1st es ihm nicht moglich eine derartige
Gestalt in alien seinen Theilen anzunehmen, so werden gewisse ausgezeichnete
I'unkte auftreten, in denen die gegen die Axe des Elements senkrechten

: /', V v.ru legend werden, und in denen claim /ugleirh eine d -

drjd*, dr^/ds oder beide sehr grosse Werthe erhalten. Um die geometrische
Bedeutung hiervon einzusehen, bemerke man nun, dass fur 2=0, also in der
Axe des Stabes [rather for all values of .r, y, z] uach (i) :

d*u/d2*= (?/(EK*)= -r
a , d*v/dz*= - /x/(AW1

2)=r1
...... (vi).

Nun ist bereits friiher darauf hingewiasen, dass die Grossen links bis auf sehr
klrino Grosnen die reciproken KrUrumungshalbmesser dcrjenigoii Curv.n

bedeuten, welche man aus der
Projection

der Schwcrpunktslinie auf die

dtirch die Axe des Elements und je erne Hauptaxe des Querschnitts gelegten
n -rhiilt. Kben diese Bedeutung haben also, abgesehen voni Zeichen,

r, und r.f Und in der Niihe jener aiwgezeichneten I'unkte muss also
w< iiigstens einer dieser KrUmmungshalbmesser sich sehr schnell andera, da

r wenigstens von den Differentialquotientao drjds^ dr^/dt verhaltniss-

maasig gross wird (S. 203).

1

Differentiating the first two of (iv) with regard to * and using (v), we have

r= Q, and -S- - - P. These express that for the thin rod in this case, the total

shear is the fluxion of the bonding-moment, a well-known theorem for small shifts

which forms the basis of a good deal of the graphical treatment of such rods : see
our Arts. 319 and the third equation of Art. 684.
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It seems to me that perhaps as simple a meaning of the equations
when P, Q are large is that given in the footnote to our last article.

[1363.] In the fiftieth section of his book Clebsch obtains equations
for the equilibrium of the rod, similar to those of Kirchhoff cited in our

Art. 1265 but rather more general Let the total stress across any
cross-section at distance 8 from a terminal be given in relation to the

axes x, y, z chosen as in our Art. 1360 by the components P, Q, R at

the centroid of the cross-section and the couples Pf

, Q', R'; let

X*, 7', Z' be the body-forces acting per unit of volume on the element

dxdyds, parallel to axes x', y', z fixed in space ;
further let

Y' dxdy,
(X'\

Uz

Y' xdxdy, Vz

(f=
\\
}}

X'\

Y'\y<lxdy
...

z'

and let the direction-cosine system of x, y, z with regard to x', y, z' be :
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Here P, Q, 7?, P, Q', R must be determined by equations (iv) and (v)
of our Art. 1361 and rlt r,, r, are given by

da dp dy

(ix).
ds

'

Compare our Arts. 1257 and 1265.

We see that the last three of equations (viii) agree with KirchhofFs

equations (xxiv) of our Art. 1265, if we put Ut V, W, Ult F,, JF,,

Utt Fa ,
JP2 zero, or suppose no body-forces; further, Kirchhoff's equa-

tions (xxiii) are easily deducible from Clebsch's first three, when we put
U, V, W zero. We note that Kirchhoff's

A-P^ + Qat + Ro, = Pfr + Q& +
Rp,\

C = Py^Qy^Ry }'

Kirchhoff's equations are indeed Clebsch's (13) on S. 205.

(This section in the F. E. occupies pp. 424-30.)

[1364.] The values of the shifts u, v
t w, and those of r, rlt ra

obtained in our Arts. 1360 and 1361 cannot be applied to the equations
of the previous article, since they were obtained on the assumption of

no body-forces. Clebsch accordingly in the following section deals with

the case of no body-forces ;
here obviously A, S, C of (x) are constants,

hence by aid of (iv) Clebsch puts the last three equations into the form :

~
(Aai

These agree in form with Euler's equations for the motion of a heavy
body about a fixed point, and thus demonstrate Kirchhoff's eltutico-

kinetic analogy : see our Arte. 1267, 1270 and 1283, (6).

Clebsch then solves in general terms equations (xi) on the assumption
that A, Bt C are zero, or that the terminals of the rod are only acted

upon by couples. The gcm-ml type of the solution Is well-known to

students of dynamics: see Routh's Treatise on Rigid Dynamics, 1877,

1>
104 or Schell's Thcorie der JBewegvng, Bd. n., 1880, 3. 437-42. The

additional matter in the case of the elastic problem is the determination

of the direction cosines a, /?, y,
tkc. in terms of the r's and hence the

total shifts in terms of 8. See Kirchhoff's discussion of the lik<> problem
in our Art. 1267. This section occupies 8. 209-15 (F. E. pp. 430-7).
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[1365.1 52 (S. 215-218
;
F. E. pp. 437-40) deals with the case

in which the cross-section possesses inertial isotropy (i.e.
K
X
= *2)

and the

terminals of the rod are acted upon solely by couples. Clebsch obtains by
a simpler process than that in the original memoir of Kirchhoff (see our
Art. 1268) the equation to the helix due to a given system of couples.

Compare the results of Wantzel, Binet and Saint-Venant referred to in

our Arts. 1240*, 175*, 1583*, 1593*-5* and 1606*-8*.

[1366.] 53 (S. 218-222; F. E. pp. 440-6) deals with the

practically interesting case of flexure in a plane which contains a

principal axis of each cross-section. Clebsch easily deduces the equation
of the ordinary Bernoulli-Eulerian theory for the special case of a strut

with one end built-in and the ot/ter, or loaded end, free :

(xii),

where < is the angle between the strained and unstrained positions of

the tangent at s
}
and C is the longitudinal load. He takes a tirst

integral of this, and determines by an ingenious bit of analysis on S.

221 (F. E. p. 444) that if I be the length of the strut, we must have

always :

if there is to be flexure.

The section concludes with a determination of the shift at any point
of the axis of the rod, by formulae drawn from elliptic functions.

[1367.] 54 (S. 223-9
;

F. E. pp. 446-54) is entitled :

Zusammenkang mit der gewohnlichen Theorie. Kleine Verschiebun-

gen. Clebsch shows very clearly how Kirchhoff's theory leads to

results agreeing with the Bernoulli-Eulerian theory when the

total shifts are small. In particular we may draw attention to the

method in which a term involving strut-action, due to a consider-

able longitudinal load (C) on the rod, is introduced into the

flexure-equations. We do not cite Clebsch's results here but

refer to our Art. 1373 for the more complete equations, involving

accelerational terms.

[1368.] Clebsch devotes S. 229-42 (F. E. pp. 454-468) to the

discussion of rods, which in their unstrained condition are curved. He
deduces the requisite equations exactly like Kirchhoff (see our Art.

1264), attributing this extension of the theory to him.

His first three equations (S. 231
;

F. E. p. 457) are the same as
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Kirchhoff's (xxiii) of our Art. 1265 with the introduction of the body-
force terms U, V, W from (vii), i.e. :

"+"-* f + r =' +ir = ......... (xiii)-

where for A, , C he substitutes their values from (x). These equations
hold for all rods whether initially curved or not.

The next three equations on the same page are obtained from the

last three of (viii) by substituting

for P, <?', K (see equations (iv) of our Art. 1361), where fn r2 and r are

the values of rlt ra and r as defined by (ix) before strain. The last three

equations of (viii) with these substitutions 1 we will term for purposes
of reference :

equations .............................................
(
xiy

)-

[1369.] In 56 (S. 232-3; F. E. pp. 457-9) Clebsch deals with
the case of a rod, which when unstrained has a curved axis lying in the

plane x'z; this plane passes through a principal axis of each cross-section.

The rod is supposed to be without body-forces and bent solely by terminal

couples whose axes are perpendicular to its plane. < being the angle
between the tangent to the axis of the rod and the axis of z after strain,

<f the value before strain, and the terminal s - being fixed, Clebsch

easily deduces for the strained form of the axis of the rod :

Q' being the resultant terminal coupla

[1370.]
In 57 and 58 Olebsch discusses the small shifts of

originally bent rods and shows how the equations are to be integrated

(8. 233-242
;
F. E. pp. 459-68). This portion of Clebsch's work seems

wholly original and very valuable. He himself remarks :

Von der grttesten Wichtigkeit fur die Anwendung aber ist die Ausstellung
v. .11 Formeln, welche sehr kleine Gestaltaveranderungen uraprUnglich kruinnin
Stabe darsteUen (p. 233).

Clebsch's theory depends upon the recognition that

a'-o-a, P^P-V, y =y-y, etc.,

1 In making the rabstitations, it mast be borne in mind that the r'a which

appear in (viii) are not themselves to be replaced by (?- r)'s.



150 CLEBSCH. [1370

are all very small quantities, bars over the symbols denoting quantities
before strain. Hence he easily shows that the nine quantities a, ft', y
...can be expressed, owing to the six relations which hold between the

a, ft, y..., in terms of three variables plt p3 and p. He obtains the

following formulae :

(xv).

Replacing r by l/p and substituting a' + a, (3 + /?, y + y, etc. for a, /?, y, . . .

in equations (ix), we find by neglecting products of the jo's :

Pi Pi

1_ 1

p~p

cfe

Pi

.(xvi).

Here pn p2 are the radii of curvature of the rod's central line and p
is its radius of torsion after strain, plf p2 > p the corresponding quantities
before strain.

Their differences are very small and we may neglect their squares
when substituting in (xiv).

Let AI, BI, Ci be the components parallel to the axes x, y', z'

(Art. 1363) of the forces acting on the terminal 8 = 1 of the rod, then

remembering that the shifts are very small, we can easily see that

P, Q, R may be calculated from the values of the forces in the unstrained

position of the rod, or they are given by three equations of the type :

...... (xvii),f Fife*?! {

where U, F, W have the values given in (vii).

Substituting (xvi) in (xiv) Clebsch obtains the following linear

differential equations for the p's, the coefficients being of course functions

of*:
dvl i

da pl p

dv Vi V<L

da
+
^~^

=
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where V^K

(xvi), and
fy vj)f are the three differences on the left-hand side of

To obtain the shifts u', v\ w parallel to the axes a/, y\ z' of a point
on the central axis of the rod, we have :

1=1 a (1 + <r)
ds - I ads = I (a + era) ds

(**),

with similar expressions for v and w'.

In (xx) we cannot neglect <r, as a', (3', y are themselves small, but its

value is at once known from <r =

[1371.] To integrate the above system of equations, we have

evidently to deal with two similar groups of the types

- -

da p p., *!*'

Clebsch solves these by a remarkably graceful analytical process. If

the end 8 = of the rod be built-in, and Aflt J/2 ,
M be the moments of

the external load at the other end 8 = 1 round the axis system x, ?/, z

attached to that end, then he finds formulae of the following type :

and g or h is to be found from f by changing a to ft or y respectively ;

/>,
or p% is to be found from p by attaching the subscripts 1 or 2 to

a, J3, y.
Further

v = do. + bft -f cj,

a IK I 6 or c is to be found from a by changing a to ft or y respectively ;

KI or v, is to be found from v by attaching the subscripts 1 or 2 to
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[1372.] S. 242-261 of Clebsch's Treatise are devoted to the equa-
tions of motion of thin rods, especially to the cases of vibration of

straight rods (F. E. pp. 468-628).
In 59 Clebsch demonstrates that by D'Alembert's principle the

general equations of motion are obtained from (viii) by replacing

U, V, IF.ZTi, Flf TFi, i72 ,
>2 , W,

respectively, by

-, -,,
(xxi),

where A is the density of the rod, and
, 17,

the coordinates of a point
on its axis referred to the axes x, y'',

a' fixed in space.

[1373.] On S. 246 (F. E. p. 473) Clebsch gives the complete equa-
tions for the motion and equilibrium of an originally straight rod. The
notation is that of our previous articles : see in particular equations

(vii), (viii) and (x).

(a) For transverse vibrations :

*u n d*u TT
dW

l d

z* dz* dz

with the terminal conditions for z = l:

and

(b) For longitudinal vibrations :

d zw d^w

^Iw'
+

~<ic~

with the terminal condition for z = I :

EJd^\ ,0.
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(c) For torsional vibrations (l/p
=
dajds = cl<f> i

>

with the terminal condition for z = I :

The last terras in the four equations of (a), depending on the rotatory
inertia of the elements, are really of the same order, namely (e/l)

a
,
as the

terms which Clebsch has neglected in deducing his equations for thin

rods ;
hence the method by which he brings them into these vibrational

equations is not wholly satisfactory.
Of the terms in the longitudinal force C in the same equations

Saint-Venant remarks (F. E. footnote p. 475):

Ces termes sont la seule
partie

reellement influente que Clebsch ait ajoutee
aux equations connues de vibration transversale.

It is, so far as I know, true that equations so complete in form
as (a) were first given by Clebsch, but Seebeck in his memoir of 1849
introduced the term due to longitudinal traction and used it to deduce

N. Savart's theorem : see our Art. 471.

[1374.1 60 (S. 247-52; F. E. pp. 475-80) dealing with longi-
tudinal vibrations contains nothing of novelty.

61 (S. 252-60, F. E. pp. 480^-490) treats of the transverse

vibrations of straight rods. Clebsch takes the general equations (a)
and starts by supposing the rod pivoted at either end. He discusses the

equation which gives the form of the z functions in the solution,

particularly the case when it has equal roots (S. 256; F. E. p. 485).
H living retained the term in Af

t
he is able to deal with the cases of

a rod, a stiff string and a flexible tight string under the same general

analysis : see our remarks on Seebeck in Arts. 471-2.

62 (S. 260-1
;
F. E. p. 628) briefly refers to torsional vibrations.

63 (S. 261-3; F. E. pp. 629-31) gives the values of the stresses

for the case of a very thin rod initially straight. They are to a first

approximation :

~_?YB+PV_^
ft> V ~K U?y

'

M K

7= ''
/{>

The first stress agrees for a special case with the value given by the

old theory: see our Arts. 815* and 71
;
the second two stresses are

due only to the torsion, and coincide with the values first givm 1>\

Saint-Venant : see our Arts. 17 and 1344.

T. E. IT. n. 11
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[1375.] The next portion of Clebsch's Treatise (S. 264-355
;

F. E. pp. 632-806) deals with thin plates. On S. 264 is the

footnote referring to the services of Kirchhoff and Gehring, which

we have mentioned in Art. 1293. On S. 271 (F. E. p. 640) Clebsch

gives equations (64) for the shifts which are identical with those

given by Kirchhoff numbered (ix) in our Art. 1294.

Now take the expressions (x) found by Kirchhoff for the strains and
substitute them in the values of the stresses given in our Art. 1203 (6) ;

thus allowing the plate to have three axes of elastic symmetry, we find :

^ = a (qfi + o-j) +/' (-p& + o-2) + e'dwjdz, ^ = ddvQ/dz, \

+ 6 (-p& + <ra) + d'dwo/dz, us = edujdz, h 0)>

+ d' (-p^z + o-2)
+ cdw /dz, w =f( %Pi* + r) )

where a = 2/+/', b = 2d + d', c = 2e + e'.

Now substitute these in the body-stress equations, the body-forces being

by KirchhofTs principle negligible (see our Art. 1253), and we find :

Now w
,
v

,
w are independent of x and

?/,
hence is independent of

x and y ;
it follows therefore that :

dujdz, dvjdz and are constants, or that yz, *zx and are constants.

But these stresses are supposed to vanish at the surface, hence :

^ = ^ =^ = .............................. (ii).

The method by which this conclusion is reached should be compared
with Kirchhoff's reasoning : see our Arts. 1294-5.

Further since dujdz = dvjdz = 0, u and v are constants, but they

are to vanish for z = 0, therefore we have them both zero. Next inte-

grating
= 0, to find wot we have,

z + (e'ql
-

d'pj)

no constant being added as w is to vanish with z.

We can now write down the shifts and stresses completely, i.e. :

-plzx + a-jy,

yy =

.-(iii)

tf*

zx = yz = zz
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These equations agree with the values given in the French Clebsch

(p. 643), if we put therein

da = <r\, d6 = o-2 , g = T, r^-ft, sl =-p^ r
1 =-p1 .

They are identical with Clebsch's own values (S. 273), if we put his

a
= -?i- *i =-/>! r\

= -p\ an(l supjwse uniconstant isotropy, so that

our /= his ^/{2(l+/x)}, our a - e"/c
= b - d'*/c

= his E/(l-^) t
our

/'-rfy/c = his /*#/(! -/**). (Note Clebsch's ft
= the stretch-squeeze

modulus, our
rj.)

Clebsch makes the interesting remark that the values of u, v, 10, in

(iii) for a thin plate are only special cases of those we have found in

equations (13) of our Art. 1351 for the thick plate, if we take in the latter

<f>
= ove + ry, $ = <r&>

and put for the case of isotropy in the plane of the plate

With regard to the range within which equations (iii) are applicable
Clebsch remarks :

Das Element ist nur durch Spanmmgskrafte ergriffen, welche der Ebene
seiner Mittelflache parallel sind, tmd durch Kraftepaare, deren Axen in jener

^en. Man darf deswegen nicht sagen, dass die Spannungen oder die

auf den Rand wirkenden Kra'fte, welche eine andere Richtung hatten, absolut

verschwinden miissen
;
aber sie nehmen Werthe an, vermoge deren sie nur

'hiebungen hervorbringen, welche gegenliber den andern Verschiebungen
von cin.T honeren Ordnung sind. Es ist wichtig dies zu bemerken in Bezug
auf die Tragweite der hier zu entwickelnden Formeln. Denn betrachten wir
<1 ii Rand der Platte, so kb'nnen die auf denselben wirkenden Krafte entweder
ini Stande sein, denselben so zu biegen, dass die aussern Kriifto wirklit-li

tangent iiil zur Platte wirken
;
und in diesem Fall ist kein Widerspruch

nnl'M. Ist aber dies nicht der Fall, so miissen entweder die Krafbe,
welche auf den Rand wirken und gegen denselben senkrecht sind, selbst

ausserst klein (GrOesen hOherer Orduung) werden, oder es miissen sidi

Auftn.ihui-j'Mnkte der Art ereeben, wie sie hier nicht behandelt werden solU-n,

iin.i in welchen eigenthiimliche groese Kriimmungen eintretcn (S. 273-4).

[1376.] 67 of the treatise (S. 274-282
;
F. E. pp. 645-650)

\vs that, when the shifts are finite, the approximate form of

til- in id-plane is a developable surface: see our Art. 1297.

Clebsch discusses this developable surface at considerable length
and shows that its introduction leads us to three arbitrary

fuiK ti..ns f , ijot ,
in terms of which all the other elements of the

problem (a,, ft, 7,, o
t , ,, 7,, a

g , ., 7,, f, 17, ? in Kii.-lihoiTs

notation: see our Art. 1294) can be expressed. The problem then

11-2
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reduces itself to the discovery of these three arbitrary functions
;

we require, however, in order to ascertain them the equations

of equilibrium of an element of the plate.

[1377.] These Clebsch investigates by some rather lengthy analysis
in his ^68 and 69 (S. 282-94; F. E. pp. 656-71). In the first of

these sections he applies the principle of virtual work to determine the

relations between the stresses and the load system at every point of the

mid-plane and at every point of its contour (equations (88) S. 289). In

the latter section he substitutes the values obtained in (iii) for the

stresses in these equations. For every point of the mid-plane we have

three equations to be satisfied. These in Clebsch's investigations contain

two functions Q 1 , Qz defined by two additional equations : see his equa-
tion (92), S. 292. These equations are given

1

in the French edition

for three axes of elastic symmetry as (267) on p. 668, and for isotropy
in the plane of the plate as (267 a) on the same page. They involve first

fluxions of <rlt <r2 ,
r and 6rst and second fluxions of plt pz , qli with regard

to
S-L
and s

a
in the notation of our Art. 1294. The contour conditions, five

in number, involve an arbitrary function A (in Clebsch's notation) as well

as the above Qt and $2 ,
so that they are really only equivalent to four.

They are given by Clebsch as (93) on S. 294, or with a more general dis-

tribution of elasticity in the French edition as (268) on pp. 670-1.

These equations for the finite shifts of thin plates are too complex for

reproduction here, and we must content ourselves with merely referring
to them. So far as we are aware there has been hitherto no practical

application of them.

[1378.] In 70 (S. 295-9, F. E. pp. 671-6) Clebsch indicates the

general stages by which the problem of the finite shifts of thin plates

might be solved. He writes of it :

Dieselbe sondert sich in drei verschiedene Theile. Der erste Theil hat zum
Zweck die Bestimmung der abwickelbaren Flache, von welcher die Mittel-

fla'che der Platte im gebogenen Zustande nur sehr wenig abweicht. Der
zweite Theil beschaftigt sich sodann mit der Aufsuchung der Dilatationen

o-j, cr2 , T!, welche durch die aussern Krafte hervorgerufen werden
;
der dritte

endlich mit den Bestimmungen der kleinen Abweichungen der wirklichen
Gestalt der Mittelflache von der gefundenen abwickelbaren Flache (S. 295).

The first part of this problem, the determination of the developable
surface as the approximate form of the strained mid-plane, is considered

in 70. In 71 the method of dealing with this part of the problem,
when there are no body-forces and the load on any element of the

1 There are some misprints. In (267), read in third equation y for yl ,
and in

fourth and fifth equations read (f -
'

f\ for (t - - f\ . In (267 a) a factor has got

inverted and then transposed ;
the term in curved brackets should be
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contour depends only on the magnitude and direction of the element,
is especially developed. In this section Clebsch makes a slight reference

to how the problem of the finite shifts of a plate, whose mid-surface in

the unstrained condition has the form of a developable surface, might
be approached (S. 302).

In 72 Clebsch indicates in the briefest manner how the second and
third parts of the problem might be dealt with. He concludes with the
remark :

Ich babe hier eine kurze Skizze von der Reihenfolge der Probleme
entwickelt, auf welche man bei der Behandlung des Problems endlicher

Biegungen sehr diinner Flatten gefiihrt wird. Nur in einem einzigen Falle
kann man ohne Weiteres vorschreiten, um die vorgefiihrten Probleme selbst
xu untersuchen

;
daiin niimlich, wenn die endlichen Biegungen aufhoren,

inul nur die an die urspriingliche Gestalt der Mittelflache anzubringenden
Correctionen aufzufinden sind. Dieser Fall, in welchem alle Theile der Platte
v. >n ihrer urspriinglichen Lage nur sehr wenig abweichen, soil jetzt eingehender
behandelt werden (S. 305).

In concluding our remarks on this problem of Clebsch's, it is sufficient

to note that the elastic principles involved are simple and the earlier

part of the investigation involves no great difficulties, but that the

analysis required to solve even simple cases promises to be far too
-i implex for us to hope by aid of it for any results of physical or

technical value.

[1379.] 72 is entitled : Kleine Verschiebungen and occupies
J05-8 (F. E. pp. 684-9, where a more general distribution

of elasticity is dealt with). Clebsch deduces from his general

equations the two equations for tbe shifts of the mid-plane in its own

plane and the corresponding contour-conditions as we have given
them in our Arts. 389 and 391, except that be neglects the surface

load on the plane faces, i.e. the terms

Further he gives the equation for the transverse shift of a point

on the mid-plane and the two contour-conditions such as we have

given them in our Arts. 384-5, 390, 392-4 except that he again

regards the surface load. His equations are thus more general
t li;in those of K irrhhoff, but not so general as those of Saint-Venant
His method is certainly better than Kirchhoff's first method

;
it is

not so concise but it is more general than K i ivhhoffs second method.

As depending upon the theory of the finite shifts of thin plates,

ifl more cumbersome than the method by which Saint-Venant

Boussinesq have deduced still more general results.
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Clebsch compares these equations for the small shifts of thin

plates with those he has obtained for the case of thick plates (see

our Arts. 1351-2), and remarks with regard to the first system of

equations, or those for the shifts in the mid-plane :

...dassesgenaumitdenSystemen(ll), (14), (15) [of our Art. 1351-2]
ubereinstimmt, nur dass hier noch Glieder auftreten, welche von den
auf das Imiere wirkenden Kraften abhangen, dass hingegen diejenigen
Glieder fehlen, welche dort mit hoheren Potenzen von h multiplicirt
erschienen (S. 307).

[1380.] In 74 (S. 309-19; F. E. pp. 753-763) we have the case

of the small shifts of a thin circular plate in its own plane completely
solved. The contour of the plate is supposed either to be subjected to a

given system of forces or to be simply fixed. Clebsch includes body-
forces acting parallel to the plane of the plate. Several serious errors in

Clebsch' s equations (19) are corrected in the French edition.

In 75 (S. 319-27, F. E. pp. 763-72) the small transverse shifts

of a circular plate subjected to any system of body-force are dealt with.

Clebsch's work here amounts to the following process. Suppose the

plate to possess elastic isotropy in its plane, and let it be stretched to a

traction T uniform in all directions
;

let H be the plate modulus and w
the transverse shift of the point in the mid-plane of the plate defined

by r, <J>,
the polar coordinates with respect to the centre. The body shift-

equation for w is the following :

_\d*w 1 dw _ 12T /d*w 1 dw\

~^~d^ +
r*~dr~7Itf \d^

+
r'dr)

Hh? r

dx dy

Here, if P, Q, R be the components of body-force acting on the element

dxdydz of the plate of which the thickness is h, and if x and y are

r cos
</>,

r sin
</> respectively, then :

r+hfi r+h/2, r+h/2
R' = Rdz, P" = Pzdz, Q" = Qzdz.

J -h/2, J -7t/2 J -h/2

(See S. 320
; F. E. p. 765, and compare our Arts. 384-5, 390, where

e = A/2, and Art. 1300 (c)).

Clebsch now 'supposes R' + +
-j~

to be known in sines and

cosines of multiple angles of <, and then expresses w in like form.

This gives him a differential equation for a coefficient of one of the
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terms in w as a function of r alone. To simplify this he assumes T =
0,

and it then takes the form :

1 d tV 12

where Wi is the coefficient of cos i<f> or sin
i<f> in w, and y^ the coefficient

dP" dQ"
of the like terms in R? + . + .

dx dy
Clebsch then uses his unrivalled powers of analysis to find the most

general solution of
(ii)

for a complete circular plate (S. 326
;

F. E.

p. 771). He determines the constants of this solution for the particular
case in which the edge of the plate is built-in.

[1381.] 76 is entitled: Biegung einer am Rande eingespannten

kreisfonnigen Platte durch ein einzelnes Gewicht (S. 327-31
;

F. E.

pp. 772-8). The word eingespannt is here to be taken in the sense of

eingeklemmt,
"
built-in," as Clebsch puts T = Q in using equation (i).

A
horizontal circular plate with built-in edge is supposed to be loaded at

any single point. Clebsch remarks :

Diese Aufgabe kann man mit grosser Annaherung so behandeln, als wiire

an Stelle des Gewichts cine auf das Innere des betreffenden Elementes wirkeude
Kraft gegeben, deren Wirkungskreis nur auf einen sehr kleinen Raum be-

;iikt ist. Uebrigens ist der Fall, wo mehrere Gewichte an verschiedenen
1'unkten angebracht sind, ganz ebenso zu behandeln

;
die dann entstehenden

Verachiebungen sind nichts anderes, als die Summe derjeuigen, welche von
den einzelnen Gewichten herriihrcn wiirden (S. 327).

The solution is obtained as a special case of the results referred to

in the previous article. It is somewhat lengthy, but as being the

theoretical answer to a definite practical problem it is given here. Let
w be the deflection at the point r, < of the plate of radius 6, loaded at

r
, <f>

with the weight P, then :

oo

w = w + 2 tv
t
cos t

(<j>
- <

),
i

where for points for which r < r :

3Pwn

W



and for those for which r > r :

+
r<?) log r + -^- fob log 6 +^?V

)
-

(&
3 + r 2

) log b~]
,

26i

Clebsch remarks of these results 1
:

Auf so verwickelte Formen fiihrt ein Problem, dessen analoges, bei Staben,
mit Recht unter die elementarsten gezahlt wird. Und selbst dann nur gelang
es, wenn die Peripherie der Scheibe kreisformig vorausgesetzt wurde. Inzwi-

schen muss auf die Wichtigkeit des Problems auch fiir Anwendungen hinge-
wiesen werden, so wie auf die Methode, mit deren Hiilfe es vielleicht auch fur

andere Formen gelingt, die Losung des Problems herzustellen (S. 330).

[1382.] We may note that the central deflectionfro
for a load at r

is given by

which becomes for a central load

These results may be compared with those of our Art. 334.

They agree with the values that Clebsch gives on S. 331 for the

deflection at r = r due to a central load P. This follows from the

general principle that deflection at r = r
'

for loading at r = r is equal
to deflection at r = r for the same loading at r = r '.

[1383.] Clebsch in 77 (S. 331-3; F. E. pp. 778-81) next passes
to the motion of plates, and finds by D'Alembert's principle the terms

which must in this case be introduced into the general equations for

1 There are several misprints in the reproduction of these formulae in the French
edition : see p. 776.
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finite shifts. For certain quantities P, <X, R, P', Q", R' (the X, 7, Z,

X", T', Z" of our Art 384) we must substitute :

dPfi Cbl) '*CP/ AA O AA - /[ &h

AA^cPa ,,_^>_<W R_ML<PI
12 dt '

~

12 dP '
"

12 d? '

where A is the density of the plate, h its thickness, , 17,
the co-

ordinates of a point on the mid-surface referred to fixed axes in space,
and a, (3, y the direction-cosines of the angles the normal to the

mid-surface makes with the axes of
, 77, .

Clebsch confines himself, however, to the case of thin plates with

small shifts, and deals only with the transverse vibrations of these in

two special sub-cases, which form the topic of the following two sections

of his treatise.

If be the transverse finite shift, we may in this case clearly replace
it by the w of our usual notation for small shifts.

[1384.] 78 is entitled: Klangfiguren einer kreisformigen freien
Platte (S. 334-43; F. E. pp. 781-93). Clebsch shows that, when no
forces act on the plate, we must (owing to the conclusions of the previous

section) replace :

but he at once neglects the term multiplied by h? as very small. The
remainder of his investigation adds, I think, nothing to that of

Kiichhoff: see our Arts. 1241-3. On S. 333 he had acknowledged
the latter's services in this matter.

[1385.] 79 is entitled: Schwinyunyen einer kreisformigen ge-

spannten Membrane (S. 344-7; F. E. pp. 793-7), but Clebsch's

treatment differs from the ordinary one, in th.it he does not suppose the

membrane perfectlyflexible. His work thus corresponds for membranes
to that of Seebeck on strings: see our Art. 17'J. \\Y must start from

|

nation
(i) of our Art. 1380 and retain now the terms in T7

,
while the

t. im in l.i-a. -kete on the right-hand side must be replaced as in our Art
1384 by

Writing 127y(///t*)=l/6 and 12A/(//A') = I/a
4 we have Clebech's

equation of S. 344 (F. E. p. 794 l

).

1
Equation (310) p. 7U3 should give l/6> and Dot 6.
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The boundary conditions become

2f\ /I dw
when r = b the radius.

The first condition signifies that the couple round the tangent to the

contour vanishes at each point See our Art. 391.

Substituting w =HRmnymn cos (m<j> + aj cos (*, + (3mn),
where ymn ,

Ojn, /3mn are constants, we have a differential equation to determine Rmn
as a function solely of r. This can be solved by expanding R in a series

of ascending powers of r in the usual mode. The solution is really
found to be in terms of the same functions, i.e. BessePs functions, as

in the previous case, but the coefficients of the arguments of these

functions are different. The transcendental equation for the frequencies
of the notes follows in the usual manner from the contour conditions.

Clebsch makes no attempt either to solve this equation numerically,
or even to calculate the effect on the pitch of the notes of a slight

stiffness in the membrane.

He concludes this portion of his work by showing that the transcen-

dental equations which occur in the problems of both plate and membrane
have real roots, or that the motion is really periodic (S. 347-55; F. E.

pp. 797806). The method adopted resembles that of the general

problem of 20 of the Treatise (see our Arts. 1328-30), and leads

to expressions for the arbitrary constants of the solutions in terras of

the initial shifts and velocities.

[1386.] The remainder of Clebsch's treatise is entitled : Anwen-

dungen, and occupies S. 356-424 (F. E. pp. 807-880). This

portion of the work is less exact 1 and more elementary. I

content myself with noticing anything that seems of special

interest or originality in the problems dealt with, not giving an

abstract of the whole.

(a) In 82 Clebsch investigates in an approximate manner what
the cross-section of a rod under longitudinal body-force and load must

be, in order that the stress may be everywhere uniform. Let Z be the

load per unit volume, and CD the cross-section at a distance z from one

end, and let P be the total load at z = I and T the uniform tractive

stress
;
then approximately

L
1 Clebsch rightly insists on the importance of recognising the approximate

character of most of the ordinary practical formulae :

Es wird in den betreffenden Fallen immer auf den Mangel an Strenge hingewiesen
werden; eine Gewissenhaftigkeit, welche ebenso natiirlich als nothwendig erscheint,
und welche dennoch leider in Schriften iiber Anwendungen dieser Art nur zu haufig
vermisst wird (S. 356).
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or, by differentiation since T is a constant,

whence w =
^e

'

Suppose, for example, we require the cross-section when Z is due to a

centrifugal force measured by a?z per unit mass. Let A be the density
of the rod, then we have :

p *-+
o>=T<*

n

(S. 360-3
; F. E. pp. 812-5.)

(b) In 85 Clebsch investigates the fail-point in beams variously

supported. He adopts a stress-limit, which in the simple cases dealt

with does not lead him to results differing from those which would have
arisen in considering relative strength from the standpoint of a strain-

: see our Arts. 4 (y), 5, 169
(c), 320-1, and 1327.

(c) On S. 392-6 we have the case of a uniformly loaded con-

tinuous beam freely supported on (n + 1) equally distant points of support.
This problem had already been dealt with by Lamarle and others : see

our Arts. 576, 947, 949, etc. The analysis is here clear and the

results concisely given.

(rf)
In 88 Clebsch deals with the problem of solids of

resistance
'

by what is really only the approximate Bernoulli-Eulerian

tli.-ory : see our Arts. 4*, 5*, 16*, 915*, etc., and compare them with

our Art. 56 Case (4). Clebsch supposes all the cross-sections of the

rod to be similar figures and that the maximum stress in all the

cross-sections is the same. Further he supposes the plane of flexure

to contain a principal axis of each cross-section. Suppose h to be tin-

distance of the most strained * fibre
'

from the ' neutral axis
' and K the

swing radius about its neutral axis of the cross-section distant z from
one end of the rod

;
let A, and

K^
be the corresponding values when z /,

and let T be the given maximum stress. Then Clebsch finds the follow-

ing differential equation to determine the linear dimensions of successive

cross-sections :

d

m
where p i the body-force JXT unit volume of the rod at z.

Clebsch solves this in two oases : (i) when only gravity, i.a a con-

stant p, acts on the rod
; (ii) when no body-force but a terminal load

P at z - I produces flexure.

In the first case we have :

- f ......
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In the second case we have, correcting a misprint :

Pllrf
h* = -j a (I

-
z) ...... a cubical parabola.

**i*i

(S. 396-402
;
F. E. pp. 852-8.)

(e) 89 is entitled Biegung bei sehr grossem Zug oder Druck in

der Richtung der Ldngsaxe. Saulenfestigkeit (S. 402-8
;

F. E. pp.

859-65). The equation for flexure now takes the form

=M R (ut
-

u),

where M is the bending moment of all the forces perpendicular to the

axis of the rod, R the component of the longitudinal force and u
t
the

deflection for z 1. Clebsch integrates this for R positive or negative.
In the latter case, which corresponds to the case of a strut, Clebsch

notes the inconsistency of the ordinary theory, in which the strut only
l>ends for certain definite values of the load and for no intervening ones.

He attributes this failure of the theory to the fact that for long rods

the shifts become finite and we must fall back on the results of our Art.

1366. This correction had of course already been made by Lagrange :

see our Art. 110*. But the full theory of finite shifts, we have seen,

also leads to the Bernoulli-Eulerian value of the buckling-load and with

this Clebsch seems to be content, although that theory has been by no
means verified experimentally. He indicates in brief terms the point as

to the relative magnitudes of the buckling and compressive loads, which
had been previously worked out by Lamarle : see our Arts. 1258*-9*.

[1387.] In 90 (S. 409-13; F. E. pp. 866-71), Clebsch

discusses an important practical problem, namely : the discovery

of the strains and stresses in a system of bars pinned together

at their terminals, or in a framework. In this section the body
forces are supposed negligible and the terminal loads in no case

sufficiently great to produce buckling. Thus the system will be

without flexure. If there be no supernumerary bars, we know that

in this case the stresses in the various members can be easily

ascertained by the method of reciprocal figures ;
if supernumerary

bars exist, however, we are compelled to use ab initio the elastic

properties of the bars.

Suppose x
t , y^ %i to be the coordinates of the iih node of such a

frame before strain and u^ vit wt
its shifts after strain, these latter

quantities being very small ; further let Eik be the stretch-modulus of

the bar joining the nodes i and k, rik its unstrained, rih + pik its strained

length, w
tVk

its cross-section; let Xi} Y
it
Z be the components of the
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load at the tth node. Then we must have for the equilibrium of that

node

v/
< +

where the summation is to extend for all nodes k united by bars to the

nod>

If there be n nodes we have thus 3n equations ;
there are also 3?i

unknowns, namely the u, v, w for the n nodes. ( Obviously p^ is given by

= (
xi
~ xk) (Uj

- uk) + (y{
- yk) (Vj

- vk) + (zt
- zk) (wt

- w

r^

But of the 3n equations 6 must be the equations of statical equilibrium
between the external loads X, F, Z. Hence there are 6 of the shifts

undetermined by the above equations. This is what we should expect,
as we might give the system any displacement of translation or rotation

as a whole without affecting the elastic equations, and such displacement
in volves six arbitrary constants. As a rule certain nodes and directions

ot rods will be fixed, and these will give the additional conditions

sufficient to solve the problem, even when there are also unknown
reactions at some of the nodes to be determined. Clebsch works out

this solution by solving for u, v, w, in the special case when a loaded

node is supported by any number of bars attached to fixed points.

[1388.] The problem of the preceding article becomes more

complex when there are joints or nodes attached to points in the

bars themselves as well as at their terminals, so that flexure takes

place. Clebsch's 91 (S. 413-20
;

F. E. pp. 872-79), entitled :

Stabsysteme mit Biegung, deals with this problem. He supposes
the bars to be pin-jointed, the cross-section of each to be uniform

and their weight to be negligible. His method is indicated in

th- following sentence:

D.-is all^ciiK-inr Princijt \vird auch hic-r darin hrstrlicn. <lass man
die Yerschiebungen der Knotenpunkte zuniichst .unto Grossen

behandelt, aus ihnen die eintretenden elastischen Krafbe h.^timnit, mit

welchen die Stabe in ihren Knotenpunkten reagiren, unl ndlich die

ichgewichtebedingungen lui -li. in ,1, n Knotenpunktrn \\irkmden
aussern und elastiHchrn Kr.ii't- itutstellen; Gleichungen die sclili* sli< li

genau hinr-i< -hni um aim ihnen die eingefUhrten Verschiebungi i

bestiramen (S. 413).
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Clebsch describes clearly the various stages in the problem,

writing down the general types of the equations involved. He
afterwards applies his principle to an isosceles truss with a

vertical strut, the truss being supported at the terminals of the

base and loaded at the vertex. Both the general investigation

and the special example are of interest, but we must refer our

reader to the Treatise itself for the details.

[1389.] Clebsch's Treatise concludes with a section on Torsion.

He introduces Coulomb's theory for a prism of circular cross-

section and discusses the maximum stress. The method adopted
is unsatisfactory and Clebsch himself expressed his discontent with

it. In a letter to Saint-Venant he authorised its withdrawal, and

there is thus no need to criticise it here.

[1390.] The work we have been considering was published
when the author was twenty-nine years of age and was based

upon his lectures at Karlsruhe delivered in 1861. However

unsuitable it may seem as an introduction to the study of

elasticity for technical students, we cannot but be surprised by
the wealth and ingenuity of analysis which the young mathe-

matician was able to bring to the service of the more theoretical

parts of elasticity. It is this fertility of analytical method which

makes his work so suggestive and has given it a place among the

classics of our subject, notwithstanding its incomplete and some-

what one-sided character.

Die physikalische, iiberhaupt die naturwissenschaftliche Auffassung

lag ihm, bei alien Kenntnissen, die er im Einzelnen besass, verhaltniss-

m'assig fern und interessirte ihn nicht besonders. Nur in seiner ersten

Arbeit, seiner Inauguraldissertation : Ueber die Bewegung eines

Ellipsoids in einer Fliissigkeit, so wie spater noch einmal in einer

Untersuchung iiber Circularpolarisation, findet sich bei ihm eine

Vergleichung der abgeleiteten Resnltate mit dem Experimente. Ihn
interessirte vielmehr die mathematische Fragestellung, insofern sie

geschickte analytische Behandlung verlangte : er gehdrte, auch hierin

Jacobi ahnlich, der rein mathematischen Richtnng an, welche den
abstracten Gedanken um seiner selbst willen verfolgt.

This excellent characterisation of Clebsch I take from S. 5-6

of a pamphlet the joint labour of several of his friends: Alfred
Clebsch. Versuch einer Darlegung und Wurdigung seiner wis-
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senschaftlichen Leistungen (Leipzig, 1873), to which I must refer

the reader for details of Clebsch's life and work.

[1391.] In the preface to his Treatise on elasticity Clebsch

especially excludes from the scope of his work all applications

of elasticity to the theory of light but suggests that he may later

deal with this wide field (S. v). All that has been preserved to

us of Clebsch's labours in this field are the memoirs in Bd. 57

(I860) and Bd. 61 (1863) of Crelles Journal (see our Arts. 1324

and 1392) and a posthumous publication entitled: Prinzipien der

mathematischen Optik edited by A. Kurz and separately published
in 1887 (Augsburg) as an offprint from the Blatter fur das

bayerische Realschulwesen. This journal being probably more

inaccessible to our readers than the offprint, we shall refer only
to the pages of the latter.

This short treatise on optics containing 53 pages is based upon the

supposition that the ethereal molecules of masses m, mlf act upon each

other with a force of the form

where r is their central distance (S. 1). Thus Clebsch really starts with

a hypothesis that must lead him to rari-constant elastic equations the

moment he neglects the terms in differential coefficients higher than the

second, which he at first retains in order to explain dispersion in

Cauchy's manner (S. 15). When however he does neglect these

(liH'erential coefficients (S. 17-19), we find he has equations which

apparently involve nine independent constants for a crystal with three

rectangular axes of elastic symmetry and two independent constants in

the case of isotropy. But this independence is only apparent ;
take for

example the equations of isotropy in S. 19 which are of the type

It will be found by substituting the values on p. 18 for u,-u etc.

in tin- funilitiuental equations (3) of S. 3 that with the notation of our

Art 143, we have

and a + b - J2mx (r ) x
4 -

Consequently
a = i {2mx (r.) */

- 32mx (r.) * V(
= 0,

by equation ( I r the same article.
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Thus we see that Clebsch's equations are really rari-constant, and the
fact that there are relations among his elastic constants would, I think,

considerably modify the rest of his investigations.
For double-refraction Clebsch obtains conditions identical with those

of Cauchy and Saint-Venant. Thus in other notation his relations (44)
and (46) (S. 21-2) agree with (xxxix) of our Art. 148, if we put
d = d'j e = e' andff therein.

Much of the pamphlet contains extremely interesting analysis
to which we may draw the attention of tbose interested in optical
theories. We have referred above to all that directly concerns us

when we are dealing with elasticity.

[1392.] Ueber die Reflexion an einer Kugelfl&che. Journal

fur die reine und angewandte Mathematik, Bd. 61, S. 195-262.

Berlin, 1863. This memoir is dated October 30, 1861. It opens
with the following paragraph explaining its object :

Obgleich das Problem der Reflexion von Lichtstralen an einer

gegebenen Flache langst die Aufmerksamkeit der Geometer in vielfacher

Hinsicht auf sich gezogen hat, so ist doch niemals der Versuch gemacht
worden, aus den Bewegungsgleichungen selbst die Gesetze dieser Erschei-

nungen zu deduciren, und so theoretisch eine sichere Basis fiir

Untersuchungen dieser Art zu gewinnen. Der einzige Fall, den man
betrachtete, war der einer unendlich ausgedehnten brechenden Ebene,
auf welche ebene Wellen fallen

;
und so kam es, dass die geometrischen

Satze der Dioptrik und Katoptrik mit dem was man heute eigentlich

Optik zu nennen gewohnt ist, nur durch einige Betrachtungen der

Enveloppentheorie lose und gewaltsam verknupft sind.

[1393.] Clebsch attempts in this memoir to investigate the

motion of an isotropic elastic medium, when the disturbances are

totally reflected from the surface of a sphere contained in it. He
deals in fact with a special case of an extension of Lams Problem

(see our Art. 1111*) to media in vibratory motion. In order

to simplify the surface conditions, which he remarks are still

both theoretically and physically somewhat obscure, he takes

the simplest hypothesis possible :

dass namlich die Kugel vollstandig reflectire, und dass, bei Abwesen-
heit gebrochener Wellen, die einfallenden und die reflectirenden

Bewegungen an der Oberflache der Kugel sich in ihrer Summe genau
aufheben (S. 195).

The last words are somewhat obscure, but what Clebsch really

does is to put tbe total shift (due to incident and reflected dis-
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turbances) at the surface of his spherical reflector zero. In other

words, he fixes his ether at the surface of a totally reflecting body
1
.

With this simplification Clebsch remarks that the problem becomes

a purely mathematical one, namely: to develop the differential

coefficient of a function of x, y, z
y
with regard to one of these

variables in a series of spherical harmonics, if the development of

the function itself in spherical harmonics be given. The solution

is obtained simply and symmetrically by replacing the spherical

harmonic by the corresponding homogeneous function of the nth

degree.
The results of the investigation are exceedingly complex for

the optically important case of a wave-length very small as

compared with the radius of the reflecting surface, but they are

capable of being easily dealt with approximately, if the wave-

length be large as compared with this radius.

[1394.] 1 of the memoir is entitled: Zuruckfuhrung der Gleich-

utigen der Elasticitat auf getrennte partielk Differentialgleichungen
and occupies S. 196-9. Clebsch adopts as his equations for an isotropic
medium the type :

so that his b* = fi/p, and his aa
=--
(X + 2/x)/p of this History. He then

gives a demonstration that the most general solution for the shifts is of

the form :

u =
dP dW_dV~
dx dy dz'

=
dP dU__d\Y~
dy dz dj-

= dJP
dV dU

dz dx (///

where /' is a solution of :

1 Thin fixing of the boundary aa a condition for total reflection is interesting in
the light .,f Sir William Thomson's hypothesis that the ether may be treated aa an
elastic solid fixed at infinity (and I suppose at totally reflecting surfaces placed in

See the Philosophical Magazine, November, 1888. Is it possible in this case
to absolutely neglect the waves reflected

' from the infinite boundary aa Helmholtz
asserts? Must not the steady motion be considered to hare existed from an infinite'

? If we cannot neglect the reflected waves what becomes of them and how do
they affect the problem of cosmic temperature?

T. E. IT. II. 12
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and U, F, W are solutions of :

(iv).

Compare these results with those of Lame* and Kirchhoff re-

ferred to in our Arts. 1078* and 1309.

[1395.] 2 entitled: Entwickelung von P, U, F, W nach Kugel-

functionen, occupies S. 200-2. In this section Clebsch introduces

a function Mn which may be considered as consisting of two parts.Mn is a solid spherical harmonic of the nth degree, i.e. a homogeneous
function of the nth degree in x, y, z which satisfies VWn

=
0, but its

arbitrary coefficients are functions of r and t, where r is to be put equal to

r, i.e. *Jx* 4- y
2 + z2

,
after all differentiations have taken place. Thus

if V 2 be taken in its most general sense to operate on Mn =f(r, x, y, z)
we have to take into consideration the differentiation of Mn with regard
to the r which occurs in the coefficients of Mn treated as a solid

harmonic in x, y, z. Thus we find, if A2 be used instead of V2 to denote
the special sense of an operator on x, y, z only :

ld f^dMn\ %d( dMn dMn rfjfn v

(
r2 =-

)
+ -

(x ^ + y -=-^ + z -1^\
r2 dr\ dr ) rdr\ dx dy dz )

dMn

Hence we shall obtain a solution of an equation of the type :

a n
~~ ' "

if we take < = Mn ,

o

and determine the coefficients of Mn as functions of r and t from the

equation :

2 dMn~
dr

[1396.] A method based upon this property of the function

Mn for solving the body-shift equations (i) and (ii) is developed by
Clebsch in the following sections ( 3 and 4, S. 202-8). Many of

the fundamental properties of solid spherical harmonics were here

published, I believe, for the first time.

On S. 208 Clebsch gives the following expression for the type of

shift :

u = 2un ................................. (v),
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where: u = J**
1

+I** +I
-T- "dr

1
!
+ g ~j^~V~7*dx dxr* ay dz

1 d
and Vm-i =

+
it

and where Mn, 3fn', 2^ are arbitrary solid spherical harmonics of the

nth degree. Their coefficients are, however, functions of r, t. Those of

Jfn satisfy the equation :

and tliose of Afn
'

and Tn satisfy the equation :

with the condition that M '

is to be zero.

[1397.] In the particular case when the motion is not vibratory

we must put cP</>/cfo*
=

0, we then obtain a solution in solid

spherical harmonics of the equations of elasticity for a medium

subjected only to surface forces. Results for this special case of an

elastic solid in equilibrium were given by Sir William Thomson
in a paper published in the same year as Clebsch's, but read on

ember 27, 1862, a year later than Clebsch's was written.

William Thomson's conclusions will be dealt with in our

Chapter XIV. They differ considerably in form from Clebsch's

as cited above. When
(f>

is independent of t, we have

where Hn and Hu

'

are solid spherical harmonics of order n.

Substituting we ultimately obtain the shifts in a form which is

explicitly free from the somewhat complex coefficients involving
tli.- l.istic constants a9 and 6* [i.e. (m + n)/p and n/p] which occur

in Sir \V. Thomson's form of the solution.

[1398.] In th fifth section (8. 209-11) Clebsch integrates the

equations of types (\ii) and (viii), and shows that ^ in (vii) is of the

form :

122
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at) n(n + l)f
n- l

(r-at) + F*~ I

(T + at)

~~2~~ r +a

(n
-

1) n (n + 1) (n + 2)/"-
2
(r
-

of) + ^- a
(r + at)

2.4

1 . 2...2nf(T-at)+F(r + at' 1

where a must be changed to b in the case of
(viii), and the indices

attached to ./"and ^denote derivatives of those functions.

[1399.] To complete the solution it is necessary to determine from

the surface conditions the arbitrary functions/and F, which it must be

remembered are to be solid spherical harmonics in x, y, z of the ord-r

n. This Clebsch achieves very ingeniously. He demonstrates on S.

206 that :

(dun dvn dwn
n (2n + 1) Qn-, = -

1-j
- + -r

5 + -T
\dx dy. dz

..... (x).
dy)

Now on the right there are no differentiations with regard to r.

Hence if u, v, w, the shifts over two given concentric surfaces, say of

radii i^ and r2 ,
be given as functions of two position-angles, we can

express them by surface spherical harmonics and by dividing or

multiplying at the same time by the proper power of rx and r2 replace
these surface harmonics by solid harmonics. Now unt vn ,

wn are

known as the nth solid harmonics in u, v, w respectively, and these

results may therefore be directly substituted in (x), as there is no
differentiation with regard to r. Thus by aid of (vi) and (x) we can

determine the six arbitrary functions which occur in Mn,
M'n and Tn

as exhibited in (ix). It might seem from this that the motion was

fully determined when the arbitrary shifts over two concentric spherical
surfaces are given at each instant of time, but Clebsch guards himself

against this assumption by the remark that though the surfaces of a

spherical shell were fixed, its material could still move.

[1400.] 6 is entitled : Vollstdndige Behandlung des Falles, wo
eine

y auf einer bestimmten Kugelfldche gegebene Bewegung sick ins

Unendliche ausbreiten kann, and occupies S. 211-15. Suppose a number
of centres of disturbance of given character to be at finite distances

apart in an infinite medium
;
then the shifts U, V, W which they

would produce at any points of the medium are known. Now intro-
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duce into the medium a spherical surface of no disturbance and let the

additional shifts be represented by u, v, w
-,

then the conditions to

be satisfied over the surface are :

u+Z7=0, v+V=0, w+W = 0.

These will suffice to determine u, v, w in the manner suggested in the

previous article. The shifts at any point of space will then be

u + V, v + V, w + W.

It must be noted, however, that there is an additional fact to be

taken into consideration. One of the rigid spherical boundaries has

really been taken at an infinite distance, hence, Olebsch asserts, there

can be no inward bound wave or the terms in equation (ix) involving
the function F (r + at) and its derivatives cannot exist. This con-

clusion Clebsch attributes on S. 211 to Helmholtz.
Now U, V, W may be expressed over the surface of the given sphere

in terms of spherical harmonics and hence quantities like

Qn-lt -* n+l> ^n>

corresponding to them found from equations similar to (x). But these

lead us to the values of Qn ,
Pm TM for we must clearly have :

at the spherical surface. In this manner Clebsch finds linear differential

equations with constant coefficients for the arbitrary functions which
occur in the values of Pn , QM Tn. Clebsch notes the following facts

with regard to these equations :

(i) If the incident disturbance be periodic, the reflected motion (i.e.

one corresponding to the particular integral) will also be periodic, i.e. the

shifts will not contain the time outside the arguments of sine or cosine.

(ii) A free motion of the system (Le. one corresponding to the

complementary function) is possible, even when there are no external

centres of disturbance, and a spherical surface is rigidly fixed in the

medium. But this motion cannot contain any periodic terms except

special values of a/6, and these values of a/6 appear, to judge from
th'- equations in the case of the smallest values of n, to be negative and
tli'-n-fon- imiK>ssible. A general proof of this Clebsch has, however,
been unable to find (8. 215).

These two results are of considerable interest; in particular the

free motion of a mass of elastic material fixed to two rigid enclosing
surfaces is deserving of closer investigation. It may possibly be found
that some such masses are incapable of isochronous vibrations. The

impossibility of free vibrations in Clebscli's case, however, is solely the

result of his n. -l.< ting the inward bound wave.
Since the tree vibration in the case (ii) of a fixed spherical surface

is, according to Clebsch, non-periodic, so every periodic disturbance will

Inly reflected, for the only possible case of failure, that of equality
I- t\\. i, tli, |>eriods of forced and of free vibrations, cannot occur.
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[1401.] In 7, entitled: Einfachste Bewegungen. EinfuJiruiig der

Functionen f, < (S. 216-21), Clebsch deals with the special case in

which the incident disturbance is given by a single term of the period

27r/jfc,
or where Pm Qn,

fn are of the form 1
:

But these lead at once to

d?

and thus to determine Mn and M'n we have from (vii) and (viii) the

equations :

. "*

Clebsch then shows that :

where Hn,
Hn

'

etc. are solid harmonics of the wth order, and Fn (), $n (s)

are solutions of the equation :

2n + 2 dV,
- +- -- + O = 0.

These solutions are as follows :

where :

(n-8) ......(n+4) _
2.4.6.8.sw+62.4. w+8

(n-4) ...... (n+5)
2.sn+2 2.4.6.sn+4 2. 4...10.sn+6

or -s<> *2

1 To avoid the confusion of the symbol t being used with two different meanings,
I have slightly changed Clebsch's notation throughout.
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are the consecutive numerators and denominators respectively of the

convergents to the continued fraction

01111
*"=-! M 5-

-
- + +- + + etc.8888

[1402.1 From the values of MM Mn
'

and Tnt Clebsch finds those of

$_! and /*+!, and ultimately unt vn and wn (S. 220). He thus

reduces the problem to the determination of Hn
'

......#n
TI which will

follow at once from (xi), since QM Pn and Tn are known in terms of

C., ?., T* by Art. 1400.

In the case of a single spherical surface, over which there is no

shift, no function of r + at can occur (Art. 1400), so that the terms in

Fn disappear, and Clebsch easily finds //n", Hn
" and HH

vl as functions

of the given quantities PM Qn and Tn.

[1403.] 8-18 (S. 222-62) deal with the case of a single centre of

disturbance, and like previous portions of the memoir are very charac-

teristic of Clebsch's remarkable power of analysis.
In this case the solution of the equation

for a disturbance symmetrical about the source x
, y ,

* consists of

terms of the form :

rin (-*) cos- (It -at)
and

E

where R = V(*-* )
3 + (y

- y )
2 + (*

-
o)

a
-

These may be replaced by the exponential term

and the shifts due to a disturbance of the kind considered will be of the

type:

ff-ct^-rR dR\ R

...... (xiv),

by our Art. 1394, the 6" l>eing constants.



176 CLEBSCH. [1404

If #! be the first, Ua the second term of U, we have :

Ut : Fj : TFj :: x- x : y -yQ : z-z ,

and #!* + V? + W? is a function only of R and t. Thus the total shift is

in the direction of motion of the wave, and is a function only of the

distance from the centre of disturbance and of the time. We are

therefore dealing with a spherical wave of longitudinal vibrations.

For the second terms we have :

while Uf + F2
2 + W is not independent of

X-XQ y-y<> z-z
IT 1 R ' R '

or the direction-cosines of the line from the centre of disturbance to

the point disturbed. We see that the shifts U9t F2 ,
Wz are perpen-

dicular to this line, and are also parallel to the plane

They correspond therefore to a wave of transverse vibrations.

[1404.] The next stage in the problem is to find the value of

1 -mfiv-i n cos mR . sinmR
-j^e

,
or of and R ,

in solid spherical harmonics, m being a constant. This is accomplished

by Clebsch in 9 (S. 224-7). Although it is impossible to reproduce
the whole of the analysis of this special case, these expansions may be

given here as they seem likely to be serviceable in a number of

problems quite independent of the present one. I may cite them as

follows :

1 fcos mR} r . (cos(mr )l .. . (sin (wr Y| "I

3 {sin mR]
= m*

l/
<"">

Isin (:)}
+ * <"">

{cos (rj}J
x [f (7>ir)

sin (mr) + (rar) cos (mr)]

cos m
x [j^ (mr) cos (mr) <

a (mr) sin (mr)]

[,

, fcos (mr)} _ (sin (mr )l ~|
(mr ) f . \M- + <#>2 (mr ) \"

lsm(mr )J
^ v

lcos(mr )JJ

x [/a (mr) sin (mr) + < 2 (wir) cos (mr)]

x
[y*8 (mr) cos (mr) ^>3 (mr) sin (mr)]

+ etc............................................................. (xv).
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Here / and
<f>

are given by our (xiii), and YH is the solid spherical
harmonic :

7n = (rrc) Pn (cos <f>),
where cos

<f>

and JR = Ji* + r * - 2rr cos <.

As an identity we may of course put on the right-handside of (xv)
r = r and r = r

,
but the form in which we have left it shows us at once

how to apply the operators A1 and V* of our Art 1395 to it. This

application is required in the further course of Glebsch's analysis.

[1405.] In 10 (S. 228-9) Clebsch expands Ut V, W in solid

spherical harmonics by the aid of (xv). He thus obtains the

disturbance, due to the source at #
, y , z ,

at any point x, yy
z on

a spherical surface of radius r with centre at the origin. In 11

(S. 229-33) he deals with the case of an incident wave of purely

longitudinal vibrations (U^ V
lt TF,) and he shows that such a

wave always produces reflected waves of both longitudinal and

transverse vibrations. In 12 (S. 233-6) we have the case

of an incident wave of purely transverse vibrations (U9 ,
F

s ,
TT

a);

it is shown that with one exception, the reflected wave consists

partly of longitudinal and partly of transverse vibrations. 13 (S.

236-40) deals with the exceptional case of no reflected longi-

tudinal vibrations. This case occurs when the resultant of the

shifts U
%t
V

tt
W

t
is parallel to a plane which is perpendicular to

the line joining the centre of disturbance to the centre of the

reflecting spherical surface, i.e. in the notation of our Art. 1403,

we have

(T i (riff" :;*:*:%.

[1406.] So far Clebsch has confined himself to a single centre

of disturbance. In 14 (S. 240-6) and 15 (S. 247-50) he deals

with the special problem of determining the system of centres of

disturbance which if distributed over a spherical surface inside

the reflecting sphere would produce the reflected motion (see

our Art. 1400 and compare Art 1312). A different system is

necessary for the two types of vibration, and what is more the

distribution of systems of disturbance is quite different for waves

ntdifferent periods. The whole investigation, although the results

are very complex, is of interest, especially when we compare it with

si it 11 la i i instigations dealing with fluid motion in and about

res by the method of images.
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[1407.] 16 (S. 250-4) is entitled : Untersuchung des Falks, wo bei

massig grosser Wdlenldnge der Radius der reflectirenden Kugelsehr klein

ist. Clebsch commences by remarking that the case in which, e being
the radius of the reflecting sphere, ktja and ktjb are very large, a case

of great importance in the application of elastical theory to optics,
does not admit of any great simplification in the formulae. On the

other hand the case in which these quantities are small, or the radius

of the reflecting sphere is small as compared with the wave-length,
admits of great simplification. We can in this case for the incident

motion replace for points in the neighbourhood of the reflecting

sphere :

e-l*"-
1

g-S-i .-;*-' a-|^-i-- and-- by- and respectively.K M r r

Starting from these Clebsch determines the principal terms in the

various functions on which the values of u, v, w depend. He shows
that it is only in the immediate neighbourhood of the reflecting sphere
that its influence is of large magnitude, but that at greater distances, it

is of the order of the radius of the sphere (e) : see his S. 254. He divides

his investigation into two parts. The first occupies 17 (S. 254-9)
and deals with the reflected disturbance at points remote from the

reflecting sphere but not necessarily from the disturbing centre. The

approximate results are given on S. 256, but they are too long to

be cited here. On the other hand they take simpler forms, when
the disturbed point is at a great distance alike from the centre of

disturbance and from the reflecting sphere. In this case the type of

shift, due to the reflected motion only, is given by :

7 A r ro\mklt ----
)

\ a aj

+ aC (1Q
- 1 cos

t

-- ............ (xvi),

where :

2ir/k is the period of the disturbance,

(7, C", C", C'" determine its amplitude as in our Art. 1403,

G = Vc^Tc^Tcr*,
r = distance of disturbed point from centre of reflecting sphere,
r = distance of centre of disturbance from the centre of sphere,

I, m, n are the direction cosines of r, and 1
,
m

,
n of r

,

< is the angle between r and r
,

X is the angle between the planes rr and C'x + C"y + G"'z = 0,

\j/
is the angle between the perpendicular p to the latter plane and
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r
,
while I

'

t
ra

', nj are the direction cosines of the perpendicular to p
and r .

Obviously it is only r, I, m, n, <j>
and x which change with the posi-

tion of the disturbed point.
Clebsch's results on S. 257 do not all agree with the above. He gives

for his constants n and a the values-- and ,
L
a where I find in his

arr 3
brr,-

3a2

notation the same values multiplied by the factor ^ ^-*
.

On S. 257-8 Clebsch draws a number of conclusions as to the

general character of the vibrations. These follow at once from the

trigonometrical form in which we have displayed his results in (xvi).
Indeed in that form, they are obvious on inspection.

[1408.] The second part of Clebsch's investigations deals with the

disturbance at points very close to the reflecting sphere, when the centre

of disturbance is supposed to be at a considerable distance. This

occupies the final section 18 (S. 25962). In the notation of the

preceding article Clebsch finds shifts due to the reflected motion only,
of the type :

(xvii).

Thus in the neighbourhood of the reflecting sphere we have only to

deal with two waves, one of longitudinal and one of transverse vibra-

tions.

Clebsch instead of discussing the motion as given by (xvii) adds to it

the shift due to the direct action of the disturbance, i.e. the real part of

......... (\MH),

so far as terms of the order l/r are concerned.

The only difference this makes is that we must read 1 for -

in the first term within each pair of curled brackets in equations of the

(xvii), so that ut v, w now vanish for r ^
c, as of course they ought

to do.

[1409.] Frnni the values of the shifts as expressed in the

above manner Clebsch forms expressions for the amplitude of tin-
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longitudinal and transverse vibrations in the immediate neigh-
bourhood of the reflecting sphere. He concludes :

(i) That the amplitude of the longitudinal vibrations will be

greatest for points whose directions from the centre of the reflect-

ing sphere are nearly perpendicular to the line joining that centre

to the centre of disturbance.

(ii) That the amplitude of the transverse vibrations will be

greatest for points whose directions from the centre of the reflect-

ing sphere lie near the plane which passes through the line

joining the centre of the sphere to the centre of disturbance (r )

and the line p perpendicular to the plane G'x + G"y + C'"z =

(termed by Clebsch the Axe der Bewegung, Axe der einfallenden

Schwingungen and also Axe der Schwingungen).

(iii) That as the values of u, v, w, do not alter when x, y, z

are changed to x, y, z, respectively, the formulae to this

approximation give no trace of a shadow.

It would be interesting to know, if this result be true for other

than elastic media. We might easily place in the electro-magnetic
field a non-conducting sphere the radius of which would be small as

compared with the wave-length of a possible disturbance. Would
such a sphere have a shadow ?

[1410.] Although Clebsch, as usual, seems more interested in

his analytical processes than in their physical applications, and

makes no attempt to deduce numerical results, there is still so

much of physical suggestion in his memoir, that quite apart from the

analytical merits, it will repay close study. Special applications to

several simple physical problems appear to be placed by it within

reach of ordinary calculation, while the contributions it otfers to

the theory of solid spherical harmonics are of wider physical value

than is suggested by the title of the memoir.

[1411.] It seems well to consider in this chapter the memoir

by Gehring to which we have had occasion to refer in our Arts.

1292-3 and 1375 and which is closely related to the researches of

Kirchhoff and Clebsch. It was published at Berlin in 1860 as a

dissertation for the doctorate and is entitled : De aequationibus
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differentialibus quibus aequilibrium et motus laminae crystallinae

definiuntur. It contains 30 quarto pages, and is dedicated to

Kirchhoff.

[1412.] The object of the memoir is stated in the following

introductory paragraph :

In
problemate aequilibrii et motus laminae elasticae tractando cl. Sophie

Germain, Lagrange, Poisson conjecturas fecerunt, quas falsas esse cl. Kirchhoff
in diarii Crelliani tomo XL demonstravit. Qui novam theoriam deduxit ex

principiis, quae quidem non minus sunt hvnothetica, quae tamen similia

sunt iis, quibus cl. Jac. Bernoulli usus est ad baculi elastici aequilibrium et

oscillationes definienda et quae theoriam praebuerunt satis experiments
congruentem. In recentiore commentatione (Diar. Crell. LVI) cl. Kirchhoff
theorema proposuit generale, cujus ope fere omnia elastic itatis problemata
accuratissime solvi possunt. Undo mini liceat, nulla facta conjectura physica,
solum mathematicis deliberationibus utens, aequationes deducere, quarum
integratione aequilibrium et motus laminae elasticae crystallinae vel non

crystallinae definiuntur sub ea conditione, ut tantum infinite paullum (sicj) ex

aequilibrii statu lamina progrediatur. Quae theoria a me constituetur, in

casu laminae non crystallinae easdem praebet aequationes ac inventas a cL
Kirchhoff et confirmat igitur conjecturas, quibus usus est. Sed non minus
facile casus laminae crystallinae ea continetur (p. 5).

One or two remarks may be made on this. The historical reference

is evidently based on the statement in Kirchhoff 's memoir on plates :

see our Art. 1234. But it is very inexact. Lagrange so far as he went
made no false conjecture, and Poisson's work ought not to be placed
on the same footing with that of Sophie Germain. The criticism of

KirchhofFs first hypothesis as hypothetical is just (see our Art. 1236),
but the author can hardly mean that he has really deduced the plate

equations nulla facta conjectura physica, solum mathematicis delibe-

rationibus utens / That would indeed be a feat equally brilliant with

the discovery of the whole theory of elasticity in Taylor's Theorem :

see our Arts. 928*, 299-300. The general theorem of KirchhoflTs

which is referred to is that of our Art. 1253. Finally by a "crystalline

body" the author means one having 21 independent elastic constants;
the two things are, however, by no means necessarily identical.

[1413.] Pages 5-1 "2 determine in a general manner the value of
the shifts for a plate of isotropic material and correspond to our Arts.

>-4. Qehring does not define what he means by a lamina, but his

method shows that BO far his results are only true for a plate of in

definitely small thickness. The reason for neglecting certain terms and

retaining others is rather vaguely based (p. 10 of the memoir) on a
reference to a similar neglect in Kin -hhofFs memoir on thin rods: see

Art. 1258. So far Geh ring's results would appear to be true for

jinit'- .shifty and they agree with those given by Clebech on 8. 270-1
of his Treatise or by Kirchhoff in his Vorfaungcn; aee our Art 1294.
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[1414.] Gehring next proceeds to find an expression for the elastic

potential of the plate. This is still I think true, admitting Kirchhoff's

assumptions, up to p. 14 for finite shifts, and the result on that page
agrees with Kirchhoff's Vorlesungen S. 455 (see our Art. 1294). We
have then (pp. 15-18) the equations for the longitudinal and transverse

shifts of the plate supposing it to be only infinitely little displaced from
the position of equilibrium. The final results ought to agree with

equations (13) and (14) of Kirchhoff's S. 459 (see our Art. 1296), but they
do not. To begin with, the value of/2 given in equation 24 (6) is quite

wrong, and the value for k given on p. 17 is likewise wrong. To bring

Gehring's results into unison with Kirchhoff's, it is necessary to replace
the coefficients 1 + in equations (28) and (29) by \ (1 + ),

but far

more considerable modifications would have to be made in the steps by
which these equations are reached. It is to be noted that Gehring
works out fully only the equations of the shifts in the plane of the

plate ;
for the transverse shift he cites Kirchhoff's results : see our

Arts. 1298-9. Gehring's d/da is the l+du/dx of Kirchhoff, and
his dy/db the l + dv/dy of Kirchhoff.

[1415.] The second part of Gehring's paper occupies pp. 18-30 and
deals with the equations for the longitudinal and transverse shifts of a

thin plate whose elastic material has twenty-one constants. The results

ought to be of importance, for few plates possess elastic isotropy, and
for testing various physical theories it is often desirable to deal mathe-

matically with material possessing considerable elastic complexity.
We have here to determine the value of the elastic potential subject

to the relations (see our Art. 1294)

"zx yz = "zz = 0,

z being the direction of the normal to the plate.
These relations enable us to express o-^, o-^ and sz as functions of

the three remaining strains cr^, sx and s
y
and thus to express the elastic

potential per unit volume as a function of
tr,^,

sxy sy and the 21

constants. This is done by Gehring on pp. 18-21. His results thus

far appear to be correct, but I think might be somewhat simplified.
The next stage is to substitute the values of these strains (e.g. those

of our Art. 1294) in the elastic potential and integrate it through the

thickness of the plate. But Gehring makes errors in the value of all

three of the expressions :

r+c r+c r+c
I xx

z
dz, I x

y
z
dz, I yy dz,

Jc Jc J-c

which he gives towards the bottom of p. 21 (2c is here the thickness of

the plate, and xx , yy ,
xy correspond in our notation to sx ,

s
y
and o^).

The denominator 3 in the last terms of the values of these expres-
sions ought not to be there. The terms thus wrong involve only the

first power of tJie thickness, and therefore their error ought only to

affect the equations for the shifts in the plane of the plate.
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Gehring gives the equations for the transverse vibrations (one

equation for the shift at any point of the mid- plane and the boundary-

conditions) as (43) and (44) on p. 28, and the equations for the co-planar
vibrations of the plate (two for the shifts at any point of the mid-plane
iu the plane of the plate and the two boundary-conditions) as (46),

(47) and (48) on p. 29. He then remarks that these equations agree
with those for an isotropic plate if we make the proper assumptions
as to the relations of the 21 elastic constants which he gives. But

'^ ?>t found that this is not the fact for the last set of equations

(46-48), or Gehriug's results for the longitudinal vibrations are

erroneous. The first set of equations (43-44) do give the correct

results for the case of isotropy, or pro tanto we have confirmation of

the correctness of Gehring's equations for the transverse vibrations of a

21 -constant plate.

In conclusion Gehring remarks of these equations :

Integratio aequationum (43) et sequentium tain difficilis videtur ease, ut in

hodierno scientiae analyticae statu fieri non possit (p. 30).

Nor is the difficulty confined only to the 21 -constants, even the

equations for a thin plate of isotropic material had up to that time only
been solved for the special case of a circular boundary.

[1416.] Summary. The three German elasticians with whose

researches we have dealt in this chapter mark a very great advance

in the mathematical treatment of elastic problems. Franz Neu-

mann stands, however, on a somewhat different footing from

Kirchhoff and Clebsch. His style is clearer and he keeps more

in mind the physical bearings of his analysis. He possesses much

originality and in his investigations on photo-elasticity and the

elasticity of crystals be breaks almost untrodden ground, which

both physicists and mathematicians have hardly yet exhausted.

Clebsch, while by far tbe greatest analyst of tbe three, puts physics

(and tbe technologists for whom be is professedly writing) in the

background. Stimulated by Saint-Venant's work, he bas not

Saint-Tenant's practical experience, and in simplifying the latter's

i Its for prisms and in extending his processes to plates, he is

guided rather by love of tbe analytical processes involved than by
th. MI- practical applications. No mathematician, however, can read

Clebsch 's Treatise without recognising the suggestive character of

its analysis, and appreciating the mental power of its author.

MiofTs researches in the field of elasticity, like Lame"s, suffer

to some extent from being out of touch with physical experience.
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This is markedly the case in those contributions to our subject,

which border on electro-magnetism and optics. But Kirchhoff's

treatment of both the rod and plate problems, if it cannot be said

to have been final, still advanced those problems a long stage.

Future discussions will probably serve to define better the limits

within which Kirchhoff's assumptions are legitimate, and will

possibly add further terms, of minor importance except in special

cases, to his expressions for the strain-energy ; they will hardly,

however, displace Kirchhoff's investigations as the latter have

done Poisson's and Cauchy's. In our chapter on Boussinesq we

shall endeavour to give some general comparison of the French

and German methods of dealing with rod and plate problems.



CHAPTER XIII.

BOUSSINESQ.

SECTION I.

M' amirs dealing directly with Elasticity and Molecular Action.

[1417.] ONE of the most distinguished of the pupils of Saint-

Venant is M. J. Boussinesq, member of the Institut, and at present

Professor of the Faculty of Science, Paris. A Notice sur les

>nix scientifiques de M. J. Boussinesq (Notice I.) was published
at Lilje in 1880, when Boussinesq was a candidate for membership
ot th. Institut, and an Extrait de la Notice sur les litres et trcwaux

scientifiques de M. J. Boussinesq...et supplement a cette Notice pour
i <i< ana publics depuis cette tpoque (Notice II.) was publish^!

in l.ss.">, also at Lille, when Boussinesq was again a candidate.

In is so Saint-Venant made an Analyse succincte des travaux de

M. Boussinesq, professeur a la FaciM des sciences de Lille, which

appeared in ;i lithographed form. The Notices I. and II. as well

as the Analyse succincte form a very useful bibliographical guide to

Boussinesq 's researches prior to 1885, but my r&ume and criticism

ot his work in the present chapter are based on the perusal ot

th< in,-iii..irs themselves. Boussinesq 's in\. MIL: tions extend far

beyond elasticity, dealing in particular with light, heat, hydro-

lynainics and the philosophical basis of the fundamental

ofdyiiainir.il science.

T. K. i-T. ii. i:;
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[1418.] fitude nouvelle sur Fdquilibre et le mouvement des corps
solides dlastiques dont certaines dimensions sont tres-petites par

rapport a d'autres. Journal de mathtmatiques, 2e
SeVie, T. XVI.,

pp. 125-274. Paris, 1871. This, the Premier Memoire with the

above title and with the sub-title : Des tiges, was presented to the

Academie April 3, 1871, and analysed in the Comptes rendus,

T. LXXII., pp. 407-10.

Let x be the direction of the tangent at any point to the

central line of a bar, beam or rod, and let y, z, two lines at right-

angles, be taken in the plane of the cross- section. Then Saint-

Venant in 1853-6 (see our Arts. 1 and 69) had obtained two

solutions of the general equations of elasticity on the assumptions
that yy = = yz = 0, and that the central line is initially straight.

These solutions were shewn on the principle of the elastic

equipollence of statically equivalent load systems (see our Arts.

8, 21, 100) to correspond to the torsion of a prism about its axis

and to the flexure of a prism either under an isolated central load

or as a terminally loaded cantilever. In obtaining these solutions

Saint-Venant had not supposed elastic isotropy, but merely that

the elasticity was the same in all planes perpendicular to the

central axis. He applied his results to a great variety of cross-

sections, and shewed that they did not justify the earlier

hypotheses of Cauchy and Poisson : see our Arts. 29 and 75.

With regard to Saint-Venant's solutions there is an important
distinction between that for the case of torsion and that for the

case of flexure. In the former case the shears w and xz are

fundamental, and their values must be ascertained in order to

calculate the torsional resistance of a rod, however small the

dimensions of its cross-section as compared with its length. In

the latter case the shears *P and xz are shewn to be practically

negligible whenever the dimensions of the cross-section are small,

i.e. in the case of what is really a rod, and the discovery of their

values is only needed as a step towards shewing that they are

negligible, and so justifying the Bernoulli-Eulerian theory.

Clebsch in his Treatise (see our Art. 1332) had sought the

most general solution of the equations of elasticity subject to the

conditions yy = ** = yZ = 0, and had thus reached a solution of those

equations embracing both the flexure and torsion problems of

Saint-Venant. But as in all Clebsch's work this result was only
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obtained for the case of bi-constant isotropy. He dealt also with

tin- case of rods of double curvature. Kirchhoff in a memoir of

1858 (see our Art. 1251) had endeavoured to give a complete

theory of strain in thin rods with an initially curved central line.

But a defect of Kirchhoffs theory has been pointed out by Saint-

Venant (see our Art. 316), and the objections against it are again
raised by Boussinesq in the present memoir (pp. 127-9 and VII.

pp. 176-81). In the equations (vii) of our Art. 1257, Kirchhoff

neglects the terms du/ds, dv/ds and dw/ds. Now Boussinesq

points out (p. 179) that this assumption has no d priori justifica-

tion, but that the terms neglected appear to be of the same order

hose retained. He cites cases in which the assumption would

not be true, but remarks that it is satisfied in general when
Saint-Venant's hypothesis, ^==9 = 0, is fulfilled. Thus it

-atisfied in Saint-Venant's cases of flexure and torsion but

in. t when there is an appreciable longitudinal or buckling load

(see our Arts. 911* and 1361):

En re"8ume", la theorie de M. Kirchhoff conduit, dans le cas de
dont la contexture est symetrique par rapport a leurs sections normal rs,

au\ vraies formulas approchees d la flexion et de la torsion; mais elle

in.
ji.-miit n-poser sur uue hypothese douteuse ct priori, consistent a

H.imettre que les sections normales, primitivement e"gales entre elles, sont

re, sur une longueur h'nie, e*gales apres les de'placements. Elle a

i 1 inconvenient de laisser partui les quantites qu'elle neglige comnit-

M'.J. |

M rites, les actions tangentielles exercees, dans le cas de la flexion

i travers les divers elements plans (Time de ces sections, forces

<|u il est cependant inteVesxant d'etudier, puisque leur resultante est egale
'lit ran a celle des actions exteYieures qui produisent la flexion

128-9).

[14-19.] Boussinesq in the present memoir endeavours to

.iiiiji ity
tin- labours of previous investigators by a discussion of

tin- following topics:

(a) He seeks to demonstrate that Saint-Venant's assumption
(w --** =

0) is legitimate and necessary for thin rods. This us

ti to saying that the mutual action of the fibres ..

finite distance from their extremities is invariably directed along tin ii

tangents. The demonstration (ami tin- resulting .|i;
<: i.ms for a t'nii

rod) Boussinesq OOnaidorx the funrlam-!ital part of liis

"H expose pour le cas general oil de* pit ! oM.jur.s SIM-ai. -nt

Mt pre dew extrdmit^a, mais encore MIT la n inane

la tige, et oh celle-ci serait h<Jtx5rogt-ne, mais do contexture s\
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trique par rapport k ses sections normales, et formde de fibres qui, Isoldes,
subiraient les m&nes ddformations latdrales si on les soumettait a de simples
tensions, produisant sur toutes la indme dilatation longitudinale (p. 127).

(b) The general equations for the strain of a thin rod are given.
These correspond closely to Olebsch's results for Saint-Venant's problem
dealt with, however, on the supposition that the elasticity is not iso-

tropic but the same for each cross-section: see our Arts. 1332 and 1360.

(c) Boussinesq points out a certain analogy between hydrodynamics
and the torsion of prisms. Another hydrodynamic analogy had been

previously noticed by Thomson and Tait in their Treatise on Natural

Philosophy, Art. 705. Oxford, 1867.

(d) He discusses (from the general elastic equations however) a

problem already dealt with more fully by Seebeck, namely, the influence

of rigidity on the transverse vibrations of a string : see our Arts. 471-2.
We will now consider these points in some detail.

[1420.] After the introduction, which deals with the historical

aspect of the problem, Boussinesq passes in I. and u. (pp. 130-44) to a

general discussion of the equations of elasticity and the expressions of

the stresses in terms of the strains for various types of elastic media.

In the first section (pp. 132-5) Boussinesq gives a proof of the

relations of compatibility of the types:

d /da-^x dar,^ d(r
yz

2 fa \dy

_
dydz dtf dy*

first stated by Saint-Yenant : see our Arts. 112 and 190.

In the second section two special cases of distribution of elastic

homogeneity are considered, (a) when the medium is symmetrical about

the plane yz : see our Art. 78
; (b) when the medium is isotropic round

the axis of x. In the latter case we may write :

= \'6 + 2p
=M + vsx

= \0 + VSX + 2fU?2, w =
p"<rxy

Boussinesq by aid of these equations expresses the strains in terms

he stresses (p. 140). He further shews that if W be the strain energyof the stresses (p. 140).

per unit volume :

dW dW

dW dW
(iii).
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[1421.] in. (pp. 144-50) is entitled : titude dune tige de tres-

'f. section. Considerations preliminaires. Boussinesq takes for his

tic body one which is sensibly cylindrical for a length comparable
with its transverse dimensions, the total length being much greater than

these latter dimensions. He supposes the total shifts to be as consider-

ate as one pleases, but the strains at each point to be small, u, v
t
w

represent the small shifts relative to some chosen point of any point of

tin- small element of the rod bounded by two adjacent cross-sections.

The plant- //: is taken parallel to the unstrained position relative to the

element of some cross-section of the element. All this is in practical

agreement with Kirchhoff's treatment: see our Art. 1257. Boussinesq
considers the cross-section (o>) to have any number of cavities and that

the contour of the cross -section (s) may thus consist of several closed

curves. Further the constitution of the material of the rod is supposed
t< vary from one point to another, very gradually along the axis of x,
I mt rapidly and even abruptly if desired along certain lines in the plane
of the cross-section. No load is applied to the curved surface of the

rod, but only to the terminal cross-sections.

Boussinesq then proves the following identity, U, V, W being any
functions of x, y, z, which are continuous over o>, and the same statement

holding for their first derivatives, except along lines at which the material

abruptly changes its constitution :

^dU ^dU ^dV ^dW ^/dV dW\] ,

xt -j- + tx -r- + w ^- + *z -j- + yz (
,,- + ,- }

Y dut9
dy flz dy dz \dz dy )}

the integrations extending all over the cross-section to, and -V, )'. /.

U'ing the body-forces. This result easily flows from multiplying the

body stress-equations by U, V, W and integrating by parts over the

area of the cross-section the sum of the results so obtained.

[1422.] We now come to the fundamental part of Boussinesq's

argiuiK nt (pp. 148-53). I must confess that it by n< means carries

onviction to my mind. Boussinesq aims at demonstrating that

nt-Venant's assumption :

'""* """* ""* A /\
,,, = =,- =o ........................ (a)

is practically true, or that these stresses are negligible ascmnpaivd
\\itli the remaining three \vlnn no load is applied to the

t;ice of the rod except near its extremities. The assumption

(a) may possibly be incorrect for the parts of the rod very near

the extremities.

Boussinesq's argument seems to be of the tnll-.^in^ kind :
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Considering only portions of the cross-section where the elastic

constitution of the material of the rod is continuous, it is natural

to suppose the stresses here are also continuous. But where the

axis of y meets the surface 9 = *z = j = 0, hence by Maclaurin's

Theorem (Boussinesq does not appeal to this theorem, but I think

there is an implicit assumption of it) we must have results of

the type :

yy = (y y) I ~-\ + z !
-J-- )

+ terms involving the square of the
\ dy /o \ dz /o

linear dimensions of the cross-section.

Here y is the distance of the origin of coordinates from the

point at which the axis of y cuts the contour of the cross- section.

Similar results will hold for all the other stresses
, yz, xy, r,

which vanish at certain points of the contour. But to quote

Boussinesq's words :

Done, la section 00 ayant toutes ses dimensions tres-petites, les forces

w, , 2/2, r, xy ne peuvent qu'etre fort petites dans toute son etendue

par rapport aux valeurs absolues moyermes de leurs derive'es premieres
en y et z (p. 148).

It seems to me that this argument fails because it does not

state what are the quantities relative to which the y and z of the

cross-section are small; y and z cannot be absolutely small. In other

words exactly the same objections apply to Boussinesq's theory as

to Cauchy's, Poisson's and Neumann's expansions of the stresses

in terms of the coordinates of a point in the plane of the cross-

section: see our Arts. 466*, 618*, 29, 75 and 1225-6. Boussinesq
continues :

D'ailleurs la continuite, sur une longueur tinie de la tige, des

jcx, ... y?, ... et de leurs derive'es en ?/, , exige que les derivees en x de

toutes ces quantites ne soient pas d'un ordre de grandeur plus e'leve' que
1'ordre de ces quantite's elles-memes, si ce n'est toutefois aux points
voisins des extremites de la tige, on plus ge'ne'ralement, de ceux ou la

constitution de la matiere et les conditions dans lesquelles elle se trouve

varieraient brusquernent dans le sens des x. Si Ton fait abstraction de
ces points tout particuliers, les deux dernieres Equations (c)

1

pourront
etre re'duites a

_ = Q +=0 .................. (v) .

dy dz dy dz

1 This symbol refers to the body-stress equations: see for example our Art.

1517*.
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<Tet, si nous r<nM<l -runs, par exemple, la seconde des equations (c),

;rmes d^fdyt d^/dz pourront etre, soit de 1'ordre de dZj/dx, soit

incornparablement plus petita, soit incomparablement plus grands.
Dans les deux pivmiers cas, w et ? seront, d'apres ce qui pr<$cde,

n.'-u'li^vibles par rapport a xy, et Ton pourra poser en comparaison yy = 0,

;
dans le troisidme cas, la seconde Equation (e) se reduii a

siMi.-siblcinent aux deux terraes dyy/dy, d^z/dz, car le dernier pY n'est

jamais que de 1'ordre de dxy/dx. Done on pourra poser toujours

dy?/dy + d^/dz = (pp. 148-9).

Tbe argument here is that yy and dyy/dy are of very different

orders of small quantities, while *y and dxy/dx are of the same

order. I do not see what step in the reasoning hinders yy from

being a function of the form c sin y y say, which vanishes for y = TT,

the units of the linear dimension of the cross-section being taken

as small as we please. In this case yy and dyy/dy do not seem to

be of a totally different order, and it would therefore appear that

Boussinesq's argument is not sufficient.

[1423.] Assuming Boussinesq's conclusions as to the order of

quantities, it follows that when the elastic distribution is symmetrical
with i-L(ard to the plane of yz, the second fluxions with regard to x of

tli. slides
o-p, &, <TX and the stretches syj sz will be negligible as

comjMired with their second fluxions with regard to y and z. This

follows at once from the expressions for the strains in terms <>t t lu-

ll \vc ivmcinbcr the above relations between the order of th

fluxions of the stresses. Hence from the relations of type (i) we have :

Q {)

dy*
~

dz*
~

if Xi> Xa X ^ arbitrary functions of x :

* =
Xi + X* + X3y ........................ (vii).

Putting U =
Q, V = v, W-w in equation (iv), Boussinesq obtain-

(p U9) by aid of (v) :

.................. (viii).

Knrtln-r by )
nit ting :

u--o, ^

w

r((7^+0r

tj^(7if?)v^-0 ..............
(i

where
(',, Ca , (7, are any constantH whatever.

r.v MI n n n, _ for the strains in
(riii), xire*i*ing the integral as
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the sum with positive coefficients of the integrals of the squares of four

expressions linear in the stresses yy, ** and yz, a result obtained by aid

of (ix), Boussinesq deduces that for a thin rod loaded only at the

terminals :

Jy = = yz=-0 ........................... (x),

or, Saint-Venant's assumption : see our Art. 1422.

[1424.] Boussinesq in a later memoir has again returned to

this point as to the relative magnitude of the fluxions of the

stresses: see our Art. 1433. The supposition he makes in that

memoir, namely : that the variation of the stresses parallel to the

axis of a rod or to the mid-plane of a plate is very small as

compared with their variation in the plane of the cross-section of

the rod or perpendicular to the mid-plane of the plate, does not

seem to rne established by the arguments used :

Si done 011 fait abstraction de ces regions restreintes, 1'equilibre d'un

trongon
1

quelconque a fort peu pres prismatique presentera cette circon-

stance, que les composantes...des pressions et les deformations...y seront

sensiblement les niemes, soit tout le long d'une meme fibre longiludinale

perpendiculaire aux bases du prisme, s'il s'agit d'une tige, soit sur toute

1'etendue d'une couche quelconque parallele aux bases du prisme, s'il

s'agit d'une plaque. Au contraire, les memes pressious et deformations

varieront en general d'une maniere tres-notable dans les sens des

dimensions transversales d'une tige on dans celui de Tepaisseur d'une

plaque. II est d'ailleurs evident que les actions exterieures directement

applique"es a la masse du trongon (y compris 1'inertie dans le cas d'un

equilibre dynamique), et celles qui le sont a la portion de la superficie
du corps qui fait partie de la surface du trongon, n'ont qu'une influence

minime sur les forces xx, ... 'yz, ... toutes ces actions n'etant presque
rien en comparaison de celles qui agissent sur le reste du corps et dont

1'enseuible donne lieu aux reactions interieures **, ... yz, .... (p. 164 of

the memoir cited in our Art. 1433).

For the case of a rod this supposition leads to

^(**>
yy, *, v*

t , y)
= .................. (A).

But Boussinesq shews that the narrower assumptions

are sufficient to lead to the same solution as that which we are

1 A small prismatic element of the rod bounded by two adjacent cross-sections,
or of the plate bounded by the faces and two pairs of planes at right angles per-
pendicular to the plane face of the plate.
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discussing from the first memoir. In fact they lead us to the

results (6) of our Art. 317, and these last results
1

give us with

some easy analysis (pp. 166-172 of the second memoir) the results

(vii) and (x) of the last article.

Saint-Venant has reproduced Boussinesq's argument, and in

our Art 318 we have already cited his version of it, expressing at

the same time our doubts as to its sufficiency.

[1425.] Changing the notation of Art. 317 to that of our present
discussion the last two conditions of (b) become :

'fo- n rfcr^= u, = u,
dx dx

ils- d*w ds~ </-'

or, r = - jdi ?*- 33dz (Lr ay dx*

Hence by (vii) :

d zw d*v
**=

-'3*> * =
-<&> (XI)>

or since
;(*

and \3 are independent of y and z, the second fluxions with

regard to x of w and v may be supposed to be taken at the point

y = z = 0. In the case where the curvature is small, we see that xa

and x$ represent the changes in curvature of the central line in the

j.laues zx and xy respectively. Thus :

x,-g--y,, -*-j--i, (Y

(see p. 185 of the memoir of 1879), where Ry,
Rz are the radii of curva-

ture in the planes zx, xy, after strain, und Rf, R2 those before strain.

Further Xi is evidently the stretch of th central line of the rod, or 8X ,

say. Hence we have obtained a physical interpretation of the as yet
undetermined functions in (vii). Considering the portion of the rod on
one side of any cross-section o>, let the moments of the applied load

and the body-forc-s .n tins portion round the axes 8 of x, y ami . \>c

respectively Mx , M^, Mt ,
then since (x) holds we have :

r

1 In th pnsdit investigation it is x, in the investigation of Art. 817 it is

2, which in thu prixmatic axis.

axes are supposed to be taken so that a right-handed sorew-mution in the
direction / towards *, and m> with cyclic interchange for each n\i
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The conditions (x) lead us as in our Art. 78 at once to

7r = Esx ,
8y
=

r)l
8xy 8z = -V)a

8XJ

whence from (vii) we find :

and if F be the component parallel to the axis of x of the whole system
of load and body-forces acting on one side of <o :

= I

Hence: Xi
= F/*<> X,

=

F = I xxdta =

These determine the value of sx and give in fact the elements of the

solution of the problem of the thin rod so far as they are due to

extension and flexure. Here Boussinesq has followed Bresse (see our

Art. 515) and treated the cross-section as having a density equal to the

variable stretch- modulus. Thus the centroid is found from the con-

ditions :

=
I

while ^o> = (

U

Ed^ 3a>K/ = t

define IE, K
y
and KZ.

[1426.] If we seek v and w from equations (8) of our Art. 78, we
determine them to be of the following form :

Jxs2/
3

).] ,. .

^X2
-2))

where ^4> Xs> Xe are undetermined functions of a; only.
Now the equations which still remain to be satisfied are the first

body-stress equation, or

~f
L +

~^
+ pX+ dx^

E
^Xl + X*Z + X*^ =

'

..(xv).
and the equation

wdz-zxdy=Q, over the contour of the section
;

If the values of o^, o-^ be calculated in terms of the fluxions of u
and of the values of v and w given iu (xiv), and then ^?, ? be determined

from their values in (7) of our Art. 78, we find a partial differential

equation for u involving only u and ^4 , ^5, Xe simple functions of x, as

unknowns, together with a surface condition involving the same quan-
tities. Now these equations will not suffice to determine the four

unknowns, but Boussinesq on pp. 1GO-1 shews that they completely
determine the values of w and *zx.
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[1427.] In tlit- >|Kcial case where the elasticity and density are

everywhere uniform and the body-force X is constant over the cross-

section, Boussinesq works out completely the equations to determine **
and

Tin- load being applied only at definite points of the rod, F of

tin 11 (xiii) is only a function of x in so far as it involves the

body-force X, and thus

or dXl/dx=- PX/E.

Further if Sy and Sa be the total shearing loads on & parallel
to the axes of y and z :

S, = -dMz/dx and Sz
= dM

)f/dx (see our Art. 1361,.

Hence : dxjdx = SJEvutf, dX3/dx = Sy/Eu>Kz
*

(
xy

i)-

Thus equation (xv) becomes

-?- +
'*
+ *

9 +
dy dz ci>K

tf

3

win-nee we can take, if
<f>

be an arbitrary function of y and z :

d<f> S,y* d<f>n** =-^r~n 4 (xvil).dz 2u>K/ dy 2<0K*

Turning to equation (7) of our Art. 78, we find

^ =
ef-h"V"

'

"**-
ef-h"l,

d / dw
But

I

ll< IK < I

iy aid of (xvi) and (xvii) we find :

^ II" l"'\ ^ '?'$ O / f
-r-, + in + n ) -. =- + e , , + 2 (ef n h ) -p
///- >('/dz <l- (l.i-

/ f i"i>"\ ' Sthh
)

t

-v- j=o.

Tin , ! -M!I is in agreement with Boussinesq's (44), p. 162, except that

tlili)isiimini.- ulnlr wi- .in- using tasinomic constants: see Art. 445.
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The second equation of (xv) gives us for the contour condition :

Finally from (xii) we have

On pp. 162-5 Boussinesq considers the case of a section containing
one or more holes. The problem here involves the usual modifications

due to cyclosis in dealing with the function
<f>.

It will be noted that (xviii) and (xix) above are more general than

Saint-Venant's results given in our Art. 82 as equation (19).
It will be remembered that Saint-Venant finds for his fiexural

moment M, d^M/dx* = : see our Art. 80. This follows at once from the

second and third body-stress equations which give, since Saint-Venant

supposes no body-forces: dxj//dx
= 0, d^/dz = Q: see our Art. 79,

equation (11). Boussinesq neglects the terms

dxy/dx + pY and d'zxjdx + pZ.

in his second and third body-stress equations, for he says p Y, pZ are of

the same order at most as dTyjdx and dTx/dx, and these he holds to be

negligible as compared with terms like d^y/dy + d'yz/dz: see his p. 149
and our Art. 1422. Now his analysis leads to yp = "Tz = 'yz = 0. Hence I

find it difficult to understand how d^/dx + /sFcan be small as compared
with d"yyjdy + dyzjdz unless we have absolutely :

If we take the exact assumptions of the second memoir (Art. 1424)

= 0,

then Y=Z = 0, and Boussinesq's apparently more general solution leads

us again to Saint-Venant's, involving d^M/dx
2 = 0.

But if F and Z be not zero then it is impossible to put

. . ^^ , /\

yy = zz=^yz = U,

for these quantities can (for example at certain points of a heavy beam
other than those of external loading) be infinitely greater than p

or zx : see a paper by the Editor : On the Flexure of Heavy Beams,
Quarterly Journal of Mathematics, Vol. xxiv., p. 106. Thus so far as

Boussinesq's theory is more general than Saint-Venant's, in that it

appears to allow of body-forces, I doubt its accuracy. Let us make the

additional assumption of the second memoir that such body-forces have

only a vanishingly small influence on the stresses (p. 164 of the second
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memoir). We easily find by differentiating the first body-stress equation
with regard to x and using (xxi) :

(dY dZ dX\ <PT*
, ...

p I -s- + j
-

-j- I
= -TT (xxil).r

\dy dz doe/ dx?

Now if the body-forces are to be wholly neglected we have

d*jcx/dx*
= 0, which leads to Saint-Venant's results, or Xi Xa> Xa mus* ^

all linear functions of x, whence by (xi) and (xiii) the axial shifts can

only be algebraic functions of the third degree in x, and either the load-

m, or the original form of the rod must be extremely limited. If

on the other hand the body-forces are not zero, it appears that a certain

relation must be satisfied between them and the surface load. For the

surface load and the body-forces fully determine Xi, Xa Xs> an(^ hence

(xxii) and (vii) give a relation between them, which as a rule will

not be satisfied.

If we do not take d*jcx/da?
=

0, but extremely small, then it seems

necessary that x,, Xa and Xs should be extremely small, or the total

longitudinal load and the changes of curvature very small
;
but it must

still be remembered that in this case, even at points distant from the

points of application of the external load, yp, 7z and yr, although absolutely
small, are not at every point necessarily small relatively to ^ and

To sum up this part of Boussinesq's investigation : It does not seem
to sufficiently justify the ordinary assumption of the Bernoulli-Eulerian

hypothesis (

" = TV = y* = 0) for the cases either of a sensible continuous

loading or of body-forces, while in the cases in which continuous loading
and body-forces produce insensible effects, it does not bring out clearly
that the stresses neglected can at certain points be of the same order

as some of those retained ;
further it does not fully solve the difficulties

involved in the result cftrx/cfo
2 = 0, or what really amounts to the same

thing
* = d*F/dx* = 0.

[1-128.] Pp. 165-76 of the memoir are occupied with a discussion of

tin- .shape <>f the distorted rod after the strain. This is obtained by
er.nibiniiig the shifts of short prismatic el ml should he eoii)j>ared

with the similar investigation due to Kirchhoff: BVU our Arts. 1257
ft X'fJ.

l'l>.
176-81 contain the criticism of KirchhotPs treatment of rods, to

whirh \ve have already referred: see our Art. 1418.

(HJ'.t | ^VIH, which occupies pp. 181-94, is entitled: Di-

con> <m totale excrete sur un tronfon de la tige en

six actions e'lementaires, qui produisent respectivement une exten-

sion ou i <>n, deux flexions 6galest deux flexions \negales

et une torsion. This is an analysis into its component parts of the

solution we have .skct'-ln-.l in the above pages, and it resembles



198 BOUSSINESQ. [1430

Clebsch's treatment of Saint-Venant's problem in S. 85-94 of his

Theorie der Elasticitdt (see our Arts. 1333-9) except that Clebsch

dealt only with the equations for bi-constant isotropy and with

the simple case of an initial straight central line.

Boussinesq points out that in the case of the flexure problem
the d^dx of our equation (xviii), Art. 1427, is zero, when either

(1) the cross-section has a centre of figure, or (2) the axis of z

(or y) is an axis of symmetry and the elastic structure is sym-
metrical about the plane of zx (or xy) (p. 188).

Further since dwfdx and dzxfdx are either zero or negligible,

it follows from (xvii), that d^/dz and d<f)/dy are sensibly indepen-
dent of xt

if Sy and Sz the total shears are constant
;
and hence

from (xviii) that the like holds for d^dx, which is therefore

essentially a constant. Thus for flexure in the cases of symmetry
mentioned above d^jdx is zero, and for torsion since Sy and Sz

are then zero d^/dx may be treated as practically a constant.

Boussinesq remarks that the case of torsion is the only one

which requires us to integrate (xviii), for in the case of flexure the

slides
o-ycy

and o-^ are negligible (pp. 174, 186 and 194).

[1430.] The next section of the memoir (pp. 194-204) deals more

especially with the general laws of torsion. In this case o^ and cr^
have always to be found by the integration of a differential equation.

Putting the total shears Sy and Sz zero, and dy^dx = a constant = T, we
have from (xvii) and (xviii) :

i ...(xxiii),

f*+ + (
h + h'")

** +e
d

+ 2 (of- h"h'") r =
dy*

'

dydz dz2

while from (xx) Mx = - I (-^y+-^

(xxiv),

as is easily seen by integrating by parts and using (xix), which now
gives <-a constant for the contour; but this constant may be supposed
included in the value of

<f>
so that

<f>
= over the contour. Boussinesq

shews that in the special case where h"+h"' = Q equations (xxiii) and

(xxiv) are related to those for the steady motion of a viscous fluid in a

tube, the cross-section of the tube being an orthogonal projection of that

of the rod, at least for the case when the cross-section consists of an area
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without cyclosis (pp. 195-9). The steady velocity of the viscous fluid

sponds to the
<f>

of the torsional problem.

Boussiuesq proves the following proj>osition (p. 199) :

Les forces exercces aux divers points d'une section sont partout dirigdes
suiv.int les courbes 0=co7irt., qui seraient celles d'egale vitosse dans des

tuK-s, rt elles sont e*gales en chaque point, par unite" de surface, <i la de*rivde

d-
(\>

siiivant la normalc incnee en ce point h, la courbe
<J>
= const.

t qui y
o

;
clles ont la mOme expression que le glissement relatif, dans un tube,

d. deux couches liquides adjacentes.

If then the curves
<f>
= const, are constructed for equal incre-

ments of the constant, this family will in a manner reproduce the

peculiarities of the contour, but members of the family must

in general be closer together along a short than a long diameter.

11- nee the stress which varies as the constant increment of <

divided by the perpendicular distance (dn) between two adjacent
members of the family will in general be a maximum upon
the shorter diameters of the cross-section. Further

</>
is in

general a maximum at the central parts of the section (hence

d<t>/dy
= 0, d<f)/dz

=
there), and thus at these parts the stress is a

minimum, so that we should expect d<f>/dn to reach its maximum
value at points on the contour, but by what precedes these will be

the points on it nearest to the centre. Boussinesq goes further

and demonstrates on pp. 200-2, that the components d<f>/dy and

d<f>ldz of d(f)/dn cannot be maxima or minima in the interior of the

cross-section.

issinesq terminates this portion of his memoir by a disrus-

sion of the modifications introduced into the torsion moment when
there is cyclosisofthe cross-section, i.e. when th- rod contains a

hollow. This case is of special interest from its application to the

iHeory of flaws in bars : see our Art 1348, (e).

< )n pp. 204-9 he records the cases in which solutions of the

torsion or flexure equations have been obtained, citing the results

of Saint-Venant : see our Arts. 18-42 and 83-97, and referring to

that of Clebsch for a section bound, d by confocal ellipses in a

ote on pp. 209-10: see our Art I :; Is, (e).

[1431.] $ xi. of th- MMifl (pp. 210-26) is entitled: Exemple*
divers <fequilibr et de mouvement d'une tiye rectiligne dont les defor-

'ions totales sont tres-petites. In this section Boussinesq deduces
ti'nn the general equations of the earlier part of his memoir the special

equations for the longitudinal, transverse and torsional vibration* of rods.
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He deals also with cases in which a mass or masses are attached to a

vibrating rod. He does not integrate these equations, but refers on

this point to the special investigations of Navier, Poisson, Poncelet,

Saint-Venant and Phillips: see our Arts. 272*-3* 466*-71*, 577*-81*

988*-92*, 104, 203-23, and 680.

[1432.1 xir. of the memoir (pp. 226-40) is entitled : fitude (Tune

tige rectiligne soumise a une traction anterieure aux deplacements.
Vibrations des cordes en tenant compte de la rigidite. Boussinesq cites

from his memoir on liquid waves (see our Art. 1442) the results he has

obtained for the body-stress equations when there exists a considerable

initial stress. He works out the particular case of a single initial

traction o\r
,
and develops at considerable length the form taken by the

equations of the earlier part of the memoir, when this initial stress xx

exists in the direction of the axis of a rod. He applies his general
results to obtain the equation due to Seebeck for the vibrations of a

slightly stiff string (see our Art. 471), and he deduces the result
(ii)

of our Art. 472 for the case i=-l with a slightly different form of

statement, viz. the effect of the stiffness of a string upon its fundamental
note is the same as if its total tension P were increased from P to

P + TT EM", or the stiffness produces a constant increase in the apparent
I"

tension. Since E is not sensibly changed by large tensions approaching
even the rupture strength, we see that this law of increase holds for all

variations of P which do not produce great changes in to.

[1433.] The above memoir by Boussinesq is by no means easy

reading and it does not appear to me to possess the clearness and

conclusiveness of parts of his later work. It seems well to take

in conjunction with it a supplement written in 1876, but first

published in 1879. It is entitled : Complement a une dtude de

1871 sur la thdorie de I'tquilibre et du mouvement des solides

tlastiques dont certaines dimensions sont tres-petites par rapport d

dtautres. The first section of this paper containing some general
remarks on the negligible terms in the equilibrium-equations for

plates and rods, and the second and third sections dealing with

rods only were published in the Journal de mathematiques, T. v.

pp. 163-94. Paris, 1879.

[1434.] The first two sections (pp. 163-81) we have practically

dealt witb in our consideration of the earlier memoir : see our Art

1424. We may note, however, two or three additional points

which occur on pp. 179-81.

(a) To a first approximation, or on the supposition (A) of our Art.
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M24, d*2/dx = Q
t
and thus the slides a-^, a-^ depend entirely on the

torsion, or on the existence of the couple J/^. For in this case the

functions ^,, ^2 , %3 become absolute constants and therefore by (xvi),

Sg and Sv are zero. This should be compared with the rather vaguer
statements referred to in our Arts. 1427 and 1429.

(6) The strains *, *, and & are entirely independent of Mx ,
or the

torsion while altering the form of the cross-section does not alter the

form of thf projection of the cross-section on a plane perpendicular to

the central line.

(c) From a slight extension of (6) Boussinesq proves geometrically
the theorem demonstrated in our Art. 181

(c?), namely : that the same
amount of torsion is produced when the same couple twists the rod or

prism round any axis whatever parallel to its central

[1435.] Section in. of the memoir (pp. 181-94) is entitled :

Application a, la theorie des tiges. Boussinesq remarks that the

theory in which the relations yy ^ = T: = hold, applies in

absolute rigour only to prismatic rods of length infinitely greater
than the linear dimensions of their cross-sections. It may, in

practice however, be applied with considerable exactness even to

rods the central line of which is a curve of double curvature,

and this application Boussinesq proceeds to make in the following

manner.

Let y and z be the principal axes of any cross-section, and x the

tangent to the central line at this cross-section
;

let s measure an arc of

the central lin<> from some fixed point up to this cross-section, and 8 + 8s

to an adjacent cross-section
;

let a//-* be the angle between the principal
axis // in the cross-section at 8 and the projection upon this cross-

section of the principal axis //
in t he cross-section at a + 8*

;
let Rf and

Jtt be as before (see our Art. 1425) the radii of curvature in the planes
all before strain. Let the corresponding quantities after

strain b a, Rv
and /?,, and let ij be the stretch of the central line at *.

I'll, n a -00 is very nearly equal to r the angle of torsion at
,
and it <

t
>

be the total thrust on the cross-section at *, Mx be the torsional rouplr.
Afr anl .)/ I., tin- bending moments in the planes zx and xy resj>

< t iv, 1\

we haw (see our Art.

re v is a constant to be determined from the solution of equations
(xxiii) an.l < To describe the whole system >f f.im- upon .-

T. K. IT. ii. 14
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particular cross-section we require besides these quantities to know the

total shears S
y
and Sx parallel respectively to the axes of y and

,

(p. 185). Boussinesq further subjects the elementary prism of length
da to certain external forces :

J'appellerai p la densite* moyenne primitive du tronon, dont la masse
vaudra par suite puds, et je designerai par pXuds, p Yo>ds, pZwds les compo-
santes totales des actions extdrieures dont il s'agit. Quant h, leurs moments
par rapport & Ov, Oz

y
les deux forces pYads, pZo>ds, dont les bras de levier

seront coinparables k ds, n'en donneront que de ne"gligeables, et ceux de pXu>ds
seront en ge'ne'ral insensibles, surtout si les composantes longitudinales de
1'action exte'rieure ne sont pas distributes trop inegalement de part et d'autre

du centre de gravite' des sections. L'autre axe Ox e"tant parallele k la force

pJTcocfo, il y aura seulement k compter le moment des actions exte*rieuivs

transversales par rapport k 1'axe Ox ou k 1'dle'ment ds de fibre moyenne :

J'appellerai $po$ds ce moment, dont ftju sera en quelque sorte la valeur par
unitd de masse, valeur comparable k la force qui le produit multiplide par un
bras de levier de 1'ordre des dimensions transversales de la tige ou de 1'ordre

de /*> (P- 187).

The general equations of Statics will then give us relations between
the values of Mx ,

M
y ,
Mz , Q, S

y ,
and Sz corresponding to the cross-

section at s and those corresponding to that at s + Bs. Boussinesq
confines his attention to the following cases :

(a) Slightly strained rod, originally without tortuosity and straight,
i.e. oo = 0, R* = R = 0. Boussinesq finds, pp. 189-90 :

dQ_
dx

S
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Let the plane be that of xy, then 00 = 0, R* = 0, a = 0, Mx = 0,

A' 0, St
= 0, Z= 0, and we find :

dQ S, ,IM,
i

(xxviii),

, y

Ht=TT.-"
1

These ifivi-

/ \

(xxix ).

dQ _ j_^_ Jr = |

r7x /,' //>

'I'li- results (xxv) substituted in either (xxvii) or (xxix) determine
for cases (a) or (6) the form of the strained central line, i.e. the so-called

elastic line.

Boussinesq remarks (p. 192) that the thrust Q and the bending
moment Ms enter into both the equations (xxix), and in such fashion

that one cannot be made zero without the other being in general com-

pelled to satisfy two incompatible equations. It is usually impossible
t up longitudinal without transverse vibrations or vice versd in a

curved rod. This point had already been noticed by Resal for t In-

case of a rod with a circular central line in his Traite de Afecaniqtte

generate, T. 11. p. 153.

[1436.] The above investigations only determine the total shears

SM and Sz . If it be required to determine the stresses w and r!r, then,

for a rod only moderately bent, the formulae and equations of our

Arts. 1425-7 may be safely applied to a second approximation.
the first approximation being considered as that in which these

stresses are neglected altogether. As a case in which the flexure-

slides 0^, GZZ could be worked out Boussinesq suggests the problem
of a small torsion applied to a rod under considerable flexure (p. 194).

Boussinesq's results for rods of doul>l<> curvature should be compared
with those of Saint-Venant and of Bresse discussed in our Arts.

1584 1502* !.VJ7*-1608* and 5S4,

lu a footnote at the conclusion of his memoir Boussinesq refers to

Tlioins..!. and T;ut^ ZVwalMi "" Natural PhUosojyhy, Arts. 702-3
where they deal with tin- OIH of a const rained torsion, \\luYh they
term simple torsion.

|U:;7.) (i)
/:- I't'ijuiiUnr

ft /> tnouvermiit

corps solides tlartiques dont ceriaines dimension*

par rapport <i d*autres. Second M&inoire. Des plaque*
,m//// ;//m//v >/-. T. \\i. pp. 241-274(aee also Comptes

I i AMI. pp. 449-52). Paris, 1871.

14 J



204- BOUSSINESQ. [1438 1439

(ii) Complement d une etude de 1871 sur la thforie de I'dqui-

libre et du mouvement des solides dlastiques dont certaines dimen-

sions sont tres-petites par rapport d dautres. Suite iv. Equations

d'^quilibre dune plaque. Journal de mathdmatiques, T. v. pp.

329-44. Paris, 1879.

These, the second parts of the memoirs of 1871 and 1879

respectively, deal with thin plates ;
the results of the first are

apparently supposed to hold only for plane plates, but those of

the second are considered to be true also for curved plates or

shells. The two papers are best dealt with together.

[1438.] If the axes of x, y be in the tangent plane to the mid-

plane of the plate at any point, then Boussinesq takes in his first

memoir (p. 246) :

^ =^ = ^ = ...........................
(i),

and so obtains the remaining stresses as linear functions of s,c ,
s
y , -,.

He takes :

where (3, (3', /3", ft, ft', ft", y, y', y" are independent of z but can

vary with x and y, while K is a function, continuous or otherwise, of z

and may vary very slightly with x and y.

The general investigation is similar to that adopted by Saint-Venant

(see our Arts. 384-9). In the case, however, of elastic isotropy

parallel to the mid-plane of the plate the H of equation (vi) of our Art.

3/2 f
+e"

385 is equal to ^ I Kz*dz in Boussinesq's notation, where
e', e" are

A? J - e
'

the values of z at the surfaces of the plate, and are supposed to be

slightly variable with x and y.

The contour-conditions at the edge of the plate are reduced to two

(pp. 250-1, 257-8) in the same manner as had been previously adopted
by Thomson and Tait, although Boussinesq independently discovered

the method: see our Arts. 488*, 394, 1440-1 and 1522-4.

[1439.] Boussinesq on pp. 268-74 of the first memoir considers

the effect of great initial stresses parallel to the mid-plane of a plane

plate. He deals especially with the case of a tightly and uniformly
stretched membrane, the notes of which are influenced by its stiffness.

His results may be easily deduced from our Arts. 384-5 and 390. In

Art. 390 put ^ = yy =Q/(%f) and w =
0, then (vi) of Art. 385, having
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regard to (iii)
of Art 384, may be written for the case of a vibrating

plate of density p :

Assuming the last term on the right in the case of a slightly stiff

in. ml.nine to be small as compared with the first, we may suppose the

solution still to be of the membrane type

t0 2 H
r

, (A (
cos m,-a< + BI sin w,a),

where a2 =
Q/('2fp) and

ffiWt tfWi

~dJ
r

~df
' i

=

-tituting in small terms we find (ii) may be written so far as

terms in m
t
are concerned :

he effect of a slight stiffness in the membrane is to increase the

apparent tension in the case of a note of period 27r/m,a by the amount

-.Ifcm? : see our Art. 1300, (c).

[1440.] The most unsatisfactory part of the investigation

undoubtedly lies in the assumption (i) of our Art. 14-!^ :

-
= ..< = yz =0,

an<l this point is discussed more at length in the second memoir.

The investigation of the second memoir has been reproduced by
it-Venant in a somewhat modified and simplified form: see

our Arts. 385-8. Neither the arguments of the original memoir
ni.r of Saint-Venant's modification seem to me convincing, especi-

ally for the case of curved plates or shells: see in particular
<>u r Art. 1296 bis. Boussinesq in the course of his memoirs refers

to the resean h. s ,,f Navier, Poisson, Kin-lilmflf and Gehring: see

s, 474*, 1233, 1292 and 1411. In a footnote at tin-

end (p. 344) of his second im-moir Boussinesq acknowledges that

Thomson and Tait had preceded him in giving a true explanation
of the difficulty as to the contour-conditions in the case of a plate

(see our Arts. 488* and 3: h 1 1. fun In T refers to his controversy
with LeVy (see <>m hirh would hardly have arisen

li;i'l Thomson an<l I <vtise been better known in France:

see our Arts. 1441 l.V2:>4 and Chapter M\
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On the last pages (pp. 342-4) of the second memoir are some

interesting remarks upon Saint-Venant's principle of the elastic

equivalence of statically equipollent systems of loading: see our

Arts. 8, 9, 21 and 100.

[1441.] In the Journal de mathe'matiques (T. in. pp. 219-306,

Paris, 1877) will be found a long memoir by Maurice Levy
entitled : Memoir'e sur la theorie des plaques elastiques planes, in

which the author questions what I have termed the Thomson-

Tait reconciliation of Poisson's and Kirchhoff's contour-condi-

tions for a thin plate, attributing that reconciliation, however,

to Boussinesq: see our Arts. 488* and 397. The author works

out with considerable fulness of analysis a solution for plates of

finite thickness, and endeavours to shew by means of his solution

that three contour-conditions are in general necessary for every

elementary strip, and that the terms neglected by Poisson involving
cubes and higher powers of the thickness (see our Arts. 477*-9*)
cannot in general be neglected. What LeVy does is practically

to introduce terms into the stresses which in certain cases may be

made to allow for the local perturbations produced by the replacing
one statical system of contour-load by an equipollent one. This

replacement is essential to the Thomson-Tait reconciliation and

is legitimate for thin plates owing to Saint-Venant's general

principle of the elastic equivalence of statically equipollent load

systems. But it is certainly of importance to measure the amount
of the local perturbation due to the replacement. This had been

practically done by Thomson and Tait in their Treatise in 1867

(see our Art. 488*), and therefore a rediscussion of the Kirchhoff-

Poisson boundaries conditions in 1877 was somewhat late.

Levy's memoir, however, led to a controversy with Boussiiirs<|,

which will be found in a series of articles in the Comptes rendus,

as follows :

(I.) J. Boussinesq : Sur letf conditions aux Unities dans le problems
des plaques elastiques, T. 85, pp. 1157-9. Paris, 1877. (Points out
that Levy's terms give only certain local perturbations, i.e. are not

sensible far from the contour.)

(II.) M. Levy : Quelques observations au sujet d'une Note de M.

Boussinesq. Ibid. pp. 1277-80. (Asserts that the contour-load might
produce rupture in one case, though it might not when it was replaced
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by an equipollent statical system, and that therefore the replacement
cannot be elastically legitimate.)

(III.) J. Boussinesq : Sur la question des conditions speciales au
>ur des plaques elastiques, T. 86, pp. 108-10. Paris, 1878. (Points

out very forcibly that both Levy and Poisson have already reduced

their contour-conditions to three for each generator of the edge instead

of three for each point of the generator, and so have already applied
that very principle of the elastic equivalence of equipollent loads the

truth of which L6vy is disputing.)

(IV.) M. Levy : Quelques observations sur une nouvelle Note de

M. Bcuumotq... Ii>'{. pp. 304-7. (Accuses Boussinesq of "obscuring
I

iy empirical considerations an extremely clear question" and asserts

that "his 'incontestable principles' cannot prevail against the funda-

mental principles of mechanics." The statement is repeated that the

so-called perturbations are not local to the edge, but occur throughout
the plate.)

(V.) J. Boussinesq : Sur les conditions speciales au contour des

Ibid. pp. 4613. (A temperate reply to IV. pointing out
wn

that the terms introduced by Le"vy are of the order e *
,
where 2 is

the small thickness of the plate, and n an element of normal to the

contour. Hence they vanish at a small distance from the contour.

Further these terms would vary with every distribution of the load

along a generator of the bounding cylinder of the plate. Thus there

would be an infinite number of solutions satisfying Poisson's three

conditions and yet differing from each other as much as they differed

from Kirt-hhofTs solution. Thus Poisson's conditions do not really
suffice to determine LeVy's terms.)

The whole controversy might have been avoided by an early

investigation of the order of Levy's terms, such an investigation

had been given ten years previously by Thomson and Tait : see

our Arts. 1522-4, and Chapter XIv.

[1442.] Themie des ondes liquides penodiques. M'n-

^nies...a VAcademic des Sciences. Sciences maMmatiques et

/siques, T. xx. pp. 509-615. Paris, 1872. This mrmoir was

nt.,1 t*> the Acaddmie, April in, ls<i!>, with additions of

November 29, 1869 and September 5, 1870. Portions only con-

cm our present inquiry and we will refer to them briefly here.

[1443.1 1 (pp. 513-7) is entitled: Equations des inouvcment*
cotUinus (fun milieu qutleonquc. Here Boussinesq considers the type of

body-stress equation whi.-h Mi-isc* when the squares ami products of the
shit i fluxions .

neglected, see our Art*. 1617* ami
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He shews that if be given by

then 11 being any element of volume

0, or 11 =

[1444

Wg)

+v
y )

i.e. is the dilatation.

The body-stress equations are then shewn to be of the type :

dxx dO dxx dO dxx dO
_^___ i ^___ i

. _^_^

dx dux dy du
v dz duz

+ -r^- T- + T I- -?- -f
ax dvx dy dv

y
dz dvz

dTz dO dTz dO dTz dO
i i j_ .

dx dwx dy dwy dz dwz

p being the primitive density.
If the squares and products of the shift-fluxions can be neglected,

this becomes

<

+7
\ dx dy dz

dxx

dTu

dx

(dxz

d'xz d xz
^ l_ M J.

dx dy dz

(d?u-

where 6 = ux + v
y
+ wz .

If the fluxions of the stresses are themselves so small that their

products with the shift-fluxions may be neglected, we obtain the usual

body-stress equations of elasticity.

[1444.] Note 3 (pp. 584-604), ou sont etablies des relations

generates et nouveUes entre Venergie interne dun corps, Jiuide ou solide,

et see pressions ou forces elastiques. This Note gives the general rela-

tions between the strain-energy and the stresses of a medium. In

a footnote (pp. 585-6) Boussinesq refers to Rankine's introduction of

the term potential energy and discusses the internal potential energy of
a medium. The object of the Note is recited in the following words :

La me"thode employee au paragraphe 1 ne donne pas seulement les

Equations exactes des mouvements continus des corps elastiques, isotropes ou
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h'.'terotropes, solides ou fluides ;
elle perinet encore, lorsque la tetui>erature de

<>rps est supposde assez voisine du zero absolu pour qu'on puisse, dans le

calcul des actions rnutuelles de leurs molecules, faire abstraction des mouve-
ments vibratoires d'amplitiule insensible, ou calorifiques, et aussi, dans un
autre cas tres-ge"neral dont nous allons parler, d'exprimer completeiuent leurs

>
ela-stiijues en fonction des d^rivees partielles des deplacemeuts w, .

l>ar rapport aux ccordonn&s primitives x, y, z, et de celles de leur energie
interne par rapport & six variables dont cette energie depend. En supposant
tres-petites les ddrivees partielles de ?t, r, w en ./. //, ;, les resultats ainsi

obtenus sont d'accord avec ceux que fournit une mdtnude basee sur le calcul

des variations, et que M. de Saint- Vcnant a employee (p. 584).

See our Arts. 127 and I'M

The other very general case referred to above is that in which the

dements of volume into which the medium may be divided, have

primitively any temperatures whatever, are rendered afterwards iinper-
i in able to heat, and have their temperature a function at each instant

only of the actual form and dimensions of the element at that instant.

[1445.] Boussinesq represents the internal potential energy, i.e.

strain-energy, by 4> and obtains nine relations typified by the following
three :

_ de _ de ^ de d&
x -= + xy -j + xz -j

= -= .

dux dvx dwx dux

^ de ^ de ^ de d*
xx -= -f xy -s + xz -= = -=

,

(hi,, dvv dw duv

^de ^de ^ de d*
xx .- + JTV , + xz ,

- = i .

<hi dvg dwz duz

ving these equations for r, 17, *^, we have :

1
~

v T~ z -j tux 'In,, du I

1 ( (/* .d* d<P]
i
-

Z \
v* j

~
* (

1 + vv) ~J- + v ~jf >
1 -f e \ dux

v/ duv
<ln I

Boussinesq now remarks that <t> does not in reality tlcju-nd upon tlic

sliift -fluxions but on the three stretches and three slide-cosines.

See our Art. 1621*.

These are given by the types :

(!
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Boussinesq now introduces a new set of variables connected with

the stretches and slides by relations of the type (see our Art. 1622*) :

r = 1 +V1 + 2t- , CIIZ

He then finds stresses of the types :

{VXW}/

-

1

d^ (I + 8y) (I + 82) dCyi

On the substitiition of these latter results in the former we have

expressions for the stresses in terms of the differentials of $ with

regard to the six strains.

[1446.] Suppose the shift-fluxions are so small that their products

may be neglected, then the slide-cosines c become the slides <r and the

equations reduce to

J
ds

1dsz

Boussinesq next assumes < to be of the following form :

- const. + + . + B-J<TXU + 4>

where <, is a homogeneous function of the second degree in the strain-

components, and A lt A a ,
A z , B^ Jj.2 ,

J}3 are the primitive differentials

of 4> with respect to &c,..., o"^,..., i.e. its differentials when there is zero

strain. We find

M = A l (l-vv
-wz)

+ B2 (uz -wx)- B3 (vx
- u

y} +
-1

,

A.,wv
-
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^ults agree with those obtained by ISaiut-Veiiant, it' it be

noted that he takes

* = const +A^ + i*x')+ A3 (s,
+ i*y

a
) + AI (sa + i a

3
)

-I- /^OY, (1 ++**)
+ Bp^ (1 -f 8Z + 8X) + ZfjO-sj, (l+8x + *,)

+ */,
which gives

*, -i(4CH*'+^V^f^+^+^fc^
and leads to his formulae: soe our Arts. 237-9.

In 6 (pp. -VJ4-7) Inmssinesq gives a geometrical interpretation of

tin- derivatives of 4>, which he considers renders his mode of dealing
with the problem more satisfactory than those of Saint-Venant and

hy (p. 599).
A somewhat different mode of investigating the same problem is

11 on pp. 599-604. Boussinesq assumes that the stresses are linear

functions of the nine strain-fluxions, and then investigates what form

they can possibly take so that the motion of the body as a whole shall

not produce stress across any plane within it.

[1447.] Recherches sur les printipes de la Mecanique, sur fa

constitution inoUculaire des corps et sur une nouvelle thdorie des

/
>' irfaits. Journal de mathe'matiques, T. XVIIL, pp. 305-60.

Paris, 1873. This memoir was presented to the Academie des

itees et des Leltres de Montpellier on July 8, 1872, and published
in the Mtmoires for the same year, T. VIII., pp. 109-56. See

Notice I. pp. 62-3 1
.

There is much in this memoir which is suggestive with regard
to the molecular and atomic constitutions of bodies and th-

n ktions of these to thermal and cohesive properties. The
< ulai molecular hypothesis adopted by Boussinesq embodies

the assumption of modified action (p. 307 : see our Arts. 276, 305),

but it supposes that the accelerations of the various material points
of an isolated system are solely functions of their actual mutual

distancea Boussinesq 's arguments in favour of this d> not s< -. -\\\

t" me at all conclusive (p. 313). It does not appt-ar how far In-

int. ii-U to take ih- tin i into account in his isolated system <-t

mat iriil points, but I have indicated elsewhere that at least

molecular hypothesis leads to intermolecular action being a

function of the velocity of the molecules relative to the ether, and

he Analyse tuccincte, Saint-Venant writes of this memoir:
C'eat one fiynth&e qae M. Boassinesq a entreprise ooramc ont fait d'autres
ts ^Iev6s. Il*i u-atioiiH, du jndicieuaea ditinctiou8, et one
no des gaz parf la neoeaait^ oft il ent de faire qurlipics hypotheses

nous determine k nous abstenir d'ajouter oe vaite essai a MS uumt>i. u\ iltrestp. 18).
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thus the accelerations of the material points being functions of

the velocities or indirectly ofpast relative distances (see Lond. Math.

Soc. Proceedings, Vol. XX., p. 297, 1888). Further Boussinesq

supposes (p. 327) that the action between two atoms of the same

molecule does not depend in an appreciable degree on the distances

between atoms belonging to other molecules, but this again seems

to me doubtful in the case of 'kin' atoms in different molecules,

the equality of the free periods of which renders it very probable
that they largely influence each other's action (see American

Journal of Mathematics, Vol. XIIL, p. 361, 1890).

With suppositions such as the above, Boussinesq, starting from

the principle of energy, deduces various principles of thermo-

dynamics, elasticity, fluidity and melting. Thus laws attributed

to Gay-Lussac, Mariotte, Joule, Regnault, Delaroche and BeVard

are deduced without appeal to the kinetic theory of gases as

propounded by D. Bernoulli and developed by Clausius:

J'espere que la theorie nouvelle paraitra etayee sur des suppositions
en moindre nombre et plus vraisemblables (p. 310).

It does not appear that Boussinesq's theory would admit of

that interchange of atoms between the molecules of a solid

which has been supposed by Maxwell and other physicists to be

continually taking place.

Je supposerai 1'etat chimique du corps assez stable pour que les

positions relatives rnoyennes des atomes qui composent une meme
molecule restent a peu pres les memes durant tous les phenomenes
etudi6s...(p. 327).

Thus in this theory the energy of atomic movement is inde-

pendent of intermolecular distances, while the energy of molecular

movement depends solely upon intermolecular distances (pp. 328-9).

[1448.] The part of the memoir most closely connected with our

subject is vm. (pp. 350-5) entitled : Action moleculaire dans un corps

isotrope; solidite et fiuidite. This matter is also discussed in a paper
entitled : Note sur faction reciproque de deux molecules. Comptes
rendus, T. LXV., pp. 44-6. Paris, 1867.

Boussinesq starts with the axioms that intermolecular force must

depend :
(i)

on the initial distance between two molecules and its

direction, (ii) on the manner in which relative molecular displacements

vary throughout a small region enclosing the two molecules. The latter

condition is that which we have called the hypothesis of modi/led action
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(see our Arts. 276 and 305) and leads to Inconstant formulae in the

case of elastic isotropy. Boussinesq obtains a type of intennolecular

force from his axioms which would lead to biconstant formulae and to

constant initial tractions "qui represents chez les fluides la pression
- I'etat primitif

"
(C. R. p. 46). He does not discuss their meaning

in the case of an ordinary elastic body.
The type of intermolecular action found for two molecules whose

distance r has been increased by a small distance &r is of the form :

^P ~8r
<b = A n + G .

P r'

where, p being the density,
-

8p/p is the dilatation
;
A

,
B and C are

functions of r. This he considers can be thrown into the form :

where F and F
l
are certain functions. Of this result he writes :

Ainvl, tlaiis un milieu isotrope peu dearth de son e"tat primitif d'equilibre,
1'action mole'culaire se compose de deux forces : 1'une, que j'appellerai de

1'ivmiere espece, ne varie qu'avec la distance actuelle des deux molecules
-iderdes et la densite actuelle du milieu

;
la seconde, que j'appellerai de

deuxieme espece, depend de la distance primitive des deux molecules et du

petit ecartement qu'elles ont subi k 1'dpoque actuelle (p. 352).

The 'actions of the first kind' Boussinesq considers build up the

elasticity of fluids. The 'actions of the second kind '

are what constitute

solidity. Boussinesq appeals to experience (p. 353) to shew that the

us of the second kind vanish for ratios of 87- to r exceeding certain

very small j>ositive values. The disappearance of the second term con-

i tea the transition from the solid to the fluid state. Boussinesq
attributes the fact that Navier, Lame and Clapeyron arrived in

their early investigations at uniconstant isotropy to their neglect of

the first term in the above value for
<f>.

He seems to indicate that the

addition of the fluid term will lead to biconstant formulae :

On tn>uv-i lit en eflfet celles-ci en ajoutant aux expressions am-ienm- <>t

incomplete^ des actions normales N la pression constante, fonction de la

densite' actuelle, que donm nt les actions de premiere espece, et qui introduirait,
outre iiui- inteVieure aux ddplacements obMnr^B, un t.nn.

tite dilatation 6 (p. 353).

This appears to be the same idea as had occurred to Ran kin.-.

but the truth of which we have seen reason to call in question :

see our Arts. 424, 429 and 431.

[

1 449.] Note compMmentaire au Memoirs prMdent. Sur les

cipea d< rie des <///// \ fnmineuse* qui r&ulte des idles

VI. foumal f/< ,nes, T. xvni., pp. 361-90.
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Paris, 1873. This also appears in the Annales de chimie, T. xxx..

pp. 539-65. Paris, 1873. It is a general explanation and a reply to

certain criticisms of the principles involved in Boussinesq's elastic

theory of waves of light. The author puts extremely clearly

the arguments in favour of his hypotheses and shews that his

theory is really based on physical conceptions, i.e. does more

than substitute

& Panalyse mdcanique des phdnomenes une sorte de symbole analvtique
d'une generalite telle, qu'ils y soient tons compris (p. 361).

I have made use of this Note in explaining the hypotheses of the

memoir of 1868: see our Art. 1478. It would carry us too far into the

subject of light to even briefly analyse its contents here. It concludes

with two supplements to the memoir of 1868 dealing with more

approximate formulae than those there given for the aberration of light

(pp. 383-90). Compare the Coniptes rendus, T. 74, pp. 1573-6, 1872,
andT. 76, pp. 1293-6, 1873.

[1450.] Sur deux lois simples de la resistance vive des solides.

Comptes rendus, T. 79, pp. 1324-8 and 1407-11. Paris, 1874. This

memoir contains a general proof of the hypothesis first adopted

by Homersham Cox in 1849, when dealing with the transverse re-

silience of bars (see our Art. 1435*) and afterwards shewn by
Saint-Venant to hold for a considerable number of special cases

(see our Arts. 368-9). By means of this hypothesis we are able to

determine very approximately the maximum shift (or deflection)

and the period of the principal vibration for a considerable range
of problems, but, as we have pointed out earlier in this History,

the expression for the maximum strain obtained in this manner is,

as a rule, not sufficiently approximate to be of practical value : see

our Art. 371, (iii). Boussinesq attributes the first statement of

the hypothesis to Saint-Venant, but this is incorrect (see our Art.

201), although the deduction of the period of the principal

vibration and the legitimate use of the hypothesis (i.e. the

demonstration of its applicability in a considerable range of

special cases) is certainly due to the French scientist.

Suppose a mass P of elastic material to have certain portions of its

external surface free and others rigidly fixed, and let a mass Q of very
small volume, but possessed of a considerable velocity, strike the mass

P in a definite point and become fixed to it without however modifying
its elasticity; then, we require some hypothesis by which we can easily
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approximate to tin- motion after the impact of the system consisting of

the concentrated mass Q and the extended mass P.

When the mass P is so small as compared with Q that the effect of

its inertia may be neglected, the problem reduces to a simple statical

one, but when the masses P and Q are comparable the problem becomes
more complex, for the total motion of the system must then be

idered as the resultant of an infinite series of simple harmonic
motions and it is necessary to calculate the amplitudes and periods of

tlu'.se motions. Saint-Venaut had been led to the following approximate
laws (which are practically an extension of Cox's hypothesis) by the

exact calculation of a number of special cases :

If in any problem the expressions for the shifts are reduced to their

principal term (or term of longest period),
and if the ratio of P to Q does not

exceed a certain limit (which can be as great as 2, 3 or sometimes even 4)
th.-n the square of the reciprocal of the period of vibration and that of the

amplitude of the oscillations of the concentrated mass Q are both inversely

propoi-ti..nal to the sum of this mass Q and of the products obtained by
multiplying each element dP of the extended mass by the sauare of the
ratio of its statical shift to the analogous shift of the concentrated mass.

These are the simple approximate laws which Boussinesq proposes
to demonstrate in the present memoir.

[1451.] Let w, v, w be the shifts of any point of the elastic body
P after impact, then with the usual assumptions the stresses will be
linear functions of the first space-fluxions of the shifts. Hence, if tin-

shifts be represented by the expressions

/4 - \ \u = zo, ( sin nt + B oos nt] .

\n )

'A
v-

w =

(- Rinnt + B
count) ,

-
(i),

(
sin nt + B cos nt]

\n )

\vh, ! <,, <,, ,
are fun. t ions of x, y, ^ the space-ooordinates only, then

the streR8* will be given by equations of the tvp.

(

'

sin nt + B cos
?i/J ,

j"

- *'" "' float n*

where ?, ... 7* are functions of x, y, z only. Hence, if we suppose
u" I "!> -forces to acton P, the body-shift equations becoim of th. tvp.

UjCJTo '* J ."o
+

rfy

+ &
'
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Equations (iii) shew that any individual set of the functions

<u <l>-2, <&$ are tne shifts that would be produced by applying to the
mass P body-forces w9

^,, n2
< 2 ,

ws
^3 parallel to the three axes of x, y, z

respectively. For each such set we must have at points of the external

surface which are rigidly fixed :

and at points which are free : ............... (iv),

xx COS a + xy COS ft + r COS y = 0,

with two similar equations, where a, ft, y are the direction-angles of the

normal to the surface-element at the free point. These results are

sufficient to give the
</>'s

and it remains to be indicated how the ^4's

and j5's would be determined from the initial conditions of the system.

[1452.] Let
</>/, #2', <f>s

and n' be a second system of values of

<,> ^a $3 and n
} satisfying equations like

(iii). Multiply the three

equations of type (iii) by </, $2', <f>3

'

respectively, add and integrate
over the volume U of the whole system, P and Q ;

we find integrating

by parts and using the surface conditions (iv) :

Now we have seen that ^ ,... "^0) ... and
<f> l} 2 , ^>s are the stresses

and shifts due to a certain elastic system in equilibrium, hence these

stresses will be linear functions of the space-fluxions of the shifts

involving the usual 21 coefficients, i.e. they will be differentials of a

quadratic function of the space-fluxions of the shifts. It follows then

that the expression on the right-hand side of (v) under the sign of

integration is symmetrical with regard to <,, < 2 ,
< 3 and </, < 2', </>/, or,

we must have :

whence, if n be not equal to ri :

fc' 4- <AA' + ^^') pdU = ...............
( vi).

Equation (vi) enables us to determine the values of A and B from

the initial conditions at time t = 0. Thus if u
,
VQ ,

w be the initial

shifts, and w
,
v

,
w be the initial speeds, we have from

(i)
and (vi) :

.///(.." //// P

J? =
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th" integrals being extended tliroughout the whole system U. Returning
to equation (v), let ri = n and therefore <' = <, we then have :

when- IT is th<- quadratic function of the space-fluxions of the <'s

which would be the strain-energy for the shifts <,, <,, < 3 .

So far Boussinesq's investigation is practically identical with that of

Clebsch given in our Arts. 1329-30, but the form of his results renders

them immediately applicable to the problem of resilience.

[14f)3.] In the problem of resilience at the instant of the blow

*f v wo are zero, and so also are the speeds u
u , %, wn except at the

elementary volume immediately surrounding the point x, y, z at

which the impact of Q takes place. Now the values of < n <._,, ^ are

clearly such that they leave undetermined an arbitrary constant factor,

and we can so choose that factor that <k
2 + <f>.?

+ fa
2 = I at the point

x, y, z. But </>!, <^, <&, will then represent the direction-cosines of the

shift of the ]x>int #, y, z for a simple component vibration. Thus
the numerator in the value of A is the momentum of the impinging
body Q resolved in the direction in which Q makes the oscillation of

period 2ir/n. If this momentum be represented by Q V we have :

QV
=

'
-"

Further, iff be the amplitude of the vibrations corresponding to n,
we havey*= A/n, or by (viii) :

(x)

[1454.] When Q is very great as compared with P, we can suppose
p = 0, except at the point x, ?/, z of the total system. In this case equations
of the type (iii) shew us that only one mode of vibration is possible
which is that corresponding to a statical system <j, <k, <k l wlm-h
th. -re is no suppositions body force pn

3^ , pn
2
<k,, p?*

8^ on any 1, m< nt
<lt' of the system except on the concentrated mass Q at x, y,
tli. re is a force Qn\ the <lin . ti-.n of which is given by <,, <^ ,

< s .

Cox and SaintrVenant's hypothesia would thus be exactly trm -, if

iniylit neglect the inertia of /'. ^upposing we cannot neglect this

inertia, there will then be several systems of values for 0,, ^3, 0,. 1'nt

we shall now shew that the expressions for w, v, ir \\\\\\ still l. n ,lue,l

with a certain degree <>f
;.] |

roximation to their j.rin. i|.al terms, that

to those which correspond to values of ^,, ^a , <^ close to ^,, ^ ^,.
Let

r i ci. ii. 15
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and let us calculate the value of f-ffWdU. We find, since W is a

quadratic function of
<f>lt <._,, $.. :

where TF and TFA are the same functions of <f^\ ^>.,,
<., and A^/', A</>., ,

respectively as JPis of ^1} <f>.>,
< 3 .

Now we have three equations of the type :

dTVo ^-0T i
- T -5

- "
dx dy dz

If these be multiplied respectively by A^,, A<.,, A<., ,
added and

integrated by parts over the volume ?7, we find that the last integral of

equation (xi) is zero, because over the surface of the system either (a) the

surface stresses are zero, or (b) at fixed points <f>
and < vanish, or

(c) at the element round the point x, y, z, Ac^ , A^2 ,
A<

:,
are zero

since the direction of the statical displacement is taken to agree with

that of the dynamical and these have ^,, <.,, <
:J
and <f>", <., ,

<
:{ respec-

tively for direction-cosines. Hence (xi) reduces to

Now A^j , A<./, A< 3 are clearly of the order P/Q as compared with

<, for they vanish with P and the stresses must be linear in terms of

the applied load. Thus it follows, since JFA is of the order (A<)
3
,
that it

is of the order (P/Qf as compared with TF . Hence if (P/QY *s negli-

gible we may neglect the second term in fffWdU, and we accordingly
find:

/=J

snce

remembering the value of ($)- + (<W)* + (< 3 )

2 at (x, y, z).
Those are

the analytical expressions of the laws stated above.

[1455.] Boussinesq shews in the penultimate paragraph of

bis memoir how the above results are easily extended to the case

when the blow of the impinging body is not concentrated on a very

small region, but there are several concentrated masses producing

impacts at the same instant (pp. 1410-1).

He concludes the memoir with tbe following words :
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Reniarquons enfin que, dans les problemes les plus usuels, le mouve-
int-nt vibratoire etudie est de mdme sens pour tons les points du

systeme : alors ]> initi.> des diverges parties dP de la masse dis-

st-iinti'f au'isst-nt a diai|ue instant de maniere a accroitre leurs de-

placements dus aux inerties des masses heurtantes on concentrees, et la

valeur v^,
1 + 0j" + <f>.?

de 1'ccart projx)rtionnel de chacune de ces parties

I'lus grande qu'elle ne serait sans cela, c'est a dire pour P = Q.

Ainsi lc (] nominateur de 1'expression (xiii) de 7i
2 est approche" par

it Mais, vu la formule (xii), 1'mtegrale fff WdUy est aussi e'value'e

par defaut dans le numerateur. Ces erreurs se compensent par suite

en partie, et 1'on con^oit que la formule (xiii) de n2 soit encore assez

apj trochee, comme Ta reconnu M. de Saint-Venant, meme pour des

valfiirs assez grandes du rapport de P a Q (p. 1411). See our Arts.

366-69.

N"/' la construction gtfometrique des pressiom <jue

les divers Elements plans se croisant en un meme point

corps, et snr celle des deformations qui se produisent autour

'. -I irnal de mathe'matiques, T. in., pp. 147-152.

Paris, 1877.

This paper contains an elegant and simple method of proving
the fundamental theorems in stress and strain without using any
of the properties of surfaces of the second degree. It might

advantageously be followed by elementary text-books on Elasticity

and Geology.

Let T7

,, T.,, T3 be the principal tractions and ,, *2 ,
83 the principal

stretches, each >rt in <1 -si -inlinjj order of magnitude. Instead of

considering these two systems as they stand, Boussinesq first subtracts

from the members of either half the sum of the greatest and least

tractions, or of the greatest and least stretches respectively. He thus

obtain*, if /? = ^(T
7

,

- T3 ) and S =
J (*,

-
*,), the systems:

P,T,-R and S,8,-S,
\vlii-r- T :inl x an- what tin' inran princi|al traction ami stivtrh IMTOUK- ;

i-ly T
7 and x have valu.-s lyin^ ivs|Hvtm-ly between /.'. /' mul

S,
- i

f

. These second systems evidently only difl'. r from the first by
tli-- Itkra .f ith.-r a unit'..nn pressure or a uniform stretch

regp<'<-tiv.-!y in all din-rtions, and li-nflv tin- maximum and
minimum \alues of stress and strain obtained from the*<> tw<> r< diiced

RysteniH will h.ivr the same direction as those of the two primitive

(

1

1">7J
Let th- direction- cosines of any plane ovn- \\hi.-h the

stress is F be cos a, cos ft, cosy, then for the i-

(B / s/9,

I B -2



220 BOUSSIXESQ. [14581459

and F will have direction angles a', /?', y such that :

7?cosa Tcosfi A'cosy
cos a' =

jr- , cos/3 -
^ , cosy =

yT
'

.

From these results Boussinesq easily deduces the following con-

struction :

A partir de Torigine et dans le plan des deux plus grandes forces princi-

pales R, T, on menera, d'un meme cote de la force principale moyenne T,
doiix droites inclinees, sur cette force moyenne, Tune de Tangle donnc $ que
fait avec elle la normale h Tele'ment superficiel propose, 1'autre de Tangle /3'

dont le cosinus vaut (T/F^cosp, en donnant <\ celle-ci la longueur

p\iis on imprimera h ces deux droites deux rotations egales et contra.iiv>

autour de la force principale moyenne T': & Tinstant oh la premiere droite

viendra coincider avec la normale h, Tele'ment plan, la seconde representera la

pression qui lui est appliqude (pp. 148-9).

[1458.] Clearly the maximum value of F is reached in the plane
of xz (or that of 7?, /?), and it then has the value R. The angle x
between F and the normal to the plane across which it acts is given by

7? (cos
2 a - cos2

y) + T cos2 &

and therefore when /?
=

7r/2, cosx = cos2a. Thus the traction and
shear components of F for the plane xz are respectively

F cos 2a and F sin 2a.

We see then that (for the primitive as well as the reduced system)
the maximum shear is across a plane the normal to which bisects the

angle between the greatest and least tractions and its magnitude
= R = \ (T^

- T7

;,).
This is Hopkins' Theorem : see our Art. 1368*.

Thus the greatest and least total stresses, the greatest and least

tractive stresses and the greatest shear all lie in one plane, i.e. that of the

greatest and least principal tractions (p. 150).

[1459.] If the stretches are small, so that their squares, as is

usually the case, may be neglected, then precisely similar results

follow for the distribution of strain. In the reduced system the shift

of one terminal of a line of unit length relative to the other terminal

gives, if it be measured perpendicular to the line itself, the change
in direction of the given line. This change of angle is numerically

greatest for the bisectors of the directions of greatest and least stretch

and is then equal to S and S respectively. Hence the change of

angle between these two bisectors will be the maximum slide and has

for its value 2S= s1
- s3 ,

or the difference between the greatest and least

stretches.
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[14<>0.] tim- lex problemes des temperature* xtutinnnaires, de

torsion et de I'ecoulemeiit bleu continu, dans les cylindres ou /e.v

dont la section normale est un rectangle a cote's courb&s

ou est comprise entre deux lignes fermees. Journal de matlie-

nuti'pic*, T. \ i., pp. 177-186*. Paris, 1880. This memoir is really

a discussion of the solution of the equation

by conjugate functions. It refers to Thomson and Tait's solution

<-t tin.- torsion problem in terms of such functions and to the hydro-

dynamic analogies of those authors and of Boussiuesq himself:

>m Art. 1430 and Chapter XIV.

[14G1.] Calcul des dilatations lineaires e'prouvees par les

element* m'lte'riels rectiliynes appartenant a t<ne portion infiniment

te dune membrane elastique courbe, que Von deybrnie, et demon-

stration tres simple du theorenie de Gauss sur la deformation des

'tensibles. Recueil de la Socie'te' des sciences de Lille.

T. Yin., pp. 381-90. Lille, 1880. See also the Comptes rwufa*,

T. LXXXVI.. pp. 816-8. Paris, 1878. This is a geometrical investi-

gation of the stretch of an element at the origin on the surface

when this surface is strained into

2z = rV + Zs'xy + t'y*.

Boussinesq obtains a general expression for the stretch, which

h< tli.-n .supines to be zero, or applies to the case of an ii

tensil)l m< mbninu. In this case Gauss's theorem as to cm \atuiv

follows at once, and expressions for the shifts of any point in th<

neighbourhood of the origin are obtained.

The analysis is easy and the results are not very complex in form.

[1462.] Formules de la diesi* du mouvement transversal

< wte plaque plane indcfinie. Comptes rendus, T. cvui., pp. 639 I
>

1'.uls, 1889. Fourier in his TJieoric "///'/////// de la c/talenr (^ II 1 J

gives an integral of the equation for tin- n vibrations of an

intinitr daHtic plate : see also our Art. 207*. SUJ.JM.SC tin- mid pUne
of this plate to c<>in< i<l< with the plane of .//. th.-n tin (iiation to be
Bolv 1 is .t tin- form

<Pw /# ^V
(iX
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where b
2
is a constant for the plate and may be taken as a factor of t" :

see our Art 385.

Fourier's solution of 1818 applied only to initial shifts. Boussiiu-sq

proj)oses in the first place to generalise it by considering also initial

velocities. He does not seem to have noticed that this more general
case had also been dealt with by Fourier in his Tlieorie analytique
of 1822. Thus he gives a solution of

(i) subject to the conditions

for t = 0, that :

=/(& ^)> dw/dt =/j ( rj)

at the point , rj
of the plane x, y. Here f and /i are two functions of

, rj
which vary gradually from point to point of the plane and vanish

at an infinite distance.

Boussinesq further discusses what he holds to be the delicate and
rather obscure point as to the real value taken by Fourier's solution

when t = Q.

The solution obtained by Boussinesq is given by

w

1 (*
+

= -
fff(

x + Za-Jbt, y + 2ftJbt) sin p
2

dad/3

- t dt IT/; (a; + 2ajbt, y + 2ft fjbt) sin p- dadft,

where p"
= a'

2 + yS
2
,
and the limits for the integrations with regard to a

and ft are determined by

= x + 2a Jbt, rj
= y + 2ftjbt,

and
rj being taken over the whole area of the initial disturbance.

This should be compared with Poisson's solution given in our

Art. 425.

[1463.] Legons synthetiques de Mecanique generate servant

d'introduction au cours de Mecanique physique de la Facultt des

Sciences de Paris. Paris, 1889.

This work of 132 pages discusses the general mechanical

principles which may be supposed to govern the systems of

molecules by aid of which the physicist conceptualises the action

of physical bodies. As in the note of 1891 (see our Art. 1464)

Boussinesq draws the important distinction between the actual

velocities and accelerations of individual molecules and the mean
local velocity and local acceleration, which are those of a particle

conceived to consist of an infinitely great number of individual

molecules (pp. 72-7). The seventh lecture deals with general
notions as to stress and leads up to the topics of the eighth which
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contains soniu judicious remarks on the physiological and psy-

chological aspects of force. Boussinesq holds that the only in-

telligible conception of force is the mass product of acceleration :

Et gardons-nous de confondre cette quantite precise, constituant le

seul s*ns jt<sitif mi demontiv des forces nie"caniques, avec la signification
relutivement vague d'effort muscidaire mais surtout avec celle, encore
nioins detinic, de cause physique, que le mot force rappelle egaleniunt ;

notions qu'il faut laisser a d'autres champs d'etude, ou notre esprit ne

pi
-lit imilhcureusement pretendre qu'a un degr6 de clarte mediocre

(p. 89).

Boussinesq divides the total internal energy of a body into two

parts, namely, an elastic and a thermal energy (pp. 105-6). He
demonstrates that the former or strain-energy (Venergie de ressort,

I'eneryie potentielle d'elasticittf etc.) depends only on the initial and

final configurations of the system, provided the system be in space
of uniform temperature, and the changes of configuration be made
so slowly that the equilibrium of temperature is infinitely little

destroyed at each instant : see our Chapter xiv.

{1 464.] In a note in the Comptes rendus (T. cxn., pp. 1054-6, Paris,

1891) entitled : Theorie elasiique de la plasticite et de la frayilite des

x solides, M. Brillouin starts from the hypothesis, that to any
definite homogeneous strain of a body corresponds always an absolutely
unit {lie system of elastic stresses, but to a definite system of elastic

stresses there does not necessarily correspond a definite strain. This

leads liim up to some remarks on the Poisson-Navier hypothesis
of intermolecular force. He holds that this hypothesis is not funda-

nientally erroneous, but requires modification owing to the fact

that indi \idual molecules are in motion. This motion may be

oscillatory and of small amplitude in the case of a true solid, but it

may still ! Millicient to modify iiitrrinolecular action. Great pressure*
oanv< rt tin ino\enieiit of oscillation into one of translation, and this

tli. i-\plan:itiin of set, rupture, flow, etc.

This note of Brillouin led to the publication by Honshu, .Sq of

another entitled: Air fi -

/</tysique de la jlnlit, (Can
rendu*, T. cxn., pp. 1099-1102, Paris, 1891) referring to similar

opinions expressed by himself in his Lemons 8ynlhetique8...(wQ our An
1 l<':5) and in still unpublished lectures d.-livered at the Sorbmme in

t

M(;sq cites from thr m:mu>.ii|>t of his lectures a genenl
description of how In- ha^ aj.plird id. -as similar to tho^e of Uiilloniu to

throw lighten the elasti.-ity. \i--osit\ and inti-nial fVietion of fluids.
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SECTION II.

Memoirs on Wave Motion and the Elastic Theory of the Ether.

[1465.] Essai sur la theorie de la lumiere. Comptes rendiis,

Tome LXI., pp. 19-21. Paris, 1865. This is an abstract of a memoir

by the author. It commences with the following words :

Le Memoire que j'ai 1'honueur de soumettre a 1'Academic des Sciences

est relatif a la theorie de 1'elasticite (p. 19).

It does not appear, however, to have been ever published in its

entirety, although doubtless portions of it were incorporated in

the memoirs of 1867 and 1868 : see our Arts. 1467 and 1478.

The first part of the memoir appears to have contained the deduction

of the equations of elasticity for an isotropic medium when terms of the

second order iu the shift-fluxions are retained. The second part of the

memoir applied the theory developed in the first to the vibrations

which constitute light. The theories of double refraction of Fresnel,

MacCullagh and Neumann were deduced as special cases, but the

author appears to have met with the difficulty that the explanation of

the dispersive power in this manner involves a pouvoir considerable

^extinction. Boussinesq merely suggests that in transparent bodies

there may be :

une action speciale, destine'e a contre-balancer ce pouvoir d'extinction, et

par suite & diminuer 1'opacite (p. 21).

[1466.] Equations des petits mouvements des milieux isotropes

comprime's. Comptes rendus, T. LXV., pp. 167-70. Paris, 1867.

This is an abstract of a memoir afterwards published at length
in Liouville's Journal : see our Arts. 1467-71. The equations are

here obtained by a process slightly different from that of the

memoir in the Journal.

[1467.] Memoire sur les ondes dans les milieux isotropes

deformes. Journal de mathtmatiques, T. xin., pp. 209-41. Paris,

1868.

Boussinesq studies in this memoir the vibratory motion of

an isotropic medium which has been subjected to
"
initial stress

"
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..ur Arts. i;i)*, I 21 0* and 129). This initial stress maybe
i two kinds: (i) a traction uniform in all directions which does

ii>t change the isotropy of the medium to aeolotropy and whirh

may be represented by K, and (ii) a system of initial principal

tractions A, B, C, producing aeolotropy symmetrical with respect

to three planes at right angles in an element of the elastic solid.

Of these latter tractions Boussinesq writes :

Nous admettrons que, dans la portion consideree du corps, les

Elements plans nornialement presses ou tires par les actions deformatrices

gardent la mme direction a tous les instants consecutifs, et que ces

forces J, B, C varient avec le temps de maniere a conserver entre elles

les mernes rapports BjA, C/A. Si nous designons par a, b, c trois

noinbres constants, proportionnels a A, By C, et du meme ordre de

petitesse que les dilatations lineaires eprouvees par le corps pendant sa

filiation, les rapports A/a, /b, C/c seront egaux entre eux, et a une
mriue fonction F du temps t. La fonction F (t) peut d'ailleurs rtiv

quelconque : elle se r&luit a une constante, si les actions deformatrices

restent les raemes toujours ;
elle sera nulle ou constante a partir d'une

certaine valeur de t, si A, B, C devieiment elles-memes nulles ou
constantes au bout d'un certain temps. Quoi qu'il en soit, cette fonction

rt.mt supposee connnr, la constitution du corps, a chaque instant, ne

dependra plus que de a, 6, c (pp. 211-2).

This quotation indicates Boussiuesq's assumptions.

[1468.] Referring back to our Art 231, we see that the c, c', c"

of that article might have been taken equal to the a, 6, c of Boussimj.
He assumes the Rtresses to be linear functions of the shift-fluxions and
tin- coefficients of these functions to be linear functions of a, 6, c.

Thru liy ron-i'lrrations (i) of symmetry with regard to tin- planes of

the initial principal tractions, (ii)
of tin- initial isotropy which must

continue to exist in wholr or part according as a = b = c, or two of them

f|nal, and (iii) of tin- invariability of the stresses when the body
U rotated as a whole, f!xprri..n.s air <lr.lurrl tor the stresses as

funrtion
,
A" and eiyht constants p, I, l\ I", w, in', /*< and 7*

(pp. 212-8). Thr incthi'd adopted invol\rs no appeal rithrr to tin-

rari-constant molecular theory or to thr principle of work. If the latter

be adopted an additional relation is found )< tw.. n th< constant*, of

i in :

r ..................w.
i| thr mtkl A:a = Ji/b=C'/C. Thus indrpcndrntly of <i, l>,

r

there will l> A' and seven other constants.

[14ti!> ]

\Ve can easily deduce Boussinesq's results from tho>,

I' tin- memoir >r Saint Yrii;mt discussed in our Arts. 230-2. Tln>
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memoir immediately follows Boussinesq's in the same volume of

the Journal. But the functions of the initial stresses which occur

in the expressions for the elastic stresses are, it must be remem-

bered, quoted by Saint-Venaut from a memoir which proceeds on

rari-constant lines (see our Art. 232). Boussinesq reaches less

general expressions, but they are not open to a criticism of the

same kind. His method is however too long for reproduction here.

Referring to Art. 232 let us take

C7 T7
4- Pt MM 71

4- Pt' ^ 71 j- Pt"
*\T0 JL t" J- t, "0 ) ^O -* "I" *

,

^ =
o, =o, ^0 = 0.

These agree in form with Boussinesq's values for the initial stresses.

We then have the following types of traction and shear :

M = (T + PC) (1 + 8X
- s

y
- 8g) + {a + k + m (e + e")} sx \

+ {8' + pt" + q (c + c)\ su + {8' + pc + q (c + e")} sz

where, as is shewn in Art. 231 :

a = 28 + 8', m-2r+p f
l + m = 4:S + 2q (iii).

Here there are fourteen constants in the expressions for the stresses,
but the three relations

(iii) reduce them to eleven, which exactly agrees
with Boussinesq's number (twelve) when the relation

(i),
due to the

principle of work (and tacitly assumed by Saint-Venant in the form of

equations (ii)
of our Art. 231) is adopted. The equations (ii) are

exactly Boussinesq's in form, although he uses different constants 1
.

[1470.] Substituting in the body stress-equati
of the body shift-equations :

ons we find as a type

dru ,o c-/
~ =

+ {8 + T + r (e + C
'

+ ") -(r-s) e}
V2u

d'
2a

,
(Pu d?u\

+
'

+
"

)dx* dy* dz2
/

. d / du . dv .. dw\
JP *) j-(-T-*v -jT- + -.

)
.......... .. (IV).'

dx\ dx dy dz )

1 The following give the change in notation from our results (ii) to Boussinesq's
on his p. 218; our constants being on the left of the equalities: T = K,
=a, e' = t, c" = c, a = l + 2m~K, d = m-K, 5' = l+K, l = l' + 2(n + m' - m"),
m= I' + ii + 2 (m

r + ?u"), p= l', q = l' + 1" +p, r= m' + m", x = m'. Further among the

constants of our equation (v) compared with Boussinesq's equation (8) p. 221: p= $,

\
l
= \8, \.,= \'5, /ij

= ^5, fj,.2
= pd, <r

i
= ffd, \= i>d.
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Put 8 -I- 8' + (/>
+ r) (e + c' + c") = X, , q +8- ])- r = \^ = A3 ,

8+ T+r +
'

+
" = !, -r-*-/7,,

wr ha\e for the type of shift-equation :

.de
* ' <

X
'
+ *=> -

+ "

d / du ,dv rfw\
3 j-(-7-+T- + .

)
.................... (V).3

<e\ ek dy dzj

Boussinesq's equations (p. 221) agree with this, excepting that \^ is

not necessarily equal to X,, unless appeal be made to the principle of

work.

The constants X,, X,, (X3), /* /*.,, o-, are independent, but if the initial

tractions A, B, C as defined in our Art. 1 hJ7 are zero, then /*=(), and
we have <TJ

=
fa.

[1471.] Boussinesq now supposes the quantities A, B, C (or, 7'e,

/*', /'c") to become after a given epoch constant, and investigates the

motion of a plane wave in the medium whose vibrational shifts satisfy

equations of the type (v), the quantities c, e', e" being very small.

He shews (pp. 222-3) that there will be waves of vibrations (a) almost

in and (h) almost normal to the wave front (quasi-transverse and quasi-

lonyit>"tin<i! waves), the divergence depending on terms of the same
order as e, e', e". There will be exactly transverse waves if ^ + X, = 0,

and exactly longitudinal if :

or, in general if f4 + A,= 0. Thus if the principle of work hold tin-

litions reduce to the single one fj^ + A.,
= 0, which will be found by

(iii) to reduce to l m. In the case of ran -on -slant isotropy we ou^ht
to Jia\- iii .. piations (ii) of our Art. L'.ll, <l = d, e = e'

t f=f, or p = r
t

q = 8', whence it follows that I - m involves p = q and r =
,
or a perfectly

Mj.ic incdiuiii. llciu-.- no f>.r(i>-(li/ i rans verse wavrs ran le propa-

gated in a rari-constiint isotK.j.i,- inrdiuni, however initially strained,
unless the modi n n i n-main isoimpic.

(1 I7i'.| Boussinesq next proceeds to discuss tli<
t[

\\-.^\

i quasi-longitudinal wav.-s, I. nt to do HK.IV than 1 1 idi<- :ite his result^

would lead us too far into tin tln-.ry of light. On pp. _':.' ;j-37 he L

with th- <lir'ti..ns of vibration, plain- >t'
|>"1

, ^ i\ (
.

-surface, etc.

of quasi-transverse waves.

In tin case; of
<r, Boussinesq l.i., rcsncls \\

i;ice; when r, /.oro he si _'_".') how in this case to

deduce the wave-suit i. n ..... Kresoel's. In th* tonucr case the plane
of polarisation is, m I'resnel's theory, perpendicular to the din ti.. n
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of vibration. It is only possible for <r
l
to be zero, without at the same

time
fjL, being zero, if 1* be not zero, or since double refraction then

depends on the tiniteness of 1\ it is only possible iu an isotropic medium
iu which the initial strains are different in different senses, i.e. A, B> C
must not in this case be zero. If

o-^/x-j, but differs from zero, which
arises when P =

0, or the initial stresses reduce to a uniform traction T
in all directions, then the wave-surface is exactly that of Fresnel, but

the direction of vibration lies in the plane of polarisation, or Boussinesq's

theory agrees with that of Neumann and MacCullagh. Thus the multi-

constant equations of an isotropic medium subjected to initial tractions

can be made to cover the theories of both Fresnel and Neumann as

special cases.

[1473.] In the discussion of the quasi-longitudinal vibrations (pp.

237-8) Boussinesq shews that if the medium be such that it can

propagate exactly transverse and exactly longitudinal vibrations, then
the velocity of the longitudinal waves will be the same wliatever be their

direction. He considers it very improbable that this manner of propa-

gating longitudinal waves can be characteristic of any but an exactly

isotropic medium. Such isotropy, however, he holds to be inconsistent

with the physical properties of a doubly refracting medium, or he con-

cludes that such a medium ought not to have the power of propagating
waves of exactly transverse or exactly longitudinal vibrations in all

directions. This argument Boussinesq suggests may be taken in con-

junction with the others raised by Saint-Venant against Green's theory;
see our Arts. 147, 229 and 265.

[1474.] The memoir concludes with a Generalisation (pp. 238-41),
in which Boussinesq supposes the tractions A, ,

C to remain for a
certain time proportional to one set e, e', e" of deformations, and after

the lapse of this time to become proportional to another set. He shews
that the general results of the memoir still hold, and in particular that

the distribution of elasticity is still ellipsoidal: see our Arts. 139 and
142.

[1475.] iZtude sur les vibrations rectilignes et sar la diffraction

dans les milieux isotropes et dans Iether des cristaux. Journal de

mathtmatiques, T. xin., pp. 340-71. Paris, 1868. Comptes

rendus, T. LXV., pp. 672-3, 1867. This memoir starts in the first

place from the equations for the vibrations of an isotropic elastic

medium of the type:

and supposes the vibrations to be (a) rectilinear and (b) of very
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short period. It supposes the amplitude and direction of the

vibrations to vary from point to point of the medium, and then

investigates their laws.

If \ and < be functions of x, y, z, and I, w, n be the direction-cosines

of tin- ivrtilinrar vibration of period T, Boussinesq seeks solutions of the

in of equation (i) of the types :

ITT
u-=lx cos (t

-
<

w = n\ cos (t
-

<f>

\vhrrr, <u bring the velocity of the wave, the terms in (ra>)
2 are supposed

nryliiriblr in the final equations as a result of (6).

Obviously </>
= a constant is the equation to the wave-front.

In the case of the above isotropic medium, it is found that the

rectilinear vibrations are either accurately longitudinal or ac-

curately transversal, i.e. are either perpendicular or parallel to the

wave-front (pp. 342-5). Boussinesq finds that for longitudinal

vibrations only three surfaces are possible wave-fronts namely

parallel planes, coaxial circular cylinders and concentric spheres

(pp. 348-9) and the same is true for transverse waves, if the

vibrations be supposed limited in direction to the lines of curvature

(pp. 351-3). In the case of longitudinal vibrations however the

amplitude has the same value for all points of the same wave-front

(pp. 348-9), whilf for transverse waves the amplitude varies from

one point to another of the same curve of vibration in the inverse

rati') .f tin- distance of this curve from the in>ighbottling curve

of vibration. Boussinesq terms a curve of vibration the curve

the tangent to which is the direction of vibration of the particle

at the point of contact. Tlm^ in transverse vibrations the curves

brat ion are a family of curves lying in the front of the wave

(pp. :r.o
3).

etablir tonics ccs !<>i>. n<>u^ KYOHI suppontf quo ti, r, w \ ari.ii.-nt

(I 'inir maniere continue d'tiu point aux points \ > rxt qu'A
condition .jm- l'..n prut poser les equations (i).

[equation 1 from our (i) by substituting (ii) in th< m .,i,.|

equating to zero the coefficients of the COHHIU aii'! ('-</)]
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les tenm '.s CM T-GT. Or cette condition n'est pas satisfaite a une trop

petite distance du centre de IVhranleinent, dans les ondes spheriques.
Done les lois obtenues ue sont vraies qu'a puitir d'une onde spherique,

centrale, dont nous appellerons plus loin le rayon, qui est tres-petit et

presque insensible (p. 353).

[1476.] The memoir in the next place (pp. 353-65) discusses

quasi-transversal vibrations in a medium of which the elastic equations
are of the form :

a, b, and c being small as compared with unity.
These are of the same type as those Boussinesq deduces from his

elastic theory of light (see our Art. 1480) for a doubly refracting
medium. They are also practically identical with those of Sarrau and
others. Boussinesq considers only the quasi-transverse vibrations corre-

sponding to waves propagated from the origin of coordinates and his

conclusions are indicated in the following words :

Ces ondes sont celles de Fresnel, et les vibrations sont dirige'es sensible-

ment, en chacun de leurs points, suivant la projection, sur le plan tangent a

1'onde en ce point, du rayon qui y aboutit. Les lignes de vibration sont

k tres-peu pres des ellipses spheriques, ayant leurs foyers sur les axes opti-

ques ; leurs trajectoires orthogonales sont des courbes sphe'riques de m6me
nature. L'amplitude est soumise k trois lois

;
elle varie : 1 suivant un

rngrne rayon, en raison inverse de la distance k 1'origine ;
et de plus, sur une

meme onde : 2 suivant une meme ligne de vibration, en raison inverse

de la distance de cette ligne k la ligne de vibration voisine
;
3 suivant une

trajectoire orthogonale aux lignes de vibration, en raison inverse de la distance

de cette trajectoire k la trajectoire voisine. En appelant r le rayon men de

1'origine k un point quelconque, U, U' les angles qu'il fait avec les deux axes

optiques, ces trois lois reviennent k dire que le carre! de 1'amplitude est dgal
k une constante divise"e par le produit r2 sin 7sin U'. C'est la formulc qu'ob-
tient M. Lamd, dans ses Lemons sur V&asticit^ 126, par une tout autre voie

et pour des milieux birdfringents d'une autre espece (p. 341).

[1477.] The above results hold generally for elastic media of the

type (iii).
On pp. 365-71 Boussinesq applies the laws he has deduced

to the special optical problems of diffraction and of the definition (la

delimitation) of rays of light. To discuss his results would, however,
lead us beyond our proper field.

[1478.] Thdorie nouvelle des ondes lumineuses. Journal de

mathe'matigues, T. XITI., pp. 313-39. Paris, 1868. This memoir
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was presented to the Academic on August 5, 1867, and a resume

of the theory appeared in the Comptes rendm, T. LXV., pp. 235-9,

1867. Various additions to the memoir containing expansions of

tin theory will be referred to in the sequel.

[1479.] Boussinesq's theory is an elastical one and therefore

must be referred to in this History, but the details of its applica-
tion to the phenomena of light lie outside our field and we must

refer the reader to the original memoirs for them. Boussinesq
makes the following assumptions :

(a) The free ether may be regarded as an isotropic elastic solid.

(b) Its density and elasticity inside and outside transparent bodies

is sensibly the same.

(c) The velocity of wave motion in the ether of space is so difft-ivnt

in mi the velocity of sound in solid bodies, that it is reasonable to suppose
that it is tin 1 'ther in transparent bodies arid not the material medium
of those bodies which transmits light.

(if) The vibrations of the ether produce vibrations of the same

period in the molecules of the transparent body, but the amplitudes of

these are so small that they do not produce any sensible elastic action

lift wren tin- particles of the body.

(e) The displacements of the molecules of the body are functions

he shifts of the ether in the immediate neighbourhood of

those molecules and in certain cases of the shift-speeds. Boussin<>>i|

expresses this analytically by saying that to a first approximation \\<

may assume the shifts of a particle of the body to be linear functions

of the shift* and shift-fluxions with regard to space (and in some cases

also with regard to time) of the ether. Tf ?/, ?',
w be the shifts of tin-

point ./-, >/. i of the ether, he writes (Note of 1872, pp. 364-5 : see our

Art. 1449):

Le ddplacemeiit- /,', /,'. ,/-,'
d'mu 1 niol.Vnle pon<lrrall<> oYvirnnont done

' it <!< lMirs uYrivt'os partielles des divers ..nliv>,

fn|irtim> <ju'oli !*M:- \\\ la |H>tite8e eXCO.ssivr drs varial

. CMiniiic mi lc fait tmijours MI i-a.N pan-il. par IVmplni
'r, (|uand on .tiulir iinr f..m-tiii au\ rnvinms d'un point

jH.ur lc<|iicl elle H'annule, et <|u'-n iTapcrroit aucunr rai-..n d> Mip]X)aer 860

6ei in-iiiirrc'.M iiulh-s <>u (!!><<,ntinucs en ce point. K<>s (l
;

plac-iiiciits
int lea axes, de In matiriv pon.lrr.il.lc nuitiMiuo j\

1 inti'-ricui- li'un |x-tit \oliiiin 1

<pi
i

li-omjiu
> s'ohtiriitlroiit en nmltipliant la uuutae

.ai-uin- !-, moli'i-ulivx <|iii
en font par; '.1M

Lfl con-i.l. ilc.s pnli; !.i nmaae
drs mo], , ulrs

; cos ddplaccmenUi moyoiiH aeront done auasi, a fort \-\\

ire8, sans tcrnicM constants, don d ;

p! nimts ,/.

,n jM.int pris ;\ rinti'rirur <lu volui,

deleur- .1. n\..-> 1..
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(/) The product of the density (p) of the ether into the com-

ponent of its shift parallel to any axis is of the same order as the

product of the density (p,) of the body into the component of its shift

in the same direction. Boussinesq in reality bases this upon (d) ;
he

considers the vibrations in the ether only to produce discordant actions

between the ponderable molecules, actions incapable of continuing in

and for themselves, i.e. giving rise to no elastic forces in the material

body. In this case :

les quantites de mouvcment prises, suivant trois axes rcctangulaires
de coordonnees, par la matiere ponderable, ne peuvent graudir d'un instant

h Pautre qu'autant que celles de 1'ether grandissent elles-memes : 1'hypothese
la plus naturelle qu'on puisse faire, sur les rapports qu'ont entre elles les

premieres et les secondes de ces quantites de mouvement, consiste a admettre

qu'elles sont du me~me ordre de grandeur (Note of 1873, p. 3fi3 : see our Art.

1449).

[1480.] The resultant per unit volume of the elastic forces parallel
to the axis of x due to the ether is of the form

7/9

(*+!)
j

. fji
d?u

or is of the order,
- x p -j-^ ,

p ctxr

i.e. (velocity of light)
2 x p

-
2

.

Similarly the elastic forces parallel to the axis of x due to the elasticity
of the material body will be of the order

(velocity of sound)
2 x p: -^ .

Cttfc

Hence it follows from (/) that the ratio of these forces is of the same
order as the ratio of the square of the velocity of light to that of the

velocity of sound, and accordingly the latter force may be neglected as

compared with the former in dealing with the motion.
If the transparent body has no velocity of translation as a whole

comparable with the velocity of light-vibrations, the mean accelerations

of its ponderable particles will be

and consequently its components of inertia per unit volume due to the

vibratory motion will be the products of these quantities and p l , or,

what is the same thing, the total reactions, per unit volume of the

ether, exerted on the ether by the ponderable particles of the body will be
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because the sole force acting on the ponderable p:rtu-l'> is due to the

impulse of the ether upon them.

Hence the equations for the motion of the ether in a transparent
l-.ily are of the typ-

,</0 <f-V, <Fu
(X + rt-. + rVu-H-j^p ...............

(1 ),

(p. 318 of the Memoir of 1868).

[1481.] Boussinesq now makes i^ a function of u, v, w and

their fluxions and retains only the first powers of these quantities:

see (e) of our Art. 1479. The nature of this function will depend
on the aeolotropic or isotropic character of the medium (pp.

1 1!>-21). From the equation which results by substituting w, in

(i) Boussinesq deduces the laws of dispersion and of rotatory

polarisation (pp. 321-7), of double refraction (pp. 328-31), and

of 'elliptic' double refraction with application to the case of quartz

(pp. 331-38). He makes on pp. 338-9 a few remarks on the

conditions at the interface of two media. He points out that if the

shifts in the two media along the interface be made equal and the

stresses across the interface, then the elasticity of the ether in both

media being the same, all the first space-fluxions of the shifts will

be equal at the interface. The latter condition of continuity, which

s not hold in the case of unequal elasticities, seems needful

in order to obtain expressions for the intensities of the reflected

and refracted waves, which will agree with experiment.

C'eat pourquoi nous avons cru devoir admettre la Constance d'e*las-

tiritr <!<> lY-tln-r <lans deux milieux adjacents. Quant u la Constance de
s;i densitd, elle n'est pas necessaire a notre theorie

;
mais elle nous parait

inn- condition natun-11. ! la constant . lY-l.isn.it, - la regardons
"Mime vraisemblaM' (p.

[14S2.] Ailtlifin,, ,1,1 int'nin, ///. Thcorii' '>' deft

><!. </.sr.v. ./nitrniil <lr
//,^//////'//M/<TX, T MIL, pp. 425-4:^

1868 I lii- paper extends Boussinesq's theory to tli.

, of the laws of the following phenomena: I. tin-

i -tractive and rotatory powers of a mixture of various transparent

substances, the theory easily leads to tin- usual approximate -1\

laws, II, tin- magnetic rotation of tin- pl.-m.- of j,ol:m-.-.l

light, and 1 1 1 ! aberration of light when tlu tran^inittiiikr 1>1\

motion,- !': >rmula for the velocity of tin- wave ot 1

I. K. IT. II. 16
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in terms of the velocity of the medium and its refractive index

being deduced. A more complete consideration of the problem
of aberration will be found in the Note Complementaire of 1873:

see our Art. 1449.

[1483.] Sur les lois qui regissent, d une premiere approxi-

mation, les ondes lumineuses propagees dans un milieu homogene
et transparent d'une contexture quelconque. Journal de mathe-

matiques, T. xvn., pp. 167-76. Paris, 1872.

Taking the equations of his memoir of 1868 (see our Art.

1480) of the type:

dO

Boussinesq neglects the rotatory and dispersive powers of the

medium and supposes ult v1} and w
l
to be linear functions of

u, v, w. He shews that by a proper choice of axes, they can be

given by
tt

t

= OLU fy + W,

v
l =$v Siu + u,

w
i Vw eu + &v

>

where a, & 7, S, e, f are constants depending on the nature of the

medium. All known transparent bodies are but slightly aeolo-

tropic from the optical standpoint and hence a. - j3, /3 7, 7 a,

8, e, f are very small quantities. Boussinesq on this assumption

investigates the motion of plane-waves in such a medium. If

S, e, f be zero, he deduces formulae agreeing with those of Fresnel

for double refraction. If they be not zero, there are two waves

whose vibrations are very nearly but not accurately transverse. Bous-

sinesq studies the laws of these quasi-transverse waves, and shews

that they may be enunciated, like those for the accurately transverse

waves of Fresnel, by the use of the '

optic ellipsoid of elasticity
'

with

the aid of a certain right-line of given length or 'optical axis

of asymmetry', which passes in a given direction through the

centre of the ellipsoid. For crystals which have one of their

mineralogical axes perpendicular to the plane of the others,

Boussinesq's results agree with those of Fresnel. For crystals,

where this perpendicularity does not hold, this agreement is not a

necessity of Boussinesq's analysis, and special experiments, Bous-



1484 1485] BOraUimq

sinesq considers, would have to be made to determine whether

these crystals also may be considered as having three rectangular

planes of optical symmetry (Fresnel's hypothesis) or whether they

obey the more general laws possible according to the present

memoir.

[1484.] There can be little doubt, having regard both to the

comprehensiveness of its results and to the clearness of its hypo-

theses, that Boussinesq's elastic theory of light is in most respects

superior to the elastic theories proposed by MacCullagh, Neumann,

Green, Lame* and others. Should elastic theories be destined, as

seems probable, to be replaced by an electro-magnetic theory, there

are yet, probably, many points of Boussinesq's investigations which

might be usefully transferred from the one theory to the other
l

.

SECTION III.

The Application of Potentials to the Theory of Elasticity.

[I486.] Lea dtplocements quentrainent de petites dilatations

ou condensations quelconques produites, dans tout milieu homogene
et isotrope indtfini, sont calculables d la inaniere d'uue attraction

newtonienne. Coinptes rendw$,T. xciv., pp. 1648-50. Paris, 1882.

The body-shift equations for small vibrations may be written

in tin- t'nnn :

*>-*-
:)

<-

where 6* = p/p and a* = (X + 2/i) p : see our Art I :i
(

> k

\Ve have at once :

de/df = a*V*e ,in.

Let 6 at the point ./-,, y v
, r,

bi- given by B(.i\ t ylt
z
lt t) and K-t

us consider matter distributed throughout space of which th.

density at time t equals 0/4?r; thus, thi*
.1,-nsity will vary with

mvi-Htigations of the clattic theonr of light are not rendered utterly
useless by the adoption of other con^tituti..m for the ether has been pointed <mt

Ln a paper published for the first tinir in \.
i \\\ -t )n-

'/ l'h,/^,;,l r,ii>,T*. i CnmbridRf. 190.

l(i 2
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the time. Its potential at a point #, y, z distant r from
a?,, ylt

z
l

will be

where dty is an element of volume at
a?,, y,, -z,.

Then V'fc = - (or, y, *, I) ..................... (iv),

by Poisson's Theorem.

Boussinesq now puts :

_

47r r ro eft
2 r a8

eft*
'

referring to equations (i) and (ii). His first equality seems to me

legitimate only if we suppose 6 and d6\dx, dOldy, ddjdz to

vanish at an infinite distance. For, I presume, it is obtained

by putting -=- (-} = j (-J
and integrating by parts. Whence

if d(7 be an element of an infinite bounding surface we must have

fftffr.*.*.*)^ and ffl **(*.*.)&, zero
JJ r- JJ r d(xlt ytt

e
t)

Thus we find that 6 and <l> are to be found from the equations:

<r<S>/df
= aW, and V 2

4> = -
0,

while (i) gives us for the corresponding parts of the shifts :

(it, v,w) = - dld (x, y, z).

Thus the shifts are equal to the Newtonian attractions due to

a distribution of matter of density varying with the time and

proportional to the corresponding dilatation.

In addition to the above there may be parts of u, v, w for

which ; they are evidently given from (i) by solving the

equations :

^ (u, v, w) = 6
aV 2

(w, v, w).

If we integrate both sides of equation (ii) over the volume

of a surface so large that dO/dx, dOfdy, d0/dz vanish at its

boundary, we have

or fffOdvr is constant through the motion. Thus the total mass
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of which 4> is the potential is constant and finite if 6 initially

does not differ from zero except in limited regions. From this

result Boussinesq (p. 1650) easily deduces that the potential

<l> due to 6 tends to zero as the time increases.

[I486.] Application des potentiels tl Vttude de Vequilibre et du
Cement des solides e'lastiques, principalement au calcul des

deformations et des pressions que produisent, dans ces solides, des

efforts quelconques exercts sur une petite partie de leur surface ou

de leur interieur ; Memoire suivide notes etendues sur divers points
<fc i>kysique mathematique et danalyse. Paris, 1885. This work

of 722 pages is the most considerable contribution of Boussinesq
to the theory of Elasticity.

This volume also forms T. xm. of the Recueil de la Societe des Sciences

de Lille. Lille, 1885. Portions of its contents appeared in separate memoirs
contributed to the Comptes rendtcs for the years 1878-83 : see T. LXXXVL,

pp. 1260-3; T. LXXXVII., pp. 402-5, 519-22, 687-9, 978-9, 1077-8;
T. LXXXVIIL, pp. 277-9, 331-3, 375-8, 701-4, 741-3; T. XCIIL, pp.

703-6, 783-5
; T. xcv., pp. 1052-4

;
1149-52

;
T. xcvi., pp. 245-8. In

addition certain results of the theory were published by Saint-Venant
on pp. 374-407 a and pp. 881-8 of the French edition of Clebsch: see

our Art. 338.

The object of the work is summed up on pp. 15-19 of the

f,itr'nl>i'-fin : But et resume de ce travail. It is to discuss thi-

solution of the following three problems :

(a) A small portion of the surface of a large mass of elastic

material is subjected to local stress, it is required to find the strain

at other poin

( l>
) A small portion of the surface of a large mass of elastic

material is subjected to a given deformation, to find the stresses

<lu> to this deformation.

(c) A small portion of the interior of a large mass of elastic

material is subjected to a given body-force (e.g. magnetic action),

t<> find the strains produced by this body-force.
In solving these problems Boussinesq considers the shifts of

the material to be zero at an infinite distance from the small

portion sul>j local load, but lu ivmark< that this o.udition

is only introduced to fix our ideas.
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Eii rcalitc, les phenomenes produits dans cette region resteraient,
sans doute, a pen pres les inemes, si le corps etait entierement libre

dans 1'espace ;
car ses parties e"loignees, vu la grandeur relative de leur

etendue et, par suite, de leur masse totale, seraient maintenues sen-

siblement immobiles par leur inertie, durant bien plus de temps qu'il
n'en doit falloir a la petite partie, de masse insignifiante, qui est con-

tigue a la region d'application des forces exercees, pour suivre les

impulsions qu'on lui imprime et se mettre dans un etat quasi-permanent
de deformation et de tension, c'est-a-dire a fort peu pres, dans 1'etat

d'equilibre coiTespondaiit a la fixation de 1'ensemble du corps et a

1'intensite actuelle effective des actions exterieures qu'il supporte &
1'endroit que Ton considere (p. 19).

The work will thus be seen to deal with the influence of local

stress or strain in producing stress or strain at other parts of an

elastic solid.

[1487.] We need not stay long over pp. 15-49 of the work,

which give a brief resume of the conclusions reached in the

remainder of the volume. We may, however, just refer to one or

two points in these pages :

(a) Lame and Clapeyron's solution of the problem of an infinite

elastic solid bounded by a plane subjected to an arbitrary distribution

of tractive load (see our Art. 1018*) is noticed on pp. 19-23. Boussi-

nesq remarks on the extreme difficulty of obtaining physical results

from a solution in quadruple integrals.
Further with regard to Lame, Boussinesq points out that if

U = fdm/r be the ordinary potential of a mass m, then just as

p being the density, so if V
'

= frdm be the 'direct potential,' then

V2V2 Fr=- 87173 and is not zero as Lame supposes: see our Art. 1062*.

Lame's solution thus applies only to elastic cases where there is no

internal action (represented by p), but the ' direct potential
'

has most

value in exactly the reverse case, where there is internal action or p
cannot be put zero (pp. 31-3).

(b) Pp. 23-36 give an account of the action of local stresses which

deserves very careful study by those who assert that the mathema-
ticians have failed to perceive the influence of surface loading in pro-

ducing local strain. The several points of this resume are discussed at

greater length in our treatment of the body of the book itself.

(c) On pp. 35-6 Boussinesq points out that a " local perturbation",
or local strain produced by the local application of a load system in

statical equilibrium, decreases less rapidly with the distance in the case

of a body with its three dimensions comparable among themselves, than
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one or two of its dimensions are small as compared with a third.

example the influence of torsional couples applied round the normal
to the contour of a plate has been shewn by Thomson and Tait (see our
Art. 1-")!'.;, to be practically insensible at twice the thickness of the

platr from the edge, but the strain produced by a similar local appli-
cation of forces in equilibrium to the surface of an infinite elastic mass

ouly decreases as we depart from the centre of application inversely
as the cube of the distance : see our Art. 1521.

(d) 8 of the Introduction (pp. 36-41) contains some valuable

remarks on the difference between solutions by 'potentials' and by
Fourier's series, the former tending in many cases to exhibit and the

latter to obscure the physical laws of the phenomena investigated. To
obtain the physical characteristics of a phenomenon we want to ascertain

how a small action at one point influences the condition of affairs at a

second, and we shall rarely be able to ascertain this from a Fourier's

series when we increase indefinitely the dimensions of a medium in two
or more directions. The Fourier's series will then in general be replaced

by a multiple integral, and the evaluation of this integral with respect
to certain auxiliary variables leads to a simpler solution, which it will

generally be needful to further integrate over the region to which the

action has been applied. This simpler solution is what is more directly
obtained by the method of potentials.

(e) Finally we may note that pp. 42-9 give a resume of some

interesting general properties of the potential. One of these is of

considerable interest and simplicity, and according to Boussinesq it had
not yet been noticed. It consists in the following statement : The

Laplacian V- of any function at a point is equal to one third of the

mean value of the second derivative of the function taken for all

possible directions round the point (p. 14).

[1488.] Boussinesq next discusses and defines the various

types of potential with which he is about to deal.

Let dm be the element of a mass m situated at the point

/,, *,, and let the integration be over the whole of the mass m.

I'll- n, if r - V(# - a?,)* + (y y,) + (z zrf, we have the following

types of potential at the point x>y,z:

the ordinary or inverse potential U |
,
---- ................ (iii),

the dire <al V=Jrdw... < i v),

(see our Art. 1062*),

ilu- lni/,inth /////
i

t ,,tr,,t;<il with three ntriable*

)d
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The latter will be called the first logarithmic potential ;
Bous-

sinesq introduces the words ' with three variables' to distinguish
it from the cylindrical potential or logarithmic potential with two

uariables given by /log rdm, where r = J(x a^)- + (y
-

y,)
2

.

Finally we have

the second logarithmic potential with three variables,

V =![->' +(z-zl)\og(z -z^r^dm (vi).

If z
l
= 0, or the matter be spread over the plane xy we have

^ = /lg (z + am
>
which is the form in which we shall generally

have to deal with it.

, ., j d-b [dm 17
VV e easily hnd -

7
T = -

. u,J dz j r
(vn).

d^f f= I log (z zl + r) dm =

Hence if V 2 7 = 0, we have at once V^ = and V'-^P = 0.

Further, as in our Art. 1062* V 2V JF= 2V-7= 0. These relations

are deduced on the supposition that none of the matter m lies in

the space within which we are considering the values of these

potentials (pp. 57-61).

[1489.] The most general types of solution by aid of potential
functions are given by Boussinesq in a memoir of 1888 entitled :

Equilibre d'elasticite d'un solide sans pesanteur, homogene et

isotrope, dont les parties profondes sont maintenues fixes, pendant

gue sa surface eprouve des pressions ou des deplacements connus,

sannulant hors dune region restreinte ou Us sont arbitraires.

Comptes rendus, T. cvi. pp. 1043-8 and 1119-23. Paris, 1888.

I propose to indicate Boussinesq's solutions at this stage and

return for the discussion of special cases to the Application des

potentiels.

Boussinesq's problem is described in the following words :

Comrae le corps dont il s'agit n'est a considerer que dans le voisinage
de sa region superticielle, sensiblement plane, assujettie aux pressions
ou aux deplacements de valeurs autres que zero, Ton peut, en adoptant

pour plan des xy le plan tangent en un point central de cette region et

pour axe de z la norraale correspondante dirigee vers Tinterieur, le

regarder comme liraite d'un cote par ce plan et indefini dans tous les
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autres sens, ou coiiuuc n-inplixsaiit la moitie de 1'espace oil les ordonnees

positives (p. 1043).

Boussincsq supposes biconstant isotropy. He writes at the

surface z = ():

* 5*>ft'--^' ^ =
~4" ...... (i)l

M= v=v , w = w9 ............ (ii),

when 1

j)x , />,,, j)2 , */,,, v , w are functions of x and y only. Further

lit- considers M, v, w and ?/, t'o, w(l ,
to vanish at infinity. He then

proposes to solve the body-shift equations of type
'

rlfl_ + V-u = ........................ (iii),

( where k = 1 2rj, 17 being the stretch-squeeze ratio), subject to one
< >f the following conditions :

(a) MO ,
i' and w are known functions of x and y ;

(&) P*> py au(l PZ ai>e known functions of x and y ;

(c) M v and /;z are known functions of x and y ;

(rf) px, j[)y and w9 are known functions of x and y.

Tin- sub-case of (6) where pz is arbitrary, but y> r
=

y> (/
= 0, had

1). (ii solved in 1828 by Lame and Clapeyron by aid of quadruple

integrals: see our Art. 1019*. A simplified form of this case had

been given by Boussinesq in 1878, and the complete solutions of

(a) and (6) before the end of 1882. In (a) and (6) however he had

been preceded by V. Cerruti (Ricerche intorno all' eijuilihrin de'

corpi >/</x//'/ isnt,
!>',.

Reale Accademia dei Lincei, Serie 3a,

' della Clause di scienze fisiche... T. xin.. pp. Sl-li'2.

K"ina, 1882). In the memoir of 1888 Boussinesq solves for tin-

first time (c) and the most general form of (d).

[1490.1 Let U, V, W, <fr <^,, * be functions of x, y, * which have

their Laplacian V3
zero, and their derivatives in x, yt

z finite and

1 He Htates this problem in a ulightly different form on pp. 503 of his

.Iwlicnti,,!! itt
]

. and shows on pp. 546 that the solution is unique
for the case (6) referred to below. His method is similar to that of Kirchhoff

and n.-Wh: Mfl CNU Vrt 127^. iind
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continuous even for z = Q, then if k' = '2k + 1, we have the following two

systems of solutions for (iii) :

dU_ _ z_
d /cl dV dW\ v

~
dz k' dx\dx

+
dy

+
dz /'

dV z d (dU dV dW\
V=

dz~~k'dy \~dx-
+
dy

+
<h )'

dW z d (dU dV dW\
W =

~^~k'd^\d^
+
d

+
d* )

and :

I y
~i~" y> ~T~ ^7 >ldx k ax dy

d<f> z d<& d(f>1

V =
fy~k'dj

+ 'J

dx'
{

.(v).

These results may be easily verified by substitution in
(iii).

The solution (v) leads at once by (i),
for z = 0, to :

_ ^ _
Pv ~ ddz +

k
'

dxdz'

By aid of (iv) (vi) we can now indicate the method of solving the

several cases (a), (6), (c) and (d).

[1491.] Case (a). Take U, F, W the potentials due to distri-

butions of matter of densities -
uJ2irt

-
vJ2ir,

- w
/'2ir respectively

over the plane xy, then u
t v, w will satisfy the body-shift equations,

vanish at an infinite distance from the origin of disturbance and be

equal to u^ v
,
w at the plane xy. Thus we have

(vii),
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where r is the distance between the point of the plane z = at which
tin- shir

,, w and the point of the mass at which the shift

is w, V, w.

[1492.] Case (6). We may divide this into two sub-cases, which
i-< milliard will give us the general solution for the case of any surface

loading.
Subcase (i). pf - pv

= 0, pz
= any arbitrary function of x and y.

This is Lame and Clapeyron's case.

In equations (vi) put </>,
= and k'd^jdz + k < - 0, and we have

/ />
= 0,

Assume

= kpz ,
when z ~ 0.

= -
^
- it log (* -f r)pa dxdy,

whence = \\-dxdy
(viii).

Let /^o be the true normal pressure = 2/i.p.., then by aid of (v) and

(viii) we find the following general expressions for the shifts, etc. :

...(ix),

where ^o> is an element of the plane u,v/.

[1493.] Boussinesq in his Application des poteiUiek...(\>\>. 8

obtains, for 2 = 0, the values of ff(zpdu>/r*) and //(^prfw/r
5
),
where p<A.) is

an element at xlt y, of a mass distributed over the surface s-0, and

r is the distance of x, y, z from this element. He writes:

;ind t ht-ivfore r*
* + /P.

Whence, if we put K =
zq, dR-zdq (z constant), we have, if p(xlt

be the value of p at x
l , y, :

Similarly:

wlx-n -.
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Thus we find for the value of 6 in (ix) when z 0, 6 = p /(^ + /A).

Further we have (dw/dz)^ = Jp /(^ + /*) Thus both the dilatation

(i.e. in this case negative, or a rarefaction) and the squeeze at the

surface are proportional to the normal pressure. The former of these

results had been previously obtained by Lame and Clapeyron : see our
Art. 1019*

It will be noted that in this subcase :

du dv . dp.. dpu
-=-- -r = 0, and --j-^=0 ............... (xi).
dy dx dy dx

The first of these equations expresses that the twist about the axis

of z is zero.

[1494.] Subcase (ii).
Let us take <!> = =

T; ^ *n
(
v
*)>

^hen we

have besides pv = :

* *4>
,

^
}

l+/cdxdz
+
dydz'\

I .................. (xn);

j^_d*4__d*$L IP*~
l+kdydz dxdz }

whence, remembering V2
< and V2

<^ are both zero, we have for z :

*+l - (dp* dpv\
~d^~ -\dy~dx)

"'
(

'

dy

Boussinesq now takes for < and ^ second logarithmic potentials

(see our Art. 1488), for which we have the second differential in z

equal to the ordinary potential.
Let #, and , be the shearing loads applied to the surface -

parallel to the axes of x and y ;
then ^ =

2/x/^, ,' = 2/xp^, and :

$ =
l ~V (dSi

dSs\ d^~
p. \dx

+
dy)

'

dz3
_

dy
'

dz3
~

2/ot \dy dx '

whence we can satisfy all the conditions by taking

r)
-

r}&- d<a
-
Jy

=
{

Equations (xiii) were first obtained by Boussinesq, and are given on

p. 80 of his Application des potentiels. Their solution (xiv) is due to

Cerruti; the above method of reaching that solution is, however,
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Boussinesq's. We have only to substitute (xiv) in (v) to completely
solve this Subcase. Thus we have obtained solutions of Cases (a) and

(b) in terms of generalised potentials. Similar investigations occupy

pp. 62-80 of Boussinesq's Treatise. On pp. 182-6 of the Treatise,

however, Boussinesq puts into a slightly more compact form the results

of Case (b). Let us re-write our conclusions in the following manner :

Subcase (i).

M= , 4- r

-

dx kdxdz*

d<f> z cP<t>

1+*

2/x

~
k dxds?

'

2/x k di/dz-
'

srf2
^ stfty 1

Here, if

Subcase
(ii).

*,//( tog (*

*&"" 7r 'sr

,
we have

.(xv).

'// 1+A: </./'/: rfy
'

2ft 1 -f d.i-ih.

v
dy \ +k f/i/dz dx

' +k

; = -, ,
+

l+kdz l+kdz*'

Here, if ^

ami

* = -
1 /d*L ,/*,.

i -5 -r 7- i , <Pi
= -

i I f* ,

4ir/t \ or dy J 47r/x \ r/.- ay
(xvi).

II' IP. \\.- tind for (xv) and (xvi) comliinrd th<- stresses across .m\

parallel to tin- IMMUMI.-I

"'

For a single element of surface stress /></<*>,

deduce, remembering the relations (vii) of Art. 1488:

'J
'

'

we easily
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Now the last factor in each case is the direction-cosine of the ray
OP joining the elementary area parallel to the surface at a point P with

the point at which the load is applied ; further, the factor

is the component of the load parallel to OP
;
hence Boussinesq (p. 187)

propounds the following law :

Toute action exterieure exercee en un point de la surface d'un solide se
transmet a 1'interieur, sur les couches matdrielles paralleles k la surface, sous
la forme de pressions dirigees exactement k 1'opposd de ce point, et qui e"galent,

pour 1'unite d'aire, le produit du coefficient 3/2?r par la composante, suivant
leur propre sens, de la force exterieure donnee, par 1'inverse du carre de la

distance r au m6me point d'application et par le rapport de la profondeur z

de la couche k cette distance r.

[1495.] Case (c).
u

,
r and pz given over z = 0.

We can combine (iv) and (v) of Art. 1490 in tlie following manner.
Take IT = 0, = & = 0. We have at the surface

'

z = :

dU dV k {du, dv \ l+u =
dz>

v =
7Tz>

p*
=
k\-dx

+
-dy)- J>

These lead us at once to

_'

we find finally

, V) z d fdU dV

k_ (dU dV_k^
+ k \dx dy k */ 1 + k dz \dx dy

[1496.] Case (d). WQ and px , py given over z-0. In this case

1 We easily deduce the last of these equations from

k' -d ro\

35*]
, and - _ - -_

.
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combining (iv) and (v) we take U = V= and d<j>/dz + <fc = 0, whence at

the surface z - we have :

...(xxi).

dW I d*<f>W
*~~dz' Px ~

k' dxdz tlydz

"
V dxdz '

_k_+l cfy cPfr k d*W
P*~ k dydz" dxd~ k'dydz

From the last two equations we find over z = :

P$ k' (dpx dpv
\ k" * +

Whence : W- >//',

where

\ dPy

x = ff(z log (
+ r)

- r

Further,

Substituting these values of

;ift< ! some reductions :

....(xxii).

and W in (iv) and (v), we find

w = -

_
1

_rf
//.*, 1

rS/J r ~2ir(l+/

where

I completes the set of solutions proposed by Boussinesq as th.

Mil>jTt of his nirinnir. Wi- will now r.tum to his Aj'j/i<-<if<'"/

n^ where necessary to the above njimtions (i) (XM
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[1497.] In the Application des potentiels Boussinesq discusses

Case (b) above by constructing it from three simpler types of

integrals (pp. 62-80). For each of these three simpler types he

then analyses the nature of the shifts, strains and stresses due to a

single element of the potential expressions (pp. 8198, and 107-8).

These investigations, interesting as they undoubtedly are, have still

not the same practical importance as that which corresponds to

our Case (b), Subcase (i), for a simple pressure upon a small

element of the surface. This occupies pp. 99-107, and we must

devote some further space to it.

Referring to our equations (ix) let us consider only the element

p d<i> of normal pressure on the surface. Let U represent the shift

parallel to the surface at any point distant r from the loaded element in

a direction making an angle a with the direction of the pressure, and

let w be the shift perpendicular to the surface, then we easily find for

points outside d<a :

(xxiv).

U is obviously zero for a-0, and again
1 for a^cos" 1

J(\/5 817 1).

Between these values U is positive, while between the latter value and

90 it is negative. For a = 90, we have

l-2 and ^

or we see that each circle on the surface is depressed more than its

radius is diminished.

Although the formulae (xxiv) do not hold when r is vanishingly

small, they still do not give infinite values for U and w, for da> will be

of the order r2 and therefore dta/r vanishes for an infinitely small

element. We are obliged in fact for the shifts near r = to return to

the more complete formula (ix). On the other hand, if p and do) be

both finite, (xxiv) will hold for all points of the body sufficiently distant

from this region (p. 104).

Turning to the stresses, Boussinesq determines what is the total

stress across an elementary plane perpendicular to the axis of
,
in other

words we have to determine 7z and ^, where R = \/r
2 - is the

1 If 77 varies from \ (i.e. for /x
= 0) to 4

(i.e. for X = /K),
this angle decreases from

90 to 68 32* about.
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distance from the axis of z to the point at which we are investigating
t hr >t n v S . By the aid of 6 as given in (ix) we easily find :

C08a

3,,(/<u cos2a .

-ir r*
8m "

Thus the stress across any elementary plane parallel to the

1 HI ii nd ing surface = ^
'

*. and is directed from the point at

which the elementary pressure p d<o is applied
1
. From the result

sinesq draws the following conclusion (p. 105):

Thrnuifhimt the whole surface of a sphere touching the surface of
the f/ire n plane at the point of application of the normal force p {,dw,

the stress, which an elementally plane parallel to tJie surface of the

body is subjected to, is constant. It varies direct!>j
as the force

'> is directed along the chord from the point of application ami

for different sphei*es varies inversely as their surfaces.

This n suit is independent of the elastic constants of the

man-rial: thus we see that the distribution of stress over any

plain- parallel to the surface is the same for all isotropic bodies

<p. 106) : see our Art. 1494, Subcase (i).

[1498.] Boussinesq next proceeds to discuss the depressions

UJMUI the plane surface of an indefinitely great elastic solid due

t<. various distributions of normal pressure (pp. 109-201).

The valuo of wot or the surface depression, is givm \, i\ easily l>y

( i\ ), it is :

i-,

Now suppose p taken as a surface density, and let us choose as

origin "f c-.ordii, it . tin- criitruiil and OS axes of X and // tin- principal
axes of this distribution of matter. It /',. lu the total pr -m. .in<l

A A ;! in^' radii of pQ round the axes of a; and y respet'(i\' ly.

it

1

Boasftinenq has applied this rwult to an interoniing special eaae bearing on
tli.- infliiPiu-i- ..( u,|,-f:,,.,- liiii.luu' in tli. |u..t 1, in c.f baai ophical Mugasinf.

I. IT. II. 17
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then, by a well-known theorem in potentials due to Poisson (see
Minchin's Treatise on Statics, Vol. n., p. 307, 1889) we have approxi-

mately :

This may be written

AV K 2

Now the maximum value possible for the term -=~ v>-2 cos2x is

not greater than unity and AV + K? must be less than the square of the

greatest radius-vector of the area to which the pressure is applied, hence
in writing

. . /maximum radms-vectorywe are at most neglecting only [
-

) of the result.
\ distance from centroid /

Thus in the case of pressure applied to an area the depression at a
distance ten times the maximum radius-vector would be given with
less than 1 p.c. error by (xxviii). It is often much less than this, thus

for uniform pressure over a circular area, the depression at 4 times the

radius is given by (xxviii) with less thun '8 p.c. error.

We may note another point with regard to the above result.

Suppose the total force 7J to be zero; then it does not follow that

P (AV + AV) will be zero, but we see that a system of pressures in

statical equilibrium, if applied to a small region on the surface of the

body will not produce a sensible depression at a small distance from
that region, i.e. the depression diminishes as the inverse cube of the

distance (pp. 118-9).

[1499.] Returning to (xxvi) we can, either by direct expansion or

by an easy application of Legendre's coefficients (see Ferrers' Spherical
Harmonics, Chapter III.), find w for a distribution of pressure

symmetrical round a point of the surface. We should havep =/(p),
if p be the radius -vector, and if pl

be the limiting radius of the area to

which we apply pressure, R the distance from its centre of the point on
the surface at which the depression is w we obtain :

P>R
l-ff" 7 d /1\

2 A? /I 3\ 2 ^4 /I 3 5Y7?5

_._ I At >-/. I 1 i I I if 1 if 1

P<R '

,2 ~3 /i Q\2^r, /I q r\2 rte

(xxix).



1500] I'.nrssiN'ESQ. 251

Boussinesq gives a number of interesting cases of this. For example,
at a great distance from the loaded area, only the early terms of the

second integral are required, and we have

which agrees with (xxvii).
Further the depression wc at the centre of the loaded area comes from

t lit- first term of the 6rst integral and equals

we
= ~

\ p dp ................. (xxix) bis.

P Jet

This shews us that all surface aiiuuli of the same small breadth

whatever be their radii, will when subjected to the same stress per unit

area produce the same central depression.

Boussinesq finds the value of the central depression for p oc p*"
1

,

Po oc p*-
1 -

p"-
1 and p oc (p*

-
p
2

)~* (pp. 1 19-20). The first two cases

corresixmd to distributions of pressure vanishing at the centre and at

tin- edge of the loaded area respectively. For the same total pi-essure

tin- depression in the second case is double that in the first
;
the mean

depression in the second case is, however, only 2- that in the first

(pp. 125-6). On pp. 121-6 Boussinesq gives expressions for the de-

pression at the edge of the loaded area and for the mean depression
over that area.

[1500.] On pp. 126-139 an interesting proposition is proved, and
its relation to a corresponding proposition in the case of a circular

plate is discussed at some length. Consider two pressures p and p
'

applied to the plane face of an infinite elastic solid uniformly round two
circumferences of radii p l

and p,' so that the total loads ^>irp ldp l p and

27rp,Wp,'/>
'

are equal, then by (xxvi) the depression due to the first load

at a point on the second circumference is given by

w

and this is exactly equal to

w = . , 7'..W'/X'W

or t.. tli. depression at the first circumference due to the load on the

srcond, since the total loads are equal. Now suppose tin* load on on<>

riivuiufrivnrr not to be uniformly di.stril.ut.-d, tlini it will produ.v th.

saim- ///"/>, ili-prension round the second riivumffiviu-r wherever it In-

placed. H--IIC.- tli.- in. -an drpivsxjon round the second ciriMiinfen-ni-.-

> i ni -t 1.. the same for the same load on the first circumference, whatever
tin- law <>f distribution 1x5. Hence we conclu.]. t\oo equal loads
d\9tr\l> ltd the perimeters of ttvo concentric circles produce the

at each others
1

circumferences. A precisely
idrnti.-al law hol.l for t \\ , , |,.adi-d .'iivuinl. r, n, ,. , -, ,|,, ,.,it rir \\itli a

172
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circular plate the edge of which is either built-in or supported : see

our Arts. 336 and 1382.

[1501.] Bonssinesq next deals (pp. 130-42) with the case in

which the pressure is uniformly distributed over the loaded area.

We must first notice a method by which the equation (xxvi) may
be easily transformed into an integrable form, when the pressure

varies only with the distance from the centre of the area.

Take the point P at which the depression is to be found outside the

loaded area and let it be the origin of polar coordinates r and
<j>,

< being
measured from the line R from the point P to the centre of the disc.

Then by (xxvi)

Now transforming the variables to p and the angle marked
i^

in

the figure

we easily find :

1-1 /*/'

'"~~^Jo Jo

This may be expressed in the form

Now let the point P lie inside the loaded area, the notation remain-
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ing the same, then for p = to 7?, the integral may be expressed in the

form (xxx), but for p = R to p, a slightly different form is needful.

As before, but taking now the annulus outside R :

wn =

IS

or since it involves only sin3
<f>
we have

1 _ fwf-i fpw = 2-
"

d<t>\
*t* Jo JP=

e have for a point

*- fvr*{c

R

Whence we have for a point inside the loaded area :

/* ...... (xxxi).

See Boussinesq's pp. 113-7.

[1502.] For the case of
/> constant we can throw the above into

the simple forms :

H.-.(xxxii).

Hence, if we be the central depression, we that at the edge of the

loaded area and p = PJ(*pf) we have

irp. pl tcp. p! IT

Thus : (we
- we)/wc = -363 about.

Values of W for other points may ! ..l.taincd directly from (x\\n)
I fr-iin the series-expression in (xxix). Tin- im-an value of tt) o\-r tin-

I'xdrd area or wm ,
is easily found from the second result in (x\\m

i-y
i In: consideration that :

_ 2ir

I v /' -

See BouHsi- rj:. and 1 lo.
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[1503.] It must be noted that a discontinuous change in the

normal pressure occurs at the circumference p = pi, and Boussinesq on

pp. 142-9 undertakes an interesting investigation of the nature of the

surface-stress along this line of discontinuity. From the results (xxv)
we find :

-if
where r3 = fa - X? + (y,

-
y)

2 + ~,

and p is a function of xly ylt or =fi(x1 , y^. With tlie notation of

our Art. 1493 we find:

In the limiting case z = Q
tfl takes the value/! (x + cos x, y

which j has at an infinitely small distance c from a;, y. Noting that

l.

fdq___
I . _2\fi- 3F

we have still for limiting case

1

c sin Y) sin
^TTJO

and this will in general not be zero, if ^ has sensible variations along
the circumference of the circle of infinitely small radius e described

round x, y as centre. For example, if x, y be on the boundary of

a curve the pressure on one side of which is p l
and on the other p.,, we

have, if the axis of y be parallel to the normal to the curve :

1 Pf* 7 (*"
** =-5Z Pi sm \dX + # sin

= -(p>2-Pi).
7T

Similarly we can show that under the conditions just stated : zx 0.

Thus all along the circumference of a circular area (on the

plane surface bounding an infinite elastic solid) to which a

normal pressure p is applied, a radial shearing stress of magnitude

PO/TT would have to be applied. In order to avoid the difficulty of

this shearing stress at points where the pressure suddenly changes
its value, Boussinesq supposes that although the distribution of

pressure over the main part of a loaded area may be any
whatever, still at the edge of the area the pressure decreases

more or less rapidly to zero.



1504] BOUSSINKSg. 255

L'efietd'un tel decroissnm ML .suppose purement local, sur !.> ubaisse-

im-nts WQ produiti uilleurs que tivs piv.s <lu bord, est d'ailleurs totalement

in.siu'iiitiant : vu
<iu'il

n iutroduit ou no supprime qu'une pression totale

il>lc, ne fournissant qu'un potentiel \\ '--'
negligeable aux dis-

tautv.s tini- >. En d'auti*es termes, ce decroisaeinent sujyprime les duscon-

iies qui, sans son existence^ se jrroduiraient sur le lord ; inais il n'a

aucune influence, generate, ou rioblige a modifier aitcune conclusion

concernaut Jen dcplacements produits a des distances sensible^ du contour

de la region d'application (pp. 148-9).
This argument seems quite legitimate.

[1">04.] Pp. 149-158 are occupied with some interesting

special cases of loaded areas on the plane boundary of an otherwise

infinite elastic solid. Let the total load as before be P and its

distribution be given by p0) let wc be the central, we the edge

depression of the area, p l its radius and co its magnitude.
Then Boussinesq finds :

Po

(7 being arbitrary)

(7=1)

-8993

(7=0)

2_

18-27-
-9F

2 "

8-

S-

(we -we)ltoe

576

-061

I 7) /'

The value of w in the Table i
,
or the special wc of our

*7* Pi

In the last case th< dbteiboUon of pressure is so chosen
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that the whole of the loaded area is equally depressed. Since for a
o

uniformly loaded area the mean depression = w (Art. 1502), we see
J7T

that for the same total load the equally depressed area has a slightly
less depression than the mean of the equally loaded area, the ratio of

the two depressions being STT : 32.

On pp. 159-62 Boussinesq extends the case of equal depression to

pressure applied over an elliptic loaded area with principal axes 2a, 26.

He shews that if the pressure be applied according to the law

/>.*"

then the elliptic area will be equally depressed
1

.

[1505.] Pp. 167-81 of the work are occupied, partly, with a

discussion of some problems on the potential due to Beltrami, and

partly with the application of the principle of inversion as in

electricity to obtain the depression due to other distributions of

pressure. One special case of inversion is worked out on pp. 177-8

and on pp. 180-1. Boussinesq points out how a distribution of

pressures may be obtained giving no depression at all outside a

given contour, although the pressures themselves extend to regions

beyond this contour.

[1506.] Pp. 182-9 relate to Cerruti's solution for the case of

any surface stress whatever over the plane boundary of an other-

wise infinite solid. The results are, however, easily obtained by

Boussinesq in terms of the second logarithmic potential : see our

Art. 1488. Boussinesq on pp. 188-9 discusses an interesting

special case which may be just referred to here.

Suppose a single shearing force Sl applied to the surface element du

at the origin. Then referring to our Equations (xv)-(xvii) we have

*
y
= tya = 0, *x = {z log (z

+ r)
-

r}

Hence we find for the depression w at the surface :

The contour and the maximum-slope lines of this surface are obviously

given by systems of circles lying in the plane z = 0, passing through

1 On pp. 162-6 Boussinesq investigates the value of the depression outside the

uniformly depressed area, i.e. in the last case of the above table. He finds :
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the origin and having their i-entivs on tin- axes of x and y respectively.
In front and behind the point of application of the shear there will be

congruent mound and hollow.

[1507.] On pp. 190-201 Boussinesq deals with various forms

of the potential solution which are embraced in those we have

already discussed in our Arts. 14-90-6. He points out that as a

rule the depression produced in the plane surface of an infinite

solid is not proportional to the pressure, i.e. w does not at each

point vary as (z o) ;
and he indicates that for pressures applied

over limited portions of the surface this proportionality cannot hold.

It is easy, however, to find distributions of normal pressure which
will give a depression proportional to that pressure at each point.

Looking back at equation (xv) we find for z = 0, proportional to

efty/efc
3
, and w to d^fdz. Hence if we were to take

<f>
e~

az
\(x1 y),

we should have achieved our object provided V-</>
= 0, or

A solution of this is

X = C cos (mx + ft) cos (my + /?),

provided

Thus, ^-.
-

and we noti that the mean pressure over the plane xy is zero, ami

that tin- etf'rt of this pressure, owing to the factor e"**, gets very
small at distances from the surface which are only a few times the

dimensions of the nvi.in-l.^ within which the surface pressure U
alternately positive and negative. A pressure of this kind seems to

be, however, of purely theoretical interest.

[150s.] Houssincsq next turns to the extremely important

problem ,,f d-'teriiiinini; the stresses when a rigid body of known

shape is pressed with a given force upon an elastic medium
bounded by an infinite plane. The di>eiiN>i,.n under its general or

special aspects occupies pp. 202 ,">:> and 713-9 of the volume

Boussinesq deals on pp. -0'2 lo and 713-15 with the general
statement of the problem. He supposes that the bodies in < m.-iei

are smooth, i.c. * and 7* =0 at the surta< of contact. Next the

total pressure between the bodies is given, and finally if we be

t he central depression we w9 is given over the surface of contact
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Practically we are chiefly concerned with the case in which the
surface of contact is a small area only in the ]>lauc u;//, ami it is easy to

see in this case, that were the elastic body to have even a slight
curvature expressed by z =

<f> (x, y), and the rigid body a form given by
z = \fr(x, y), we should have

) ............... (xxxiii),

or, the same condition as if we had supposed the elastic body plane and
the form of the rigid body given by

z = t(x, y)-<f> (x, y).

Further since the surface of contact is small the part of any convex

body iii contact with the elastic medium may be taken as an elliptic

paraboloid. If A\ and R.2 be its principal radii of curvature, and the

axes of x and y be taken in these directions, we shall have

and in the special case of a plane elastic surface

***^~4rjr
+
|r)

.................. (xxxiv).

It is obviously necessary for the equilibrium of the system that

the resultant pressure should be in the normal to the rigid body at the

origin, or that, if the pressure be due to the weight of that body, its

centroid should lie on the normal. Boussinesq considers on pp. 204-6
the more general case in which the exact orientation of the rigid body in

the position of equilibrium is one of the unknown quantities of the

problem. He points out how the problem breaks up into simpler

problems of which the solution may be obtained, but he does not solve

these problems for any special case.

[1509.] Besides the conditions we have considered in the

previous article, there are certain others to be fulfilled at the

contour of the surface of contact. This contour will itself have to

be determined by the total amount of pressure, and along this at

first undetermined contour we must have zz = 0, or zero pressure.

This condition is discussed at some length by Boussinesq on

pp. 208-10, and the reader is referred to our Art. 1503, as an

indication to the sort of considerations which arise.

[1510.] Turning to various special cases we may note the

following :

Case (a). Tlie rigid body is a solid of revolution, the end of tlie axis

of which is in contoct with tlie plane boundary of an infinite elastic solid.
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The solution of this c:ue is indicated by Boussinesq in a footnote on

pp. liOC-7, and it may bo obtained by aid of formulae due to Beltrami 1

and di.M'u^e.l at some length by Boussinesq on pp. 167-74. These
formulae are the following. Let a circular area be covered with a

MM face density A (p), which is a function only of the distance p from

the centre, then if V(p) be the potential of the area and p l
its radius,

\\ have tor the density, p < pl
:

I d (Pi/ ftdft d [PV(y)ydy\
A(p) = -- =11 ...... (xxxv),

ir*pdp)p V/F-V^./o Jjp^f)
and for the potential at a point in the plane of the area, p > pl

:

d f K (y) y '

/yN
| fxxxvi)

Now by our equation (xxvi) w is the potential due to a distribution

of density (1 -fj)pj(2 TT/X) over the pressed area. Hence we have the

following values for the pressure produced by a depression wQ (p) inside

the circle and for the depression w (p) outside the circle :

__-<
K ...(xxxvii).

It must be remembered (see our Art. 1508) that wc -wv (p) is the

quantity which is a given function ^(p) of p, and that wc will then

have to be determined so that I

'

2-irpj^dp equals the total load 1\. This
Jo

gives us after some changes :

> r
\-TfJ JO

1

(xxxvin).

The last integral can be evaluated if
j/r(p) be known, and thus we

In- found ; y, and "'
(p') can tlirn be ascertained by (xxxvii).

Theae integrals luive been evaluated l.y (Vrruti for the case of a

paraboloid of revolution, or when
.'/(/>)

is of the form Cp*: see pp. 43-4
of the memoir <-it,.l in our Art. 1489.

Case (b). G'enercU Cote. A riyid solid of any tt/uipe it prested

against the plane surface of an infinite elastic solid. By our equation

-ae formulae were first given by Beltraiui in 1881 : see his memoir,
HI dtlU J' inutricke. Memorie del? Accad. delU Scieuxe

togna, Ser. iv., T n j.p. 402-3. Bologna, 1881.
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(xxvi), wv
=
^
-

II'-
'-

,
and thus t0 is the potential due to a surface

distribution
^ -p . Hence we may state the most general problem in

the following manner : The potential V at all points of an area in the

plane of xyis given =t0
>
what is the distribution of density over this

area which would produce this potential? We have the following

equations to solve :

V2 V = 0, for all points in space lying outside the given area
;

j-
=

0, outside the given area for z =
;

and V=wQ within the given area.

Boussinesq shews (p. 223) that the solution for V is unique, and
that the required pressure is that given by :

See his pp. 221-4.

Case (c). Case of a flat rigid disc pressed on the plane surface of
an infinite elastic solid. In this case w must be constant over the

area of the disc, if we suppose the load to be so applied that the face

of the disc remains parallel to the initially unstrained surface of the

elastic solid. V is therefore constant (= w )
over the area covered by

the disc. Hence the law of distribution of load over the area is

precisely the same as that of the electric charge upon the same disc

supposed to be a conductor insulated and charged with electricity

(p. 225). For the case of a loaded elliptic disc we have seen that :

=
~^

-
)"'

(see ur Art - 1504) -

Boussinesq now shews that the depression is given by

l-r,
(xxxix)i

where for points inside the area covered by the disc, the lower limit of

integration v equals zero, while for the points (#, y) outside that area v

is determined by

(See pp. 226-9.)

[1511.] The case of rigid discs pressing upon elastic surfaces

leads Boussinesq on pp. 213-21 to some discussion of the diffi-
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arising from discontinuity at the contour of these discs,

and then to some general remarks on the nature of such discon-

tinuity in a variety of problems in mathematical physics.

The values we have obtained for the pressure at the edges of

circular and elliptic discs shew that, if they remained absolutely

rigid, the pressure at their edges would become infinite. Hence
either the elastic solid would be ruptured at the edge, or the edge
itself would be broken away. Generally of course the varying

pressure over the face of the disc will cause the disc itself to bend.

These remarks seem to throw considerable light upon the pheno-
mena of punching. In particular if we can apply such results

for "infinitely thick plates" to the plates dealt with by Tresca 1

,

we find it intelligible why the portion of an elastic surface under

a punch curves itself to avoid an infinite curvature at the edge of

the punch, and why if the punch be forcibly pressed upon the

sin face, it sets into a concavity under the punch. A network of

lines across the area covered by the punch remains unchanged
after set has been produced ;

this is explained naturally enough

by the concave form taken by the surface beneath the punch :

II -st bon toutefois de remarquer qu'il ne suffirait pas completement,

par lui-meme, & la faire admettre
; car, la region periphrrique e"tant

in ontestablement d'apres la loi de repartition obtenue, beaucoup plus

pressed que le centre, rien ne dit qu'un ecrasement doive se produire,
k aucun moment, dans la region centrale supposee nn'-mr "tre reste'e

plane, ni, par suite, que les caractores de structure qu'ello pivsente
doivent ilisparaitn-. alors que le contour eprouve an contrahv. l-s

alterations profondes (p. 215).

In discussing the general occurrence of discontinuity in mathe-

matical physics Boussinesq refers to discontinuous solution -

obtained by Thomson and Tait and by St Vcnant in the case of

re-entering angles of prisms under torsion (see our Art. 290), by
hi ins. -If in various hydrodynamical problems, by Rankine ami

himself in the case of pulverulent masses (see our Arts. 1613- 1 ."> >

ami by Tresca in the case of the flow of plastic solids (pp. 217-21 >

1

1 ." 1
2.] Case (fl). Cme of any rigid surface pressing at a point of

tynclastic curvature upf< '!
//,///, surface ofan infnite elastic jw/iV.

\ in <nir Art L008, /.' :inl // !. ili- prin.-ipal ralii "1 QUITO

.T. xx., p. 731 M72.
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ture, and P the total pressure in the direction of the normal, we have

by (xxxiv) to determine w? from

w being the potential due to some distribution of density (I -17) p /(2ir/*)

over the area of contact, which we shall assume, pending justification,

to be an ellipse of semi-axes a and b. At the contour of this ellipse

we must have p = Q, to avoid discontinuity. Boussinesq proceeds as

follows (p. 231). He divides the ellipse into a number of concentric,
similar and similarly situated ellipses of semi-axes

, 6, where varies

from to 1. Over each of these ellipses he distributes as a density the

total mass 3P 2d according to the law of electrical distribution on an
insulated elliptic conducting disc. After some slight algebraic changes
he easily finds from the results in our Art. 1510 Case (c), that the

density at x, y, due to one of these discs, will be

p-^-1?V C
a2 62

Integrating from = va^/a
2 + y

2

jb~ to 1, we have for the actual density
of the entire system of discs

Hence we find for the potential of the system

31-7 * / x- ? \ dv
'"

( } '

where the limit of integration v is zero for points inside the ellipse of

contact, and is determined by

.(xlii)M,

for points outside the ellipse of contact.

Comparing (xlii) with (xl) we see that the latter will be satisfied, if:

Wc = ~\ ^l ~n j w = ~

...... (xliii),

Bt

where D =
v/(

2 + v
2

) (//-' \ ,/') .
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Boussinesq shews (pp. 234-5) that there are always unique real

values of a and 6 to be found from the two last of these equations if /?,

and /?2 are positive. He easily demonstrates that :

whence we find :

tlit- integral vanishing for points inside, and its limit v being given by
(xlii) bis for points outside the ellipse.

He further shews that this solution gives continuity in the slope of

the tangent plane to the elastic surface along the boundary of the area

of contact, i.e. along the curve which projects into the ellipse + - 1.

This might have been expected from the fact that pQ
-

by (xli) along
that curve. Thus all the necessary conditions are satisfied by the

solution (xli)-(xliv), and as the solution must be unique (see our Art.

1489,yfoi.) this is the solution sought. Thus we see that the surface

of contact is really limited by an ellipse, the principal axes of which
are tangents to the principal normal sections of the rigid body. The

pressure at any point is proportional to the ordinate through that

point of any ellipsoid having this ellipse for its section by a principal

plane, Further the mean value of t0 within the elliptic area

[= ffv><flxdy/(irab)] is found to be $we or of the constant depression

(see our Equation xxxix) which would be produced by a flat punch
1 in u mini by th- ellipse of contact and subjected to the same normal

pressure (p. 240).

By adding any arbitrary additional pressure distributed over the

ellipse according to the law discussed in Case (c), and therefore giving

only a uniform additional depression over the surface of contact, we
liavr a solution of the important case of a cylindrical punch with any
elliptic cross-section and a face curved to an elliptic paraboloid, thr

punch In-ill^ subjected to any arhitnn piv*smv along its axis p< r|en-
dit -ular to the surface.

[1513.] It only remains to indicate how a and b may be deter-
"

/. 1
*

dv
..... ' lJ = 1

<

thru {I/a -RJR^ an. I if E ami /' ! tin- .-on,|,l,-t.- rllipti.-

of tli. first and second orders, wo have to find e from :

S--
M

.,
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Boussinesq expands the right-hand side in powers of e and shews

e
4

that if e be the usually small quantity, + higher powers of e, then :

For values of RzjKl
< *1, we may take very approximately e - 0.

For other values numerical tables could easily be prepared from

Legendre's Tables by aid of (xlv). For e to 1, e passes from to 1,

or b/a varies from the to the J power of RJR^ To find a and
ft,

we have only to remark that -
,
or

Vf*
,
is a known quantity;a 6

(
1

17) .TO/I!

but we have a? = a (F- E)/e
2
,
which accordingly determines a and

therefore b, since e and with it F and E are known. Boussinesq
shews that very approximately :

< HI)'-
e
4

where e' is of the form
;
+ ...

128

Approximately therefore when ^ and J?2 are not too widely different

we may determine a and b from :

10(1-77)
o (

Ill\X 1 5 J U I +*l\a' PA 1
3 U ~U and -=

/T

See pp. 241-8.

On pp. 249-55 Boussinesq proves certain properties of the potential

having relation to the distribution of electricity on elliptic discs and

ellipsoids, but with no special reference to elastic problems.

[1514.] On pp. 715-9 of his volume Boussinesq makes an

extension of the above results to the case of two smooth elastic

bodies pressed normally against each other at any point. He
remarks that, when a rigid body of synclastic curvature presses

against an elastic body also of synclastic curvature the problem to

be solved is the same as when a rigid paraboloid of reduced form

(see our Art. 1508) presses upon a plane elastic surface. This

auxiliary paraboloid produces in the plane an indent of definite

elliptic contour and with a definite pressure at each point given by

(xli). If, therefore, when two elastic surfaces of synclastic curvature

press against each other, we choose two auxiliary rigid paraboloids

which under the same total pressures produce in planes surfaces of
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the same materials respectively as the two elastic bodies indents

of the same elliptic contours, there will be the same normal

pressures at corresponding points in the two cases, and these

normal pressures will be the normal pressures for the unreduced

-nrfaces. Accordingly to solve the problem we have only to

choose two auxiliary rigid paraboloids giving the same elliptic

contours of contact with planes, and, before reduction, the same
surface of synclastic curvature as the surface of contact of the two

elastic bodies. Taking the common normal to these bodies as axis

of z, we should satisfy all conditions by taking the surface of

contact of the form :

z = a^a? + 2a&y -f "

The constants <;,. u.., (t
:]
must then be determined from the

three conditions involved in the elliptic areas of contact having
the same position and dimensions of principal axes for both

bodies. For in this case, since the pressures as given by (xli) will

be the same for the two solids, and since the shearing stre>

IP zero at the surface of contact, all the conditions of the problem
will be fulfilled.

[1">1.").] Boussinesq remarks, p. 719, that this important

property of the form of the elementary surface of contact of two

elastic bodies pressed normally against each other was first recog-

niscd by Hertz in his memoir: Ueber die Berulirung festei-

elastischer Korper, Journal fur...Mathem utilc, Bd. xcn. S. 156-71.

Berlin, 1882. Hertz recognised that the laws of this contact arc

approximately true for the impact of smooth elastic bodi< s and

applied it especially to the case of the impact of n\> solid sphn

Boussinesq discusses Hertz's problem at length, and \\v shall

run-id, i it In !(', as it belongs essentially to the theory of the

application of the potential to elastic problem <.

[1">1G.] Let r, and r, bo the radii of the two spheres, and /' th<

i thoir spherical surface of contact considered positive \\hrn

it is of the same sign as rt and opposite to r,. Tln-n. if /.',
! th<-

radius of curvature at the vertex of tin- lii-t auxiliary riirid j-ar..!...]..!.!

which uinl.T tin* same pressure would makr tin- >am.- .-niral d.
|

10 area of contact in a planr Loundary as th.it m..,!,- in tin-

I /r,
= !/#!-!//.

I. ft IT. II. 18
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Making a = b in (xliii) and (xliv) we easily find :

^ =
|

(1

^r^.
and ,

= /*,.

Hence a'/JJ,
= ?ILl3)/>,

O/A

Similarly for the second sphere, if 7?2 correspond to 7^ ,
and i/ and

/n'

to
17
and ft,

,
and ^ =

,

8 /A 8/x

Tims we find, if

1 -w , 1 rl

t i
and &=-i

that

But

so that we have ,^ +
-J

= ^
(-

-
i)

,

or
"i + 2V2 fj

'

for the special case when the spheres are of the same elastic material.

The total approach of the centres of the two spheres and the

radius of the circle of contact are given by

<
xhx

>-

It follows from these equations that P x
,
or the pressure varies

as the square root of the cube of the approach of the centres.

The strains will be the greatest at the centre of the area of contact,on
where we find for the normal squeezes the values . TT - and

4
(A.

+
/M) TTrt

2

3P
, respectively, while the lateral squeezes are iust half

4 (A + //) 7T
2

these values : see Lame and Clapeyron's result in our Art. 1493 and

equation (xli) of our Art. 1512.

[1517.] To justify the application of these formulae to the

collision of two spheres, Boussinesq makes (p. 717) the following
remarks :
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Quand le rapprochement des deux spheres est du a un choc, les

seules deformations j>erceptibles out lieu pres do la surface de contact,
dans des parties clont la masse totale et les inerties sont insignifiantes,
en egard a leurs tensions. Aiusi 1'equilibre inteYieur re"gi par les

formules (in Art. 1516) y existe sensiblement a tout instant du choc.

Le systeme elastique de deux spheres, ou plus generalement de deux

corps contigus a formes massives et arrondies, est done de ceux ou la

force vive se trouve separee presque entierement de la force de ressort, de

maniere a n'en troubler que peu les lois ; et la reaction mutuelle P y
iiirme a 1'etat de mouvement, simple fonction du rapprochement $

des parties en presence non encore de"fonnees sensiblement. C'est bien

jue supix)se la theorio oilmentaire du choc direct des corps elastiques,
confirmee par 1'experience dans ce cas de corps massifs.

It must be remarked that this assumption supposes the relative

velocity of rebound equal to the relative velocity of impact, or

Newton's coefficient of restitution e 1. This certainly does not

hold in the case of large masses of metal, where e is more nearly
zero. The assumption supposes no energy to be lost in the form of

elastic vibrations and of course none in the form of permanent

changes of shape : see our Arts. 209-10 and 217.

Following Hertz and Boussinesq, we have if TO, and w bo tho

masses of the spheres :

aiJL*

if =! + -:

whence

'1 '2

32 m, + ma /

& is tin- niMxiiiMiin approach.
If v be the velocity of impact we have to dctn-mine

,
:

32^ + *!, ft-* ft

"15 m.TO, 1 +

II* IK. tli. in ixiiiiutn \.iln.- of the radius of the area of contact, a
,

is given i.\

182
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The semi-duration r of the impact is easily found from

According to Hertz the definite integral = 1-4716, nearly, whence we
have :

T= 1-4716 (

The results (1)
and (li) for the radius of the area of contact :md

for the semi-duration of the impact ought to be capable of easy

experimental investigation.
For the impact of a sphere (radius r) against a perfectly rigid

plane, we have only to put in the above results m,=mo, i
=

2 , ft
=

2/r
and v equal to twice the velocity of impact.

[1518.] The sixth section of Boussinesq's Treatise occupies

pp. 256-75, and discusses general properties of the ordinary and

logarithmic potentials. Boussinesq first shews that the ordinary

potential and the first logarithmic potential with three variables

are finite even when the subjects of integration become infinite

at a point, or along a part of a line. He then proceeds to prove
a general theorem (pp. 260-5) by aid of which we can easily

evaluate the differentials of these potentials with regard to #, y, z

for a point occupied by matter. This leads him to a demonstration

of Poisson's theorem and various allied theorems for the direct

and logarithmic potentials. Thus, if V, U and -^ be the direct,

ordinary (or inverse) and first logarithmic potentials (as in

Art. 1488) we must replace the results of that article for points

occupied by
"
potentiating matter

"
by :

r=
87rp, V~U =

4-7T/9,
V 2

\Jr
= 47rl pdz (Hi).

/

[1519.] The following section is entitled: jSquilibre dtlas-

ticitd d'un solide indefini, sollicitd dans une etendue finie par des

forces exte'rieures quelconques (pp. 276-95).

In a footnote on p. 281 Boussinesq gives the following general
solution of the equations of isotropic elasticity when written in the

form of type :
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ie. when A" is the body-force per unit volume :

/I

Further we have: 6 = r-^ V //
X +

/x

These solutions are easily seen to satisfy the body-shift equations.

l'.ou-*>inesi| does not notice that they had been previously given by Sir W.
Thomson: see our Chapter XIV. He has in the previous paragraphs
of the section discussed various special cases of them. These solutions

oi respond to the case of an infinite elastic medium fixed at infinity
under a system of body-forces applied to a finite volume, or, what is

pra -tieally the same thing, to the case of a finite elastic body with

a fixed boundary when body-force is applied to a very small element
of it at considerable distance from the boundary. Since the solution

is in terms of potentials, which together with their differentials vanish

at an infinite distance from the field of force, the condition as to the

fixed boundary is satisfied.

Case (a). Take X= Y= 0, but Z not zero.

Then by (liii) if C be the direct potential due to a distribution of

matter of density 2T/(8ir/i), dw being an element of volume,

'-/si*.
X-f/x d(frZdv)and we have //= *-,

87T/A (X + 2/x) dz

with the follow m- type of solution :

X + /A tP(frZdm) X+_/A cP(JrJ8Tcfar)

8*7* (X + 2/n) -A/-/.
'

..(X + 2/i) dydz

X-f/x d*(SrZdm)~
_ )

*

Obviously the addition of thivr sueli sprriiil solutions gives us tin-

most general solution for all the body forces finite. Ilefore stating thU

general solution, w.- mu-,t n.it" (hut ", r, /r.,i,- thr shifts at the point

*, //, :, and that % in the potential integral is the t'orre at the point

where r = Vjfc-a:,)"
"1 '/- d

In order to bear this in mind we shall write for /.< /., when

We then find for the general solution *1.

of the type :
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Cane (b).

<lr

e/tzr,

4ir(X

r

This solution is really due to Sir W. Thomson: see our Chapter XIV.
Boussiuesq discusses various modes of reaching it on pp. 284-91 of his

Treatise.

Case (c). Consider a single force Z
1 applied to a small volume cliff

which may be taken at the origin. We tind that, if U denote the shift

l>erpendiciilar to the force at a point distant r from its point of

application, r making an angle a with the positive direction of the

force :

327r/n(l-
(7 -Srj + COS 2a),

cosa

From these shifts the stresses can easily be found and the solution

analysed after the method of our Art. 1497: see Boussinesq's pp. 81-92

and 291-5.

Case (d). Take X= Y = Z = 0, A=B = 0, and C a function for

which V2V2(7= 0, then we have as a solution, if

X + /x
-

w =

where

Further
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Since satisfies an filiation of thvfourf/t order Boussinesq suggests
that it might be possible to tintl a value of

<f>,
for which = ^ = 0, or

an<] 7^ // a given function of a; and y when s = + a. Thus we should

solve the problem of an infinite plate of any thickness subjected to

auy given system of purely normal loading on its faces. This problem
had U-eii solved by Lame and Clapeyron by aid of quadruple integrals,
but their solution does not really exhibit any laws of the phenomena
shewn by such a plate (pp. 278-281) : see our Arts. 1020*-21*.

[1520.] We now pass to the last section of the text of

Boussini 'S'l's Treatise. This is entitled: Sur les perturbations
locales dans la theorie de I'e'lasticite, et sur la possibilite, pour le

geovietre, de remphicer des forces donnees, sexerqant sur tine petite

ltrtie d'uti solide, par d'autres forces statiqueinent e^uivalentes,

OffpUquM a, la menie region tres petite en tous sens. It occupies

pp. 296-318 and deals with the important principle of the

elastic equivalence of statically equipollent systems of loading at

small distances from the loaded element of surface. We have

fivcpieiitly had occasion to refer to this principle, remarking how it

is practically assumed in all the usual solutions for torsion, llrxuiv

and even extension, and appealing to Saint-Venant's experimental

arguments in favour of it : see our Arts. 8, 9, 21, etc.

The principle to be demonstrated is stated by Boussinesq in

tin following words (p. 298):

Des forces ext^rieures, qui se font ecjuilibre sur un solide elastiqur
ct dont les points d'application se trouvent tous a rinterieur (Tune

sphere donnee, ne produisent pas de deformations sensibles a des

distances de cette sphere qui sont d'une certaine grandeur par rapport a

son rayon.

There are two classes of external forces to be consider* <1.

namely body- and surface-forces.

fl.")21.] /foe///-Forces. Case (i). Let there be two parallel and

.|.pi>ite t'"i--cH %idw and Z^~, and let c be th- Between

their points of application, supposed small. Let the first be supposed
to act at the origin, and let t omdinates r, a determine the

position of any point with regard to it
;
but let the second act at the

0, 0, c on the axis of z, and let ,
,

,' U tbe coordinates of a point
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with regard to 0, 0, c
1

. Then for points not in the immediate neigh-
bourhood of the origin we have, if n be any integer:

= M + cos a
J

,
cos a' = cos a - - sin3 a, sin a' = sin a + ^ i Sa-

lience by aid of (Ivi) we easily tind, U and w being the radial and

axial shifts :

^
1-3 cos2 a .._ Zjfsdm 1-3 cos2 a .~ - ~ - ~

l-3cos2
a-2(l-277)W = . -U cos a

1 OTiyx, (
1

77)
r

The stresses are easily obtained from these values of the shifts and

obviously vary inversely as r3
,

or: tlie, stresses decrease inversely as

tlie cube of the distance from tlie centre of the region of perturbation :

compare our Art. 1487, (c),

Case (ii).
Let there be two parallel forces Z^dw and - Z^dw acting

at the points 0, 0, and c, 0, or a couple of moment C cZ^fa.
We have then to consider the influence of a couple of small arm applied
to an infinitely great elastic solid. Let ft be the angle U makes with

the plane of the couple, and let V be the shift tending to increase ft and

perpendicular to both U and w
;
then we find from (Ivi) by a method

similar to that of Case (i),

TT C cos a cos ft . C cos a sin ft

}

U= - r - IT-- (1-3 sin2

a), V= -
,- r, x

167r/x,(l -r]) T 107r/x(l-r/)

C sin a cos B . ,W = (O 4:77

\(}TTfjL (1 77)
r

C 3sin2acos/3

We see that the stresses produced by such a couple again decrease

inversely as the cube of the distance from the sphere of perturbation

(pp. 303-4).
The results of these two cases compared with those of our Art. 1441

shew us that the influence of such body-forces in an infinite elastic

medium does not produce stresses which decrease with the distance

anything like so rapidly as in the case of bodies having one or two
dimensions small and subjected to surface loading with a zero statical

resultant. To such bodies Boussinesq now turns.

1 The two forces are clearly pushing and not pulling with the sign we have
chosen for Zj.
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[1522.] Surface-Forces. Boussinesq points out that in the

case of surface-forces we may expect a solution involving expo-
nentials with negative indices and refers to the problem discussed

in our Art. 1507 as suggesting this. The earliest solution for a

system of forces in equilibrium on the edge of a plate is due to

Thomson and Tait !

,
and somewhat later a more complete solution

has been given by Maurice LeVy*: see our Arts. 397 and 1441.

Boussinesq discusses the work of these authors on pp. 306-18,
and we will indicate the general lines of his investigation here.

Consider a plane plate whose faces are given by z and z a,

and let it be bounded laterally by any cylinder whose generators are

parallel to the axis of z. We shall suppose the radius of curvature

of this cylinder at any generator to be very large as compared
with tin- thickness of the plate a, so that the tangent plane to the

cylinder at any generator may be taken to coincide with the

boundary of the plate for a distance considerably greater than a.

This tangent plane will be taken as the plane of yz, the gum rah. i

of the cylinder being taken as axis of z, and y being the tangent
to the contour of the lower face of the plate. To the faces of the

plate we shall suppose no load applied, or

(**,
7x

t 1^)
= 0, for z = and z = a.

On the lateral boundary of the plate, we have the stresses ?,

*t and
,
which it is proposed to analyse, subject to the condition

that their mean values from z = to z = a shall be zero, or that

the surface load has a zero statical resultant.

A solution of the body-shift equations suitable to this case is

by

therefore 0= 0, where ^ is a function satisfying tin- r<|ii;iti<>n

e we take with Le"vy

t -a+to(*,?)"
-

where n IK an integer; then the comlr the faces of the plate

' lYwtfN on .Vnfiir.i/ /'/,//<..,,,/,,/. ^ 7M
* .7 nathtmatiqutt. T. in., pp. 21U-806. Pans, 1877.
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are clearly satisfied, and further the mean values of the stresses over

the lateral boundary will also be zero. We must have

as an equation to determine <.
For the stresses over x = 0, we have :

a-d>,.\ mrz
-
,-2 )

cos -
dy~ /3_ a

^ /mr
<f>H\ . mrz=

/m2 (

--~
)

sin
\a dy Jx^ a

(lix).

dy

Now these equations will enable us to give w any value we ph
along a generator from z = to z - a, that is to say they allow us to

select at our will the shearing stresses on the edge of the plate which

produce a torsional couple M round the normal to the plate. They
further allow of this couple or system of shearing forces varying from

generator to generator, since < n is also an undetermined function of y.

[1523.] If we take ^n independent of y, we have and both

zero and we have Thomson and Tait's solution for a distribution of

shearing stress along the edge of a plate parallel to the contour of the

face and the same along each generator.
In this case (Iviii) gives us

nnx
a

and therefore for the given distribution of shearing stress over x = :

mrz
-7T-COS
of a

If Ty = \(z) be the given distribution, we find at once by Fourier's

series :

2 a
. . mrz , .

The only finite stresses will then be :

mrz
a cos

a

. mrz
a sin .

Thomson and Tait have shewn (Treatise on Natural Philosophy,

729) that for x=2a, or at a distance equal to twice the thickness
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from tin- nl^'r of the plate, tlic values of tin-si- stresses are only about
002 of their values at the edge, or we see that the local perturbation
has small influence at slight distances from the edge, supi>osiiig the

distribution of shearing stress to be the same along every generator of

the bounding cylinder. See our Arts. 1440-1.

[1524.] Returning to Levy's more general solution, we notice as

before indicated that :

<&= o.
Jo

Further we have for the moment offlexure M' round the tangent to

the contour of the face z - 0, and for the itwnient of torsion M about the

normal to that contour :

= i

a

^zdz =
J \dxdy

'

The total shearing action F on the edge parallel to a generator

per unit length of rim is given by

-coswr).

But by (Iviii) we may write

1 1 nee, if 8 be an element of the contour of the edge of the plate,
we have, since ds = dy:

Now in this second approximation < will dei>end iqwn y, but if t/te

variation of t/te edge stresses with y be //, it is dear that although
we do not as in Thomson and Tait's first approximation take </< N/Sy

zero, still -* will be small as compared with "?"
,
and

' *
as compared

with <. Hence we see from (1\) that .I/' the moment of flexun

is negligible as compan-d with M the momnit. of torsion, anl from

(Ixi) that very approximately :
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Since in this case the magnitude of the shifts and stresses in

the material of the plate will decrease as we pass from the edge at

least as rapidly as in the first approximation (Art. 1523), m-

conclude with Boussinesq that : If the edge of a thin plate be

subjected to shearing forces F perpendicular to the faces, and to

torsional couples M round normals to tlie edge, the relation (Ixii)

holding between them, then these actions neutralise each other at a

small distance from the contour. In other words torsional couples
M and shearing forces dM/ds perpendicular to the faces produce
the same effects at a very small distance from the edge of the plate

(p. 313).

*

This is Thomson and Tait's reconciliation of the Kirchhoff and

Poisson boundary-conditions for thin plates. It was first given by
them in 1867 and independently by Boussinesq in 1871 : see our

Arts. 488*, 394, 1438 and 1440. The above investigation shews

very clearly the nature of the local action at the edge of the

plate and measures the area over which that action is sensibly

spread.

Boussinesq concludes his discussion by remarking that it does

not seem probable that the local perturbations which present
themselves in other cases, in which the principle of the elastic

equivalence of statically equipollent loads is applied, will allow of

being investigated with the same ease as in this particular case

of the boundary conditions at the edge of a thin plate (pp. 317-8).

[1525.] The remainder of Boussinesq's volume is occupied
with Notes complementaires, several of which are concerned with

results of great value for the theory of elasticity. We will briefly

refer to those of importance for the history of our subject.

[1526.] Note I. (pp. 318-56) deals with a potential of four variables,

or what Boussinesq terms a spherical potential. It contains some

interesting results for the theory of potentials, but its only value for

elasticity is the integration of the equations for the vibration of an

isotropic elastic medium (pp. 351-6). The solution takes the form

previously given by Stokes : see our Arts. 126875. The substance of

this Note appeared in the Comptes rendus, T. xciv. pp. 1465-8 and

1648-50; T. xcv. pp. 479-82. Paris, 1882.

[1527.] Note II. (pp. 357-664) deals with a new method of

integrating an important class of partial differential equations, and with

applications of the method to elastic and other problems. Portions of this
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Note were published in the Comptes rendtts, T. xciv. pp. 33-6, 71-4,
1-J7-30, :>M-7, 1044-7, 1505-8; T. xcv. pp. 123-5; T. xcvn. pp.
i: I 7, pp. 843-4, 897-900, 1131-2. Paris, 1882 and 1883.

5i I. (pp. 357-403, 652-5) is occupied with a method of

integrating the differential equation

by means of definite integrals of arbitrary functions. The equation
is obviously an extremely general one and the solution admits of being
modified so as to suit various types of " initial conditions." The results

can be applied to a great variety of physical problems, of which for our
nt purposes it suffices to note the transverse vibrations of bars and

plates. Space does not admit of our reproducing in general outline

Boussinesq's suggestive analysis and conclusions, but some of his results

will be indicated in our discussion of his application of them to the

ial elastic problems with which we are more closely concerned.

II (pp. 404-34) applies the method to the theory of heat and to

thr friction of fluids; III. (pp. 435-577, 655-64) deals with elastic

problems; while IV. (pp. 578-651) discusses applications of the

solutions obtained to the theory of liquid waves. It is 111., therefore,
with which we shall be occupied in the following articles.

[1529.] The first problem dealt with by Boussinesq is that of

a uniform rod or thin prism, the central line of which (coinciding
with the axis of x) is infinitely extended from the origin in the

positive direction. Any forces are supposed to act on the extremity
x = 0, provided they cause only transverse vibrations in a principal

plane of inert i.-i of the prism. Initially the rod is supposed at

throughout its entire length.

Tli i-i|u:itioiis tor thr motion of such a rod are given with a slight lv

notation in our Arts. 343-5, and an- tin- follow ii:

/
>/
nation for transverse shift w:

u IMTO o* = EJIp in the notation of our work.

r'urfli.T, // for * = -oo
, and to = for a:-ao \\\\\,\\

Tin- conditions at # = may bo of the following t\\

(a) Geometrical constraint varying with the t

w /'/. dw/dx^F^at), for .r
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(b) Total shear and thefiexural couple varying with the time, i.e.

d^w/dx
3 = K F (at), d2

w/dx* = - K^ (at) for x = 0,

where K= \l(Ev>) and JST,
=

l/(tfa>*
2

).

Boussinesq takes instead of these forms the more general ones

d*w/dx* = K{F(at)
-
w}, d'

2

w/dx* = K, [dw/dx
- F, (at)},

which he considers might be realised when the definite movements F(at)
and F

l (at) are communicated to the end of the bar by means of springs

(par rintermediaire d'un ressort et dun encastrement elastique, p. 437).

(c) Infinitely long bar carrying a load M at its centre, x = 0.

dw/dx = 0, and \M~ = -E^ + \F(at), for x=0,

where F (at) is the force exerted at time t on M (pp. 481-491). On pp.
438-9 Boussinesq demonstrates the uniqueness of the solution for cases

(a) and (b).

[1530.] The solution of the above equations is obtained in tho

following manner (pp. 360-8, etc.) :

Consider the quantity

d<t> (" //A ,,( i? \sdcwehave

.

Similarly g =
/
>Q f(^)

^ .............. (iii),

where a" = 8/a.
We may evidently drop the dashes in a and a" in

(ii)
and

(iii),
and

the law of the successive differentials is then obvious.

The above investigation depends for its exactness on the limits being
no functions of s, otherwise we should have to introduce special terms

depending on the differentiation of the limits. We can get over this

difficulty, however, by taking the limits 1/e and es for a instead of GO

and 0, where is a vanishingly small quantity. The limits for a will

then be es and 1/e, for a", 1/e and 8 and so on. Differentiating with regard
to s the special term introduced by the limit differentiation will be
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for the first differentiation. Hence we must have

279

Similarly, for the second differentiation :

and for the third,

and so on, the law followed by these products being clear. From the

above results we can easily deduce a solution of the differential

equation :

"

,

*"
-Q

da*
~

Aamme

thenasin(iii):

Hence, if we take $ ( -\ = coa^ or si"
.ra

we ^ave a

of the equation.

Noting the interchangeable nature of - and
^ t we see that

is also a solution.

Thus finally we have

10 -

or,

(p,
;

I |'oints out that for the special casr of a rod infinite j n

one diroction only, v !i-
u].|.-i- sj^n. :uid liaviy"( GO

) ".in

o?.|.-r U) saii-ty tin- M.iiililions ilmt // n |.,r t = oo wili any value

/. \\iili.niN \:iln- i f i

pp. 440-1). Fiiriln-r d\ ) \\ill
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hold, since
i/r

is a sine or cosine, if f(at) and its differentials be

supix)sed finite for all values of t.

[1531.] We can now easily satisfy the special terminal conditions

of our Art. 1529. We may write w in the form :

~2^)
sin l

da ......
<
vii

)'

where we must remember that :

f00 a2
T
30

a-
I cos-da= I sin-da^^/Tr ............ (viii).

Case (a). When w = F(at) and dw/dx = F
l (at) for a = 0, we take

only/2 and/,, or Pu* :

Case (b). When &w/da? = KF (at), cFw/do? = - K,F, (at) for x = 0,

we take only /j and /, or put :

(p. 444).

Here>
' ^'

(
a<

>
= FM and

r^ i fat (Pw
Hence ^- J () = \ F(at)dt = ^\ ^ eft the total shearing

impulsive force applied to the end aj = of the bar up to time t.

Similarly F{~
1

(at)
= total flexural impulsive couple applied up to

the time t. (p. 447.)

Case (c) : see our Art. 1539.

[1532.] Two additional cases (d) and (e) are considered by
Boussinesq on pp. 445-6. They are the following :

Case (d). When x = 0, let w = F (at) and d*w/da? = K^ (at), then :

\F,
i^ -

^J (cos ^
- sin

^)Jc?a
(xi).
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Case (e). When z = 0, let d*tD/dx>
= KF (at) and dw/dx = F, (at) t

,**then :

[
1

~>.'J3.] Boussinesq now deals with special subcases of these results

(pp. 448-9).

Subcase (/). Suppose the bar to be continuous in both directions
but all shifts symmetrical with regard to x = 0, then we must ha\e

dw/dx =*Q at x = for all values of t.

Take a*, = a* - ^-2 or * -
"

as the case may be. We have from (ix),

if w = F (at) for x = :

wm *
. ri

(xii), if d'w/efo
3 = ^/^ (a/) for a: = :

^T ft [ V a? -\KF-* (aid dtt

Sr J.. L
COS

4V(7-0
+ 8m

4a(^d t

Similarly li-Mis-incs.) ti--at* (Subcase (y)) the problem whon the

couple vanishes at .r = 0, ie. cPw/tfa?
= Q, wliilr riihrr 10 Of

for a; = are arbitrary functions of the time
;
and (Subcase (/<))

\\Ji.-n tin- i-nd a; = 0is pivoted, i.e. w = G whil- cither <hr >!. or </ // db

f-. i- as=. are arbitrary functions of the time. The read, r will find it

easy to write down the integral solutions in these cases as w. lu\.

I..IM- f,,r Subcase (/).

<*ase
(i). The particular problem of a bar infinitely long in

one dinrtion to which during a very short interval (<--Tto<-r)a
definite iiirliiiatimi ^ to its unstrained central line is given at u pivoted
t'-i -niinal. is diMOMed at considerable length on pp. 449-56. H"

tin- tollnu inu solution :

2a .

sin ^-
3?

r be very large AH compared \\ith , i.e. if n ronsiderabli-
I ( f f

'1 of tim B the inclination was ui\en and it' tin-

point (Xnuridered '" not at an immensely gre:r HIOJ = 0:

of
,

ict 4at

\ I IT II. 1!)
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The solution obtained in this as in other cases of the transverse

vibrations of a rod differs very considerably from the usual type of

wave-motion :

la barre dlastique ne transmet le mouvement transversal qu'en le dis-

sdminant et le rendant insensible, contrairement <\ ce qui arrive pour le

mouvenient longitudinal, rdgi, comme on sait, par 1'equation de d'Alerubert (ou
des cordes vibrantes), laquelle exprime line transmission intdgrale, sans

alteration, c'est-a-dire sans condensation ni dispersion (p. 456).

[1534.] Boussinesq next deals (pp. 456-63) with the case in which

the initial shifts and speeds are given at each point of an infinitely long
bar. He finds a solution corresponding in form to those obtained by
Fourier and Poisson for similar cases (see our Arts. 207-11 and 425),

namely :

w
If00 _
-,~ I [F (x + 2ajat) (sin a

2 + cos a5

V27T

Fl (x + 2ajat) (sin a
2 - cos a2

)] da,

where w F (x), dw/dt
= aF" (x) when t = 0. Fourier in his Theorie

analytique de la chaleur, 411-12, Boussinesq states, had obtained this

result for the transverse vibrations of a bar for the case of F
l (x)

=
;

but I think Fourier had really obtained a more general solution : see

our Arts. 207-11 and 1462.

For the special case of Fl (x)
= Q, and F(x)=Q except for a small

length dxl of the bar about x
1
we easily find by changing the variable of

integration to a^ and writing F (jCj)
dxl

= dq :

do ( . (x^-xf (xi-w = -
(sin

- + cos -( .

(si
\

which gives the displacement at time t due to a small displacement
at xl .

[1535.] The exact limits within which solutions of the above type
are legitimate are discussed by Boussinesq at some length, not only for

the case of the rod, but for the infinitely extended elastic plate. In
the latter case the discussion occupies pp. 464-80. The evaluation of

the integrals involved is treated by a somewhat complex method. An
error on p. 465 in the determination of the quantity S is corrected in

the memoir referred to in our Art. 1462 : see p. 643 of the memoir.
The most important results of Boussinesq's present discussion can,

however, be deduced from the conclusion of that article.

Let us consider the case where a definite movement is given at the

origin to the infinite plate, everything being symmetrical round the

origin. Further, let the initial velocities be zero, orj\ of Art. 1462 be

zero. We easily find that when a definite shift w =/ is given at time
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t - to a small area a- at the origin, then the shift w at distance r from

the origin at time t :

Hence transferring the epoch to /,, writing ^ (,) dt^ =f<r/(8b) and taking
the effects of all shifts from t

t

= oo to t, we have :

Now change the variable from ^ to where

=*/{(-,)},
then we find

(j>. 470) :

'I'll is may be shewn directly to satisfy the shift-equation for the

transverse vibrations of a plate, i.e. :

(Ptoldt* + b*V1V*w = ..................... (xvii),

where in this case

_ d1
1 rf

V
=d? +

-rTr'

See pp. 472-5.
When r = 0, we have from (xvi) w =

\f/(t).
We have thus found

a solution giving an arbitrary displacement at the origin at each

instant of time. We see further that if we take
if/

so that ^ (- oo
)
= 0,

we have w = for t = - oo whatever be r, and also for r = oo whatever
be t (p. 470). It remains to shew that dw/dr = Q for r = 0, in order

that then- may not be an abrupt change of curvature at the origin.
This is investigated by Boussinesq on pp. 471-2. The result is not

dir.-etly obvious on differentiation of w, because the subject of integra-
l>ecomes infinite at one of the limits.

[1536.] The equation (xvi) also solves the case of given normal

impulses applied to the plate (thickness 2c and density p) at the origin
of coordinates.

This problem requires a solution of tin- rquati-in (xvii) subject to

the conditions 10 = for / = oo and for r x, <tw/dr = Q for r

(all these we have stated are satisfied by (xvi)), and further the total

shear
1 round a circumference of radius r, or 2p&

3 x 2wr -.
,
must be

a given function F(t) of the time for r - 0.

By differentiating (xvi) and rearranging we find

1 Tin . follows easily from the value of /{'. given in our Art. 898, remembering
fc=//ea

/(3p).

ID-2
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This gives for r = 0, F (t)
=

Ifapbif/' (t),
so that

\j/(t)
is fully determined

and the problem accordingly solved.

Since dwjdt for r = is equal to
\f/' (), we find at once

or the speed of the disturbed centre is always proportional to the

disturbing force. It follows that the shift of this centre is at each

instant proportional to the total impulse up to that instant. On
pp. 477-80 Boussinesq draws a number of interesting conclusions with

regard to the equation (xvi).

[1537.] The next section (pp. 480-505) of Boussinesq's
Treatise is of special interest. It is entitled : Probleme de la

resistance dynamique des barres et des plaques, notamment de leur

resistance an choc, traite par les memes proce'de's : extension d'une

loi de Young au cas du choc transversal.

We shall deal briefly with several cases discussed by Boussinesq.

Case (i). Consider a bar of infinite length in one direction the

general expression for the shift of which, when subjected to any kind of

action at the end .r = 0, is given by equation (vii) of our Art. 1531.

We easily deduce the following system of differentials at the origin,

remembering results
(i)

to
(iii)

of our Art. 1530:

"o = y* {/a (o +/4 (>} + r/i (
-

j
2

) <*,
Jo

(dw/dt) =
I
Vi {/' (at) +/4

'

(at)} + a
jT/i'

(< - JO^

(dw/dx). = - J V^ {/, (at) -/2 (at)}
- ^ f.; (at

- Ja
2

) rfa,

h

4* {/; (at) -// (<)}
- T/,' (a<

-
Ja

2

) rfa,

1 V^ {// (at) +/,' (<)} +
o
/4

"
(a<

- la2

)
da.

Now if (dw/dt)
= for all values of

,
we must have

/,=/ and /,'
=

0,

whence we find at once

Similarly we deduce, if (d*w/da?)e = for all values of t\

(<Iw/dt)n
= a(d?w/dx*) lt

.

Now (dw/dt)^ is the velocity V taken by the bar at the origin, and
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if h be the distance of the 'extreme fibre
1

from the neutral axis, and s

the corresponding stretch, we have 8 = h((Pw/d3?\> at the origin, or

n-infiiil.fi ing the value of a :

F = fi x s * ........................... xix

\\hfiv 12 is tin- velocity of longitudinal waves of sound (= \JEjp).
In the case of a circular section //*

=
,
of a rectangular section

K/h=l/J3, etc.

At the instant of a blow, for example, a blow at the centre of

a rod infinitely long in both directions
(i.e.

when (dw/dx)9
= 0) ,

V will

U tlif velocity of the impinging body, hence if s be the maximum sate

st if toh of the material all velocities greater than that given by (xix)
will damage the material locally.

It is not however necessary to consider the bar infinitely long ;
the

above results will still hold in the first instant of an impact and before

there is time for reflection of the disturbance from lixcd or supported
iids. We have appealed to this result in our Art. 371. It is an

extension of the corresponding result obtained by Young for longi-
tudinal impact (i.e. P-Ilx*)

1

: see our Art. 1068 (Boussinesq :

PP. 180-6, 498-9).

[1538.] Cense (ii). We can deduce a somewhat similar result for

the case of a plate from tin ivsult (xvi) of our Art. 1535.

We easily find :

Idw

>

= -i
iro

(dwjdt\ = i/r' (<), thus

1 dw\ /dw

if Je 1-f tin- tliickiifss of tlu plate, .v,
and - tin- -tivtfli. -.-,

ding to the two prim-ipal fiii\.itur,-
'

.
and

''
at tin-

oi 14111, and V the velocity of impact :

.,ui An, 58B ,.!,d

iilwayn leas than unity, we nee that the velocity of the impact
n will Huftice to damage a bar locally in always less in the cane of transverse

th. in in the case of loii^itii<iin.il impact (Boassineftq : pp. 601-2).
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Now
^ 9

. is the square of the velocity Oj witli wliich '

spreads
'

are propagated through the plane of the plate (see our Art. 595* and

equations (iii)
of Art. 389). Hence we have finally :

Unfortunately this does not tell us like (xix) the maximum normal

velocity of impact. We see however that any velocity equal to the

product of the velocity of spread-propagation into the maximum safe-

stretch into (='9069) will on the greatest strain theory damage the
"*Jd

plate
1

.

[1539.] Case (iii). Boussinesq now (pp. 490-6) returns to the

problem of an infinite rod to which a mass M is attached at some

point of its length. If the mass be subjected to the force F (at) we
must by (c) of our Art. 1529 satisfy for x = the conditions :

and dw/dx = 0.

1
Boussinesq's conclusions as to the limit to the velocity with which a body of

any mass, however small, can impinge upon a bar or plate without damaging its

elasticity seem to me of special physical importance. They indicate how light
bodies moving at great speeds may be used to destroy, cut or shape harder and
more massive bodies. Thus they are full of suggestion for the science of gunnery
and the mechanical arts. One of the most interesting mechanical processes
illustrated by Boussinesq's theoretical results is that of the sand-blast. In this

case the velocity of the blast ranges from 100 to 2000 feet per second, the blast of

air or steam carrying with it 'sand', which term may be used to denote small

grains or particles of which quartz sand is a type, but which may include globules
of cast-iron or even fine shot. Corundum can be cut by the less hard quartz sand,
and quartz rock by fine lead shot, while the hardest steel can be cut by a stream of

quartz sand. Sand-blast machines are in use for cutting, perforating, obscuring,
or engraving glass, for sharpening files, for cleaning iron and steel castings, for

cutting letters, etc., in marble and stone, and so forth. A further example of the
same principle is probably to be found in the experiments referred to in Art. 836 (A),
in which steel and quartz were cut by soft-iron, and in the copper wheel of 3"
diameter which may be seen cutting glass at the Crystal Palace.

Some idea of the necessary velocity of the sand-blast may be approximately
obtained from equation (xx). Assuming uni-constant isotropy of the plate, we

haveO^ j= ft, and hence V= '9366 ft x ( x
-

2), nearly. For the case of steel
v!5

taking round numbers, ft = 17, 000 feet per second, and ^='04 as a maximum for

untempered steel (Art. 1134). Thus we see that a blast of 640 feet per second would

certainly suffice to cut the steel. For tempered and annealed steel ts
1
reduces to '004

(Art. 1134) and hence a blast of 64 feet per f-econd would suffice. That something
considerably less than this might suffice would appear to be indicated by the 34 feet

per second of Davier and Colladon's experiments : see our Art. 836 (h). The
velocities we have calculated, however, approach nearer to those used in the sand-
blast machine. The whole subject is deserving of careful experimental investi-

gation.
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The latter condition by Case (i) of Art. 1537 is satisfied by/, =/a
and fz

= 0. The former condition will be satisfied by taking :

and'

where v = J the ratio of the mass of the central load to the mass of unit

length of the rod. Writi

the differential equation :

length of the rod. Writing = at and I/ft
=

'

_, we have to solve

Remembering that F (- oo
)
= 0, we find as the solution of this

Boussinesq shews that the term involving the arbitrary constant

C disappears from the value of w (p. 492). We thus, so far as the

shift is concerned, can put it zero or any finite value we please. Let
us take it equal to

then we have :

where the exjwnential has always a negative index.

K' liiation (xxii) combined with the value of w from (vii) of Art.

1531, or:

solves the problem completely.

1 Instead of the last term on the right <>f this our second condition Boussineaq
has on p. 491 the term :

His M- our v. Hence his F'(t) ought to be equivalent to om
-(

.* it in

fact is, because he defines F' (t) to be half the force applied to the mass If, and takes

uass of unit length of the rod as unt't of meut (p. 481). It seems clearer to

take a perfectly general nnit of man.
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Boussinesq deals in detail only with the special case in which the

motion of J/ is due to an impulsive force of magnitude Q acting during
the very small period t = to t = e. Then we have

F(at)dt=Q.

Hence by putting C = in (xxi) we have :

/, (at)
= 0, if t < 0,

Let w be the shift for x = Q, then we have by Case
(i)

Art. 1537,
after a slight transformation, if r = 2at/v* :

Substituting the values of v and /? and writing

9 r

*->/* ""

we easily find :

Boussinesq discusses at some length the integral \(r)
which may

be written

so that X(T) is always less than I/X/TTT to which value it tends as T

increases indefinitely. Generally (p. 496) :

or> / / \

;?(lJ .2n+l)'

We can easily find for the shift speed at x = :

[1540.] This solution can at once be applied to the case in which

a body of mass M impinges on a bar infinitely long in both directions

with velocity F, for we have only to take Q = MV, and then (xxiv)
and (xxv) express the solution. Obviously w increases indefinitely with

t, while the speed (dwjdt)^^ diminishes and ultimately vanishes.

En eftet la formule (xxv) dotmant (dw/dt)x . .=-Q/M h 1'upoque f = 0,

niontre que, i>our t infinimcnt petit line masse M iiiiie a la barre a 1'origine
#=0 detient presquo la totalitd de la quantity de mouvcment qu'une irnpul-



BOUSMN: 289

sion brusque y a t';iit naitre, tout commc >i cettc m.-ussc s'etait trouvee i>olre

rpiand fill- ;i -ulii I'impulsion ; ct il d<>it etre, par suite, ii pen pres indifferent

se initiale I' quand il etait encore librcquc le corps heurtant ait recu sa vr
on apri- in tre joinl h la liarre. II n'y a, entrc le.s deux cos, dc difference, que

la m.micre dont la viteaM ' ^' oommunique, dunint 1'instant initial *, an
troncon heurte de la Kirre, inaiiierc plus eonfornio aux hyix)theKcs ordinairo
de la theorie tie Ivl.-ustieite quand mi suppose la ni;usse J/ dejh en contact
avoc la barrc des linstant ^ = (p. 4!>7).

[1541.] Case (iv). Boussinesq on pp. 498-502, deals with the

of a bar indefinitely long in one direction carrying a weight
.I/ at its terminal, and subjected to the longitudinal impact Q durinu
the same interval of time t = Q to t = ( . Let Q = MV, then Boussinesq
find* for the shift wx=0 of the terminal and for its speed
Q = ^JK/p being the velocity of longitudinal vibrations :

MV

(xxvH
po,n i v

Thu> tin- shift " _ does not tend to increase indefinitely with t but to

approach tin- limit 3/T/(po>Q).
Since it, changes its sign with V but its magnitude remains un

chan^'d. wr have only to put two bars, infinitely long in one direction,
end t> end, each bearing a ma.^s J, J/ to obtain the solution for the case

in which a mass M attached to the middle of an infinitely long bar

receives an impulse in the direction of the bar.

Turning to our Art. 222, putting therein V
l
= F, F2 =-0, /fc^O,

J/i = J/i J/3 = o^Mu, and then making a^ infinite, we easily find from ("2")

i article by integrating the stretch and putting x = 0:

rquationi igree entirely with <\\\i) after nm. (. of we
see that whether M be att;ich<-<| to the bar initially and receive ;l n

impulse M T, or a mass M \\itli momentum M V strike the bar, ih.i.

will be no .liireivn<-e in the values Of U^ (l
and (/ <lf). ,

afte. i inn-

. J.
]

f.''>' (\). Ill an .!.// 'til) rMMissine.s.j \\

out the extrem.-lv interesting and practically xalualile CAbe of .1 bar in

the toi-iii of an infinitely lon^ truncated ri^'hi circular cone, subjected
at the truncated end (Mip|MMxl at .1 from ti to I he

longitudinal iuijiaet ..fa bendy of mass M moving with \el.city I'. The

investigation of this cae had been suggested I \ saim \'en ant \ memoir
of!868: see (MO !
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The legitimacy of the solution seems to me, however, to depend
upon the cone being of very small vertical angle, otherwise we have
no right to use D'Alembert's elementary theory of rods which supposes
the cross-sections to remain plane. This assumption is not, I think,

directly stated by Boussinesq, but it ought to be kept in mind.
The equation for the longitudinal vibrations of such a cone on

D'Alembert's theory is easily found to be

_
d?

where u is the shift at distance (x + c) from the vertex and O2 =
JE/p.

For waves in the direction of x positive we have :

whence we easily find :

du 1 du u
--J- =

7: -7: +- .................. (XXV11).dx U dt x + c

Thus initially, when u =
0, if s be the stretch, and V the velocity,

or, if s be the safe elastic stretch (or squeeze), no body can strike

the truncated end of the cone with greater velocity than s x Q without

damaging it. Young's theorem 1

(see our Art. 1537) is thus extended
to such solids of revolution with truncated ends, as may in the very
beginning of the motion be looked upon as truncated cones.

At the end x = of the cone we have the condition

du\ .

-=- (xxviii),
CM IT J

which enables us to determine the form of f(&t). In addition we have
the conditions that /(0) = 0, and du/dt= V when # = and t = 0. If

v = Jt//(pw) we have from (xxviii) using (xxvii) :

whence we determine :

Here &2 = 1 4v/c and the natural or the hyperbolic sine is to be used

according as 4i/ > or < c, or according as the impinging mass is greater
or less than three-quarters of the mass of the truncated part of the

cone.

1 A generalized form of Young's Theorem may be found at once from the
result given for the squeeze (-s) of the impelled bar in 2 of our Art. 222, by
putting x= Q and t = 0. We find

-8= (velocity of impact) /(velocity of sound in impelled bar).
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We easily tind by aid of (xxviii) and (xxi\ > :

itt\

291

/?/\ /fcn* i ,
mt

-5- )
= Ve *" J cos

,
sin _

,

2v X: 2v
'

tot I

or, cosh _ T sinh

or,

V ..(xxx).

knt \

v
2cos

^7'

/fen
,
k-2 cosh

These equations tell us at once a great deal about the impact. We
see that if k tan y or tanh y according as 4v > or < c, then the
maximum shift (ux_ )m at the free end is reached when (dujdt)^ = 0,
or:

2v.
Y, or, ycothy),

and

Further we have (dujdx),^ = 0, or the action of the mass M on the

truncated cone ceases, when t = t^
= 2tl . Thus the duration of the blow

is equally divided between the periods when the mass is continually
i lurcasing the compression of the bar and when it is continually

releasing that compression. It is easy to see that the blow ends before

the cone returns to its original length by substituting 2^ in the value

of MX_O . The velocity of rebound of M is given by

which confirms tin nsult referred to in our Art. 216, namely: that

tit* velocity of rebound depends on the masses and dimensions of the

Indies in collision. The termination of the blow when t = tt is of

interest, because in the case of the indefinitely long cylindrical rod,

there is no limit to the duration of the blow : see our Art. 1541.

[1543.] Boussinesq next consul, i what happens after the tormina

tion of the blow. Inst.a.l of (\\\iii) the terminal condition is now

(du/dx)a>m0 = t
whence we find cf (tot) +/(O<) = 0, or remcmlu tin- that

u h>-ii t = t, the two solutions must coincide, we have for t > t, :
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We find for the shift speed t > t.,

or, this speed decreases with increase of t, and hence the greatest value
is reached for t = t.2y or at the end of the blow, thus the impelled and the

impinging bodies never come into contact again. The shift at the now
free end of the cone decreases gradually and ultimately becomes zero

with t = (p. 662).

[1544.] It remains to find the maximum squeeze and the time at

which it takes place. Boussinesq easily shows by aid of (xxvii) that the

maximum squeeze takes place before the end of the blow and at the

impelled end of the cone. In order to obtain the maximum value we
have only to differentiate the third equation of (xxx) with regard to t

and equate the result to zero. We find

at ( .

.
\dxdt x=<) 4v \ sin y cos- y siiih y cosh2

y )

Thus the squeeze (du/dx)x=(l will decrease as t increases from to

#2 ,
i.e. from the instant after the impact up to the end of the blow,

except in the first case (v > \c) for 3y > TT, or k tan y > ^/S, or v > c, or

when the mass of the impinging body is greater than three times the

mass of the truncated portion of the cone. Should this hold the squeeze
becomes a maximum sm ,

when t = 3 ,
where

2i/ 3y
- TT

= -

and by the third result of (xxx)

"
e -(3y-ir)coty (XXXU).

The exponential will take its minimum value for y= 1*3027, about,
and it then equals *8101 which is slightly less than the maximum
value, unity, which it takes for y = 7r/3 or ir/2.

Thus except for v>c, sm takes its maximum value, F/fi, at the

instant the blow commences. If v> c its maximum value must be

found from (xxxii) and then by the preceding remarks does not differ

widely from F/O x Vv/c (pp. 663-4).

Boussinesq concludes his discussion by remarking that if the thicker

end of the cone be cut off at the section x = I,
and this section be fixed,

then we shall have (see our Art. 223) a solution of the form

(x + c) n =/(OJ -
x) -f(tlt + x- 2/),

where the second term on the right is due to the reflected wave
;
this

term will, however, be zero at the impelled terminal until t = 2//O, or
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\v- see that the above investigation holds for this new case during the

whole of thr interval 2//Q after the impulse.

[1545.] Case (vi). Boussinesq deals on pp. 502-5 with the case of

a platr of infinite radius stnu-k normally by a mass M at the origin

of coordinates with a velocity V. He replaces this problem by that of

a mass M attached to the origin of coordinates and subjected to the

normal force F(t). Using the notation of our Art 1536, we have

tin* rxpn -ssion '2(pb~ x 27rr - for the total shear round a cylinder of

radius r al>out the origin, and therefore for r = :

. l.v tli- iv>ulteof our Art. 1536:

m Kring thr mass of thr plate p<T unit of area and v = Af/m.

Solving this equation in the same manner as that for /"() *n our
A.t. 1539, we have:

If we consider tho special case of the blow produced by the mass M
ino\iiiij with velocity V we have :

f

'

F(t) dt = Qfort< 0, and
[' F(t) <lt = MV

'

* < - *

for / slijhtly i,'r-at.-i- than UTO, llt-nce

=
(t < 0), and +(i) = l - ^

(*
> 0).

Whence we easily find from (xvi) for t > :

U Pi

Tlm> \v<- s-<- that in this rasr thr shift tends to thr finitr limit

), and thr plate acts in this manner <juitr dillrrmtlv from the

I MI- of ,,ur Arts. 1539-40.

|i:)Mi.] Tin- nrxt section (pp. .~>05-46) of linussincs.^ work U
nititl, <1 : Comment il faut modifier ce* lois d" rh<\ dans le cos de

ban-ex 'tout lalo f finie.

I- open* with N0&)< r.'in.-irkl 00 nnp:i' 'illy, nnti.-in^

the reeoltfl "l.tainrd in thr prr\i..iiv :irii-h-s hold l,,r liniir

only, it tli.- vrlority of impact be al>"\ ;i rtain inngni-
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tude and thus damage be done to the body at the instant of the

blow. For velocities less than this limiting velocity no damage
need be done to the body unless the ratio of the mass of the

impinging to that of the impelled body exceeds a certain value,

and for such velocities the maximum strain will not be reached at

the instant of the impact.

Turning to Saint-Veuant's results for the transverse impact
of rods given in the table in our Art. 371, (iv), Boussinesq remarks

that they may be thrown into the form s =- o V ^~p>

ft is a factor depending on the ratio Q to P and the notation

is that of our Art. 371. Boussinesq compares this with his con-

dition for damage due to immediate impact, i.e. s = -
-^ ,

and
K \L

notices that when Q/P or > 1/0, this latter condition replaces

Saint-Venant's. He remarks (p. 508) that j3 seems to be roughly
3 : see our Art. 371, (iii), where s =

h/p. Hence Boussinesq's
condition would come into play when Q/P = or > . In Art. 371

(p. 254) I have suggested that the critical value of Q/P lies

between f and J.

[1547.] The remaining portion of this section deals with the

longitudinal impact of bars. Two cases are considered : when the

impelled bar has the non-impelled end (i) fixed, (ii) free. The
latter case corresponds to that discussed by Saint-Venant in

1868 : see our Art. 221
;
the former case presents' the analytical

solution which Saint-Venant and Flamant discussed graphically
in their memoir of 1883 : see our Art. 401 et seq.

If the impulse occur at the end taken for the origin of x, then, I

being the length of the bar, we must have for the first case the shift

u = 0, when x = l, and for the second case du/dx = when x I. If 1

a?= E/p, the solution must therefore be of the form

u=f(ai-x)+f(at + x-2l) (i),

the upper sign referring to the first case.

The condition at the impelled end, or for x = 0, is

d?u F(t) a2 du
v
de

= + J^ <
u

>>

1 a is here used for the of our Arts. 1541-6, so that the results may at once
be compared with those of our Arts. 401-7.
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where v = QjP the ratio of the weights of the impinging mass and the

bar, m = P/g and F(t) is the force on Q at time t and vanishes for t < 0.

Substituting (i) in (ii) putting x = 0, integrating and writing

('

or,

F(t) dt = F~ l

(t) we find, if at =

/-"*f
This holds for > 0. But y* and f vanish for negative arguments.

Hence (iii) enables us to write down first the value of ./*() for = to

= 2/, and then, from this value off() substituted on the right under
the integral, to write down the value of/() from = 21 to 41 and so on.

Thus /() is entirely determined in finite terms. Hence by (i) the

problem is analytically solved. The solution involves a novel and
valuable method capable of application to a number of problems in

impact.

[1548.1 For the case of an impact by the mass M (=Q/g) with

velocity V we have F~ l

(t)
= MV. Hence we find :

\vlii. h a^.iin completely determines/().
Properly the time from = to t = r, the small interval during which

the blow is given, or from = to =
ar, or e', ought to be excluded from

tin- value of/'(), for we cannot differentiate f() at the origin (sino-

() = abruptly, for <0) but only slightly to the positive side of it,

i.e. when has any vanishingly small positive value. In fact it will

be found thatf () increases by jumps (cf. our Diagram IV. p. 278)
whenever increases by 21 (pp. 515-6).

Boussinesq x'\\>
<

(|>j>.
">1 >-15) the general solution.

--

Enc=4/
t

3

1

';,'
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El
=& r -i f=w

no -urn
J {=+ L J ?=+<

Boussinesq does not calculate these functions to larger values of the

variable . The above results generally suffice to determine the maxi-

mum strain and the end of the impact. The end of the impact will be

reached for the least value of t for which du/dx = for x = 0, or by (i)

for the least value of for which/' () = +/' ({-2Q.

[1549.] Pp. 517-22 are occupied with the second case viz.

that in which the non-impelled end of the bar is free, or we must

take the above equations (v) with their lower signs. Boussinesq's

results are in agreement with Saint-Venant's (see our Art. 221)

but his method is easier and his conclusions somewhat more

complete.

We will briefly resume the results given by Boussinesq.

21 e"

(a) End of the Impact. This is reached for t = + where e" is a

very small quantity, or immediately after the wave of impact has

travelled to the free end of the bar and back again. After this time

the bar and the mass M separate further and further, or the impact
is definitely concluded. The velocity of the impelled end of flic bai-

ls at this instant Ve~ 2/v
. It then increases rapidly to 2F, after which

it returns to Ve~^v
with every change of time 2l/a. On the other hand

the mass M continues to move with the less of these velocities, i.e.

Ve~ 2/v
(pp. 518-9).

(b) Kinetic Energy. The velocity of the centroid of the bar after

the impact is over = Fv(l
- e~ 2/

"),
and therefore the kinetic onorgy A",

of translation of the bar- \MV*v(\ -~ 2/
")

2
. Remembering that the

energy of the mass M after the impact is over = |3/F
2e~ 4/

", we easily
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find tor A' the kinetic energy of vibrations in the bar due to the

impact
1

:

K\= JJ/P (1
- e" 4/

") fl-v tanh
-)

.

Hence we see that if the mass of the impinging body be very great as

compared with the mass of the bar
(i> very great), the energy lost in

vibrations is very small, while if the bar have a large mass as com-

pared with that of the impelling body, almost all the energy is absorbed
in vibrations (p. 520).

Obviously, JT, /Jfi
= - coth - - 1 .

To obtain the case of a rod impelled against a rigid wall, we have-

only to make v = oo and impress equal velocities,
- Vt

on both impinging
body and bar after the impact is entirely over (p. 521). We see at

once that the bar rebounds with the velocity of impact, and without

vibratory energy : see our Art. 205.

(c) Maximum Strain. The greatest squeeze is equal to F/a and
occurs at points distant not more than Jc' from the free end at time not

greater than 3'/a, i.e. close to the free end immediately after the
b Binning of the impact. This maximum squeeze is the same as that

given by Young's Theorem (see our Art. 1542 fin.) at the instant

y
the impact begins. The maximum stretch equals

-
(1
-

|e~~
2/K

) and

occurs close to the impelled end immediately after the end of the blow

(t
=

2//a). In most cases it will be expedient to take this last strain as

that of safe loading, stretch being more important in respect of safety
than squeeze.

[1550.] On pp. 522-534 we have the first case treated, the

n nn-impelled end being now fixed, or the upper sign in (v) being
taken. The solution in this case has been discussed at consider-

able length in our Arts. 401-7, and we refer the reader to Hi

articles. We note one or two additional points occurring on pp.
46.

(a) On pj.
">:." -46 Boussinesq shews that to a second approxiin.i

tion we may neglect the inertia of the bar concentrating one, third its

at tin- inijM lied cud-. The shift at this end will then be given by :

1 This of course neglects any loss of energy doe to thermal action, etc.
2 The use of this mass-coefficient of resilience (see oar Vol. i., Appendix Note E

(b) an.l Y..1. n., Arts. 367-71, 1460 et *</.) is attributed to ..it
; it is,

however, as we have pointed oat due to Homersham Cox and Hodgkinson.

T. E. PT. II. 20
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This expression will give the shift u with a considerable degree of

accuracy even without ^f|m being large, but the assumption does not

lead to an accurate expression for the maximum squeeze : see our

Art. 406, (2) and footnote. This squeeze is investigated by Boussinesq
in an approximate manner on pp. 542-4, and he finds that it is ex-

pressed, for M/m large, by
- fk/ +

l)
' see our Arts. 406, (2) (a)

and 407 (3).

(b) A somewhat more elaborate series of values for the maximum
squeeze than those of our Art 406, (2) (a) (c), are given by Boussinesq
on p. 545. For practical purposes, however, those of our Art. 406
would be sufficiently accurate.

(c) In a footnote, pp. 541-3, Boussinesq deals with the interesting
case of the mass- coefficient of resilience (see Vol. T., p. 894, (b)) for

a thin circular plate of radius a, either built-in at its edge or simply

supported. Let us apply the formula of our Art. 368 to this case, first

calculating the value of

r-J)'? W,

where P is the weight of the plate and J the ratio of the statical

deflection at the element dP to that at the centre, where the impact of

the weight Q is supposed to take place. For the case of isotropy we
find from the value of w in (xi) of our Art. 330 that

1

:

ft having the value unity for a built-in edge and (3X + 2/x)/(7X + 6/1)

for a simply supported edge. Whence by (i) : y = J (1
-
%/3 + I-/3

8

).
Let

us put Q' = Q + yP, then it only remains to find the *Jfs/g of our Art.

368. This is given by putting rQ = 0, and y
2 = in

(i)
and (ii) of our

Art. 334. We find after some reductions

!_?_
22Qi

where Q^ = H/p. Hence we have

40
ll /J8P\^ V 35V

This gives us very accurately the depression at the centre of the plate,
due to the blow of a body of weight Q at its centre.

1 For both cases since the plate is thin we tal<e the y- of Art. 330 zero and put
z = 0; then for both, dw/dr=0 for r= 0, involves JB = 0, while iv = for r= a,

determines the central deflection (7. When the edge is simply supported l/p= 0,

but when the edge is built in l/p is determined easily from dw/dr= for r= a.
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[1551.] Section 23 bis of Boussinesq's work occupying pp.
546-77 is entitled: Sur les deux probUmes d'nn choc par com-

pression faisant fle'chir la barre heurtee, supposee ires Ugere, et du
mouvement rapide dune charge roulante le long d'une telle barre

hori:nt<ile, appnyee a ses deiuc bouts. This section really deals

with two interesting problems much simplified, however, by

neglecting the vibrations of the elastic bodies considered. We
shall deal with these in the following two articles.

[1552.] In our Art. 407 (2) we have referred to the possi-

bility of a bar buckling under longitudinal impulse, and have

given a not very satisfactory condition against buckling sug-

gested by Saint-Venant and Flamant in their memoir. It is

this point which Boussinesq discusses at considerable length on

pp. 546-60, on the supposition, however, that the weight of the bar

is negligible as compared with that of the impinging mass.

Let I be the unstrained length of the bar, I' its strained length ; let

/ be the central deflection on buckling, c the chord, F the longitudinal

compressive force, EUK~ the flexural rigidity, and m^ = Fj(E^). Then
it the origin be taken at the centre of the chord and y be the deflection

at distance x\ we easily find

<-/:'*
/r/2

= m*/* I sin8 inxdx,
y o

since y-fconmxt giving me = IT to a first approximation, is all that

is necessary in order to obtain the value of V - c to a second approxima-
tion. Integrating out we have

Krferring to our Art. 110* for the value 1 of I', and retaining only
tin- first t\v trrins .f tlio bracket we find :

From (ii) we we that I' must be >ir/m, and therefore />ir/w or

/'>irsAWa

//* for iln-rr to In- :inv buckling.
I

in:illy, since tli- spn-'zc (/-/')// is due to F is :

(-)
1 r is the a of that Article, F the /',

' the K% and wo muit pat the m of

that Article equal to <

202
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In the terms in w/8 of (i)
and

(ii)
we may obviously replace m by

its value as given by a first approximation, or by ir/l.
Let 8 be the

total shift I c of the impelled end, then we easily find from
(i)

and

(iii) that :

... 2 8 F

a result also holding when 4/*= 0.

If sm be the maximum squeeze we have :

when h is the distance from the central axis of the 'extreme fibre', or

we find by (iv) :

Before flexure the radical on the right will be zero. After flexure

we have F/Ew = TrV/Z
2

nearly. Hence

We are now in a position to measure the action of the impinging

body Q. We have very approximately :

Qd?b

Hence the motion of Q will be pendulous until the bar buckles, but

after buckling there will be a simple retardation of Q till the initial

velocity be destroyed, provided this destruction of the velocity takes

place before the deflection ceases to be very small as compared with

the length of the bar.

The maximum deflection and strain occur by (iv) and (v) when 8 is

0V2

a maximum, or when the energy
- has been absorbed by the bar, i.e.

when :

7T K

,
if ^remain < Flt i.e. Eta

-ya
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Putting Efp aa
,
we find for the maximum terminal shift 8m :

-1
V ft \i

V fi<**V '" "V P ~P'

ZfTrV V* Q P
-] f V I~Q irV

=
2L-F+-*p?*]' V P >

~P~'

Substituting these values of 8 in (iv) and (v), we find :

whfi /V-Q P 'irV

~T~V "? P ^^ P

f "\f * / ' "c* TrKT

~^~v ^?^v"

=

The condition f- A /5< 73-)
fc>r the non-buckling of the bar

agrees with that of our Art. 407, (2), if it be remembered that

Boussinesq supposes P very small as compared with Q.

[1553.] The second problem dealt with by Boussinesq is

Willis
9

Problem of the rolling load : see our Art. 1419 *. The

equation at the bottom of our p. 764 (Vol. I.) may be written

the origin being at the centre and not at the end of the bar,

LA writing x' + a for x. Boussinesq gives this equation on p. 562

and (Mviipics pp. 562-77 with the discussion of a solution of it.

It does not seem to me that Boussinesq's value for the deflection

is in a simpler form, or one more capable of readily giving
numerical results, than the solutions obtained and discussed by
Sir G. G. Stokes in 3-10 of his memoir of 1849 : see our Art.

1279 *

Boussinexq finds (p. 569) if y be the deflection at distance x from
tli centre:

iy m*;"/ 1 - 2 3 j

-'/> mLi\*F'z5v"
win-re for x {Httitive, T - 0, and for negative x :

t \ /^ i
<* + *'\

l *>"- r
L'

10*
..-I?) I*

k . kir
' V ~

O*
'

(ooah, or, oos
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and the upper sign, with the sin and cosh in T, are to be taken if

f3 > J, and the lower sign, with the sink and cos in T if B <
-]-.

The load

is supposed to start from the end x = a. Further, as in our Art.

1419*, S is the statical deflection clue to the rolling load concentrated

at the middle of the bar, 2a is the length of the bar and /?
= ga

a

/(4: V*S),

V being the velocity of the travelling load. + k~ denotes the difference

4/3-1, k being always taken positive.

Boussinesq draws from his form of the solution conclusions similar

to those of Sir G. G. Stokes summarised in our Art. 1282*, but I do

not think he adds any novel results.

[1554.] Before leaving this section we must refer to the

following important practical problem dealt with by Boussinesq in

a footnote on pp. 552-5 : see also our Art. 1556. Consider a thin

cylindrical belt or ring of radius R, thickness r and breadth b,

and suppose it subjected to a uniform pressure p on its outer

surface. What is the least pressure which can cause it to collapse

or lose its circular form ?

Let the belt be supposed to have collapsed or bent, so that

r = R(\ + e) is the new radius-vector, e being a function of the radial

angle 0, then as in our Art. 585 the bending moment at the point
defined by is given by :

Suppose AC an axis of symmetry of the strained central line and
consider the portion AT of the ring. Take moments about the point P.

"Jf

Q'

<
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The total thrust Q at A will iMjuul r jtb, the moment about P of the
us on the portion of the ring cut off by the chord AP will

obviously- pbAP* ^AP. Hence if J/ be the moment at A we have :

Thus : *( l + ^
j

a constant.

If A* be taken as the compressed radius immediately before collapse,
it is easy to see that this constant must be zero, for the mean value
of e will be zero. Hence we find, since at A de/dO = :

e = e cos(V 1 + 12;;/?

e when increases by 27r, hence if t be an integer we mustBut e

h;i\r

Tin- least collapsing value of p will arise when i = 2, thus for collapse
we must have

[1555.] If the ring Income a curved plate, we ought at least, I

think, to replace E by the plate modulus //(-J'J-A
1

for uniconstant

isotropy). We should then have for the collapsing pressure on a flue

with unsupported ends :

;>= or >{//-,.

It is noteworthy that this is exactly the form of the old Prussian

Govrnimciit formula for the strength of flues, the origin of wlmh
formula is unknown : see our Art. 986. On the other hand Fairl;iiin s

-\JM -riim-nts with Hues having cast-iron ends maintained at & faced
distance seem to shew that p varies inversely as the length of the flur :

see our Art. 984. When the ends are not thus fixed, the pressure does

not vary so exactly as the inverse of the length : see our Art. 982.

[1556.] The contents of this footnote in the Treatise had been

previously published by Boussinesq in a memoir entitled : Resistance

(fun anneau a Inflexion, quand sa surface exierieure tupporte une pression
normale, constants par unite de longueur de sa fibre moyenne. Comptes
rendus, T. xrvn ., pp. B49 1 Paris, 1883.

The problem appears to have been
|

.n-\ iouslydiscussed by M. L6vy in a

paper entitled : Sur un nouveau cos intcgrable du probtone de Celastique

et tune de sea applications (Comptes rendus, T. XCMI., pp. ',94-7), which
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dealt with the above case and gave somewhat complex results in terms

of elliptic integrals. L6vy found : that if

9 JW . 3 ^r3

the belt would not change its circular form or be liable to buckle. But
he did not shew that ifp be greater than this, the belt would buckle.

Boussinesq in the memoir of which we have given the title above,

proved as in our previous article that we must have

1 Er

if the belt be not to lose its circular form.

Levy replied to Boussinesq in a somewhat inconsequential note to

be found in the same volume of Comptes rendus^ pp. 979-80, remarking
in particular that his own result was deduced from a solution for finite

changes of shape and that he had previously noticed Boussinesq's
conclusion. Boussinesq terminated the discussion on pp. 1131-2 of the

same volume by the remark that the ring must pass through an

infinitely small change of shape before it can take a finite one.

The problem really involves the same paradoxes (and the same
solutions of them) which occur in the case of the buckling of struts or

the collapse of flues.

According to Levy both Boussinesq and he had been anticipated by
Resal. I may notice that they had also been anticipated by Bresse,

who shewed in 1859 that a flue
(? ring) of any slight ellipticity would

not collapse under external pressure unless p>\E^IR*: see our Art.

537, (d).

[1557.] The last portion of Boussinesq's treatise which deals

with the theory of elasticity is Note in. (pp. 665-98). It is

entitled : Extension, aux solides heterotropes les plus simples,

cest-a-dire aux solides isotropes deformes, des lois d'equilibre et des

lois les plus importantes de mouvement demontre'es dans cette etude

pour les solides isotropes.

The type of aeolotropy for which Boussinesq generalises his results

is given by stress strain relations of the following kind :

xx = a8x +fsv + e'sz , 'i/z
- d<r

v^
"

/-v

subject to the conditions :

and
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The latter are the well-known relations of the ellipsoidal kind,
tnio probably for all amorphic bodies. The former are the dangerously
near approach to the rari-constant conditions, which in our Art. 140
we have described as but a doubtful sop to the multi-constant Cerberus.

The substance indeed of the portion of Saint-Venant's memoir of

1863 considered in that article forms the basis of Boussinesq's note.

[1558.] Adopting the above conditions, with due reservation how-

ever, we may throw the stress-strain relations into the following form

by taking five new constants a, J3, y, A, /x such that :

we have

= y\x +

where x =
<**x + P*y + y*z-

Tin -so results become those for bi-constant isotropy, if we take

a = p = y=l.
Now take new variables such that :

x' = x/Ja, y = y/JP, z' = s/^y,
j

where M, v, w are the shifts.

du' dv' dw'
Then x = ~j~>

+ T~> + ;

~ = &*

the stress-strain relations become of the form :

**
/

*"' \ ^
xx/a = jrx =A& +

Thus the body-stress equations of equilibrium will 1>< of tin- type

I-
T

dy'
+
-d?+

where X - X/ ^o, etc.

Tims any solution for an isotropic solid ImumUjd by the surface

z')
= becomes one for the uuolotropic solid bounded by

f(xljat y/Jfl, 2/v/y)^^ provided the body-forces applied to the latter

KJ iTJa, Y'JPi ^Vy* anrl tnc sllift8 M v w at a;, y, 2 be taken as

tt'/^/o, v'/JP, w'/Jy. To obtain the stresses internally or at the surface

at x, y, * we must take the system or>, 0P7, y*^ Jpy**> >/yaiv,

N/"/^(PP- 665-71).
In a long footnote pp. GG5-8, Boussinesq refers to his n

^
(see our Art 1167) and deduces the stress-strain relations (ii)

above d>- HMO.
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[1559.] The greater portion of Boussinesq 's Note in. (pp. 672-98)
deals with the vibratory motion which may be set up by a region of

disturbance in an aeolotropic medium of the elastic nature defined by
(ii). The equations of motion, if there be no body-forces, will be of the

type

du n dv dw
when as before y = a-r-+p-7- + Y-r-.

dx ^
dy

r <h

Taking as before the new variables given by (iii) the type becomes :

d2u d-u' d2u\

Thus these equations do not reduce, like those for equilibrium, to

the equations for an isotropic solid. They reduce to the system of

equations which have been considered by Sarrau and Boussinesq to

hold for the ether, the elastic constants being supposed the same for all

directions, but the density of the ether being taken to have the values

p/a, p/fi, p/y for vibrations in the directions of x, y and z respectively :

see our Art. 1476.

L'integration dc ces equations de mouvement ne se reduit done pas a une

simple application des potentiels spheriques consideres dans Ic me'nioire <lr,s

p. 319 a 356 ci-dessus (see our Art. 1526). Peut-etre deviendrait-clle cftcctu-

able, avec moins de complication qu'elle ne 1'a 6t6 jusqu'ici par la rnethode de
Blanchet ou par celle de Cauchy basde sur le calcul des residus (see our Arts.

1166*-1178*), si Ton pouvait generaliser d'une mani6re convenable la notion

de ces potentiels sphdriques.

Heureusement, les souls resultats concrets qu'on ait jm deduire des inte-

grations difnciles effectuees par Blanchet et par Cauchy, resultats relatifs a la

propagation du mouvement autour d'une region d'ebranlement infinimcnt petite

prise pour origine des coordonnees x, ?/, 2, pcuvent, 5, peu pr6s tons, se demontrer
directement (pp. 672-3).

[1560.] Boussinesq then discusses at length the solution of the

equations of type (iv) above. He first supposes a = (3
= y = 1

,
which

leads to the well-known solution. Then he takes on the basis of this

solution a second approximation, supposing a, ft, y to differ slightly from

each other and from unity. The results, which he obtains, are prin-

cipally of importance for the elastic theory of light, and may be

looked upon as a partial development of those of Sir G. G. Stokes to

an elastic medium of the aeolotropic character assumed. Boussinesq

applies them on pp. 694-7 to the problem of the lateral limitation of

disturbances in the form of light or sound '

rays.'

[1561.] Boussinesq concludes his Treatise (pp. 705-12) with a

reproduction of the memoir on earthwork to which we have
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i red in our Art. 1624. The work as a whole is a remarkable

contribution to our subject, suggesting a wide range of new

analytical methods and a variety of directions for valuable experi-

mental investigations in elasticity. It forms one of the most

important contributions to our subject, published since the Anno-

tated Clebsch: see our Art. 298.

SECTION IV.

Memoirs OIL Plasticity and Pulvertdence.

[1502.] Lois geometriques de la distribution des pressi<ms.
</'tns mi solide homogene et ductile sounds a des deformations

I
lunes. Comptes rendus, T. LXXIV., pp. 242-6. Paris, 1872.

This is an investigation by aid of what Boussinesq terms

cylindres isostatiques, or what in English are generally spoken
of as conjugate functions, of the uniplanar equations of plasticity.

Cylindres isostatiques are to orthogonal curvilinear coordinates

in two dimensions what Lame's surfaces isostatiques are to

those in three dimensions. In a footnote, Boussinesq referring
to Lame uses the words cited in our Art. 1152.* Boussinesq 's

tatic cylinders in plasticity are, however, a case for which

theorem holds.

[1563.] If xy he the plane of symmetry, we shall have to consider

onlv the stresses xx, yj, x, and these will be functions solely of x and
//. If a 1" the ;mu'le tin- normal n to an elementary plane makes with

the posit he direction of x, we have for the traction and shear across

(hi-
|>l;ii.

JR sin (2a
-

i/r),
^ =

Jtf cos (2a
-

where cos^ = , sin^, R = + J(T,
-

) + 4*?

see our Arts. 248 and 465, (6).

The priii. -ij'.il
tnn-tioim will therefore be determined by the angles a,

;in.l ._, where 2a
1 -^ = 90* and 2os -^ = 270. Now construct tin

cylinders of which the normals are inclined at each point at angles a,, a,

respectively to the axis of x and let them be represented by the families

i>i /i (
x

> y). Pa =/ (*> y)- These are Boussinesq's iwstatic cylinders.
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These surfaces give at each point by their normals the directions of

the principal tractions 7\ and T^. In this case we shall have R = Tl -T.,,

and according to Tresca and Saint-Venant (see our Arts. 248 and

259):

T^-T^ZK.............................. (ii).

Boussinesq takes the curvilinear rectangle bounded by two pairs of

adjacent curves of the above two families. If dn and dn^ be the

normal distances between the members of the pairs at a given point,

we have :

where l- +

for either normal distance.

Considering the equilibrium of the curvilinear rectangle by resolving
the principal tractions which act across its faces along the normals dn^
and dny, Boussinesq easily finds

dT .dloh dT -., .....

From (ii)
and (iii)

we have :

where Xi and Xa are arbitrary functions of pl and p.2 respectively.
Now replace pl

and p2 by two new parameters, p^ and p2', determined

by dp1
=

Xi (PI) dp^ and dp.2
=

^2 (p2) *W> then we see that

-
log Vs

), T,-T,=2

Here p/ and p2

'

may be treated as the curvilinear coordinates and
the dashes may be dropped. We see that equations (v) suffice to

determine any three of the quantities 2\, T.2 , 1^ and A2 when the fourth

is known.
The third equation of (v) gives us dn^ x dn^ dp^ xc?/o2 ,

or if we
draw the two families of curves for equal variations dpl and dp2 of the

parameters, these curves will divide up the plane of xy into curvilinear

rectangles of equal area.

[1564.] Boussinesq shews (p. 245) how to construct graphically
these families of curves, if one of the quantities Tlt I\, 7^ and A2 is

given at every point of the whole length of an isostatic line. The
construction resembles that adopted by Maxwell in dealing with lines of

flow, etc.: see our Art. 1556* and also the Treatise on Electricity
and Magnetistn^ Vol. I., Chapter xn.
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Since the systems pl
and p2 are orthogonal, Boussinesq easily deduces

that both P! and pa must satisfy the differential equation :__ + 4 _
m) \dy) ) \dx* dy>)

+
*dx dydxdy

Solutions of (vi) give the only possible isostatic cylinders for the

deformation of a plastic solid.

[1565.] Sur Vinte'gratwn de VEquation aitx dtriv&s partielles

des cylindres isostatiques produits dans un solide honwgene et

duetto. Cmnptes rendus, T. LXXIV., pp. 318-21. Paris, 1872.

In this memoir Boussinesq solves in a rather complicated form

equation (vi) of the previous article. Writing that equation in the well-

known symbols adopted by treatises on differential equations, we hav<- :

Further taking h = + >Jp* + q\ p
2 -

<f
-= A2 cos 2o, 2pq = 1? sin 2a, Boui

nesq finds :

dp dp

h /" f (sin(a N/l+m
s

where
P-;/t*/J

+ cos (aVTT^8
)

'* f f

^

<FF (h')
<*//]j

cos m (A*
-

) d,

where F (A') and F
l (A') are the functions of A' E log A to which x and

y reduce when a = 0.

The solution appears far too complicated to be of much practical
value.

[156G.] K'/'i'ttiun aux ddrivees partielles des vitesses, dans >n>

solide homoyene et ductile d6form6 paraUeleiiient a, un plan.

Comptes rendus, T. LXXIV., pp. 450-3. Paris, 1872.

Before discussing this memoir we may in the first place refer

to a footnote on p. 452, somewhat generalising equation (iii) of

our Art. 1563. If Tl be given as a function of 3P, by some relation

other than the plastic relation, Tl
- T2

= 2K, of that article, these

( [nations are still integrable. Boussinesq suggests for example
the condition for the limiting equilibrium of loose earth, or

(l-sin0)/(l-f sin<), <f> being the angle of friction. In

case the third equation of (v) in our Art. 1563 becomes
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[1567.] Boussinesq proposes in this memoir to investigate the

uniplanar motion of a plastic mass, and he obtains the components
of the velocity perpendicular to the isostatic surfaces from the

following considerations :

(a) That the cylinder on the curvilinear rectangle (see our Art.

1563) will have the same volume at times t and t -f dt.

(b) That the matter situated on one side of an element of an

isostatic surface has no slide relative to the matter situated on the other,

hecause the stress is entirely normal.

If UL and Ua he the velocities in the direction of the normals dn^ dnz

(see our Art. 1563), Boussinesq finds :

J2where *t frl^
Pi

and /*!
x hz

= 1 as before.

The last equation may be written

an

but its integration is rendered extremely difficult by the presence of
/*,,

a function of both pl
and p2 (p. 453).

[1568.] Sur une manibre simple de determiner expe'rimentale-

ment la resistance au glissement maximum dans un solide ductile,

homogbne et isotrope. Gomptes rendus, T. LXXV., pp. 254-7.

Paris, 1872.

Boussinesq draws attention to the formula deduced by Saint-

Venant from Tresca's researches in plasticity, namely

where 2\ T3 is the greatest difference between the three prin-

cipal tractions (7\, Tz ,
T3), and K is taken by Saint-Venant to be

a constant: see our Arts. 248 and 259. Boussinesq raises the

question whether K is an absolute constant. He considers that it

is not sensibly variable with the small relative velocities of the parts
of a plastic mass, and that it cannot really vary with a uniform

normal pressure round any element of volume, because such a

pressure not sensibly increasing the density would not render the

molecular equilibrium more stable. It is only possible he thinks
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for the variation of K to depend on the manner in which T9 is

comprised between the other two principal tractions or upon the

ratio

He therefore proposes to take K, or

J (7\
-

T,) = some function of y
1
"

*

Thus it is possible for K to vary from one case of plastic

motion to a second. This variation of K is more fully discussed in

the memoir of 1876 : see our Arts. 1586 and 1594.

[1569.] Boussinesq further suggests pure traction experiments
as the best means to obtain K, supposing it to be constant. In

this case he considers that T2=T3
= 0, and therefore that K (= J2

7

,)

can be found at once.

If K be variable he suggests that its variation could be deter-

mined in the following manner. Let a rectangular bar, subjected
to a longitudinal traction S, be placed between two parallel

polished plates covered with oil or grease, and subjected to a

uniform pressure P applied through these plates. Let the stress

S requisite to produce plasticity be noted for each value of P.

Then we shall have

T2
= 0, T3

= -P, T^S,
and hence :

It would then be easy to determine, whether K is an absolute

const-nit, and, if not, how it varies with the ratio SIP.

It is difficult to see, however, considering the phenomenon of

local stricture which occurs with ductile metals (see our Vol. r.

p. 891) how the proposed arrangement could practically |

the requii. .I system of stress, even if the oil or grease really

til-- frirlinn , ,f the platCH liavil) -11 1 V >rlisil>lr illllllr!

[1570.] Integration de I'Equation aux de'rive'es partielles des

ri/fitidres isostatiquex qui se pro"
' I'inUrieur (fun massif

'leux soil mis cl de fortes pressions. Comptes rendus, T. LXX v 1 1 .

PP. 669 71. -7:;.
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Taking the equations (iii)
of our Art 1563 and replacing (ii)

of the

same article by :

where
<f>

is the angle of friction, Boussinesq obtains the solution of

these equations for a mass of loose earth. He finds :

2sin</>

See our Art. 1566.

As in our Art. 1564, Boussinesq then proceeds to determine the

equation which must be satisfied by plt If k= . / =-'^ 3 ,
he findsV 1 + sin

</>

with the notation of our Art. 1565 that :

(p
2 -

Iff) r + 2 (1 + #>) pqs + (f - kY) t = 0.

This equation he solves in the same manner as the differential

equation of that article. See pp. 669-70 of his memoir.

[1571.] Essai theorique sur I'dquilibre d'elasticite des massifs

pulverulents compare" d celui de massifs solides et sur la poussee
des terres sans cohesion. Mdmoires couronnes et me'moires des

savants etrangers publies par I'academie ......de Belgique, Tome XL.,

pp. 1-180. Bruxelles, 1876. See also Comptes rendus, Tome

LXXVII., pp. 1521-5. Paris, 1873.

Previous memoirs dealing with loose earth had been more

especially devoted to the limit of its equilibrium, without

reference to its elasticity, and from this standpoint they do not

properly fall within the limits of our subject. We have, however,
referred by title to one or two such memoirs in the course of this

history. Thus the researches of Rankine are cited in our Arts.

453 and 465 (a), those of Holtzmann in Art. 582 (b) and those of

LeVy, Saint-Venant and Boussinesq in Art. 242. Rankine's

researches were afterwards thrown into a geometrical form by
Flamant in the Annales des ponts et chausse'es, 2e

Semestre, pp.

242-68. Paris, 1872. (An interesting elementary discussion of

the stability of earth will be found on pp. 111-40 of Flamant's

Stdbilite des constructions : Resistance des materiaux. Paris, 1886.)

Boussinesq in his Introduction after referring (pp. 3-4) to the

previous history of this branch of the subject continues:

Mais il y a un autre genre d'e"quilibre egalement important a

considerer : c'est celui que presente une masse sablonneuse en repos,
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soutenue par un nnir assez ferme pour n'e"prouver aucun ebranlement

Dans cet etat, le frottement mutuel des couches est ge"ne"ralement moindre

que dans le precedent, tout comine, a Pinterieur d'un solide en e"quilibre

(IVhisticite, lea tensions restent partout inferieures a celles qui altereraient

d' u ne maniere permanente la structure du corps : les particules sont

done moins retenues par leurs actions mutuelles que dans le cas ou le

inur df sou tenement les fuirait en ce"dant sous leur pression, et elles

exercent sur ce dernier line pnussee superieure a celle qu'indiquent les

formules de Rankine. C'est surtout ce genre d'gquilibre que je me

propose d'e*tudier ici : je 1'appelle equilibre cTelasticite, car je considere

l's pressions qui s'y trouvent effectivement exerc6es comme dependant
fa petites deformations qu'e*prouverait la masse, supposed d'abord

homogene et sans poids, si elle devenait ensuite pesante comme elle I'est

-n tfet (p. 5).

More attention must therefore be devoted to Boussinesq's

memoirs on pulverulence than to earlier memoirs, because (i) they
deal with the elastic equilibrium of a pulverulent mass, and (ii)

they appear to contain the most complete scientific theory yet

given of the stability of such a mass.

[1572.] Boussinesq bases his theory of pulverulence on the

hypothesis that masses of pulverulent material stand midway
between solid and fluid bodies, and act like fluids when not

subjected to pressure, but when subjected to pressure gain an

elasticity of form as well as of bulk, and act like solids. Bous-

onsiders the slide-modulus to be proportional to the mean

pressure. Supposing the dilatation to be zero or negligible as

compared with the individual stretches sx ,
sy ,

szt we have for tin-

mean pressure of an isotropic medium (r + ^/ + 77) or p, say.

Further the slide-modulus
JJL

is to be proportional to p, or
;/>/>

: hence he finds as stress types:

^ = ~ P (1 2m5z), y* = pm <rvz (i).

[1~)7.'J.] On p. 7 of his Introduction Boussim
-s.j

<lisr

certain difficulties which arisr in tin- ln.midary conditions of a

pMlv.-Mil.-iit mass. At a free boundary clearly the pressure is to

be zero. At a perfectly rough fixed boundary, as in the case

MiiiL^ walls the shifts ought to bo zero, or the cotn-h

<>t material along the wall remain unmv< -<1. Tins fixity of the

ng the wall is, however, gennally incompatible \vitli

tli.-ii fixity in the same positions wh.-n in tin-
l

jirimitiv.-

taral
'

Mat.- i.e. when n<> 1.1\ t'..roa su-h ;w weight is supposed
I. I. I'!. II. 21
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to act on the mass, but this is the state from which the shifts

u, v, w are supposed to be measured.

The remainder of the Introduction is a re'sume' of the conclu-

sions reached in the memoir.

[1574.] I. of the memoir is entitled : Formules des pressions

priiidpales exerc&s d Tinttrieur des milieux e'lastiques, solides,

flnides ou pulve'ridents, dont la constitution est la meme en tout sens.

It occupies pp. 11-22. The first two or three pages recite some

well-known kinematic properties of strain, concluding with the

consideration of the three principal tractions and three principal

stretches. If slt s2 ,
s3 be the latter, Tl} T2 ,

T3 the former quan-

tities, Boussinesq puts p or ^ (T^ + T+ T3) and

i(r,-r,), HZ-.-T,), i^-r.)
equal to functions of slt s.2 ,

s3 ,
which he says, if slt s.,, s3 are suffi-

ciently small, can be expanded by Maclaurin's theorem in rapidly

converging series of integral positive powers of slt s2 ,
s3 (p. 14).

This is the same sort of assumption as we have had to criticise in

the investigations referred to in our Arts. 928 * and 299.

Accepting it with this qualifying remark, it is easy to follow the

considerations of symmetry by which Boussinesq deduces that :

- P = A + 0+C6* + D{(s2 -s:iy + (s.,-Si)
2 + (s1 -s.y} ......

(ii),

where A, B, C and D are constants (p. 15).
Write the right-hand side of

(ii) as K and its value when the

constants A, B, C, D are replaced by dashed letters A', ', C', D' as K'
;

then Boussinesq shews that the following are the forms of the principal
traction differences :

-
T>)

= [K
1

-f (B" + C"6) Sl ] (s,
- ,3),

*y =
(
K'

+ (
B"

+ C"6) s3 } (Sl
-

s,)

These formulae can be applied to all isotropic bodies, and Boussinesq

proceeds to apply them to various types (pp. 17-22).

(a) Elastic solids. In this case the strains represented by &, ss ,

*3~ *i> 8i~ *2 become sensible only when the stress-differences T T3t

T3 Tlt T^ T^ are themselves sensible. Hence for small strains,
we have

83 83 8^ Si 8%
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Hence, T, = J^ + T,+ Ts) + J(^ - Ta)
- ^(T9

-
T,)

a is of the form :

or the usual expression for a principal traction of an elastic solid, if A
be the initial stress, which is supposed to be uniform in all directions :

see our Art. 616*.

(6) Fluid Bodies. Here we have finite strain-differences 82 -83 ,

*i *n *i *a for vanishingly small stress-differences T2 T3 ,
Ta Tlt

T
l

T3 . If these finite strains are produced whatever be the value of

p, then we have a fluid and
T

l
= Ts=T9

= -p = A +M .................. (vi).

(c) Pulverulent Bodies. In such bodies finite strains sz 3 , 3 *,,

s
l
-

&, are produced by vanishingly small stress-differences T^-T^TZ T19

T
}

-
T.,, only when p is vanishingly small. Hence terms of the type

K' + (//' + C"0) 8
1
must be divisible by p, or = mp, say. If we neglect

trrnis of the third order in the strain, this can only be realised if

K' = niK
9

1?' = and C"0 be of the second order in the strain.

Further, since p is to vanish with the strain, we must have A = 0.

We easily deduce:

whence

where - p = BG + C& + D {(*,
- *3)

2 +
(<rs

- tf + (,

If we neglect the squares and higher powers of the strains m may be

on.sulered a constant; further, since when p is vanishingly small, 6 is

known from physical considerations to be vanishingly small ovrn fm-

Unit.- sti.iin iliH'Mt-.-iiccs *
a
-

s , 8 slt i- a ,
it follows that im

least be of the order of their squares. II- nc \ve may neglect Cffi

and put

I

for pulvoml. nt bodies neglects tho squares of th-

.Miu'ly piitn ^ = 0, while ~p(=BO) is sup|M.s,'<|
t<> ! Unit. II.

thus obtains equations (vii) in r..Mjiiii,-timi \\iili ^ = a tli- t'unda-

.-.
|ii:itiniis for such media.

;:. ii. c,f tin- rneooil (pp 23-7) is entitl.-.! : Kxprcsnont
generate* dtaforces elastique*, d Fintcrieur cits corps ifclasticilc constant*,

ou pulvcrulf' I nil u .lis. n-ioii of th'

212
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ation of strain from any system of axes to the axes of principal stretch.

Boussinesq gives results of the types :

sx = a^ + 6
1

2
*o + c^ss ,

<r
yz
= 2 (tWi + bj)^ + c2<v?3),

where a1? b lt Cj are the direction-cosines which the new axis of x makes
with the axes of principal stretch, aa ,

62 ,
c2 those of y and a3 ,

ba ,
ca

those of z. These results are identical with those of Maxwell : see our
Art. 1539*.

Boussinesq next gives corresponding formulae for the resolution of

stress, these are of the type :

See our Art. 133.

From (vii) by aid of these results he easily deduces (i), or :

= -p(l -Zmsx\ ^z=pm(Tyz
.................. (ix),

with the condition sx + s
y + sz = 0,

as the general type of stresses in pulverulent bodies (p. 27).

[1576.] in. of the memoir (pp. 28-37) is entitled: Equations

diffdrentielles de I'equilibre d'dlasticite des massifs pulvtrulents.

Boussinesq here limits the scope of his investigation :

Je m'occuperai principalement, dans la suite de cette etude, de

I'equilibre de massifs pesants, tels qu'un monceau de sable, formes de

tres-petits grains solides juxtaposes sans cohesion, mais se comprimant
mutuellenient (p. 28).

He supposes the atmosphere to penetrate into the conglomera-
tion of such grains and, pressing round each grain individually, to

have no influence on their mutual action, i.e. to contribute nothing
to the value of p in equations (ix) above. He terms the natural

state (tftat naturel) of the mass that in which it is free from its own

weight and the pressure p is zero at each point. He takes x, y, z

as the coordinates of a particle in this state, and u, v, w for the

components of its shift, when the mass is supposed to become

heavy, and accordingly to take up a new position of equilibrium.

Boussinesq further considers the limit of elasticity of the pulveru-

lent mass not to be passed, and confines his discussion to a

uniplanar distribution of strain.

Suppose the plane of xy to be this plane, and the axis of z to be

horizontal. Then, if gravity make an angle a with the axis of y, the

body stress equations reduce to
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where none of the stresses are functions of z.

If we wish to investigate the stresses only we must have a third

relation between T, w and Ty. This is easily found from (ix) by aid of

the identity

cPo-xy _ d\
~fady ~lk*

+
<?>r

(see our Art 1420), to be

where p = - J (xx + w)

Equations (x) and (xi) are the uniplanar stress-equations for a

pulverulent body.

[1577.] In a footnote, p. 31, Boussinesq gives the interesting

equivalent to (xi) in the case of uniplanar strain in an elastic solid.

It is, if
77
be the stretch-squeeze ratio :

df
Solutions of (x) and (xii) for the case of a heavy elastic solid are

given by :

where < is any function of x, y which satisfies the equation :

and C is an arbitrary constant : see our Art I

[l.')7s.| }']>.
32-4 of this section of the memoir are occupied

with certain supplementary formulae. Thus if ^ lu tin- tnu-ti>n and
lie shear across a plane tin normal to which makes an angle ft

with

the axis of a;, Boussinesq shews that f< |ulv< nilmt IM..J

where /if (taken }>ositivc) and /? are defined by :

R sin 2ft = - o, R ooe 2ft = J (7 -
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The formulae (xiii) are easy corollaries from those of Rankine : see

our Arts. 4G5 (6), and 1563.

If 7',, 1\, 1\ be the principal tractions :

where the algebraically least traction,
r
l\, coincides with the direction

which makes an angle J3 with the axis of x.

If x' be the direction of lines parallel to the plane of xy which
make initially an angle /? with the axis of x, and y that of lines per-

pendicular to x' we have :

'
'

(xv)'

*= ^ sin 2 03 -ft)

where, A* sin 2/?
= - mp<rxy , Jtcos2fi = mp(s!>

-sx).

The principal stretches are

R R

[1579.] Pp. 34-37 deal with the conditions at the boundaries of a

pulverulent mass.

At a free surface we must have the stress across the surface zero, or

in the case of uniplanar strain :

TJC cos y + xy sin y = 0, xy cos y + yy sin y = (x vii),

where y is the angle the normal to the free surface at any point makes
with the axis of x.

For a rigid boundary as a sustaining wall, Boussinesq considers the

extreme cases of perfect roughness or perfect smoothness.

For perfect roughness :

u^Q, v = (xviii).

For perfect smoothness :

u cos y + v sin y = 0,

and nt = R sin 2 (y
-

/3 )
=

0,

y being the angle the normal to the rigid boundary makes with the

axis of x.

Since R will not as a general rule be zero, we may write these

conditions :

u cos y + v sin y = 0, sin 2 (y /? )
=

(xix).

Boussinesq remarks that the conditions for perfect roughness, or

u = 0, v = 0,
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suppose that the particles of the mass which in the * natural state
'

(i.e. weightless state : see our Art. 1573) were in contact with the rigid
I mil mlary remain so after the mass assumes the strained condition. This

cannot in practice be the real state of the case. Sustaining walls, he

remarks, undoubtedly do not allow of the motion of the particles in

contact with them, but these particles will often be in other positions
than those of the 'natural state

1

, u and v at such walls may be

theoretically considered as given, but they are in practice unknown
functions of the coordinates of position.

Avec lea donnees dont dispose 1'ingenieur, I'cquilibre qui se produit dans un

massif, an moment meme oil <>n le i'>rme en dechargeant successivement de la

terre sur le sol ou contre un mur de soutcncment, ne paralt done pas susceptible
d une determination precise, et il doit dtre fort complete ou affecte* d'un grand
n>mlre d'anomalies locales. Mais ce qu'il iniporte de connaltre, c'est le mode
dV<|uiinro <l''f>ititif qui subsistera, lorsque les petits dbranlements que tout

massif eprouve presque a chaque instant auront fait disparaitre les irregularites
et amene uu tassement complet, ou groupe* tous les grains sablonneux de la

manicre en quelque sorte la moins forcde. Un tel mode d'dquilibre, par le fait

menu- qu'il s'dtablit de preference a tout autre, doit etre, de tous les modes

compatibles avec les circonstances, celui qui assure le mieux la stabilite' interieure

du massif en Ve'cartant le moins possible de Vetat naturel (\)\>. 36-7).

[1580.] iv. pp. 37-45 of the memoir solves the equations of our

1 ">76 for the case of an infinite mass of pulverulent matter bounded

by a plane sloping at an angle o> to the horizon. Boussinesq takes as

plane of xy any vertical plane perpendicular to the bounding plane, and
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as axis of x the line bisecting the angle between the talus OA and the

vertical OG. The magnitudes of the angles will then be those indicated

in the accompanying figure. The values of the shifts and stresses in

the plane of the figure can now only be functions of the primitive
distance I from the line OA. We have

I = x cos a + y sin a,

and equations (x) become :

-J-.
{xx cos a + (7y + gpl) sin a}

= 0,

(xx.)

These equations, having regard to (xvii) which must be satisfied along
the bounding surface or for 1 = 0, lead to :

i cos a + (7y + gpl) sin a = 0, ( xj/ + gpl) cos a + w sin a = 0,

or, remembering

<o =
^
- 2a and p = - J ( + .^),

after some reductions to :

%(xx Hy) />sin w=0, xy + pgl pcos w = ....... (xxi).

Hence by (ix) of Art. 1575, we find :

sinw

Thus, if < and
ij/

be arbitrary functions of y and x respectively

sin <a sin CD

The properties of <rxy , however, which can only be a function of
I,

and therefore must satisfy the relation

(fox 1 do- 1

dx cos a dy sin a'

lead to the easy determination of the forms of < and
if/. Boussinesq

finds :

sin<o r n \

+ (c + c
) y + cx ],

|

.(xxii),
sm<o

r ,
. ,nv = -= [- y +. car cos a + (c -c )
x + q J

where c, c', c", c/, Cj" are five arbitrary constants. Obviously the terms

in c/, c/' answer to a displacement of the mass as a whole and those in

c" to a rotation of the mass as a whole.
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For the strains and stresses we deduce the values :

sin to sin to
,

-sinto), ^ = -p(l + sin
to), xy =p (c + cl) sin to,

|

P ~~

cos to -
(c' + cl) sin o>

(xxiv).

If tin- motion of the mass as a whole be disregarded, Boussinesq
(pp. 41-42) shews that any system of initially parallel straight lines

in the plane xy becomes a system of concentric and similar conies

with their axes parallel to those of x and y. This conic system
reduces to a system of circles when the straight lines are parallel to

the bounding plane, and to a system of straight lines when c = 0.

[1581.] Boussinesq now proceeds to find the stress across any
plane from equations (xiii) of Art. 1578. Let the plane pass through
the axis of z and make an angle c^ with the vertical (see figure in Art.

1580), then its trace on the plane of xy being OP, we easily find that

ft of equations (xiii) is given by

/?_
3*" w

Whence using (xxiv) we have :

tan 2/J
= c + cl.

Take an auxiliary angle c given by 2/?
= to - 2e, or

c + cl = tan (to
-

2e) , (xxv).
We then easily deduce :

p</l cos (to
-

2c)

cos2(co-c)
'

COS 2 (to
-

)

COS

Kurt her, since

{cos (to
-

2e) + sin to sin 2
(c,

-
c)J,

2= -J2? r sin to cos 2
( l -)

cos 2
(to

-
c)

...(xxvi).

^i--j)(\ - 2wwM )
and

we deduce :

sin to sin 2 (c,
-

c)
*"~

2mooe((o-2c)

ain to ooe 2 (t!
-

c)

at ros (<
- Uc)

(xxv-xxvii) contain the fmi<l:tim ntul results of Boussinesq'

theory for the elastic f|uilil.nmn of pulvrrul -nt masses. We se

( \\\ n i.
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at once that when
l
=

e, or = c ^ , the value of sn = ;
that is to say

there is no stretch (or squeeze) in directions making an angle with

the vertical or horizontal, or in directions given by the solution of

(xxv) for . The principal axes of stretch must bisect the angles between
these directions of no stretch, and the magnitudes of the principal
stretches are given by :

sin w= +~ ; .................. (xxviu).-
'2m cos

(o>
-

2e)

[1582.] Boussinesq remarks that the practically useful cases

are those in which the constant c of (xxv) is zero, or e is a

constant angle, and sums up for such cases as follows :

If two systems of equidistant parallel straight lines be drawn

in tbe unstrained mass, the one inclined at an angle e to the

vertical, and the other at an angle e to the horizontal, thus

dividing the transverse section of the mass into a system of equal

squares, then this double system remains after strain a double

system of parallel straight lines, the squares being converted into

rhombuses having tbe same sides as the squares, but adjacent
sides rotated relative to each other through the small angle
sin (0/{m cos (o> 2e)j. The whole strain therefore reduces to a

slide upon each other of parallel slices of the mass inclined at an

angle e to the vertical (p. 45).

[1583.] In a footnote on p. 45 Boussinesq deals with the strain in

an infinite heavy elastic mass bounded by a plane inclined at an angle
CD to the horizon.

Taking: = -.p(l -sinw), ^ = -^(1 +sino>), 1

*-** , f *... I A A.1 A. I.

x,~pooBv-pgl
we see from our (xii) that p must be of the form :.

P=fi+fJ ...........................
(
xxx

)-

I find from = \0 + 2nsx , ^
that the shifts are given by

l
:

1 This is the case of an infinite solid with a free plane surface. Boussinesq's

results as expressed in (xxix) do not seem general enough to enable us to deal with

a i-iiiid plane boundary as well, which we can do in the case of results (xxiv) for

a pulverulent mass.
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Whence from 7^ = /icr^, we have, if v = (A + 2/x)/(X + /z) :

Offl COS2 <i> - V
cos o> - = -

/> cosw

Now Boussinesq equates the expression on tin- left-hand side of this

result to tan (w - 2c) sin M, and sjn-aks of this auxiliary angle e iK'coniing
constant for great values of I. It seems to me that it must always be

constant, and that we must have :

. .

(xxxii),

or, /i = 0, and /, = (pg cos w)/i/.

The maximum stretch and squeeze are then given by :

. {- 1 + V(T^77

tin- angles y, and
y.,, they make with the axis of x (xxxiii),

being determined as roots of :

tan 2y = (v 1
)
cot o> + v tan o>

where the squeeze corresponds to the value of y < ir/2.

Tin-so results, a slight extension of Boussinesq's, seem to me of

|M.iblr application to geological problems. For example, supposing

rupture to take place perpendicular to the directions of greatest stretch,

we 6nd, that a massive slope of rock at an angle of 45, would und< T
its own weight rupture in planes making an angle of about 80 to 81

with the downward direction of the slope. The planes of rupture thus

fall below the internal planes perpendicular to the surface. This

nuinei i<-al result supposes uniconstant isotropy to hold for the material

of the rock.

That the strains and stresses become infinite with / is only to bo

expected from the nature of the theoretical problem, which suppose a

heavy mass, infinite in size.

[
1
")<S4.]

v. of the memoir (pp. 46-53) deals with the modi-

fications necessary in the results of the previous section when the

pulverulent mass is bounded by a sloping wall. Let this wall

slope at an angle t to the vertical (see fig. below), then the angle

X it makes with the axis of x is given by x = T + &
~~ * Boussii i

4

considers two cases, namely, \vbrn tin wall is either (i) perfectly

rough or (ii) perfectly smooth.

Case (i). Walt perfectly rough. In this case we take (soe our Art
'i ami r as given by equations (xxii) equal to zero, win n

r
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for all values of r. We easily find that :

c = c/-c1

" = 0,
|

c" = - cosec 2X = - sec (<o
-

2i), I ............ (xxxiv).

c' = -cot2x - tan(w-2t) j

Since c = 0, we have from (xxv) :

or, the parameter e is now constant and the line OM of the figure in

our Art. 1580 coincides with the direction of the supporting wall. Thus

by Art. 1582 the strain of the pulverulent mass consists of a slide

of magnitude
sin w/jfji cos (o>

-
2i)}

parallel to the supporting wall.

Suppose a plane in the pulverulent mass perpendicular to that of

xy to make an angle < with the fixed wall in the unstraiued, and the

angle <f>

- 8< in the strained condition. Then we easily find fy/sin
1

< =
<r,

the slide parallel to the fixed wall, or

sin co sin2
<f>

(xxxv).m cos (co
-

2i)

Boussinesq takes two special cases. Namely, when 8< =
,

the

change in angle of the talus itself, and when S< =
',
the change in angle

of a plane making an angle of 45 with the wall in the unstrained

condition. In the former case
<f>
=

7r/2 + w i, and in the later < =
ir/4.

Hence :

_ sin to cos2

(co i) _ sin w

in cos
(CD 2i)

' 2m cos (co 2i)
'

0/ .
xsin co cos 2 (w

-
^)

Case
(ii).

IFaW perfectly smooth. In this case the n< of equation

(xxvi) is zero for e
x
= i

;
this leads to 2 (i e)

=
7r/2, or from (xxv) :

c' + cl = - cot
(co

-
2i).

We have further to make the shift perpendicular to the wall vanish, or

v cos x~ u sin X = QI

for all values of r when

a; r cos x , y = f sin X-

This leads by (xxii) to c = 0, and, remembering that at the wall

X + i = ir/4 + o> 2, also to c" = 0.

Further we find C//COB \ = cl sin x c
o

sav - Boussinesq takes c = 0, or
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the axes of x and // through the strained position of the element at

the origin 0. Thus we have finally :

and c = i - ir/4

-"M ..... (xxxvii) .

J

<)n .so fait une idee nette du tassement qui se produit dans le cas actuel

d'un unir iH)li, ayant OM' pour face posterieure, en concevant, an lieu de ce mur

ix>li, un mur rugueux OMlt incline* sur celui-ci de 45, ou faisant avec Oy

1'angleyCU/^a + t-^ ,
et en considdrant le tassement, parallele h, OJ/,, qui se

produirait alors. Ce tassement, & une distance D de OM^ sera dgal a

D sin *l\m cos o> - 2 li -
^ J

> = - D sin o>/{m sin (<a
-

2i)} *. Pour amener le

AOM' k son e*tat d6finitif, il suffira de concevoir ensuite qu'il tourne en
bloc autour de 1'origine 0, dans le sens de Oy vers Ox

y
de la petite quant i tr

C sin
/J2mcos -2U'-^J i= - sin /{2m sin (<u

-
2i)}, en vued'annulor

ion egale et contraire dprouvde dans ce tassement fictif, d'apr^.s (
\ \ \ \ i ,

l>.ir
l.i ligne matdriellc priiiiitivcnn-nt couchee contre le mur reel OAT et qui no

recoit enectivement aucune rotation autour de (pp. 50-1).

This follows since the term in c" in the first solution corresponds as

w<- havr Mnti-i] in Ait. I.~>s0 to a rotation of the mass as a whole of

magnitude -= c"
[

: see equation (xxii)], or by (xxxiv) to

<os[~u>
-
2(1 7)]},

to the value of
'

in (xxx\ i)

1 Hi' uni'l' -".V, is to be reckoned negative when Rtibntituted for the i of case

(i), for o.V, now falls on the opposite side of OO to OM'.
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The change in inclination of the talus to the smooth wall will he

given by the third formula of (xxxvi), or by :

"
\ \ 4// sin oj sin 2 (o>

-
i)

, ./. ,NN
'

2*. .&./.. -8ft -(""'">

sin oj cos

^??i coa I w - a i - -r

The solutions found for the two cases of the rough and smooth

supporting walls are unique (p. 50).

[1585.] vi. (pp. 53-68) is an interesting, if somewhat

hypothetical one. It is entitled : Des modes d'e'quilibre qui cessent

d'etre possibles, par suite des limites d'e'lasticite' de la matiere

pulve'rulente.

Boussinesq terms the elastic limit in the case of a pulverulent
solid the 6tat ebouleux, which we may render as the state of

collapse. He considers that a pulverulent mass may withstand a

positive stretch, but not a positive traction. Thus from equation

(vii), it follows that p must always be positive and the maximum
stretch s < l/2ra in order that equilibrium may exist. But it does

not result from this that s = l/2m is the stretch which marks the

point of collapse. A less stretch than this, to be determined by

experiment, may be sufficient. Boussinesq accordingly takes for

the conditions of non-collapse or stability

p>0 and s < .................. (xxxix),
alflt

where
</>

is an angle between and 90 (for its physical meaning :

see Art. 1587) and s is the greatest positive stretch.

[1586.] We may, according to Boussinesq, look at the con-

dition of stability of any isotropic elastic solid in the following
manner (pp. 57-9). Suppose s1 and sz the principal stretches in

the case of uniplanar strain, then for the limit of elastic stability

we must have sl some function of s.2 (including a constant as such

a function), or we may write, he holds :

Now if the corresponding principal tractions be Tlt T2 ,
we have

7\ -T. =^ (s,
-

s,\ 2
1

! + Ta
= 2 (X + /K) (s, + s2), and therefore :
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Now for the special case of a plastic solid the dilatation-

modulus J (3X -f 2/ji), or since resistance to change of bulk in

such a solid is great as compared to resistance to change of

shape \ must be very great as compared with
/z. Hence if

T! + T9 be not very great as compared with 7\ T.,, we have,

expanding by Madam-ins theorem and retaininff <ili/ the lowest

tern

T.-T^ZK-K^T.+ T,) .................. (xli)

where A" and Kl
are independent of Tlt T.

If we retain only the first term on the right, we have Saint-

Venant's fundamental hypothesis for the state of plasticity : sec

our Arts. 247 and 260. If we retain only the second term on the

right, Boussinesq's second condition of (xxxix) that a pulverulent

body shall not reach the point of collapse, will be found to coincide

with it. For, since

T, = - p (1
-

2WW.) and p = - ( T, + 71)

we have (T,
- T9)/(Tt + T,) = - 2ww,, or for stability :

T T~
T ,m< sin

<ft
............ (xlii).

*
l + * 1

This agrees with (xli), if we take A"= and K
l
= sin

<ft.

Thus K = corresponds to pulverulence and ^ = to

plasticity.

Here, as in Arts. 1568 and 1594, the discussion seems to trench

on ground which much needs accurate physical investigation.

Boussinesq cites no experimental evidence, and the appeal to

Maclaurin's Theorem is far from convincing. Bous^iiH-sij's treat-

ment of the elastic, plastic and pulverulent limits may be

suggestive, but it is certainly not final.

1

\\V may l>nk at -,iiilit ion (xlii) from aiiotlin- sfaii-1
j...int.

(xiii) \vr rasily timl tin- aii^li- ' 'OSS any Jtlanc
niaki-s willi tlu- normal n to that jilau*-. Let tlis aii^li* h< ^. Tln-n

it will ho found that \ is a maximum \vln-n :

ami that in tins cage,
>!l ">-

Y
= Hin*

</>

Preiiii-ini: ^>at
<f>

i t.-rm.-.l (ho angle of internal fricltot, we may
thi, result as toll-
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The inclination of the stress across any plane to the produced
normal to that plane ought for equilibrium to be possible to be less

than, or at most equal to, the internal angle of friction (p. 56).

Equation (xliii) also gives us :

or, we conclude that : The planes, across which the stress makes the

greatest possible angle with the production of the normal, make with

the plane submitted to the maximum pressure an angle equal to

+ i
Thiis result is due to Rankine, who deduced it, however, from a

discussion not involving the same principles.

[1588.] Using (xxviii) and the second of (xxxix) we easily find that :

cos2 (w
-

2e) > sin2

w/sin
2

< .................. (xliv).

Hence to the slope of the talus must be less than, or at most equal to,

the angle of friction <.

Boussinesq gives some details from a memoir of Saint-Guilhem

(Annales des ponts et chaussees, T. xv. pp. 319-50. Paris, 1858) as to

the angle of friction. It varies from 24 or 26 for small shot or

mustard seed to about 55 for very dense earth. The natural talus, for

example that observed at the foot of steep rocks, etc., is about 31 for

fine and dry sand, from 32 to 33 for marl, limestone and earth

recently thrown from the wheelbarrow, about 37 for chalky earth,
about 38 for moist quartz sand and about 45 for moist gypseous sand.

[1589.] The relation (xliv) is easily shewn to involve the condition

that cos2 w > sin
2
o> tan2

(w 2e), or, looking at (xxiv) and (xxv), the

condition that p > 0. Thus the first condition of (xxxix) is satisfied if

the second be.

Suppose cos T = sin oo/sin <, where T is an angle between and 7r/2,

then we easily find from (xliv) that

c > | (o> T) and < \ (w + T).

In the case of a rough revetment wall its inclination i to the

vertical is equal to : see our Art. 1584. The limits within which
i,

or the direction of the face of the revetment wall must lie thus form
what Boussinesq terms a Maltese cross, and for all values outside the

arms of this cross slipping takes place for the given slope of the talus
1

.

1
Boussinesq in a footnote, p. 63, returns to the solution for the elastic solid,

which we have dealt with in Art. 1583. He appears to think that the principal
stretches can both be negative, but I have been unable to find any special appli-
cation of the solution with possible boundary conditions in which this would
occur. He states that it would be necessary for the plane boundary of such

a solid to have a less slope than that given by sinw= r- , or = for a unicon-

stant elastic solid, i.e.w<30. I do not think this is true for an infinite elastic

solid with a free plane surface.
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We easily find from (xliv) that the two limiting values of the slope of
the talus for a given value of the inclination of the revetment wall
are the roots of :

cos 2t
tan o> = : ^ (xlv).

+ cosec < sin 2i

Boussinesq remarks that in actual practice this only gives the slope
of the tangent plane to the talus at the revetment wall, the talus itself

generally not being plane and having at a distance from the wall any
declivity not greater than the angle of friction <. Thus we have the

r.

in the first of which o^ corresponds to the upper, and in the second w2 to

the lower sign in (xlv).
The remainder of this section of the memoir is devoted to numerical

details of the relations between o> and i for the cases of perfectly rough
and perfectly smooth revetment walls.

[1590.1 vn. (pp. 68-81) is entitled : Calcul de la pression exercee

gur tout element de surface normal au plan des deformations, et de la

poussee totale que supporte un mur plan de soutenement.

In this section Boussinesq first discusses at some length (pp. 68-74)
tli- values of the parameter e (which characterises the mode of equili-
brium: see our Art. 1581 and fig. Art. 1580) for which the stresses

nn and nt across the plane given by e, (see equation (xxvi) of Art.

1581) take their maximum and minimum values. Let </>,
be the angle

the resultant stress makes with the normal to the plane given by e,

then:

The extreme values of the two components !!, n* of the stress, or
Jiosc which convsjioinl to a mass witli its talus at an an^'lc ( to the

horizon on the point of collapse are given by the equations :

sin (o> + 2^) = sin w/sin <f>,

= tan tan* -

^ _ HI II
<ft

COS ^ HJH 2 (c t
+ ^)

'
-V/> '

tan
</>,

(xlvi).

PI, II.
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The auxiliary angle >Jr,
which is to be calculated from the first of these

equations, ought to be so chosen that the absolute value of o> + 2>/f is less th.m

r/2, if we require the limit when - m takes its least wiluo
;
and it is to be taken

between ir/2 and TT if we require the limit when - nn takes its greatest value.

Since the inclination fa of the resultant stress to the produced normal
to the elementary nlane must lie between -

w/2 and 7r/2, its value is com-

pletely determined by the second of the equations (p. 74).

Boussinesq points out that the limiting equilibrium when is a
minimum is that which has been studied by Maurice Levy in his memoir
of 1867-9 : see our Art. 242, while Rankine in 1856 (see our Art.

453) had considered both cases of limiting equilibrium for cl
= 0.

[1591.] For the special case of a rough supporting wall c - i,

or the inclination of the wall (see our Art. 1584), whence from (xxvi)
we have at the wall where ex

- i :

cos (CD
-

2i), ^t=- .--sin CD:,

cos 2
(CD

-
t)

cos 2 (<a-

whence, if R be the resultant stress :

tail fa = sin CD/COS (CD
-

^ = pgl sin q> ................. (xlvii).

cos 2
(to i)

sin

We see at once that the stress across each element of the wall is

the same in direction. Taking a strip of the wall of unit horizontal

length and depth d measured along its sloping face from the talus, we

easily find for the resultant action P :

= {

Jo
,- ...... (xlviii),

o 2 cos 2
(<o

-
^) sin fa

and this acts at the hydrostatic centre of pressure of the strip, i.e. at a

distance \L from the top of the wall.

If i 0, or the sustaining wall be vertical :

paL
z cos CD

tan fa = tan o>, P = f
- - - .............. (xhx).
2 cos 2cD

In this last case we have, from (xliv), tanco = sin<, whence we see

that the angle of friction between the wall and the pulverulent mass

(which ought always to be greater than fa) must have its tangent
greater than the sine of the internal angle of friction of the mass

(pp. 80-1).

Boussinesq also deals with the corresponding problems for the

smooth wall
;

these having less practical importance, I do not

reproduce.

[1592.] viii. (pp. 81-95) is entitled : Resolution des pro-
btimes d'dquilibre les plus important* dans les applications, au
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moyen d'une condition de stability qui tient lieu des relations

specifies aux parois.

This chapter is occupied with a discussion of rules for practi-

cally finding the resultant action between a sustaining wall and a

pulverulent mass which will: (i) just support the pulverulent
in ass, or (ii) which will give the greatest possible stability to the

mass.

Boussinesq first remarks that having regard to the manner in

which earthwork is generally put together, it is impossible to

ndei thai n and v, the shifts from the "natural state," are zero

at the rough wall : see our Art. 1578. He considers that the

pulverulent mass is in reality put in with many finite slippings

and shakings, so that it finally takes up a form of equilibrium

totally different from that obtained by using the conditions

u = v = 0, the wall.

Ce mode doit etre le plus favorable possible a la stabilite" inte>ieure

du massif, c'est-a-dire, celui pour lequel la dilatation maxima s
t acquiert

aux divers points ses plus petites valeurs compatibles avec le degre* de

resistance que le mur pent opposer : car le mode d'equilibre ainsi defini,

s'il iiY-tait
|>;is deja completement realise nn instant apres que Ton a

depose les dernieres couches de terre ou de sable, ne tarderait pas a
s'etahlir par 1'effet des petits ebranlements, dus a mille causes diverses,

que le massif eprouve presque a tout instant, et qui permettent aux

grains sablonneux de se grouper de la maniere en quelque sorte la

moins forcee (p. 82).

Excluding the material in the immediate neighbourhood of

the wall where the wall's influence produces perhaps local dis-

turbances, we see that all the modes of equilibrium realisable

are given, subject to the limitation of the value of e in Art.

1589, by our equations (xxv)-(xxviii). The last equation, how-

ever, shews us that the principal stretch s, will be a minimum,
o> being a constant, when e = a>, and this corresponds to the iimst

stable mode of equilibrium, or that nearest to the "natural state"

i'.r \\hich
,
= 0. This mode of equilibrium will therefore be set

up if the wall be able to carry the corresponding resultant action.

In the case of most stable .|uilil>rium the resultant action, taking
place at the hydrostatic centre of pressure, is given 1 \

P W& tan oos(
-

1) cos (2
-

<u)

2 sin*,

If I
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where < 1} the angle P makes with the normal to the wall, is determined

by:
. 7T 0)\
+ T - ~

)

.(li).

.(liii).

Fort = 0, P~- cosco, and ^^w (Hi).
2i

If the sustaining wall will support this thrust then the pulverulent
mass has the maximum of stability possible.

Boussinesq next turns to cases in which the wall will riot support
this thrust, and discusses the moment of the forces tending to capsize it,

and the relative degree of stability corresponding to these cases (pp.

86-95). He shews that, when the sustaining wall is vertical or i = 0,

then the pulverulent mass will still be in equilibrium, if the wall will

just withstand a thrust given by :

pgl? cos o> sin 2/
I
=
-2~sin2(a> + ^

where ^ is the least root of

sin
(o> + 2{j/)

= sin oo/sin

The values of P and P
l ,

as given by (lii) and (liii) respectively, differ

very considerably. Thus for to = 20, $ = 45, we have Pl : P :: '1935 :

9397. There is thus a wide range of values from the just stable

stage to that of maximum stability (pp. 91-2).

[1592 bis.] The reader must carefully bear in mind the

different character of the solutions obtained in our Art. 1590 and

again in our Art. 1592. The solutions of Art. 1590 give the

resultant action of the pulverulent mass on the sustaining wall,

provided we make the physically incorrect assumption that u = v 0,

at the wall. The solutions of Art. 1592 do not involve this

assumption (which in the case of a rough wall leads to e = i : see

our Art. 1584, Case (i)) but, disregarding the condition of affairs in

the immediate neighbourhood of the wall (i.e. giving u, v definite,

but undetermined values there), give the resultant actions on the

wall for those values of e which correspond to (i) the maximum

stability in the pulverulent mass, and (ii) the least resultant

action on the wall consistent with equilibrium at all.

[1593.] IX. (pp. 95-133) is entitled : Sur I'dquilibre-limite

en general, fitude particuliere de I'e'tat dbouleux qui se produit
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un massif pulvei-ulent, au moment vh un mur de soutenement

commence d se renverser. This section deals with the stability of

a pulverulent mass on the point of collapse as a limiting case of a

pulverulent mass in motion.

In obtaining the equations for the motion of a pulverulent
mass Boussinesq supposes :

(i) that the mass remains homogeneous and isotropic,

(ii) that the strains are produced so slowly that the inertia

of the elements of the mass is negligible *,

(iii) that the stresses in consequence do not sensibly differ

from the maximum elastic stresses,

(iv) that the elastic stretch in any direction is proportional to

the set stretch which occurs in the same direction in a small

interval of time dt.

These assumptions lead Boussinesq to equations equivalent to

(x) of our Art. 250, which hold for either a plastic or a pulverulent
mass. The equation (ix) of Art. 250 resulting from (iii) of Art.

247 will not, however, be the additional relation peculiar to the

case of a pulverulent mass. Indeed Boussinesq criticises the form

of that relation as stated by Saint-Venant and Le'vy even for a

ic mass.

If *i, *2 ,
ss be the principal elastic stretches in descending order

of magnitude, Boussinesq, generalising the results of Art. 1586,

considers that s
l
-s3 takes at the elastic limit a definite value for

each value of the dilation (si + 2 + s3 ), and for each value of

(*, ,)/(*, *,). Thus he considers the elastic limit given by a

relation of the form :

-*-/(*+ ^ ............ (liv)>

or, in the case of both plastic and pulverulent masses, for whirl i

= 0, by

1 The equations for the small elastic vibrations of a pulverulent mass are not
r and cannot be even approximately satisfied by sine and ooaine terms involv-

he time. This is the analytical equivalent of the effectiveness of sawdust or
and in checking sound vibrations.
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Or, 1 j I g
=

fi being as usual the slide-modulus.

He remarks that for the cases treated by Saint-Venant :

(a) torsion of right circular, cylinder (see our Art. 255),

s2 . 0, s3 = sl} and therefore Tl T2
=

2fjf(l),

(6) circular flexure of a prism, s2
= s3 for the extended

fibres, s.2
= st for the contracted fibres, and therefore

T! T2
=

2/A/*(oc), or = 2#/"(0) respectively.

Hence Saint-Venant's plastic modulus K, which equals /jf,
will

not be the same for all these cases, unlessy is an absolute constant

(p. 101).

It seems to me that Boussinesq's relation (liv) is really of a

very arbitrary character, and that at least some physical evidence

in favour of it ought to have been adduced.

[1594.] With regard to the surface-conditions, Boussinesq

practically refers to Saint-Venant's treatment (see our Art. 254),

and like Saint-Venant he also neglects a possible semi-plastic

midzone of material (p. 102): see our Art. 244.

[1595.] On p. 103 Boussinesq makes an important remark with

regard to the form of (Iv).
He notes that for a pulverulent mass, by

aid of equation (vii) of our Art. 1574, it may be written in the form :

2 T IT + T
= m}

Now this equation, if satisfied for any system Tlt T<>, T3 ,
will still

be satisfied if the principal tractions and therefore the general system
of stresses be altered in any definite ratio. Further if the body-forces be

negligible as compared with the stresses, equations (x) of our Art. 250
combined with the body-stress equations shew us that the magnitudes
of the velocities u, v, w will remain unaltered by this change of stress.

Boussinesq applies this result to the case of a reservoir of pulverulent
matter with a small hole in its base :

Dans un dcoulement de sable par un orifice, la vitcsse tend done vcrs uno
limite des que la hauteur de charge devient un peu grande, et elle se mail it, in it

des lors con.stante.

Ainsi s'explique I'lmiformite' d'ecoulemcnt qu'obtcnaient les anciens avoc
les sablicrs dont ils se servaient pour mesurer le temps (p. 104).

Kfc'
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[1.VJ6.] In the particular case of uniplanar strain studied by

Boussinesq, "*, z* and are respectively 0, 0, and -
p, while 10, dujdz,

dv/dz are all zero. Thus equations (x) of our Art. 250 become :

These will be found to be satisfied by (xxii) and (xxiv) of our

Art. 1580, remembering that u and v are now velocities. Further

the solutions of that article satisfy the conditions, which are necessary
at the free surface.

But in order that the limit of elasticity may be reached at all

points where the mass is commencing to move we must have by (xliii) :

or, substituting for the values of R and p, we have Rankine's relation :

4 2 + (^-^)2 -p+^)2 sina < = ............ (Ivii).

This condition is again satisfied by the solutions for the cases of

limiting equilibrium that we have found in Art. 1590.

[1597.] The condition that remains to be satisfied is that at

the wall. Its introduction into the modern theory is due to Le'vy.

Boussinesq writes :

Une derniere relation, spciale a la face poste"rieure du mur, ne

s'applique qu'autant que les particules contigues du massif sont sur le

point d'y Sprouver des glissements finis, circonstance qui semble devoir

se produire des le commencement de renversement du mur, tontea 1 s

fois quVllr ne sera pas en contradiction avec les autres Equations du

prob!6me. Or sa realisation exige que Tangle fait en chaque point.
avec le prolongement de la normale a la face pO8te>ieure du mur, par la

l>Miiss<V (jui lui est appliqu'<\ \aill- jin
;ris ; nn-nt Tangle du frottement

maximum <lu mur rt d<- l.-i mat irn- s.ill<iiiin-usc du massif (p. 107).

The solutions (xlvi) for the limits of stability satisfy as we
h.ivr sc.-n .ill but this last condition. In order that they should

also satisfy this condition, it would be necessary that tbe value

of
<f> t

,
as given for the wall (e,

=
i) by the second equation of

(xlvi), should be just equal to tbe angle of friction between the

wall ari<l the pulverulent mass. If it be, thru the solutions (xlvi)

we have obtained for limiting equilibrium will still continue to

give the stresses wh n tin mass begins to collapse owing to the

upsetting of the wall (p. 109).

When the angle of friction is ^n at. r th.m the above value of

<>,, th.-n .-i \s<din <,i material adjacent to the wall retains its

|uililriiiin at tho inst.n.i tin- wall lupins in upset
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[1598.] Now Boussinesq remarks that in practice sustaining walls

are generally sufficiently rough to render a thin stratum of the

pulverulent mass stationary upon them. Hence the angle of friction

between wall and mass really reduces to the angle of friction of the

pulverulent mass upon itself, or to what we have denoted by the

angle <. The second equation of (xlvi) then leads, if #! = <, to

< + 2i + 2$ = JTT as the only practical solution, or to :

= J-J*-* (Iviii),

for the requisite inclination of the wall.

It will be found in this case that the value of the resultant action

P reduces to (p. Ill):

P = %pgL
z

cos(<f> + i) (lix).

This result is due to Levy.
Thus we see that the solutions (xlvi) only hold for a special type of

wall.

[1599.] Boussinesq next turns to the case in which the wall

has not the above inclination and proceeds to solve this case by a

method suggested by Saint-Venant (Comptes rendus, T. LXX., p.

283 : see our Art. 242). It consists in supposing the stresses to

differ by small quantities from the values they have for the case

in which (Iviii) is satisfied. The analysis by which a solution is

obtained (pp. 112-124) is too long for reproduction, but we shall

examine it in a later modified form in our Arts. 1613-6. The

solution obtained is exact provided the pulverulent mass instead

of being supposed uniform be considered as slightly heterogeneous,

its angle of internal friction
<j/ being taken slightly greater than

<f>
and varying from point to point of the mass. Boussinesq

shews that the divergence of
<f>'

from $ necessary to insure the

exactness of the solution only exists in a wedge of the material

bounded by the face of the wall and by a plane through the in-

tersection of the wall and talus and making an angle JTT </> *//

with the vertical (pp. 116 and 122).

Boussinesq further shews (p. 125) that

1 < sin <'/sin </>
< sec 8,

where 8 is J TT J (/> ^ i, or measures the divergence of true

inclination of wall from that given by (Iviii). When the secant of

the angle 8 (which is really the angle of the above-mentioned

wedge) is small, then we may regard <f>'
as equal to < and apply

the approximate solution (lix).
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For small values of 8 Boussinesq finds for the resultant action P on

the wall :

t* n (* "*\ <*<** (* + *)*(*-*) ,

tan -- "'

This will be found to agree for <f>= <fo, 8= with (Ixix).

For a horizontal talus and vertical wall:

tan'g-Qcosg-f)= \MV- V* =

and :

These results hold for all cases in which 8 being positive, <, the

external angle of friction nearly satisfies

tan (t + ft)

See our Arts. 1590 and 1618.

In the remaining pages of this section Boussinesq deals with the

cases in which the back of the wall and the talus are no longer plane.
The results, owing to their complexity, do not seem likely to lend

themselves to practical applications (pp. 127-33).

[hJOO.] In the present memoir Boussinesq speaks of the

results (Ix) and (Ixi) as approximations to the true solutions. In

later papers he takes the values of P given in them as providing a

lower or an upper limit to tbe value of P according as the hetero-

geneity of the wedge (Art. 1599) is supposed to be such that the

whole mass is either more or less stable than it really is. These

limits can be reached by a proper choice of the values of
<f>

and

<, in (Ix) <>r (Ixi): see our Arts. 1607 and 1616-8.

(
1 001.] x. (pp. 134-56) is entitled : fitiule, en coordonnees

polaires, de Vtquilibre-limite (par <1i
:

fnrimitini<x planes) dune
infuse plastit/ue on nnh^'nilcnte cumpriim''?.. Applications a unc

masse annulaire, cl un massif compris entre deux plans rigide*

se a This section of the ni m.-ir m.-iy be looked upon as a

supplement to the memoirs dealt with in our Arts. 24f>

Bouwinesq supposes the inertia of the plastic or pulverulent mass
as well as the body-forces to be negligible. He further suppooes the
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flow to be uniplanar and a function only of the axial distance r and the

longitude <. We have from the equations in the footnote on our

p. 79:

_~ + + ~~ u
'

_
. "T - T" v
dr ra< r

Now if p be half the sum and R half the difference of the

principal tractions, and a the angle r makes with the algebraically
least principal traction, then we have :

'

Now by equation (xli) for limiting equilibrium

where for plasticity Kl
= 0, and for pulverulence K = and Kl

= sin
<f>.

By means of (Ixii Ixiv) Boussinesq finds :

2 . v / da\ d cos 2a

rfr

da

c/r

J2- =

^)-2r(cos2a+^)-,

Since J?p is a constant, if we differentiate the first equation with

regard to 6 and the second with regard to r, we shall then, by sub-

tracting one of these equations from the other, obtain a differential

equation involving a only. If this be solved the value of p can then

easily be found by multiplying the first equation of (Ixv) by dr and the

second by dO, adding and integrating after substitution of the value

of a.

[1602.] Boussinesq treats in particular the following special cases of

plasticity :

(a) A belt of matter bounded by two coaxial, right-circular cylin-
drical surfaces subjected to normal pressures and by two smooth rigid

planes perpendicular to its axis (pp. 137-9). In this case p and a are

independent of 6. For the special case of plastic material Boussiiiesq's
results agree with Saint-Venaiit's : see our Art. 261.

(b) Although the results of (a) are rigidly true only for the

special conditions stated, Boussinesq considers them as approximately
;i)|)licable to the case of a like belt placed upon a smooth plane, the

interior surface of the belt being subjected to a pressure p tending to
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extend it and the extemal surface and the upper face being free (p.

140). In this case we have from (ix) of our Art. 261 :

(Ixvi),
o

win -re r is the radius of the inner, rn of the outer surface.

(c) A hollow cylinder of which the base and exterior surface are

placed in contact with rigid smooth surfaces, but of which the upper
is submitted to a mean pressure pz and the interior surface to a

sure p (pp. 140-2). The treatment is again only approximate.

Boussinesq argues :

Alors la matiere se dilate & la fois ou se contracte & la fois, et en moyenne

presque <5galement, dans deux sens rectangulaires normaux aux rayons r,

tandis qu'ello dprouve par suite, suivant les rayons r, une contraction ou line

dilatation moyennement doubles. On a done presque =
,
c'est-a-dire que

les elements plans parallfcles aux bases de 1'anneau supportent des tractions

^ (positives ou ndgatives) assez peu diflfdrentes de celles qu'dprouvent, aux
memes points, les plans mdridiens (p. 141).

I see no reason why this should be true. Assuming its truth,

however, we have:

1 +
log-J (Ixvii):

which is equal to the value of 4 given in equation (viii), of our
Art. 261, but twt to that of Tz.

Hence, from the relation

we find: p. = Po + K (\
+ f-'-log p) ............ (Ixviii).

V T
I

r r /

If the radius r is decreasing we must take the lower sign (p. 141).

For/?, = 0, as in this case r is increasing, we take the upper sign,
and find :

Tin- ivsulLs (Ixvii) (lxi\) \vn-- first ivrn by Tn-sra ; his proof.

however, is even less HatMa.-t.n-\ tli.m ih,- abovr. S,-- also our
A.t. -262.

(/) Tin- action of a circular pun. -h (pp. 142-4). II
in.-sij

:i|i|.!i.
in T niiirr, the above dnibiiul f<>nnidar to tin- i \\ , ,

rusca \\hfi-c tli.- material to b- punched rest ii^'id plain-, riiln-r

vitli, or fin \\itli.. dar orifice of the size of tb- puurh and
iuilni-diati 1\ opposite tO it8 face ill tin- plain-
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Tresca's discussion of the cases (c) and (d) will be found on

pp. 784-803 of his memoir of 1869: Sur le poinyonnage des tnetaux...

published in the Recueil des savants etrangers, T. xx. Paris, 1872.

(e) A general solution of equations (Ixv), when da/d<j>=Q, but not

necessarily dp/d<f>
= 0. No results of practical importance seem to flow

from this assumption (pp. 145-6).

[1603.] (/) Case of da/dr = in equations (Ixv), or the least

principal traction making the same angle with a radius-vector at every

point of its length (pp. 145-56).
Rp being a constant, we have in this case :

.,

(1
-

/)
J"|

= C' - (c
- Rp) log {r> (c

- cos 2a)|

where (7, C", and c are arbitrary constants.

Boussinesq applies results (Ixx) to the consideration of the special

case, where a cylindrical sector of material is placed between two

intersecting rigid planes, sufficiently rough to stop all sliding of the

particles of the material touching them. The application to the case

where the rigid planes are hinged to a common axis and squeeze a

wedge of plastic material placed between them might possibly have
some practical interest.

[1604.] To the memoir is appended a Note Gomplementaire: Sur
la methode de M. Macquorn-Rankine, pour le calcul des pressions exercees

aux divers points d'un massif pesant ...... (pp. 157-173). The method
dealt with by Boussinesq is that discussed in Rankine's memoir On the

Stability of Loose Earth (see our Art. 453), but as it does not start

from an elastic hypothesis, we have not considered it in our volume.

Boussinesq explains and supplements Rankine's investigations, but

remarks of the hypothesis by which Rankine solves his fundamental

equation :

Peut-etre trouvera-t-on un jour quelque ordre de phdnomfcnes auquel

Phypothese con,siddre"e sera plus applicable, et qui rdalisera ainsi cette curieuse

analogic d'une distribution de pressions avec le mouvement de la chaleur

dans une barre (173).

The memoir concludes with two notes, the first of which deduces

Hopkins' theorem for the value and direction of the maximum shear

(see our Art. 1368*), while the second deduces Saint-Venant's theorem

for the direction and magnitude of the maximum slide : see our Arts.

1570* and 4(8).

[1G05.] Various papers on the stability and tbrust of loose

earthwork by Boussinesq, briefly resuming, generalising or simpli-
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fying the results of the above memoir, will be found in volumes

of the Comptes rendus.

(a) T. LXXVIL, pp. 1521-5. Paris, 1873. An extract from the

Brussels memoir under the same title as the latter : see our Arts.

1571-99.

(b) Sur les lois de la distribution plane des pressions a Vinterieur

des corps isotropes dans Vetat tfequilibre limite. T. LXXVIII., 757-9 and

786-9. Paris, 1874.

In the first part of this paper Boussinesq supposes a conservative

system of body-forces applied to a mass under uni planar strain. The
first two body-stress equations then become :

+ + =0 .. ..(i),dx dy dx dx dy dy

being the potential of the body-forces.

Hence we find, as in our Arts. 1576-7, for an elastic body :

\ /d2

d*\.^
2X^(^ +

W) (jf
* +^ = "<")

and for a pulverulent or plastic mass :

/cP cP\/S-w\ d2

( Ty \

I T~ ~
-Ta ) ( ~-^ )

+ * j-j \~^ I .........
(ill).

\dx' dy*J \xx + yy j dxdy \xx + )

The remainder of the first part of the memoir is devoted to the

condition of limiting equilibrium discussed in our Art. 1585.

(c) The second part of the memoir is devoted to discussing the

integration of equations (i) for the case of limiting equilibrium.

Boussinesq, as in our Art. 1568, takes T7

,
and T

t
for the priiiripa]

tractions, and puts p - -
J (
T

l
+ 7'2), q = J ( 7\

- T7

.,),
then for limiting

rquililirium 7 will be a function of p and generally a linear one. We
have, if a be the angle the greater traction T7

,
makes with the axis of x:

sin a

; = -
j? + coa 2a, *P=-/? -flcos2a, 0=9 sin 2a.

Hence from (i),
if P = p-<f>:

d(P-q) d(P-q) .
,

/ da . da \-
29 (

-
-j- sin a -f -j- cos a

)
= 0,

*\ dx dy )

*o / da da
C08a-2q( 7- COS a+ -p Sin a

'

\ dx dy /

n-nuirks (hat (iv) t-un lx< s<l\cd \vh.-n 1 7 is a constant,

i.e. 2K: see our Art. 1863, and 2 when ^- 0, or the weight ot tin-

>1 is negligible as compared with the pressures to which it is

subjected. In both these cases 9 is a given function (very approximately
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linear) of the sole variable p </>
or P, and (iv) contains therefore

only the variables /' and a.

Boussinesq now proceeds to take P and a as the independent
variables, or solves the equations (iv) for x and y in terms of P and .

In other words he finds the point at which there is a given condition of

stress.

The solution is an interesting piece of analytical investigation, but

the results seem too complicated to be of very great practical service.

They are used however in the investigations of the following papers (d).

(d) Sur les modes d'equilibre limite les plus simples que peut presenter
un massif sans cohesion fortement comprime. T. LXXX., pp. 546-9
and pp. 623-7. Paris, 1875. These papers discuss at considerable

length of analysis the cases dealt with in Arts. 52-3 of the Brussels

memoir. The processes adopted in the later treatment seem very much

simpler than those of the Comptes rendus investigation.

[1606.] In the Minutes of Proceedings of the Institution of Civil

Engineers, Vol. LXV., pp. 140-241 (London, 1881), will be found a paper

by Sir Benjamin Baker entitled : The Actual Lateral Pressure of Earth-

work, together with a discussion and correspondence. The paper itself

deals with some sixty-five actual examples of retaining walls and of the

pressure of earthwork. It points out the defect of Rankine's theory in

supplying accurate data for practical construction, but suggests empi-
rical rules rather than an improved theory as the best way out of the

difficulty.
In the Correspondence will be found (pp. 209-12) an application by

Flamant of Boussinesq's theory as published in his Essai (see our

Art. 1571) to a special case cited by Sir B. Baker. This is followed on

pp. 212-23 by some discussion by Boussinesq himself of the case of

a level mass of homogeneous material supported by a vertical wall.

He follows the lines of his Essai, Articles 43-8, see our Arts. 1596-1 600,

giving as his equation (15) p. 218, equation (Ixi) of our Art. 1599 for P.

The thickness of the wall is then easily found by the method of Article

41 of the Essai (see our Art. 1592). If h be the height, b the minimum

breadth, p the density of the earth, p that of the wall, we have 1

(p. 219):

where k is given by equation (Ixi) of our Art. 1599, and <^ is the angle
of friction of the earthwork against the wall : see our Art. 1597.

[1607.] Now in order to make the above solution exact Boussiuesq

supposes that in the neighbourhood of the wall the angle of interior

friction < takes slightly higher values than at other parts of the

1 This result follows at once from Art. 1599, if we take moments for all the

forces acting on the wall round the axis about which it would rotate if it capsized as

a whole.
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pulverulent mass, at which it is constant, and he denotes these values

by <f>' : see our Art. 1599. It is shewn that the maximum value of <f'

is given by the formula (p. 221 : see our Art. 1616) :

sin" <' = sin*
</>
+ (1

- sin
<J>)

9 tan3
<, (ii).

Boussinesq further considers that his equations in the actual case

slightly exaggerate- the influence of the interior friction and so lead to a

slightly too small value of 6.

To be quite safe and to obtain a limit of 6 too high, values might be given
to and to

</>j, slightly less than the true ones, by calculating these lesser

values as if tlie maximum of the variable an-h- of interior friction <', supposed
\<\ the formulae, were just equal to the true value of the angle of frietion f

the earthwork in question ;
for in that case the latter would be more stable

than the theory supposed (p. 221).

After some discussion as to how this may be done, Boussinesq
itlers that a higher limit will be found for 6 by taking

sin
</>'

+ N/8 + sina <' . ,

sin
</>
- sin

</>! sm<p (in).

Here <' is to be put equal to the known interior angle of friction, and
then the values of < and <, substituted in the value of k and in (i).

For the particular example, p'/p
= I and

</>
= 45, Boussinesq finds, on

his earlier hypothe

(<=45, <,
= 45) h/b = 6-69;

on Rankine's hypothesis of a smooth wall :

(* = 45, <fc-0) A/6 = 4-18;

on hia modified hypothesis, using (iii) :

(<'
= 45 and < =

</>,
= 39 49' by (iii)) h/b = 5-79.

According to Boussinesq therefore we must have :

A h
etween

6-G'J
:l " (I

-V79'

and he says we may take it equal to 1/6. Sir B. Baker's rule as a result

of his experience was to take 6 = A/3 (p. 184), or almost double the value

L'nen l.\ !

sq's theory, suppiMii:,' no factor of safety to be used in

the latter. I

|

.still further modifies this superior limit in a

late paper : see our Art 1

'

1
^

Iocs not seem to me that Uoussinesq's modified hvpothoHis is

entirely satisfactory from the t h> -.1 -t KM! standpoint; it insolves a
number of disputable points : aee Proceedings, pp. 221-3.

[
1 608.] \ote sur la determination <k Vcpafaewr minimum que doit

avoir un mur vertical, <?un* hauteur et (Pune densite donneett pour
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contenir un massif terreux, sans cohesion, dont la surface superieure est

horizontale. Annales des ponts et cliaussees, T. HI. pp. 625-43. Paris,
1882. This is perhaps the best and clearest account Boussinesq had

yet published of the application of his method of treating earthwork to

the special problem of a uniform vertical wall supporting a pulverulent
mass with a horizontal surface. It may be looked upon as a slight

expansion of the paper contributed to the Institution of Civil Engineers

(see our Art. 1606), and it practically gives a complete treatment of this

case independently of the results reached in the Essai (see our Art.

1599). The same objections may of course be raised as to the manner
in which <' is determined. We shall pass this memoir by, however, as

Boussinesq did not give Ms final and complete treatment till 1884.

[1609.] Note on Mr G. H. Darwin's Paper 'On the Horizontal

Thrust of a Mass of Sand? Minutes of Proceedings of tJie Institution of
Civil Engineers, Vol. LXXII. pp. 262-71. London, 1883. Boussinesq
considers that the value, 35, adopted by Darwin does not represent
the angle <f>

of interior friction of sand, but concludes partly from

experimental, partly from theoretical considerations, that it should be

taken as 40 -5. With this value of
<f> Boussinesq shews that the results

of Darwin's Experiments, Series I. iv., are fairly in accord with the

theory developed in our Arts. 1599 and 1607.

Boussinesq next turns (pp. 266-7) to Darwin's Experiments, Series

vi., where the talus had a slope equal to 35 or to the angle of friction at

the surface. In this case Boussinesq refers to pp. 125-6 of his Essai

for the expression for the thrust on the wall : see our Art. 1599. The
value there given, however, is only an inferior limit. Boussinesq now

develops the theory of the Essai with a view to the discovery of a

superior limit. He considers that this can be obtained by giving <f>
a

value derived from

sin </cos 8 = sin <f>,

<f>' being the interior angle of friction (= 40'5 for sand) and 8 the angle
defined in our Art. 1599. The assumption is defended in the same
manner as that for the value of < in the case of a horizontal talus : see

our Art. 1607.

It does not seem to me, however, that Boussinesq's discussion of

Darwin's experiments in the case of Series vi. can be looked upon as on
the whole favourable to Boussinesq's theory, and I can hardly agree with

the concluding remarks of the author :

Mr G. H. Darwin's valuable observations appear to confirm as fully as

possible the Author's formulas for the thrust of a pulverulent mass in limiting

equilibrium. These formulas are due to Rankine's principles, simply developed
and completed by the addition of the element of slip of the mass against the

wall sustaining it, and constituting in this form the rational and corrected

expression of principles due to Coulomb himself. Coulomb's theory, in all

cases where it is justifiable to apply his fundamental hypothesis of a plane

rupture of the maws, gives identically the same results as Rankine's formulas
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as has been shewn by M. Maurice LeVy. It will then be found that these
i ices....... are just those in which the author's formulas merge into those

of Rankine, in such a way as to represent all that may now be retained of the
old theory of Coulomb (p. 270).

The contents of this Note by Boussinesq on Darwin's experiments
appear also in an article contributed to the Annales des ponts et chaussees,
T. vi., 2 Semestre, pp. 494-510. Paris, 1883.

[1610.] Resume cTarticles jjublies par la Societe des ingenieurs civile

de Londres sur la poussee des terres. Annales des ponts et chaussees,

Mtmmr, T. vi., '2
e

S<>me*tr*>, 18S3, pp. 477-532. Paris, 188:5. This

paper is by Flamant. It considers matter to which we have already re-

ferred, i.e. the memoir of Darwin with the notes of Boussinesq, Gaudard
and others.

Boussinesq gives, pp. 510-24, an Addition relative aux experiences de

M. 0o6tn. This has reference to a long paper by Gobin on pp. 98-231
of the same volume of the Annales. The theoretical basis of Gobin's

investigations seems to be very doubtful. His hypotheses are briefly
lined by Boussinesq on p. 511. The experimental part of Gobin's

memoir occupies pp. 184-212, and Boussinesq in his paper compares
Gobin's results with his own theory :

En resume", les experiences de M. Gobin s'accordent parfaitement avec
celles de M. G. Darwin, pour confirmer la the\>rie de I'dquilibre-limite des terres

exposee au ix. de mon Etnai public' en 1876 (p. 524).

See our Art. 1609.

[1611.] Formules simples et tres approchees de la poussee des terres,

pour les besoins de la pratique. Comptes rendus, T. xcix., pp. 1151-3.

Paris, 1884. In this paper Flamant, after pointing out that Boussinesq

ibli la parfaite concordance avec les faits d'expdriences, constates

surtout en Angleterre par M. Darwin et en France par M. Gobin, de sa

thoorie de Pequilibre des massifs pulvrrulents ou sans cohesion (p. 1151),

remarks that he had formed the idea of preparing tables of the thrust

for the cases most commonly occurring in practice, where the mass
adheres to the wall (i.e. <f>i

=
<f>).

In the course of his calculations,

however, he discovered that for a horizontal talus and vertical wall,

vertical component ..f th. thrust, or with the notation of <>m

Art 1599,

is 1 1 most a constant for values of
<f>

from 20 to 33, and then

i \. IT. II.
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and that for values of < from 33 to 45, it diminishes so slowly as to

be equal to

U
,
when < = 45'.

2

For the more general case of a wall of height h (= L cos i) with an
internal slope of i to the vertical and of a talus sloping at to to the

horizontal, there still exists a direction in which the component of the

thrust is sensibly equal to

but this direction varies with
<j>
and makes very approximately an angle

with the back of the wall for all values of < (measured in degrees)
between 20 and 45, of i less than 20 and of u> less than < i. Within
these limits this component does not differ from the above constant value

by 1/10 of its value.

For i> 15, Flamant says that a closer approximation to the angle

X will be found from

Since the resultant thrust acts at a third of the depth of the wall

from its base and makes as a rule the angle of friction fa - <, with the

normal to the wall it is possible by the simplest graphical construction

to obtain from the above known component the resultant thrust.

[1612.] In the Comptes rendus, T. xcvm. (Paris, 1884), will

be found the following memoirs by Boussinesq :

(a) Sur la poussde d'une masse de sable, a surface supe-

rieure horizontale, contre une paroi verticale on inclinfe, pp. 667-70.
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(b) Sur la pousse'e d'une masse de sable, d surface supe-
rieure horizontale, contre une paroi verticale darts le voisinage de

laquelle son angle de frottement inte'rieur est suppose" croitre

Ugerement tfaprls une certain* loi, pp. 720-3.

(c) Calcul approche de la pousse'e et de la surface de

rupture, dans un terre-plein horizontal homogene, contenu par un

vertical, pp. 790-3.

These papers put in an easy form the approximate integration
of the differential equations for a pulverulent mass supported by
a vertical wall and having a horizontal talus. They give Boussi-

nesq's theory in its final form. The method of integration had

been suggested by Saint-Venant in a report on Levy's memoir

(see our Art. 242) and had been first carried out by Boussinesq
for a more general case in a rather complicated manner in his

Essai: see our Art. 1599. We have already referred to the results

of the integration as given in the memoirs discussed in our Arts.

1606-11.

We propose here to consider Boussinesq's method of integra-

tion at slightly greater length for this special case.

[1613.1 Let the rear-side of the wall make an angle with the
\ ) tical

;
let the origin be takeii at the intersection of this face with

the talus, Oy teing the horizontal line perpendicular to the trace of the

talus on this face, and Ox being vertical. Let
<f>

be the interior angle
..f friction, :uul let

4- sin *) = tan* (45'
-

I 2
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Now if the wall be about to collapse and the pulverulent mass

accordingly in its limiting condition of equilibrium (I'etat ebouleux)
we have :

at every point: see our Art. 1596. Hence the equations to be solved

become, if p be the density of the mass :

dxx

dx

.r CM.'// n dxy dyy ^ \
~ + -T

L
+ffP = Q

> ~^- + -T
L =

/'\
dy cfa dy H (i).

^ - a*w) (w - a2
^) = (1 + a2

)

2

^]
Now at the free surface M = xy = 0, and therefore by the third

equation of
(i) : ^ = 0- At the wall, where we may suppose a thin coating

of the pulverulent mass to adhere, we must have the ratio of the

tangential component of the reaction to the normal component equal to

tan
<f>.

If no coating of the mass adheres to the wall this ratio must

equal tan <j, the angle of friction between the wall and the mass.

Now the following is a solution of
(i) :

(ii).

This satisfies the surface-condition at the talus, but not that at the wall

except for special values of fa or i. For example if i = 0, we must
have < a

=
0, or the wall perfectly smooth. Herein lies the inconsistency

of Rankine and Levy's solution for the stability of pulverulent masses :

see our Arts. 1596-8.

Now Boussinesq introduces into the values of the stresses as given

by (ii),
additional small terms with a view of making them exact.

Thus let

= -gp(x +
t), ^ =

gps, w = -gp(a?x + r) .........
(iii),

where t, s and r are functions of x and y to be determined. The first

two equations of (i) shew us that r, s, t are the three differentials of a

single function w with regard to dx2
, dxdy, dy* respectively. The last

equation of
(i)

leads to

(1+a
2
)

2
*
2

r-a?t= j- ..................... (iv).
(1 -a*)x + t-a?r

[1614.] Boussinesq now (p. 669) enters upon an investigation with

a view to shewing that the right-hand side of (iv) may be put zero. It-

seems to me that this follows at once if we neglect the squares of r,

s, and t, and consider t and r small as compared with x. The only

difficulty which arises occurs when x is itself small, and I do not clearly
follow Boussinesq's reasoning as to this point. Assuming it to be

correct we have :

r-a?t = 0.



1015] BOUsMM-v 349

Hence

"-' </"+/."), = -</"-/,"), = </"+/.") ......... (v),

wheref and y, are arbitrary functions of y ax and y + ax respectively.
Now r = * = t = when x - and y > 0, hence /" and //' = for all

j
> itive values of their variables y+ax. This includes all possible values

of these variables in the pulverulent mass, if tan t is >a. If on the other

hand tan t is <a, or i <45- J<, there will be a wedge comprised between

the rear-side of the wall and the line y = ax where, althoughf" is still

zero,y will exist because its variable y ax is negative.
The more usual case is that in which i is < 45 -

J<. In this case r,

8 and t will be zero all over the plane y = ax, and we can take as the

solution for all points in the wedge 10A (see figure Art. 1613) between

the planes i and tan' 1 a

r-^f", = -/', t=f" .................... (vi),

provided these do not give values of r, 8, t comparable with that of x.

They hold with decreasing exactness as we pass from the plane y ax
where r = s = t = towards the face of the wall (p. 670).

[1615.] Boussinesq remarks (pp. 720-1) that of the two 'surfaces

of rupture' through the bottom / of the wall one must lie in the solid

angle between the planes i and tan' 1 a (for i < 45 -\<j>)', for otherwise,
if they both passed out of this angle, they would in the upper
portion, where r = 8 = t = 0, become as in Rankine's theory directions

parallel to the planes y = ax, but these meet without entering the

above solid angle wherein / lies. Accordingly Boussinesq considers it

natural to suppose that one of the rupture-surfaces takes the line of

the wall. The pulverulent mass will then be on the point of slipping
at the wall, and if the angle of friction between wall and mass be taken

-<f>i, we shall have a condition to determine the arbitrary function

f" (y ax). All the equations will then be fully satisfied except (iv),
which we have supposed to reduce to r a*t = Q. In its unreduced
form (iv) is not satisfied by a homogeneous mass in the region 10A,
(see the figure, Art. 1613). Boussinesq now points out that this is the

only equation which involves <, and he suggests that < be given a

variable value <' in this region. This value
<j>'

will be supposed to differ

from more and more as we pass from the plane OA and approach the

wall, being taken to satisfy (iv), or what is the same thing the equation
(f) of Art. 1613, which may then be written :

The values of the stresses given by (iii)
and (vi) will then be exact for

niat-ri:il homogeneous in y(Xd and heterogeneous m th< manner indicated

by (vn, in Anl.

Let ft be the acute angle, reckoned positive on the side of y posit M

whi.-h tin-
|.l

in- subjected to the least pressure makes with the vertical

measured upwards, then by our Art. 1578 :

Un 2ft
= 2/( -
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It follows from (vii) by using (vi) and the value of a2 that :

sin <' cos 2/3
= sin fa

<' is thus always greater than
<f>.

Boussinesq then shews (p. 721) that the surface of rupture which
starts from the base of the wall will have its several elements inclined

to the vertical at an angle a given by

He further demonstrates that the surface of rupture through the

bottom of the wall when it ceases at the plane y = ax to be plane (i.e.

parallel to y + ax = 0) becomes concave to the upward vertical through
the bottom of the wall.

[1616.] The remainder of the memoir confines itself to the case of
i = 0. In this case when y = 0, we must have, fa being angle of friction

between wall and pulverulent mass :

tan fa = w/yy ,

=
-/"/{<* (*+/")}, by (iii) and (vi).

Whence we find

or,

(vm)>

where
' *-

a + cot fa

The normal pressure on the wall is now easily determined to be :

Supposing yjx = tan 0, we find by substituting the values of the

stresses in (vii) when tan 6 < a :

Y ............ (x).
9)

Thus <' increases as diminishes, or takes its greatest value < at

the wall, or remembering the value of a:

sin2 $ = sin2 < + (!- sin <)
2 tan2

fa,\

whence, tan fa =-=

1 - sin <

Boussinesq shews that for a given value of x the least value of the

normal pressure in (viii), or of ^
--

, is to be found for a value
1 + a tan <i

of sin< lying between sin <fc and sin2
4> (pp. 722-3).
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He finishes the second section of the memoir by deducing certain

results for the curved part of the surface of rupture on the assumption
that it is a circular arc.

[1617.] In the third section (p. 790) Boussinesq points out how
the conditions of the equilibrium limit are affected by the presence of a

second bounding wall parallel to the axis of z. In this case the function

y," (y + ax) must be retained, and the results for the special case of two
vertical and parallel walls are given without analysis.

[1618.] In the fourth section of the memoir, Boussinesq shews

how the above formulae, obtained for the case of a mass for which

the interior angle of friction <' increases slightly towards the wall

from the value
(f>

to 4>, may be applied in practice to obtain to

a sufficient degree of approximation the thrust of a homogeneous
mass with a constant angle of friction.

In the first place Boussinesq points out that the normal

component of the thrust on the wall, upon which the overturning
effect really depends, will be decreased if the angle of internal

friction is increased and vice versa.

II suffit done d'imaginer deux massifs he"te"rogenes constitues

conforme"ment a la formule (x), dans Tun desquels 0' et <, soient

egaux ou un peu superieurs a Tangle de frotteuient du massif homogene
I- nine, tandis qu'ils lui seront un peu inferieurs dims 1'autre, pour quo
le moment de la pousse"e soit moindre, dans le premier, et plus grand,
dans le second, qu'il n'est dans le massif propose (p. 791).

We thus obtain inferior and superior limits &, and &s of k in

(ix), and the mean of them if the limits be taken sufficiently near

will constitute a close practical solution of the problem.

.ve want as high an inferior limit
x
of k as possible, then, sin. .

k increases when < or <, decreases, the first of the heterogeneous
masses should be obtained by making < and <, as small as possible,

consistent with their being equal to or greater than the real value of the

angle of internal friction of the real mass, or by making them both

equal to <. We then find (see equation (Ixi) of our Art. 1599) :

_ tan (45 -j<fr) sin (45-^) cos
<f>

cos
(;! $-45 )

On the other hand for the superior limit k^ t
we must make the

interior angle of friction
</>'

of the second heterogeneous mass less than

the true <f>
and this will < don- l>y putting the maximum value of <',

i.e. *, equal to the true <. anl therefore $' will be less than this real



352 BOUSSINESQ. [16191620

value at other points. Accordingly we make the value of
A-, as given

by (ix) with tan ^ substituted from (xi), the least possible for variations

in
<f>.

Afterwards the maximum <& must be replaced by the angle of

interior friction
<f>.

Thus to obtain k we seek the minimum value of k

as given by :

1 1 + sin d> / 1 + sin tj> \/sin
a $ sin2 d>

__ __ ______
~

i / ___ *
____7

i v i n \

k~>~ 1 - sin < V I - sin
<j>

1 - sin ^

Boussiuesq (p. 792) finds that -= in (xiii) is a maximum for

2 ^2 tan $v
(xivV

v9+tan8

(45-J</>)

The solution of (xiv) for
<f>, Boussinesq says, is very nearly

2 V2 tan <I>

tan
(<f> + 2

)
= .____ v-- ............ (xv).

x/9 + tan2

(45-J<i>)

After some reductions we have from (xiii)
and (xiv) :

kz
= % tan2

(45
-

<) {3 + tan2
(45

-
J</>)}

......... (xvi),

where
<f>

is to be given its value as obtained from (xiv), or approximately
from (xv), <t> being put equal to the angle of friction of the homogeneous
mass. The true normal thiiist will then be

J (&! -f &2 ) gpx............................ (xvii).

The calculation of the superior limit of k is thus clearly a com-

plicated matter, and the real accuracy of Boussinesq's theory will depend
upon the closeness to each other of ^ and &2 .

Boussinesq concludes by stating that the numbers obtained from
these results are in agreement with the experiments of Darwin and
Gobin : see our Arts. 1609-10.

[1619.] On pp. 850-2 of the Gomptes rendus, T. xcvm.

(Paris, 1884), will be found a notice by Saint-Venant of Bous-

sinesq's theory of the thrust of loose earth. After shewing how

Boussinesq's investigation improves on those of Rankine and Levy,
and pointing out how much closer it agrees with experiment,
Saint-Venant concludes :

Les nouvelles recherches de M. Boussinesq rendent & Fart des

constructions, ou les Economies possibles et sans danger ont tant

d'importance, un service reel, et on peut les regarder comme fournissant

aux ingenieurs des moyens de calcul qui repondront, pour bien longtemps,
a ce qui e"tait desire dans la question enoncee (p. 852).

[] 620.] Sur le principe du prisme de plus grande poussee, pose

par Coulomb dans la thdorie de Vdquilibre-limite des terres. Comp-
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tes rend'i,'\\ x< \ in., pp. 901-4. Paris, 1884. In this memoir 1

Boussinesq deduces from his theory of the limiting equilibrium of

pulverulent matter

...la proprie"te suivante de maximum, qui est comme I'expression

developpe"e du principe du prisme de plus grande poussee, e"mis ct si

ingenieusement utilise par Coulomb en 1773 (Savants etrangers, T. VH.,

Essai sur une Application des regies de Maximis et Minimis a quelques
Problemes de statique, pp. 343-82 : see p. 359) : la poussee exercee eifec-

tivement sin la paroi mobile continuerait a s'y exercer si le massif

pulverulent se terminait a la surface de rupture la plus eloignee de la

paroi, toute la masse sous-jacente devenant solide, et elle est la plus
forte des poussees qui ont lieu, a I'Stat d'equilibre-limite, quand le

massif se trouve limite ainsi par une surface rugueuse quelconque allant

du has de la paroi mobile a la surface libre (p. 901).

Unfortunately we do not know the surface of rupture, and to

try all possible surfaces would be a more complicated process than

integrating approximately the differential equations for the equi-

librium limit as Boussinesq has done. Coulomb assumed that the

surface was a plane, which is a priori arbitrary as well as inexact.

The thrust determined by this assumption can therefore only be

considered roughly approximate in default of any better method.

[1621.] Complement a de precedentes Notes sur la poussee des terres.

Annales des ponts el cliaussees. Memoires, T. VH., I" Semestre, pp. 443-81.

Paris, 1884.

Boussinesq begins by citing the results of his Essai (see our Art.

1599) and then applies them to the case of a horizontal talus.

Let k be the coefficient which occurs in the expression for the

normal pressure on the wall (see equation (Ixi) of our Art. 1599), then

Boussinesq points out that the method of the Essai and of the memoir
of 1881 (see our Art. 1607) does not give a sufficiently close superior
limit to the value of k.

-2.] Let the superior limits to & as given by the values of
<f>

from (iii) of our Art 1607 MiKstituted in (xii) of our Art 1618, and
from (xiv) of our Art. 1618 substituted in (xvi) of the same article be

&,' and k
t respectively, and let the inferior limit as given by (xii) of our

Art. 1618 with $ its true value be /-,.

ssinesq states (p. 451) that he has found by taking a sufficient

number of values of* from 20 to 50 that very approximate -lv :

*.-*l-T
9
T<*.'-*.)

1 There appears to be an almost verbal reprint of this memoir on pp. 975-78 of
ame volume of the Compttt rtndui.
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Hence the mean, ^(k l +Aj), adopted by Boussinesq as the value of k

(see our Art. 1618) :

Or, to obtain the value of the coefficient k, we need not for practical

purposes calculate the difficult &2 ^m* can deduce the approximate
solution from the easily found A:, and k2'. Obviously this new approxi-
mation consists in subtracting y^ (&</ k^ from the old approximation

(&, + kj) obtained by the method of Art. 1607.

[1623.] On pp. 453-5 of the memoir, Boussinesq applies (xix) to M.
Gobin's experiments (see our Art. 1610), and on pp. 455-7 to G. H.
Darwin's experiments (see our Art. 1609). In both cases theory now
approaches closer to experiment, but it may be questioned whether
the agreement is still a sufficient one.

Boussinesq next turns to some experiments of Aude recorded in the
Memorial du genie, No. 15, p. 269, 1848, and also cited in Note v of a
memoir by M. Saint-Guilhem, Annales des ponts et chaussees. Memoires,
T. xv. pp. 340-5. Paris, 1858. The discussion occupies pp. 457-69,
but the results are not in my opinion more decisive with regard to

Boussinesq's theory than those of Darwin and Gobin. On pp. 469-73
we have a discussion of the angle given by theory for the inclination

of the surface of rupture to the vertical and comparison with the ex-

perimental value determined in certain cases by Gobin (see our Art

1615).
The remainder of the memoir (pp. 473-81) is occupied with a

discussion of Coulomb's prism of greatest thrust, after the manner of the

Comptes rendus article : see our Art. 1620.

[1624.] Sur Vintegration, par approximations successives d'une

equation aux derivees partielles du second ordre, dont dependent les

pressions interieures d'un massif de sable a I'etat ebouleux. Memoires
de la Societe des Sciences de Lille, T. xin., pp. 705-12. Lille, 1885.
This memoir is also included in the Application des potentials ..... : see

our Art. 1561.

We have seen how Boussinesq makes the pressure on a vertical, or

moderately inclined wall, of a mass of earth with horizontal talus depend
on the solution of the differential equation (see our Art. 1613) :

We have noted how by neglecting the right-hand side of
(i) (if

s, r, t are small as compared with x), he obtains as a first approxima-
tion a solution of the form :

=f(y-ax)+f} (y + ax).
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If the forms of/and/! are known then by substituting on the right-
hand side of (i) we obtain for a second approximation the equation

r-a*e=F(x,y) .......................... (ii),

where /' (x, y] i a known function of x and y.
This equation Boussinesq now proceeds to solve. He writes

a = y + ax, ft y ax, and obtains first

dadft
J_ g/a-ff o + 0\~
4a* \ '2a 2 )

'

and then v =/(/?)
- da F dft....... (Hi).

where / must be determined by the condition for the slipping of the
mass against the wall.

Boussinesq then proceeds to calculate F on the basis of his first

approximation in the case of a vertical supporting wall : see our
Art. 1616. He obtains a somewhat complicated value of w to a
second approximation for this case on p. 709. From this he determines

r, s, t and the stresses at the wall. He finds for the value of the
constant k (see our Art. 1616) determining the thrust on the wall:

* _
1-f-atan^,

1

In the case of ordinary sand resting against a rough wall, when
< =

<,
= 34, we find for k by the first approximation :

=2081,

while by the second approximation k= '2181.

Like the first approximation the second may be looked upon as

an exact answer to a problem in which the angle of internal friction

varies from its value < at y = ax and increases up to <, at the wall :

see our Art. 1615. The law of variation would, however, be difficult

to express. Boussinesq contents himself with a tentative investigation,
from \\ )ii( li he concludes that a very close value of k is -2308 for the

above special case. His practical method of the arithmetical mean
between a too great and a too small value (see our Art. 1618) had

given *2309. Hence he considers that his practical method of the

mean gives close results. It will be observed that it gives closer

results than the second approximation, the rate of approximation being

apparently not sufficiently rapid.

[1625.] Tables numeriques pour le calcul de la poussee des ter-

res. Annales des pants et chaussees. Memoires, T. ix., 1" Semestre,

}>]> 515-40. Paris, 1885. This is a statement by Flamant
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of the final form of Boussinesq's theory with numerical tables for

the value of the thrust calculated for various angles of the talus,

of internal friction and of the rear-side of the supporting wall.

From these tables Flamant deduces the results we have referred

to in our Art. 1611. The tables ought to be useful as giving
with sufficient accuracy all that is obtainable from Boussinesq's

theory.

[1626.] Summary. Among the many pupils of Saint-Venant

few have dealt with such a wide range of elastic problems as Bous-

sinesq, or contributed more useful work to elastic theory. Belong-

ing in a more marked manner than Saint-Venant, Phillips or

Maurice LeVy to the mathematical as distinguished from the

technical group of elasticians, he has illustrated our subject by

ingenious analysis rather than by special solutions of mechanical

and physical problems. If in several cases his researches have been

anticipated by those of other investigators, he has yet managed to

throw new light on old problems, and where he has not succeeded

in giving final solutions, he has greatly added to our appreciation
of yet unsurmounted difficulties. Thus his investigations on plates

and rods were preceded by those of Kirchhoff and Clebsch, yet

Boussinesq's methods, if scarcely final, are at least clearer and

more concise than KirchhofTs. If Thomson and Tait reconciled

Poisson's and Kirchhoifs contour conditions some years before

Boussinesq, yet the latter, especially in his work on potentials, has

thrown the whole matter into a more concise and simple form.

If Cerruti in the application of potentials in some respects

anticipated Boussinesq's results, yet the latter's great treatise will

remain for many years to come a classic of our subject, every page
almost of which is fascinating to the mathematical physicist.

Much the same may be said of Boussinesq's contributions to

the theory of impact; he followed Stokes, Saint-Venant and

Hertz, but he was able to follow them without loss of individuality
in either method or results. Putting aside his contributions to the

theory of potentials, perhaps the most original part of his work

lies on the border-land of elasticity proper, namely, in his con-

tributions to the elastic theory of light and to the theory of

pulverulence. These theories must of course be judged by the

physicist and the engineer ; yet if they be not final they are still
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the best which have hitherto been propounded from the elastic

standpoint; indeed, they are perhaps the limit to what elastic

theory can provide in these directions. Like the majority of the

leading French mathematicians, Boussinesq is as a rule lucid

in his analysis, if occasionally wanting in physical touch.



CHAPTER XIV.

SIR WILLIAM THOMSON (LORD KELVIN 1

),

THOMSON AND TAIT.

[1627.] ONE of the many fields in which Sir William Thomson
has laboured with much profit to physical science is that of

elasticity, and the concluding chapter of this volume may not

unfitly be devoted to a resume of his contributions to our subject.

His first papers on elasticity will be found in the Cambridge
and Dublin Mathematical Journal, Vol. II., pp. 61-4, and Vol. in.,

pp. 87-9. Cambridge, 1847 and 1848. They are entitled :

(a) On a Mechanical Representation of Electric, Magnetic and

Galvanic Forces (M. P., Vol. i., pp. 76-80)
2

.

(b) Note on the Integration of the Equations of Equilibrium of
an Elastic Solid (M. P., Vol. L, pp. 97-99).

[1628.] Consider the body-shift-equations of an isotropic elastic

medium subjected to no body force. These are of the type
3

:

(X+M)J+^VW=0 .......................... (i).

Then if C, I, m, n be arbitrary constants, the following are solutions :

- r \
^ + P d

J

<">'

ix + my + n

_ ~ ( X -l- /x d
fix

+ my + nz\ n]'
l2(\+2 /*)M r ;

"
r} }

where r = (x
z + y* + a8

)*.

1 The manuscript of this chapter was completed before Sir William Thomson
became Lord Kelvin.

2 The letters M. P. stand throughout this chapter for the Mathematical and
Physical Papers by Sir William Thomson, Vols. i.-m. Cambridge, 1882-1890.

3 Sir William Thomson speaks of Sir G. G. Stokes' memoir of 1845 as being
the only work in which the " true formulae "

(i.e. bi-constaut formulae for isotropy),
had in 1847 been given. This is hardly exact : see our Arts. 614* and 1267*.



1629 1631] SIR WILLIAM THOMSON. 359

It will be found that :

. - p Ix+my+nz

This is clearly a special case of results, which Boussinesq much later

dealt with under the title of *

potential solutions '. Sir William Thomson
remarks that the most general solution can be expressed in terms of

particular solutions of the type (ii).
He adds (6), p. 89, (M. P. Vol. I.,

j>. <J9) that u, v, w can be easily shewn to be the shifts produced at the

point x, y, z of an infinite isotropic elastic medium due to a force applied
at the origin of coordinates in the direction I, m,n: see our Art. 1519 (6).

[1629.] In the preceding article we have given the results of the

second paper, those of the first hold only for an incompressible isotropic
solid. Putting X//x

= oo in (iii)
we find = and results (ii) become

of the type:

_~(\ d Ix+my + nz 1}
'

(2 dx r r)

In this case the twists are of the form

These Sir William compares with the expressions for the components
of the force which an infinitely small element of a galvanic current

at the origin, in the direction of I, m, n, produces on a unit magnetic
pole at the point x, y, z. ((a) p. 64, M. P., Vol. i., p. 80.)

[1630.] In the first paper the author further shews that the follow-

ing systems of shifts are also solutions in the case of an incompressible
solid :

(I).

and ~mz-ny
(II). u = C

-y i
v =

The first set of shifts are compared with the components of the force

exerted at
, y, z by a charge of electricity at the origin; and the

twists corresponding to the second set of shifts are compared to the

laments of the magnetic force of a small magnet placed at the origin
\sitli its axis in the direction /,//*, 71 upon an ideal magnet pole
at ar, y, z: see our Art. 1813.

hi.31.] On the Thermo-elastic, Thermo-magnetic and Pyro-
electric Properties of Matter. This paper appeared uu.ln- tin- title:

the Thermo-elastic and Thermo-niagnetic Properties of Matter,

Quarterly J< t' Mathematics, Vol. I., pp. 57-77, Cambridge,



360 SIR WILLIAM THOMSON. [1632

1857. It was reprinted with additions in the Philosophical Magazine,
Vol. 5, pp. 4-27, London, 1878, and appears as Part vn. of the

article : On the Dynamical Theory ofHeat, M. P., Vol. I., pp. 291-316.

We are solely concerned with pp. 291-313 of this latter paper,
and our reference will be first to the pages of the Philosophical

Magazine and secondly to those of Vol. I. of the Papers.
This is one of the most important of Sir William Thomson's

contributions to our subject. Its object, so far as we are con-

cerned, is to obtain from the Second Law of Thermo-dynamics
the most general possible theory of elasticity for unmagnetised and

unelectrified bodies.

The author defines the
"
intrinsic energy of a body in a given

state" to be, "the mechanical value of the whole agency" that

would be required to bring the body from a standard state to the

given state. This agency may be spent in overcoming the resist-

ances of the body or in exciting thermal motions. The intrinsic

energy, e, can depend only on the standard and given states, if we
are to deny the possibility of perpetual motion.

[1632.] Sir William Thomson now assumes that six independ-
ent variables can fully express

" the mechanical condition of a

homogeneous solid mass, homogeneously strained in any way"
1

.

The words homogeneous strain are not in this paper further

defined : see our Art. 1672. Let these six variables be denoted by
the letters a, a, a", a, &', a", and let t be the temperature in the

given state, the standard state being denoted by ,
or

', a ", <r
,
<TO', <TO

"

and t . Then we have :

e =
<j> (a, a', a", <r, </, <r", t) (i),

and =
<f> (a , ', <>", o-

,
<r ', <TO", $ ),

where
</>

denotes a certain function depending on the nature of the

substance.

Now suppose the body strained so as to pass from the state

, ', a", <r
,
o- ', 0V to the state a, a', a", <r, v ', cr" without change

of the temperature t, and let H be the quantity of heat that must be

supplied to it during this process to prevent its temperature being

1 Here there is a footnote referring to Kankine's introduction of the word strain,

and calling the corresponding forces straining tensions or pressures. This is of

historical interest as shewing that the word stress had not yet (1855) come into

general use (pp. 6, 293).
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lowered. Now let the body be brought back to its first mechanical

condition through the same or any other of the infinitely numerous

possible sequences of states, the temperature being still always kept
at t, and let H' be the heat supplied. Then, by the Second Law
of Thermodynamics :

f + ?' = 0, or #=-#'.
t t

It follows therefore that the amount of heat absorbed by the

body in passing from one state to the other must be independent
of the sequence of states through which the body passes, and

depend only on the initial and final states, provided the tempera-
ture remain constant throughout. Accordingly we have :

H=+(a, a', a", <r
y </, er", t)-+(aQ , a/, ", <7

,
<TO', <TO", t)...(ii),

where ty denotes a function of the variables.

Hence, if e denote the whole augmentation of mechanical

energy which the body experiences, i.e. the change in its intrinsic

energy from one state to the second, or

=
(a, a', a", a, <r', a", -

< (, ', o", <r< <*> *t', t)...(m),

we have: e = w + JH (iv),

where w denotes the work done by applied forces in compelling
the body to pass from one condition to the other, and / is "Joule's

equivalent ".

It is clear from this that the work, w, required to strain the

body from one to another of two given states, keeping it always at

the same temperature, is independent of the particular succession

of mechanical states through which the body passes ;
it depends

only on the initial and final conditions. This theorem Sir William

Thomson attributes to Green : see our Art. 918*.

He adds:

It is now demonstrated as a particular consequence of the Second
General Thermodynamic Law. It might at first sight be regarded as

imply a consequence of the general principle of mechanical effect; but
this would be a mistake, fallen int.. from forgetting that heat is in

general evolved or absorbed when a solid is strained in any way; and
the only akmirdity to which a denial -t th. proposition could l<-u<l would
be the possibility of a self-acting machine going on continually drawing

11 a body surrounded by others at a In without

the assistance of any at a lower temperature, and performing an equiva-
l.nt of iMechanical work (p. 7, .!/. /'. V..!. i . p. 295).

T.K.IT. II. 24
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[1633.] To obtain the most complete results available from the

Second Law of Thermodynamics, which is expressible in the form 1

:

2 (fft/t)
- 0> Sir William Thomson now supposes the body to pass

through the following reversible cycle from and back to its primitive
condition as to strain and temperature :

(i) Without altering the strain (a ,
a

',
a ", <r , o-

',
o- ") raise the

temperature from t to t'. If t' t be small, this requires the quantity
of heat represented by

where e denotes the value of e (see Equation (i))
for a

,
a

', a ",
/ It 4

OJ "0 "o J
*"

(ii) Keeping the temperature at t', pass from the strain a
,
a

',
a ",

<r
fl ,

<TO', o-
"
to a, a', a", cr, cr', <r". This requires the heat (see Equation

(iii) Without altering the strain, lower the temperature to t. This

requires the heat

(iv) Return to the primitive strain without altering the tempera-
ture. This involves the heat

-H.
Hence we find

where e = e-e : see Equation (iii). Hence it follows that

d

From Equations (iv) and (v) we easily find :

t dw

dw
,

...

e = e + w-t-^ .......................... (vn).

These are the fundamental thermo-elastic equations: see p. 9 (M. P.,

Vol. i., p. 297).

1 See J. H. Parker: Elementary Thermodynamics, p. 139, Cambridge, 1891, or

Sir William Thomson, Math. Papers, Vol. i. p. 236.
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[1634.] Let N be the specific heat at constant strain for any
temperature t, and let K be the specific heat for any temperature t

when the body is allowed or compelled to alter its strain with the

temperature in any fixed manner. Then we find

de

df (viii),

'<C, <(l

where is to be taken successively equal to each component of strain.

The last equation by aid of (iv) may be written :

De ^,-~-*

Dejdt denoting the total differential of e.

[1635.] On pp. 12-15 (M. P., Vol. I., pp. 300-304) Sir William
Thomson supposes the strain to be small and he practically takes as his

six strain components the three stretches and slides from the standard

state, i.e. we may put :

a aA = , -o =

- <TA = OY

He then assumes that w may be expanded by Maclaurin's Theorem,
whence retaining only the expressions up to the squares and products
of the strains, he easily finds for the stresses expressions of the types:

~ fdw\
jue

\ \

^ fdw

( d*w \ f d*w \

toA^ +
\JS3?).

*m +

d*w \ / d*w \ dho

+ I ,w;
m \

"r'/o
*

d*W

da-do-

... (xi).

These are clearly the usual expressions for the stresses in a multi-constant

solid wli.-n there are initial stresses in the standard state. It tli.sr

initial stresses be zero, we have the usual stress-strain relations with

twenty-one constants.

We have already |>"int. <l out that such important physical con. hi

sions as those which flow from the Im- .n it y of the stress-strain relations

seem to demand a basis in physical r\i>< i im. nt rather than in a mathe-

matical theorem: see our Arts. 9-'>* ami

242
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[1636.] Sir William Thomson then turns (pp. 16-18; M. P.,

Vol. I., pp. 304-7) to the problem of rari- and multi-constancy and

the inter-constant relations. He remarks :

Whether or not it may be true that such relations do hold for natural

crystals, it is quite certain that an arrangement of actual pieces of matter

may be made, constituting a homogeneous whole when considered on a

large scale (being, in fact, as homogeneous as writers adopting the atomic

theory in any form consider a natural crystal to be), which shall have an

arbitrarily prescribed value for each one of these twenty-one coefficients.

No one can legitimately deny for all natural crystals, known and un-

known, any property of elasticity, or any other mechanical or physical

property, which a solid composed of natural bodies artificially put to-

gether may have in reality. To do so is to assume that the infinitely
inconceivable structure of the particles of a crystal is essentially restricted

by arbitrary conditions imposed by mathematicians for the sake of

shortening the equations by which their properties are expressed (p. 16).

It is, perhaps, somewhat hard to accuse the rari-constant elasti-

cians of being actuated by a desire to shorten mathematical equa-

tions, when certainly one of their objects was to get over the difficulty

of a purely mathematical deduction of the generalised Hooke's Law

by appealing to a general physical principle of intermolecular

action : see our Arts. 192 and 300-6. At the same time the appeal
to the existence of a 21-constant model is a valid argument pro
tanto. The exact nature of this mechanical model was not de-

scribed for many years (see our Art. 1771), and I cannot say that

when described it carries conviction to my mind.

The further arguments cited against rari-constancy are the

stock examples of cork, jelly, india-rubber (see our Arts. 924*,

930*, 1322*, 192 (b) and 610) and the values of the stretch-squeeze

ratio as determined by Wertheim, Everett, Clerk-Maxwell and

Sir William Thomson himself. The materials above cited may
be fairly excluded from the list of elastic bodies to which the

rari-constant theory applies; while the group of experiments
referred to were in several cases made on bodies the isotropy of

which was more than doubtful.

In none of these cases were any investigations made as to

whether two constants would really suffice to describe the elastic

properties of the material, or whether the actual elastic system
was not represented better by some suitable distribution of elastic

homogeneity than by bi-constant isotropy: see our Arts. 925*,

932*, 192, 1201 and 1272.
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[1637.] On p. 18 (M. P., Vol. i., p. 307) Sir William Thomson notes

that some of the rari-coustant relations lead to three principal axes of

elasticity. Many natural crystals certainly have complete symmetry of

form with regard to three rectangular axes and "therefore probably

possess all their physical properties symmetrically with reference to

these axes ". But it is further noted that many natural crystals do not
exhibit this symmetry of form in reference to rectangular axes, and the

instance of Iceland spar is cited with three cleavage planes inclined at

equal angles to one another and to the 'optic axis' of the material.

Then Sir William ThomHon adds:

If, as probably must be the case, the elastic properties within the limits of

elasticity have correspondence with the mechanical properties on which the
l>rittlMi<>-s in different directions depends, the last-mentioned class of crystals
cannot have three principal axes of elasticity at right angles to one another

(p. 18
; M. P., Vol. i., p. 307).

Now exception must, I think, be taken to both the principles enunciated
above. It does not appear that all the physical properties of crystals
with three rectangular axes of symmetry of form are symmetrically
arranged about these axes: see our Arts. 6S3-7, 1218-20. Further, if

the ili.stribution of hardness has relation to a system of rectangular axes

differing from those of form, it does not seem a priori certain that we
should expect distributions of elasticity and brittleness to be symmetrical
about the same system of rectangular axes. In fact without experi-
mental investigation it does not seem legitimate to assert that the stiape
of the crystal, as determined by its planes of cleavage, defines in any
way the nature of its elastic distribution. In particular it may be
observed that the elastic constants of a material are frequently in-

sensibly altered by large sets ;
it is very probable, however, that such

sets may materially influence the cohesive powers of the material. It

does not appear, therefore, improbable that distributions of cohesion

and brittli-n->s may follow different laws or systems of axes from the

of elasticity : see our Arts. 683-7 and 1218-9.

[1638.] From Equation (vi) of our Art 1633, by supposing w
M:u-hiurin's theorem and the first terms only retained,

we ha\' :

t d (/du>\ /du>\ /'In-

d7*

where the usual relations between the stresses and the strain-energy
have been assumed.
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From this result Sir William Thomson draws an important series of

physical conclusions which are embraced in the following sentences :

We conclude that cold is produced whenever a solid is strained by
opposing, and heat when it is strained by yielding to, any elastic force of its

own, the strength of which would diminish if the temperature were raised

but that, on the contrary, heat is produced when a solid is strained against,
and cold when it is strained by yielding to, any elastic force of its own, the

strength of which would increase if the temperature were raised (p. 19
; N. P.,

p. 308).

This may be expressed otherwise thus : If the strain remaining
constant, an increase of temperature is marked by increase of the stress

required to maintain the strain, then the body will give off heat when
the strain is produced.

The following are given as examples of these statements :

(i)
The cubical compression of any elastic fluid or solid in any

ordinary condition would cause an evolution of heat. This follows at

once from the fact that most elastic bodies require increased pressure
to maintain their volume constant when the temperature is raised

1

.

(ii)
A twisted wire, if further twisted within its elastic limits,

will produce cold, and if it be allowed to suddenly untwist will evolve

heat. This follows from the fact that dp/dt is negative: see our Art.

754.

(iii) Spiral springs, as we have seen in Arts. 1382*-3* and 1284 (c),

act principally by torsion
;
hence when suddenly drawn out they will

cool and when suddenly released they will rise in temperature. This

result was confirmed experimentally by Joule : see our Arts. 689-690.

(iv) A bar, rod or wire if suddenly stretched by terminal traction

is cooled, and warmed when the traction is suddenly removed.

Sir William Thomson's next case is that of india-rubber, which in

the early version of the paper he supposed would be cooled, if suddenly

1 The dilatation-modulus for an isotropic material is given by G = ^ (3X + 2/x)
:

see our Vol. i., p. 885. This may be put in the form

Hence



1639 1641J SIR WILLIAM THOMSON. 367

drawn out 1

. The cooliug effect was only found for low temperatu i -,

l>ut at a higher temperature, 15 C., a pull was shown by Joule to

produce a heating effect: see our Art. 689. This led Sir William
Thomson to predict that a vulcanised india-rubber band with a weight
attached at one end would shorten on being heated. The phenomenon
may be termed the '*

Gough-effect ".

This is an experiment which anyone can make with the greatest ease by
hanging a few pounds weight on a common india-rubber baud, and taking a
red-hot coal, in a pair of tongs, or a red-hot poker, and moving it up and down
close to the band (p. 20

; M. P., Vol. I., p. 309).

[1639.] The remainder of the memoir deals with certain properties
of elastic crystals.

For a regular crystal Sir William Thomson obtains stress strain

relations agreeing with those of Neumann given in our Art. 1203(e),
except that he writes them in forms of the type :

Here, if K = 0, the regular crystal becomes an isotropic solid. Hence
K expresses the "

crystalline quality
"
in the elasticity of a crystal of the

cubic class (p. 22; M. P., Vol. I., p. 311).

[1640.] We have next and lastly a suggestion that the state of

strain of an elastic body, which can l>e expressed by any six independent
variables which describe the changes of shape, should be indicated by
the " six edges of a tetrahedron enclosing always the same part of the

solid ".

"

In the case of a regular crystal Sir William Thomson takes this

tetrahedron with its edges parallel to the diagonals of the faces of the

cube. He obtains an expression for the strain-energy in terms of three

crystalline constants and the stretches of the six edges of this tetra-

hedron. He further obtains expr< r quantities corresponding
to the stresses, which are in this case the tractions normal to the faces

of the dodecahedron with unit facial area, obtained by drawing planes

perpendicular to the edges of the tetrahedron. The investigation is

uious, but it has not I believe been made the basis of any further

investigations.

[HJ41.] Sir William Thomson's memoir placed the principles

of thermo-elasticity on a firm foundation, and advanced that

branch of our subject much beyond the theories of Duhamel

and Neumann: see our Arts. 868*-8%*, 1196-7 and 1200.

It opened up the path of accurate investigation into the

difficult borderland of tin-run. dynamics and elasticity, whi i

1 The correct utatement of the therrao- elastic properties of india-rubber had
been given by Gough in 1805; but his paper had been forgotten : see our Vol. i..

p. 886, footnote.
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more than one distinguished physicist had gone astray : see our

Arts. 716, 717, 725 and 745. The memoir may fairly be said

to give the first really legitimate proof of the existence of a

strain-energy function depending only on the strain from a standard

state and not on the manner in which the strain is reached.

[1642.] On Thermo-electricity in Crystalline Metals, and in

Metals in a state of Mechanical Strain. This forms III. of a

memoir entitled : Experimental Researches in Thermo-electricity.

Proceedings of the Royal Society, Vol. vn., pp. 56-58. London,
1856. (M. P., Vol. I., pp. 467-8.) Sir William Thomson had been

led to believe, by the analogy of strain as influencing the optical

properties of transparent bodies, that the application of stress to a

mass of metal would give it the thermo-electric properties of a

crystal. The present paper announces the results of experiments
on copper and iron wires. Let a portion of a circuit of copper
wire be stretched within the elastic limits and let an extremity of

this portion be heated, then a current sets from the stretched to

the unstretched part through the hot junction. If the wire be

alternately stretched and unstretched on the two sides of the heated

portion, the current is reversed at each change. In the case of iron

wire the current flows from the unstretched to the stretched

portion through the hot junction, i.e. the reverse of the case for

copper wire.

[1643.] On the Effects of Mechanical Strain on the Thermo-electric

Qualities of Metals. British Association Report, Glasgow Meeting, 1855,

Transactions, pp. 17-18. London, 1856. (M. P., Vol. IL, pp. 173-4.)
This paper announces further results similar to those stated in the

previous article. The experiments were extended to other metals than

copper and iron and to set as well as elastic strain. Fuller details are

given in a later memoir: see our Art. 1645.

[1644.] On the Electro-dynamic Qualities ofMetals, (a) Philo-

sophical Transactions, Vol. 146, pp. 649-751. London, 1856.

(b) Proceedings of the Royal Society, Vol. vin., pp. 546-50.

London, 1857. (c) Philosophical Transactions, Vol. 166, pp. 693-

713. London, 1876. (d) Proceedings of the Royal Society, Vol.

xxiii., pp. 473-6. London, 1875. (e) Philosophical Transactions,

Vol. 170, pp. 55-85. London, 1879. Abstracts of these memoirs

will further be found in the Proceedings of the Royal Society;
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(/) Vol. viil., pp. 50-5, 1856
; (g) Vol. xxin., pp. 4-45-6, 1875

;

(h) Vol. xxvii., pp. 439-43, 1878. The whole series forms an

Article under the above title divided into seven parts and an

Appendix in the Mathemat / Physical Papers, Vol. II.,

pp. 189-407.

The parts of this Article which directly concern us are Parts III.,

iv.. vi., vii. and portions of the Appendix.

[1645.] Part III. is entitled : Effects of Mechanical Strain and

of Magnetization on the Thermo-electric Qualities of Metals,

(a) pp. 709-36; (/) pp. 52-4 (M. P., Vol. IL, pp. 267-97), and it

is the first portion concerned with our present subject. It gives
fuller details of the experiments referred to in our Arts. 1642 and

1643. Pp. 709-27 (M. P., Vol. n., pp. 267-86) deal with the action

of elastic strain and set in the production of thermo-electric effects.

It is well known that if a circuit be formed of two different

metals, one junction being maintained at a higher temperature
than the second, then a current will flow in the circuit. Let it

be from metal A to metal B through the hot junction. The
metal B is then said to be higher in the thermo-electric scale

than the metal A. At the bottom of such a scale stands bismuth,
near the top iron and above iron antimony. No thermo-electric

effect has been found in an unequally heated circuit of the same

metal, if that metal be all in the same condition as to strain 1
.

The object of the present memoir is to ascertain what thermo-

electric effects elastic strain and set have on portions of the same

metal forming a circuit. The effects of a uniform dilatation and

compression are not ascertained, but Sir William discusses in a

series of ingenious experiments the effects of longitudinal traction

and lateral contraction in the case of both elastic and set strains

in differentiating a metal into classes (i.e. the strained and

unstrained) which do not coincide in the thermo-electric scale.

Thus Sir William found:

A. For elastic strain.

That a longitudinal traction caused a deviation in i-opji.T \\ii

from its position in the un-ir.unnl ntate towards hismuth, )>ut in iron

towards antimony. (Stum \\.-i.s found also to shift the position in

the thermo-electric scale of platinum wire.)

1 The section of the conductor must not change suddenly : Me Maxwell,
and Uagnttitm. 3rd Ed. Vol. L, p. 371 ./In.
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(ii) That a lateral contraction caused a deviation in iron wire

towards antimony. Hence Sir William argues that a lateral traction

would cause a deviation towards bismuth, or that it would have an
effect the reverse of that produced by a longitudinal traction 1

. The

crystalline characteristic is therefore established for the thermo-electric

effect of mechanical stress applied to iron, if it be true that traction pro-
duces the reverse temporary effect to that of pressure in the same direc-

tion ((a) p. 715; M. P., Vol. IL, p. 275).
Sir William cites an ingenious experiment to shew that iron under

a simple longitudinal stress has "different thermo-electric qualities in

different directions" ((a) pp. 715-7; M. P., Vol. n., pp. 275-8.)

B. For set.

(iii)
That set produced by a longitudinal traction in both copper

and iron wire causes a deviation from the thermo-electric position in the

reverse direction to that caused by an elastic strain of the same kind ((a)

pp. 712-3; M. P., Vol. n., pp. 270-2).

(iv) That set produced by a lateral contraction in iron wire causes

a deviation in the reverse direction of the elastic strain of the same kind

((a) pp. 717-18 ;
M. P., Vol. n., pp. 278-9).

The combination of these results (iii) and (iv) leads to Magnus' con-

clusion that drawn wire, i.e. wire subjected to longitudinal stretch set

and lateral squeeze set, differs in position from the unstrained wire in

the thermo-electric scale. Magnus stated his results for iron in the

words " the current is from hard to soft though hot ". This Sir William
Thomson shews is not an exact description of all thermo-electric currents

produced by set. He constructed a conductor of 24 little iron cylinders
set end to end, alternate cylinders having been compressed to set. By
an ingenious system alternate junctions were heated and cooled. A
current was then found to pass from unstrained to strained through hot,

i.e. from " soft to hard through hot ". Thus it appears that it is not the

hardening of the iron, but the direction of the strain which is the deter-

mining element. Copper and tin wires were found, like iron, to give
the same thermo-electric effects in the cases of set due to longitudinal
traction and to lateral contraction. The whole series of phenomena point
to strain producing a crystalline character in the metal so far as its

thermo-electric action is concerned.

[1 646.] Further experiments were made on the thermo-electric effect

in the cases of coils, parts of which were hammered and parts not, of coils

parts of which were annealed and parts unannealed; and of coils parts
of which had torsional set and parts not. In the first case the current

for iron was from hammered to unhammered through hot, but for steel,

copper, tin, brass, lead, cadmium, platinum and zinc this direction was
reversed. In the second case for iron and steel the current was from

unannealed to annealed through hot; this direction was reversed for

1 The terms 'longitudinal' and 'lateral' are here applied to directions along
and perpendicular to the current.
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copper and brass. In the third case the current was from torted to

untorted (brittle to soft) in iron, and the reverse for copper. In these

\p'riments the wire was first uniformly torted to set and then the

in parts of it removed by annealing ((a) pp. 720-2
;
Af. P., Vol. n.,

pp. 283-6).

[1647.] The next part of the memoir which is of interest for our

present purposes is entitled : Methods for comparing and determin

anic Resistances, iUuxtnitl }
><i /'/v////i ////</_// Experiments on t/te

ts of Tension...on ttie Electric Cowlurliriti/ of Metals, ((a) pp. 730-6;
M. /'., Vol. ii., pp. 298-306). Pp. 733-4 (M. P., Vol. n., pp. 301-6) are

all that concern us. Here a single experiment is given to shew that

equal longitudinal stretches, whether elastic or set, in iron and copper
wires alter their relative electric conductivities. The resistance of

the iron had increased relatively to that of the copper ;
the author had

not then determined the absolute effect on the conductivities of the

strain, but had been led by a partial investigation to believe that it

diminished in both metals.

The remainder of the series of memoirs cited in our Art. 1644

will be found dealt with in our Arts. 1727-1736.

[1648.] Elements of a Mathematical Theory of Elasticity.

Philnxvpliictil Transactions, Vol. 146, pp. 481-98. London, 1856.

This memoir is incorporated in the Encylopaedia Article on

Elasticity: see our Art. 1741.

[1649.] On the Stratification of Vesicular Ice by Pressure.

Roytd Society, Proceedings, Vol IX., pp. 209-13. London, 1859.

Note on Professor Farnd^ifs Recent K.r^rimcnt^ on '

Regelation?

Royal Society, Proceedings, Vol. XL, pp. 198-204. London, 1862.

These papers deal with the melting of ice under pressure, and

on the nature of the motion of a plastic solid like ice under stress.

The discussion is general and unaccompanied by mathematical

analysis, but to enter into it would lead us too far beyond our

present limits.

1
1 <!50.] Note on Gravity and Cohesion. Proceedings of the

'/
Society of AW///A///-//A. Vol. IV., pp. 604-6. Edinburgh, 1862.

,'iifnr Lectures and Addresses, Vol. I., pp. 59-63. London.

1889).
Tli is is an attempt to shew that gravitation will suffice to

iin cohesive force, provided only th.it the ratio of the space

occupied by matter to the space unoccupied by matter in any
finite body is sufficiently great Sir William Thomson refers to
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woven and fibrous structures as exemplifying this position and

adds:

. . .it is clear that the same result would be produced by any sufficiently
intense heterogeneousness of structure whatever, provided only some

appreciable proportion of the whole mass is so condensed in a con-

tinuous space in the interior that it is possible, from any point of this

space as centre, to describe a spherical surface which shall contain a very
much greater amount of matter than the proportion of the whole matter

of the body which would correspond to its volume (p. 606).

I do not feel convinced by the arguments used, especially if

matter be not treated as continuous as it is in the case of fibrous

or woven structure. The hypothesis of un tessuto fibroso o

reticolare has been dealt with by Belli (see our Art. 756*.) Sir

William Thomson does not seem to have been acquainted with

Belli's memoir, nor does he, I think, meet such arguments as those

of Belli.

[1651.] Dynamical Problems regarding Elastic Spheroidal

Shells and Spheroids of Incompressible Liquid. Philosophical

Transactions, Vol. 153, pp. 583-616. London, 1864 (M. P., Vol.

in., pp. 351-94). This paper was read November 27, 1862. It

contains a solution of Lamp's Problem by means of solid spherical

harmonics. The introduction of these harmonics seems to be due

independently to Sir William Thomson and Clebsch : see our

Art. 1397. In a note added to the memoir in December, 1863,

Sir William Thomson refers to Lame's memoir of 1854 (see our

Art. 1111*), which he had only discovered after the communication

of bis own paper to the Royal Society.

The form in which the analysis has been applied in the present paper
is very different from that chosen by Lame (who uses throughout polar

coordinates); but the principles are essentially the same, being merely
those of spherical harmonic analysis, applied to problems presenting

peculiar and novel difficulties (p. 616
;
M. P., Vol. HI., p. 394).

Whether it is easier to deal with the strain of elastic spherical

bodies by means of polar or cartesian coordinates will, perhaps, be

always a matter of opinion, and depends very much on the method

in which the student has first approached the problem. At the

same time the solutions of a considerable number of interesting

problems concerning the physics of the earth depend, assuming

perfect elasticity, only on harmonics of the second order, and the
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discussion can in these cases be carried out in an especially easy
and elementary manner by aid of polar-coordinates, which,

indeed, give the results in the form most convenient for

geometrical interpretation.

As we have already dealt at length with Lams Problem in

our first volume (see Arts. 1112*-! 148*) and there put on record

the general forms required for special investigations we shall

content ourselves here by referring to the principal results of

Sir William Thomson's treatment.

[1052.] Taking the body-shift-equations of the type

if we write, p = -
(A + p.) 6, we change the type to :

A. (Jx

(i),

Here p is the mean normal pressure per unit of surface of a small

jx>rtion of the solid. Put A. =00
,
and $ = 0, and we have for an incora-

i le solid three equations of the type :

and
/" dv dw
dx dy dz

to find the four unknowns u, v, w and p ( 4-5). See our Arts. 1215
and UM7.

[1653.] To remove the body-forces assume

1 / __ X 4- u=+ = + _i7-__

where

jiii<l th i-rfore U
t F, W,

1 Thomson and Tail's Kntnmi
Art. 1715.

theoretically be found '.

,
Part ii., Arts. 780-1: see oar
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On substitution the l>ody-shift-equations reduce to the type :

(iv),

which is the form from which Sir William starts his investigation

(
2 and 38-44).
When a force-function exists, (iii) can be much simplified : see 42

and our Arts. 1658 and 1716.

When the conditions of the problem are that the surface-shifts are

given for the spherical shell, then the above values of -MO ,
v

,
w

n
must

be subtracted from these given surface-shifts before the problem is

stated in its reduced form.

When the conditions of the problem are that the surface-stresses are

given, then the stresses which result from these shifts at the surface

must be deducted from the given surface-stresses before the problem is

solved from (iv). Special cases of this are dealt with in 42-3.

[1654.] 7-13 give the general solutions of the equations of the

type

These are :

t=ac

1=0

\

v = 2 \
vi+l + v'i_i r"

2*"1
" 1

.-

*

i=o I ^ dy\_(\.+ o/ji)i

where

and

Mi, ^i, w<, w'<t v'j, t^'i, denoting six solid harmonics of degree i.

I am inclined to think the separation of the solution into two elements
one of which depends on the twist terms pure and simple after the
manner of Clebsch : (see our Arts. 1394-5) would have given to (vi) a
more concise form.

[1655.] 14-18 determine the values of the six typical solid

harmonics uit Vj, wiy u'h v'h ?//,. in terms of the spherical surface
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harmonics which determine the values of the shifts at the inner and
outer surfaces of the shell for the particular problem of given surface-

shifts. Thus for r = a, and r = a, we have

and the problem is to find the six solid harmonics uit v
t ,
wit u'it v iy w'{

in terms of A
{ ,
B

{ , Cit A'
t, #,, C'

t
. The problem presents little difficulty

beyond rather cumbersome algebraical expressions, the length of which

prevents their being reproduced here. For the case of the first one or

two harmonics, which are really those of chief practical and physical

interest, the reader will find it easy to reproduce a simple form of the

investigation for himself.

[1656.] 21-30 deal with the case when the two surfaces of the

shell are subjected to given surface stresses. Here the components
/', (J, R of load parallel to the axes of re, y, z on an element of the

surface of the shell are shewn to be given by the type :

(vii).d d d d
where r-T-=x -r- +y-r- + 3 -r

rfr dx y
dy dz

and = wa; + vy + wz

The values of u, v, w and 6 as given by (vi) have then to be substi-

tuted in (vii), and P
t Q, R reduced to proper solid harmonic form.

Sir William Thomson shews that the surface stresses are given by
the type (Equation (43), 28):'

f.4

Pr-iJi 2
<=-

dx

du
t dvt dw

t

^(viii).

^.^pfisf
and

j/-_i X + /
i

,/y

" + t" }'

William here replaoea the doable aeries of terms in (vi) by a single
series. The terms in u',.,!^*"

1 and ^f^t-i are clearly harmonica of degree
-

(i + 1). Thus we ma\ f we note that the summation is to be
from 1 = 00 to -oo. Thi- I think Mlioiihl, perhapn, have been been more clearly

in 389, where the range of the sainiii.iii.nis is not dn, ctly stated.
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As in the case of given shifts, the surface stresses will give us six

surface-harmonics of each degree, e.g.

These six individual surface-harmonics must then be equated to the

terms in the values of P, Q, R in (viii) which lead to surface-harmonics

of the ith degree for the two values respectively of r = a and r = a'. These
surface-harmonics will arise partly from positive and partly from nega-
tive values of i in the expressions for the stresses. The method by which
this may be accomplished is indicated rather than carried out in 2930,
and for the general case would require the addition of a large amount
of algebraical work which is only suggested. Even Lame, who carried

the solution further than Sir William Thomson, still leaves it in the form
of linear equations for the undetermined constants : see our Arts. 1133*
and 1141*.

[1657.] The method in which the terms of (vi) in u\ and i//^ are

dropped in 27 and reintroduced with a different notation in 29 is not

a little likely to puzzle the reader. Here as elsewhere in the discussion

of this problem, the method of the general solution does not seem the

readiest to reach the simpler cases, which are after all those most

frequently occurring in physical applications.

[1658.] The interesting general case, when the force-function is a

harmonic, Wi+l ,
of the (i+l)th degree is worked out by Sir William

Thomson in 44-7. He takes PX =-dWi+l/dx, P Y= -dW^jdy,
pZ = dWi+l/dz t

and he indicates, without fully determining all the

constants, the solution for the case of a spherical shell subjected to no

surface-loading ( 456).
For the particular case of a solid sphere with no surface-forces, he

does fully determine all the constants. The shifts are then given by

():
'

where
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Aa a corollary we may note the case of chief physical interest for

which z-l, we then have :

10/x (19A.+

~

where

Sir William Thomson calculates W.2 for the case of the disturbing
force due to the tides raised in the solid earth by a distant body. If m
be the mass of the tide raising body, c its distance and p the density
of the earth, he finds

( 49-51) :

The application of this has been discussed in the other works by our
author dealt with in our Arts. 1663-4, and 1720-6.

[1659.] 54 gives the value of the shifts of a solid sphere
for given surface displacements, and indicates the like results for a

spherical cavity in an infinite elastic solid.

55-8 deal with the oscillations of shape in a gravitating

liquid sphere. A simple harmonic normal displacement of the

tth order has for period

where a is the radius of the sphere and g gravity at its surface.

For the case of t = 2, or an ellipsoidal deformation, the length of

the isochronous pendulum at the sphere's surface is {. If the

liquid globe were homogeneous and 5J times the density of water,

and of the size of the earth, the period would be 1 hr. 34 in.

24 s. We may compare this with the result for a homogeneous
elastic sphere given an ellipsoidal deformation of the type
V = A Y9 cos kt. Lamb finds for a globe of the size of the earth

and of the density and rigidity of steel a period of 1 hr. 18 m.

A difference of less than 2 minutes is made in the result whether

we suppose steel incompressible or of uniconstant isotropy. Thus

the earth if it were as rigid as steel would oscillate more rapidly

than if it were made of a liquid 5 times as dense as water : see

Proceedings, London Mathematical Society, Vol. xill., pp. 211-2.

London, isvj.

i B. FT. ft -.">
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Sir William Thomson in his paper on the rigidity of the earth

(M. P. Vol. in, p. 313) says ( 3) :

A steel globe of the same dimensions [as the earth], without mutual

gravitation of its parts, could scarcely oscillate so rapidly [as 1 hr. 34 m.
24

s.],
since the velocity of plane waves of distortion in steel is only

ahout 10,140 feet per second, at which rate a space equal to the earth's

diameter would not be travelled in less than 1 hr. 8 m. 40 s.

As a matter of fact Lamb finds, if r be the time a wave of

distortion would take to traverse the earth's diameter, and P the

period of oscillation : P = r/'848 if the material be incompressible
and = r/'840 if it possess uniconstancy. Thus Sir William's mini-

mum estimate based on the liquid sphere is about 16 per cent, in

excess.

[1660.] The memoir besides dealing with spherical .shells

points out that the problem of an infinite plane plate of homo-

geneous isotropic material, with given shifts or stresses at its plane
faces might be treated as a limiting case of the spherical shell

( 19-20 and 31-4). To work out the plate, however, as a

limiting case of a spherical shell would involve, for the general
case some rather formidable analytical difficulties.

Sir William Thomson in 32-4 briefly sketches a different method
of solution.

The following system of shifts will be found to satisfy the body-shift-

equations of elasticity :

where U, V, W satisfy V2
< = 0, while :

dU dV dW
* ~ dx

+
dy

+
dz

'

and fif/dx is to be so taken that it also satisfies V2
< = 0.

Sir William Thomson now remarks that if we take

U= (fe~
px +/'O sin (sy) sin (te),

V= (ge-** + g'e?*) cos (ay) sin
(te),

TT= (her** + h'epx
)
sin (*y) cos (te),
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subject to the condition p* = 8* + *, we have a solution capable of giving
over the faces of a plate (taken as x = and x = a)

7xQ ^A sin (sy) sin (tz),

w* = B cos (y) sin (te),

7* = C sin (ay) cos (tz\

and three like expressions for ?, ^a , Tza with .4', ZP, C' for .4, 5, C.

Hence by a series of such terms we have the most general solution

according to Fourier's principles.
As a matter of fact, if the solution were completed, we should merely

reach a somewhat extended form of Lam6 and Clapeyron's rather un-

wieldy results in quadruple int.-u'mls, of which since their statement in

1828 no practical use has, so far as I am aware, ever been made: see

our Arts. 1020*-!*.

[1661.] 59-71 are occupied by an Appendix entitled:

General Theory of the Equilibrium of an Elastic Solid. This

appendix was reprinted in the Treatise on Natural Philosophy :

see Part IL, pp. 461-8.

59 and 60 point out that the quantities ex , Cy,**,^*,^, 77^
of our Art. 1619* (in Sir William Thomson's notation (4-1)
(B 1), (C 1), a, b and c) suffice to determine the most general

tiin of -Main which can be given to a body in the neighbourhood
of a point. The temperature being kept constant the strain-

energy w is a function of ex ,
ey ,

ez , r)yz , tjzx^xy Hence by the

method of variation Sir William Thomson deduces equations
which are identical with those of C. Neumann, or with those

which flow from Kirchhoffs memoir of 1852 : see our Arts. 670-1

and 1250.

In 03 the possibility of a solution of these generalised

equations of elasticity for any type of elastic body subjected to a

given system of surface-shifts is indicated, and it is shewn that

und.Tc. i tain conditions there can be only one solution of the elastic

n
I

uati.ii i- t.r this case. 64 is a brief reference to similar results

for the case of surface-stress.

65-6, 69-71 contains a short theory of elasticity for small

strains, giving the usual results of Green's investigation of tin-

strain-energy.

[1002.] 67 proves in a manner differing slightly from that

of Neumann, Clebsch and Kirchhoff the uniqueness of the solution

in the case of small strain> wh-n thr surface-shift^ arc ^ivm : see

..ur An-, 1 198, I _.. L278 and i:i::i

252
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68 turns to the like problem when the surface data are those

of load not shift, or when a force acts on the interior of the

material. In this case the solution is not in general unique-

configurations of unstable equilibrium occurring even with infi-

nitely small shifts.

For instance, let part of the body be composed of a steel bar magnet ;

and let a magnet be held outside in the same line, and with a pole of

the same name in its end nearest to one end of the inner magnet. The

equilibrium will be unstable, and there will be positions of stable

equilibrium with the inner bar slightly inclined to the line of the outer

bar, unless the rigidity of the rest of the body exceed a certain limit.

This conclusion as to the want of uniqueness in the solution

appears to be deduced from physical considerations and not from

the analysis of the problem. It depends on the system of applied
force itself changing its characteristics owing to the shifts of a

portion of the body, e.g. from a simple pressure in an unstable

position to, perhaps, a force and a couple in the stable positions of

equilibrium. Such a dependence of the system of applied force

on the shifts is supposed not to exist in a proof like that by which

Clebsch demonstrates the uniqueness of the solution of the elastic

equations : see our Art. 1331.

[1663.] On the Rigidity of the Earth. Royal Society Pro-

ceedings, Vol. xii., pp. 103-4. London, 1863. Philosophical

Transactions, Vol. 153, pp. 573-82. London, 1864. Glasgow Philo-

sophical Society Proceedings, Vol. v. pp. 169-70. Glasgow, 1864.

British Association Report (Glasgow Meeting, 1876), Transactions

pp. 1-12. London, 1877. 21-32 of the Phil. Trans, memoir were

withdrawn by the author and in the reprint of the memoir in the

Mathematical and Physical Papers, Vol. III., pp. 312-36, these

sections are replaced by the opening address to Section A in the

British Association Report referred to above. Thus we may look

upon the final form of this memoir as Art. xcv. of the collected

Papers : On the Rigidity of the Earth ; Shiftings of tlie Earths

Instantaneous Axis of Rotation ; and Irregularities of the Earth

as a Time-keeper.
Most of the important results of the memoir are embodied in

the Treatise on Natural Philosophy and will be found pretty fully

discussed in our Arts. 1719-26.
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[1664.] After some remarks on Hopkins's view that the earth

cannot be a liquid mass enclosed in a thin shell of solidified matter a
view with which Sir William Thomson agrees the memoir passes at

once to the consideration of "the relative values of gravitation and

elasticity in giving rigidity to the earth's figure." A formula is now
cited which may be obtained from that of our Art. 1724 (c) in the

following manner. Put X = oo in the value of c', or make the elastic

mass incompressible, then we have by Art. 1724, (b) :

gpa

If sir William had taken uni-constant isotropy the result would
have been very nearly

1.03 + 9-17-
gpa

Then follow investigations corresponding to those of our Art. 1725.

See the memoir 4-7.

5 15 of the memoir cover in a less concise and lucid manner the

results of the Natural Philosophy epitomised in our Art. 1724-5. It

will be noticed that in that article we neglect the self-attraction of

the superficial coating of water. This neglect is defended in 12 of

the memoir, which thus refers to the result for e in our Art. 1725 :

It may be regarded as a better expression of the true tidal tendency on the
J ocean, than the slightly different result calculated with allowance for

flfect of the attraction of the altered watery figure constituting the

equilibrium spheroid, and its influence on the figure of the elastic solid
;

>

:ii|><MliiM,-iito of land and the influence of the sea bottom render the actual

ocean surface altogether different from that of the equilibrium spheroid.

I do not quite follow the argument here. The neglect of the self-

attraction of the ocean may be justifiable considering the hypothetical
and rough character of the approximation, but 1 do not clearly follow

why it should necessarily give a better result than the treatment which
inriudes the self-attraction

16-20 contain suggestions for determining the amount of rigidity
of the solid earth by means of the fortnightly tide. But to enter

into the details here would carry us beyond our limits.

[1665.] 21-33 forming part of the British Auociati.t .-.< 1.1 ress,

with the Effects of Elastic YMKn;/ < fVwMflOfl <uid tfiUat,

ire here cited against "the geological hypothesis of a thin

rigid shell full of li<juil , and the theory of a mainly solid mass, con-

taining small hollows or vesicles filial with liquid, is supported. A
are cited with regard to the effect of interior liquulit \
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on the tides and on nutation ( 24-6) the mathematical analysis of

which has not yet been published. The general conclusions are thus

resumed in 28 :

The state of the case is shortly this : The hypothesis of a perfectly rigid
crust containing liquid, violates physics by assuming preternaturally rigid

matter, and violates dyiuimical astronomy in the solar semi-annual and lunar

fortnightly nutations
;
but tidal theory has nothing to say against it. On the

other hand, the tides decide against any crust flexible enough to perform the

nutations correctly with a liquid interior, or as flexible as the crust must be
unless of preternaturally rigid matter.

34-8 deal with the irregularity of the earth as a time-keeper, and

although of much interest, do not touch on the topics of our History.
39-40 are appendices, the latter bearing upon the formula cited in

4 : see our Art. 1664. Further Appendices deal with the Tidal

Retardation and the Thermodynamic Acceleration of the Earth's ro-

tation. These are taken respectively from the Philosophical Magazine,
Vol. xxxi., pp. 533-7 (London, 1866), and the Proceedings of the Royal
Society (Edinburgh), Vol. XL, pp. 396-405. Edinburgh, 1882.

[1 666.] On the Elasticity and Viscosity of Metals. Proceedings

of the Royal Society, Vol. xiv., pp. 289-97. London, 1865. This

memoir is incorporated in the Encylopaedia article on Elasticity :

see our Art. 1741.

[1667.] On the Fracture of Brittle and Viscous Solids by

Shearing. Proceedings of the Royal Society, Vol. xvn., pp. 312-13.

London, 1869. Philosophical Magazine, Vol. xxxvin., pp. 71-3.

London, 1869. The author noted on a visit to Kirkaldy's testing
works in Southwark that the rupture of bars of circular cross-

section by torsion took place in two different manners. The

rupture surface of bars of hardened steel

shewed complicated surfaces of fracture, which were such as to

demonstrate, as part of the whole effect in each case, a spiral fissure

round the circumference of the cylinder at an angle of about 45 to the

length.

On the other hand in softer or more viscous solids there was

a tendency to break right across perpendicular to the axis of the

bar.

These experiments of Kirkaldy's were confirmed by the rupture
surfaces of sealing-wax and hard steel bars, which gave spiral

fractures, while those of steel tempered to various degrees of soft-
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ness, brass, copper and lead were planes perpendicular to the axis

of torsion (Compare our Art. 810). It was thus demonstrated :

that continued "
shearing

"
parallel to one set of planes of a viscous solid,

developes in it a tendency to break more easily parallel to these planes
than in other directions, or that a viscous solid, at first isotropic, acquires
"
cleavage planes

"
parallel to the planes of shearing (Proc. R. S., p. 313).

Clearly in a hard elastic solid with small strain the direction

of greatest stretch would be an angle of 45 to the axis of the bar,

and hence the spiral fissure tends so far to confirm the maximum
stretch theory of rupture. On the other hand in the case of a

material which passes through the plastic stage before rupture, we
know that it will begin to flow when the maximum shear reaches

a certain value (see our Arts. 236, 247 and 1586), and this flow

may lead as Sir William Thomson suggests to the formation of

planes of cleavage.

The paper concludes by noticing Forbes' and Hopkins's views as

to the manner of rupture in the case of glaciers, and their recon-

ciliation by means of the above distinction between two kinds of

rupture.

[1668.] Treatise on Natural Philosophy by Sir William

Thomson and Peter Guthrie Tait. Vol. I., Oxford, 1867 (pp. xxiii.

4-727).

A new edition of this first volume, Part I. (pp. xvii. + 508),

1879, and Part II. (pp. xxv. + 527), 1883, has been issued by the

Cambridge University Press. Our references will be to the pages
of this edition

1

. A smaller work, Elements of Natural Philosophy,

by the same authors appeared at Oxford, 1873, and at Cambridge,
1879, in a new edition. It will not be necessary to refer, however,
to this popular rfaume' of the more important treatise. Although
lily the first volume ..f tin- Xntnrtil Pk&osophybu been published

and the authors announce in the preface to l\iri II. of the second

edition that the completion of the work is definitely abandoned,
still the theory of elasticity and many of its applications naturally
tall into this first volum.-. and tin- non-appearance of the later

volumes, regretable as it is, docs not inflict such a severe loss on

1 A German edition of the work with a preface by von ll< imholtz appeared in

Braunschweig, 18714, entitled : Handbueh der thtoretuchen Phytik iibenettt von
H.-liHhlt: n,,.l \\;-rti
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the elastician as it does on students of other branches of mathe-

matical physics.

The following are the portions of the Treatise dealing with

our subject: Part I, 119-190, 300-6, and Part II, 573-741,

829, 832-48 and Appendix 0. The paragraph numbers are the

same in both editions, but the second edition has been largely
modified and extended.

[1669.] Part I. discusses our subject from the standpoint of strain

only. In 119-27 we have a discussion of the curvature and

tortuosity of flat bars or rods. The following definitions are of

interest :

A bent or straight rod of circular or any other form of section being given,
a line through the centres, or any other chosen points of its sections, may be
called its axis. Mark a line on its side all along its length, such that it shall

be a straight line parallel to the axis when the rod is unbent and untwisted.
A line drawn from any point of the axis perpendicular to this side line of
reference is called the transverse of the rod at this point.*********

The twist (t) of a curved, plane or tortuous, rod at any point is the rate of

component rotation of its transverse round its tangent line, per unit of length
along it ( 120).

By the tangent line in the last definition is meant the tangent to

the axis at the given point. Integral twist over any length s of the axis
=

jtds.
The following proposition is then shewn to hold for the twist in any

part of a bar :

Let a point move uniformly along the axis of the bar : and parallel to the

tangent at every instant, draw a radius of a sphere cutting the spherical
surface in a curve, the hodograph of the moving point. From points of this

hodograph draw parallels to the transverses of the corresponding points of the

bar. The excess of the change of direction from any point to another of the

hodograph, above the increase of its inclination to the transverse, is equal to

the twist in the corresponding part of the bar ( 123).

If the hodograph be a closed curve and the sphere be of unit

radius the change in direction of the hodograph is simply the area

enclosed by it.

[1670.] Some instructive examples of the 'Dynamics of twist in

kinks' are given in 123, rather by way of suggestion than proof at

this stage. Thus a piece of steel pianoforte-wire being free from stress

when straight is given any degree of twist and then bent into a circle,

its ends being securely joined. This circle can then be twisted

into a figure of 8, the two parts being tied together at the

crossing.
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The circular form, which is always a figure of free equilibrium, may be
stable or unstable, according as the ratio of torsional to tiexural rigidity is

more or less than a certain value depending on the actual degree of twist.

The tortuous 8 form is not (except in the case of whole twist =2n-, when
it lecomes the plane elastic lemniscate of Fig. 4, 610 [see our Art. 1694]),
a continuous figure of free equilibrium, but involves a i>ositive pressure of the
t\v<> crossing parts on one another when the twist >2w, and a negative
pressure (or a pull on the tie) between them when twist <2?r : and with this

force it is a figure of stable equilibrium ( 123, p. 98).

[1671.] After some examples of tortuosity and twist of a geo-
metrical character, the authors pass to the curvature of surfaces, define

antlcUistic and synclastic (or
' saddle-back

' and * dome ') curvature

( 12$) and have some remarks of special interest for our subject on
flexible and inextensible surfaces and the conditions for their develop-
ment into plane surfaces. Cases of inextensibility in two directions

only (those of the warp and woof) are pointed out as existing in woven

materials. In this case theoretically a stretch from up to <s/2 1 can
be given in a diagonal accompanied by a squeeze from to I in the

perpendicular diagonal. It is pointed out how the grace of drapery
largely depends 011 this power of extensibility in certain directions

( 142-3).

[1672.] 154-90 deal at considerable length with the geometry of

strain and form a novel and lucid discussion of a somewhat trite topic.
The authors commence with a definition of strain and then pass to

homogeneous strain, which they define as follows :

If when the matter occupying any space is strained in any way, all pairs of

points of its substance which are initially at equal distances from one another
in parallel lines remain equidistant, it may be at an altered distance; and in

parallel lines, altered, it may be, from their initial direction; the strain i->

said to be homogeneous ( 155).

Tin- magnitude of the strain is thus not in any way limited.

The analytical expressions for the coordinates a:,, ylt z
l
of the point

OB, y, z after such a strain are :

4 [B]

where [xx], [xy]t etc., are nine ail.m.ii \ constant*.

[1673.] Clearly any plane remains after strain a plain , any line a

line, ."..>( .11. \
i-liip.soi.i

aii riiip-.oid. As a special case of the last

t a sphere will become an ellipsoid after strain. Tins is Cauchy's
ellipsoid: see our Art. r> 1 7 V It i, t i n^ltiptoid ($ 160).
Its axes are the principal iw <

Let the leng' M lemi-ftXOI <t' thi.> ellipsoid ho a, ftt y,
the

radius of the un-nined sphere being unity Him u- 1,^-1, y-1
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are in our terminology the principal stretches ,, s.,, s3 ;
the authors

term them the principal elongations. They demonstrate the following

propositions :

(a) The stretch sr of the body in the direction I, m, n is given by

8r = (a
2*2 + ^m2 + frtf - 1.

( 164).

(b) The angle < after strain between two directions with initial

direction-cosines /,
m

y
n and l'

} m, n' is given by

+ y-nricos < = - r.
( 164).

{a
2
/
2 + fFm? + y-V}* {a

2
/'
2 + pm1* + yV2

}*

(c) The angle x after strain between two planes, the equations of

which are Ix + my + nz = and I'x + my + riz = before strain, is given

by:
W/J + mm'/P /s

, 1R_COSY = - i. fe 165).
'

(d) There are two systems of parallel planes in which there is no

distortion or the strain is a uniform spread (see our Art. 595* and Vol. I.,

p. 882). These are parallel to the circular sections of the strain-ellipsoid

( 167).

[1674.] The authors now ( 169-76) deal by an elegant

geometrical analysis with the special case of the strain specified

by a - 1, 0, and I/a 1 as principal stretches. This strain corre-

sponds to the distortion of a lozenge into an equal lozenge by

squeezing its greater axis till it is of length equal to the initially

less axis and stretching the less till it is of length equal to the

initially greater axis. It is shewn that this strain corresponds to

the sliding of one plane in the material parallel to a second, or to

what we term in this History a slide. The authors term it a

simple shear. This is unfortunate, for that word was introduced

by George Stephenson to denote the transverse stress in rivets, and

has been consistently used in this sense of stress by Rankine and the

majority of engineers since. Its present confused use partly for

stress and partly for strain has been avoided in our own work by
the introduction of the term slide for shearing strain.

The principal axes of a slide are defined ( 173) to be the

axes of maximum stretch and maximum squeeze, a is the

ratio of the slide, and the amount of relative motion per unit

distance between the planes of no distortion is the amount

of the slide. It is shewn to equal a - I/a, or the excess of the

maximum stretch over the maximum squeeze ( 174-5).
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[1675.] An interesting problem appears, I think, for the first time
in the history of our subject in 177. It is shewn that a pure stretch,

a simple slide and a dilatation combine to form the most general

homogeneous strain. Thus if that strain be denoted by a, ft y, it may
be considered as compounded of: (i) a uniform dilatation denoted by a

stretch \/ay in all directions, superimposed on (ii) a pure stretch

/J/N/ay in the direction of the principal axis ft superimposed on a

simple slide of amount v/a/y \/y/a in the plane of the other two

principal axes.

[1676.] In 181 the authors carry out an analytical investigation
of formulae (i) of our Art. 1672. They inquire whether there is a line

in the body which remains unaltered in direction by strain, or, if values

of x, y, z can be found for which
ar,/a:

= y^y zjz = , say. It is easy to

see that there results a cubic for
,
so that one such line always exists.

ThTe may, however, be three real solutions, in which case there will be

three lines of directional identity, oblique to each other in the most

general case. In the special case, however, when

these three lines will be always real and rectangular, coinciding with

the principal axes of the strain- ellipsoid.
In the course of the analysis the equation of the inverse sin tin -

ellipsoid (or the ellipsoid into which a sphere in the strained condition

would change, if the strain were remitted : see Vol. i., p. 882) is given.
If [^VJf], [ YZ\ etc. represent quantities of the types :

[A'Z] = [] + [y*]' + [], [YZ] =
[xy] [] + [yy] [yz] + [,,] []

then the equation i-

\']
ar + [Y^^ + [^]z^2([Y^] !/z + [ZX]zx + [XY]xy)=^

win -re r is the radius of the spherical surface (p. 130).

[1677.] The authors conclude :

that any homogeneous strain whatever applied to a body generally

changes a sphere of tli- l"<ly into an ellipsoid, and causes the latter

to rotate about a drill.. iln --nigh a definite angle. In particular
caws tin- sj.h.

K may remain a sphere. Also there may be n> rotation.

In the general case, when there is no rotation, there are tin. , -lir.vtions

in the body (the axes of the ellipsoid) which remain fixed
;
when there

is rotation, there are generally thn < -u.-h <iirections but not rectangular.

Sometimes, however, there is but one
(

1

When the axes of the strain-ellipsoid are the lines which do

not change tln-ir <lm-rfi..n the strain is said to be pun; ami

rela -ssary and sufficient conditions for a pun
strain ( 183).
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[1678.J Subject to (ii) of our Art. 1676 the formulae
(i) of our Art.

1672 may be written in the form :

yl
= ex + By + az, zl = bx + ay+Cz ......

(iii).

Let a body thus strained be strained further in the manner

Xt =A& + CM + bfr , y.2
= C& + /^ + e^, z2 = bfa + a

lyl + C^s. .
.(iv).

Combining (iii) and (iv) we find :

asj
= (A^A + CjC + b^b) x + (A :c + c^B + b^) y + (AJ> + c^a + b-^C) z, \

2/2
=

(c-^A + B^c + afi) x + (cxc + B^B + a^a) y + (cj> + B^a + c^C) z, V. . .(v).

x + (byC + a^B + da) y + (bj> + a^a + C^C) z

Although (iii) and (iv) express irrotational strains, they give when

superimposed a strain (v) which is in general rotational, or two pure
strains, if superimposed, may give a pure strain and a rotation.

If the strains be small, we shall have the constants represented by
capitals nearly unity, and those represented by small letters small.

Hence the squares and products of small quantities being neglected, we
have the pure strain :

z, 1

z,[ ................ (vi),

z2 = (b + 6j) x + (a + a1)y+ C^Cz]

arising from the superimposition of the two pure strains
( 185).

[1679.] Our authors now turn to discuss what they term the

entire tangential displacement of a curve taken in a continuous solid

or fluid mass. We might speak of it in the terminology of our work

as the integral tangential shift. Consider any series of physical

points forming a curve in the unstrained body. Divide this curve

up into small elements, and let the length of each element be

multiplied by its shift resolved in the direction of the element. If

these products be summed for the curve the sum is the integral

tangential shift for the unstrained curve. The same reckoning
carried out for the strained curve is the integral tangential shift

for the strained curve. Representing these quantities by / and /'

we cite the following propositions :

(a) 7' -7 = J (/>"-/)*),

where D' and D" are respectively the shifts at the beginning and end
of the curve as determined by the sense in which the arc is measured.

Thus it follows that the integral tangential shift for a closed curve is

the same whether reckoned along the strained or unstrained curve, and
that the integral tangential shift is the same reckoned along either of

two conterminous arcs.
( 188-9.)
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(6) Let Tyg, rn , Tgy be the twist-components (see our Vol. I., p.

882) of a homogeneous strain, i.e. r
vz
=
${[zy]-[yz]},

etc. in the

notation of formula (i) of our Art 1672. Then the integral tangential
shift round a closed curve is given by

where TB^ or,, ws are the areas of the projections of the closed curve in

its initial position on the coordinate planes yz, #e, and xy respectively.

(c) The most general homogeneous strain can be expressed by the

shifts' :

d\l/w =
J~

where

i/r
=

| {(A
-

1)3* + (J5- 1) y
2 + (C

-
1) z- + 2 (ay*+ &z* + cay)}.

Thus for non-rotational homogeneous strain, if the integral tangential
shifts be measured from a definite point of the body as origin up to

any point x, y, z we have :

Thus the integral tangential shifts for the strained and unstrained curves

depend only on the terminals of the curve
( 190, (a)).

[1080.] The next stage in our authors' analysis of strain is to

consider the strain round any point when a body is submitted to

a heterogeneous strain. They sbew that "
at distances all round any

point, so small that the first terms only of the expressions by

Taylor's theorem for the differences of displacement are sensible,

the strain is sensibly homogeneous (p. 140)".

In other words if w, v, 10 be the shifts of x, y, z relative to

any axes:

, ,
du

,
du

,
du

,

*l
~ X = -=- X'

+ j-1/ + j-Z,dx dy
y dz

, dv , dv
,

dv ,

1/1 -^a +
as

|r + a' t

'///
,

dw . dw ,

*'-* =s* + ^y + s* (

1 The expreftaions for or, p, <r in 190, (a) have wrong nignn.
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where x'
t y ',

z' are the coordinates relative to the given point and to

the selected axial directions of any point in its neighbourhood before,
and

a,*,', y,', 2,' the coordinates after strain. Clearly we have for the

quantities [xx], [ys],
etc. of our Art. 1672,

du r , dv r T dw

This result obviously assumes that the second shift-fluxions

cPu cPu
' ' "

can never be infinitely great as compared with the first shift-fluxions

du du
j- , -j- ,

etc.
dx dy

[1681.] If dS be any element of a surface in the body, I, m, n the

direction cosines of its normal, r
yz , r^ ,

T
XIJ

the twist-components at the

point x, y, z of the surface, we easily find

2ff(lTvz -I- mr^ + nrmj )
dS = f(udx + vdy + wdz)

= the integral tangential shift round the perimeter of S.

If T be the resultant twist and
<j>

the angle its direction makes
with the normal to the corresponding element of S

t
we see that the

quantity ffTcos<f>dS is constant for all surfaces drawn through the
same curve.

When the twist vanishes, or the conditions :

dv/dz = dw/dy, dw/dx = du/dz, du/dy dv/dx

are satisfied, then udx + vdy + wdz is a perfect differential
;
or when a

strain is irrotational we must have u, v and w of the form :

dP dF dFu=-T-, v=^-, 10 = -=-.
dx dy dz

In this case f(udx + vdy + wdz) may be termed the shift-function (" the

displacement function") and we see that it represents the entire

tangential shift from the fixed point of the body up to the point x, y, z

along any curve whatever. ( 190, (i)-(l).)

[1682.] Some notice must be taken here of 300-6, which

deal with the impact of elastic bodies. The authors, objecting

strongly to the terminology usually adopted in the discussion of

Newton's Law 1

in the text-books, yet appear to give their sanction

to the validity of that law in one of the worst forms in which

1
i.e. that the velocity of rebound is proportional to the velocity of impact for

the same two bodies.
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it is often stated. They say that the results of recent experiments
1

have confirmed Newton's Law, but they do not say that the

results of more recent theory are opposed to it. They speak
of Newton's finding the coefficient of restitution, e, for balls of

compressed wool to be $, of iron nearly the same and glass {, but

they fail to point out that e probably depends not only on the

elastic nature of the materials in contact, but also on the masses

of the colliding bodies, their shapes and their dimensions': see

our Arts. 941*, 1183*, 1523*, 209, 213, 217 and 1224.

In 302 the generalised Hooke's Law (see our Art. 8*) is

cited to demonstrate that Newton's experimental law is consistent

with perfect elasticity, but the argument used is not opposed to

the variation of e with the masses, sizes and shapes of the colliding

bodies.

[1683.] 303-4 deal in a very brief manner with the longitudinal

impact of cylindrical bars. The only case dealt with is that of Case (i)

of our Art. 213, it being noted that e in this case is theoretically the

ratio of the lesser to the greater mass. This statement ought to have
saved the writers of elementary text-books, which have been largely
based on the Natumi Philosophy, from making the erroneous statements

current with regard to the nature of e. Thomson and Tait refer for

further particulars to their discussion of the kinetics of elastic solids.

As that portion of their work has never been written a reference in the

second edition (1879) to Saint-Tenant's elaborate memoir of 1867 might
have been helpful to the writers of elementary works.

[1684.] 305-6 refer to the amount of energy lost in vibrations,
and notice that but a small part of the whole kinetic energy can
remain in the form of vibrations after the impact of solid spheres
of glass or ivory. This is the view since taken by Hertz and Boussinesq
of the collision of massive bodies, and although the theory of the

vibrations of solid elastic spheres has not yet been so fully worked

out, that its application to the case of vibrations produced by
impact is possible there is still no .loubt that Hertz's theory throws a

large amount of light on this all-important problem : see our Arts. 1515-7.

1 The experiments seem far from conclusive, the influence on t. of variation of

mass, size and shape have not yet been investigated with the needful accuracy : see
-

l/klopaedie <!<> Snt,,,- /////,,-/, ,/,-,- /%*/*, IU. i., S. 296-301.
1 Even such a great authority as Dr Routh speakfl of e as a constant ratio

depending on t //of the balls and does not hint that it may vary with
i mass and size : El- />///,!//.>. l-*2, p. 158. In one of the

most recent Cambridge text-books we are told that e depends on "the substanoM
of which the bodies are made and is independent of the masses of the bodies ".

El. p. 203. Cambridge, IHMI). All the elementary
seem to go astray on this point.
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It brings out in particular why in the case of a hollow sphere much
of the kinetic energy of the blow is spent in vibrations, while in

the case of the solid sphere this loss is little.

[1685.] We now pass to Part II. of the Natural Philosophy,

which deals with the dynamical aspect of strain, i.e. with stress and

the stress-strain relations. The authors pass from the treatment of

rigid bodies by the stages : (i) flexible strings, (ii) rods and wires,

and (iii) thin plates to the complete elastic equations for any solid

body. This arrangement, while certainly carrying the student by
a graduated course to the more complex problems of elasticity,

fails, I think, to fully emphasize the transcendent difficulties

associated with the wire and plate problems, nor does it bring into

clear relation the elastic coefficients of wires and plates and those

for extended masses of the same material : see our Arts. 383-94,

1236, 1251-67, 1292-1300, 1358-1364 and 1418-40.

[1686.] 573-87 deal with the general theory of catenaries,

i.e. of flexible and sensibly inextensible cords hanging freely, or

constrained to lie on smooth or rough surfaces. There is nothing

so closely related to our subject in this discussion that it need

detain us here.

[1687.] 588-626 deal with wires and rods and present many

points of interest. The authors define a wire to be " an elongated

body of elastic material...bent or twisted to any degree, subject

only to the condition that the radius of curvature and the reci-

procal of the twist [see our Art. 1669] are everywhere very great in

comparison with the greatest transverse dimension ". They suppose

that certain constants termed by them " the constants of flexural

and torsi onal rigidity" are known. These constants for an isotropic

wire are the Ewcf, EWK.? and &% of our Art. 1287. The axial

stretch in the wire is neglected throughout the investigation.

This is justified in 592 (see, however, our Arts. 1592*, 1367,

1373 and 1425). I do not think, however, that the
"
conditional

limits", frequently referred to in the discussion as those of

588, and apparently amounting only to the single one cited

above in the definition of wire are really sufficient. They do

not seem to me to exclude the possibility of set, nor the application

of such a system of load that in a small portion of the wire axial
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stretch or transverse slide may become of relative importance.
Further it seems practically assumed that the system of load will

solely produce curvature and twist, and that the effects of the

distortion of the cross-sections are nil or negligible. This is the

fact, indeed, for the cases dealt with by our authors, but some
word of warning seems very necessary, especially when we
remember that the constant of torsional rigidity can only be

ascertained after the form of the distorted cross-section has been

ally calculated
1
.

[1688.] Premising that their wire may be isotropic, crystalline,

fibrous, or laminated in structure, Thomson and Tait state
( 591) the

following
" laws of flexure and torsion ".

Suj)|K)se the resultant stress of the matter on one side of any cross-

ion of the wire on matter on the other side to be reduced to a single
force through any point of the cross-section and a single couple, then :

I. The twist and curvature of the wire in the neighbourhood of this

section are independent of the force, and depend solely on the couple.

II. The curvatures and rates of twist, producible by any several couples
separately, constitute, if geometrically compounded, the curvature and rate of
twist which are actually produced by a mutual action equal to the resultant
of those couples.

tin
1689.] In 592 the line of centroids of the cross-sections is defined

'ie elastic central line. This line in our work is spoken of as the

central line, the term elastic line being retained especially for its strainrd

form. The series of points of zero stretch in the plane of the cross-sect i< >i :

form the neutral axis, and the points of section of these neutral axes by
the corresponding osculating planes of the elastic line form the nentrxl

line. Now Thomson and Tait write :

the elastic central line remains sensibly unchanged in
length

to whatever
straw within ur conditional limits [see our Art. 1687] the wire be subjected,

elongation >r r.ntra< -ti<>n produced by the neglected resultant force, if

tlii.- is in Mn-h ,i direction as to produce any, will r;ni>- the lino of rigorously
no elongation to deviate only inlinitvsimally frin the rl.^ti,- .-rntr.il line, in

any part of the wire finitely curved.

This amount* practically to saying that at points of finite c-nrvutnn

tin- central and neutral lines deviate only infinitesimally. Such a state-

ment is, however, incorrect. An examination of the fi^un- in our Vol.
i , p. 403, shewR that the neutral lim- may pass at points <>t tinit<

curvature to H considerable distance from the central line. Hut, .<

1 That the flcxural rigidity theoretically vnrieit with the amount of curvature is

shown in our Art*. f>19 -20, but tlii variation is really exclu 11 l>\ MB JIM:

'conditional lim

T. E. PT. II 26
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matter of fact, this deviation does not sensibly affect the flexural effect

of the stress-couples, which is the real point upon which our authors'

theory depends.

[1690.] A wire "of uniform constitution and figure throughout,
and naturally straight" is now taken. Two planes of reference .-in-

drawn through its central axis cutting any cross-section at P in the lines

PN^ and PNZ .

v,
and v3 are the component curvatures in two planes

perpendicular respectively to PN^ and PN^ and T is the twist at P.

The authors then proceed as follows
( 594) :

Considering now the elastic forces called into action, we see that if these
constitute a conservative system, the work required to bend and twist any
part of the wire from its unstrained to its actual condition, depends solely on
its figure in these two conditions. Hence if w . PP' denote the amount of
this work, for the infinitely small length PP' of the rod, w must be a function
of

!>!,
v2 ,

T
;
and therefore if tf.

,
JV

2 ,
M denote the components of the couple-

resultant of all the forces which must act on the section through P' to hold
the part PP' in its strained state, it follows...that :

Law IT. of our Art. 1688, or the principle of super-imposition, then

leads at once to w being a homogeneous quadratic function of vlt v2 , T, or

w -
J (Av? + Bv? + CT* + 2av2r + Zbr^ + 2cv1

va) ......... (i),

where A, B, C, a, b, c are constants of the wire.

[1691.] Now it seems to me that this investigation is wanting
in accuracy in several points. First our authors' definition of twist

(see our Art. 1669) when applied to a material rod or curve seems

to exclude the possibility of the 'transverse' becoming inclined to

the tangent, and being itself distorted by the strain. Once it is

recognised that the cross-section of the wire in the cases of both

flexure and torsion is distorted, it does not seem to me possible

without an investigation such as that of Kirchhoff's (introducing
Saint-Venant's results) to assume that the work is a function of

i/!, z>2 >
and T only. To do so appears to be only repeating the old

hypothesis of Euler, Bernoulli and Coulomb under a disguised form,

i.e. the non-distortion of the cross-sections is practically assumed

without sufficient discussion under the purely geometrical defini-

tion of twist.

It cannot be said that this distortion is negligible, for it plays

an important part in the determination of the constants C, a and b,

for all but a rod of circular cross-section with elastic isotropy in the

plane of the cross-section. The result (i) is, however, deduced
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without any limitations of this kind. That it is practically

correct for a thin wire of any cross-section may, however, be

recognised from the investigations of Kirchhoff, Clebsch and

see our Arts. 1251-66, 1359-64 and 1418-36.

[1692.] By the well-known process for reducing a homogeneous
function, w in (i) may be put into the form:

w = (A l
O

l

' +AM + A 30.*) .................... (ii),

corresponding to three component couples about three rectangular axes

where 0,, 2 > $s are linear functions of vlt v2 and r. Hence our authors

conclude :

There are in general three determinate rectangular directions PQlt PQt,
PQ3 , through any point P of the middle line of a wire, such that if opposite

couples be applied to any two parts of the wire in planes perpendicular to any
one of them, every intermediate part will experience rotation in a plane

parallel to those of the balanced couples. The moments of the couules

required to produce unit rate of rotation round these three axes are called

the principal torsion-flexure rigidities of the wire. They are the elements
denoted by A

lt A 2t A 3
in the preceding analysis. ( 596.)

The corresponding rectangular directions are termed the three princi-

pal axes, and the form taken by the wire when balanced by couples round

any one of the three principal axes is a uniform helix having a line

parallel to the principal axis for axis. The helices so obtained are the

three principal /telices
1

( 598).
If one of the principal axes coincides with the central line of the

wire 2 then the three principal helices become the axis of the wire corre-

sponding to pure torsion, and two circles corresponding to pure flexin-

in either principal plane ( 599).

[1693.] Our autlii> n-\v 1< monstrate a numl>er of properties of

rods strained into helices, or of helical springs.

(a) Wantzel's theorem of the helical form taken by a straight rod

of which the central line is a principal axis and the flexural rigiditi.
s

are equal, wlu-n subjected to couples in parallel planes not per]
dicular to the c-nti:il lino, is pro\l in < 601: see our Arts. 1240*
and 1606*.

(6) :il ready discuH8el (Jiulio's memoir of 1841 and >

V. -nant's of 1*11 m belioi 1219* and 1608*.

1 Thomson and Tait apeak of htlix in the text and fjnrnl in the margin. Th,

latter word aeems better reserved for a plane curve. A watch>i>rinK * the true type
of spiral apring, not the npring of a spring balance, which i* a helical

1 The authors- *r*-ak of *conjn ic wire*' beinR 'neiiM' nio' a
somewhat questionable ntatement : MM) our Arts. 882', H: i

* j:. and 1371-H.

261'
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In 602 and 605 our authors 1

give Saint-Tenant's expressions for the

force and couple, i.e. the results of 605 correspond with those of our

Art. 1608* and those of 602 with the same results for the special case

when ft
=

ir/2. A comparison of Saint-Tenant's method with that of

Thomson and Tait is of value, as bringing out the terms supposed to be

negligible in their investigation, i.e. the longitudinal stretch and
Saint-Tenant's e: see our Arts. 1593*-! 608*. Thomson and Tait's

results are slightly more general than the corresponding conclusions of

Kirchhoff (see our Arts. 1268 and 1283 (c)) which suppose the cross-

section of the wire to be circular.

(c) Let I be the length of the helix, x the distance between planes

through its two terminals perpendicular to its axis, < the angle between

planes through its axis and its two terminals in the strained condition,
x and < the corresponding quantities for the unstrained condition.

Then with the notation of our Art. 1608*, x = 1 sin /?, < = Z cos /3/r,

and we may write :

P being the force in the axis tending to compress the helix
( 607).

The authors then take x x and < < small, and deduce various

results bearing on the practical use of helical springs. For example :

p = -

Hence if the spiral be of very small inclination to the axis, or xjl be

small we have approximately :

Thus
(i)

the load is proportional to the compression in the axis, a

property first determined by Hooke at a much earlier period from

experiment: see our Arts. 7* and 250*; (ii) helical springs act chiefly

by torsion, a property first stated by Binet and after him by Giulio,

J. Thomson and Kirchhoff: see our Arts. 175*, 1382* and 1283 (c) ;

(iii)
if the number of coils be n, 1= ZTTT x n nearly, if r be the radius of

the helix, and < =
l/r, whence :

or, the total compression, (x x\ for a given load varies directly as the

number of coils and as the cube of the radius of the helical spring.

1 Two misprints of the first edition a', r' for a, r and L for G in 605 remain in

the second edition.
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This result agrees after proper changes of Dotation with that of Giulio

cited as (vi) in our Art. 1220*.

[1694.] Our authors next refer to KirchhofFs elastico-kinetic

analogy (see our Arts. 1267, 1283 and 1364) and cite as a special case

of it the Elastic Curve of James Bernoulli (see our Arts. 18*-25*).
A straight wire having one set of principal axes of its cross-sections

coplanar is bent in this plane by the action of two equal and opposite

forces, Ft F, acting in any line in the plane taken as the axis of x,

and connected with the wire, if needful, by rigid bars. The correspond-

ing elastico-kinetic analogy is that of a rigid body swinging on an axis

under the action of gravity ( 613). If 1/p be the curvature we easily
find E<M?IP =

Ft/, whence the equation to the curve is py =
a

,
a being a

constant. Thomson and Tait suggest that the elastic line for this case

might be found by drawing successive arcs of circles whose radii vary

inversely as the ordinate y ( 611). They discuss somewhat briefly
the types of solution of the differential equation py a2

,
and depict some

of the forms 1

(traced experimentally from a flat steel spring) which the

solution may take
( 611). These forms are of very great physical

interest and their comparison with various cases of pendulum motion is

instructive.

A conclusion worthy of remark is, that the rectification of the elastic curve
is the same analytical problem as finding the time occupied by a pendulum in

describing any given angle ( 613).

[1695.] 614 gives general equations for the equilibrium of a bent

and twisted rod, in some respects slightly more comprehensive than those

of Kirchhoff and in other respects slightly less luminous as to form

than those of Clebsch. The points to be considered are of a very difficult

and delicate kind, and the difficulty and delicacy are both increased by
the manner in which Thomson and Tait obtain their expression for the

strain-energy of a bent rod : see our Arts. 1687-91. According to

both Kirchhoff anl t'lelisch there is a certain principle involved in

the discussion of tin- (|iiilihriuiii of elastic bodies with one or two
dimensions indefinitely small : see Kirchhoff*8 Principle referred to in

..in Art. I _'.":;. Kn.lihofF on the ground of this principle neglects
the body-forces on the rod, he further supposes surface-load to be

applied only at the terminal cross-sections: see our Art. 1259. Clebsch

also supposes no surface-load except it t< rmin.tl cross-sections, but he

introduces body-forces: see our An. I.".'!.'.. The al.scnr.- of surface-load

seems essential to the treatment of >><>th r|, i.,.-i, ..i:<l Kiuhhoff, for the

1 Forma drawn </<;<.;/,/ for a spring loaded in a Rival
xl.-.s will le found in L. Haalcli >m-irkun

; i fitifr

eitl> '. 1880, a most interesting work. /.'a curves agree

closely with Thomson and Tar . as a i

smaller piece of the carve placed in a somewhat different ipare

Fig. 10 wit with

:0 with their Fi. 2, etc., etc.
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former bases his expressions for the shifts (Art. 1360) and the latter

his expression for the strain-energy (Art. 1287) on the assumption
of Saint-Venant that w = =^ =

(Arts. 1262 and 1286), and accord-

ingly that the stress at the surface of the rod vanishes. Now Thomson
and Tait after taking a, (3, y as " the components of the mutual force,

and
, 77,

as those of the mutual couple acting between the matter on
the two sides of the normal section through x, y, z" x, y, z being axes

fixed in space, proceed to take X&s, YSs, ZSs and L&s, J/Ss, NBs as

"the components of the applied force, and applied couple, on the

portion 8s of the wire" between the normal sections at x, y^ z and
x + 8x

t y + 8y, z + 8z. There seems to me great difficulty about this.

Do X, Y
t Z, Lj M, jW refer to surface load or to body-force, or to both 1

?

If they refer to surface-load, we cannot fall back on Kirchhoff and
Clebsch's discussion for the exactness of the expression of our Art. 1690

adopted for the strain-energy. If the above quantities, however,

represent merely body-forces, the generality is not greater than that of

Clebsch's investigation and the treatment seems in many respects less

luminous. Thomson and Tait's Equation (i) becomes Kirchhoff's (xxiii)
in our Art. 1265, if Jf, 7, Z be put zero; their Equations (i)

and

(ii), supposing JT, Y, Z, L, M, N to refer to body-forces, ought to be
contained in Clebsch's (viii) in our Art. 1363, but the analysis necessary
to prove the identity by transformation would be complicated.

Thomson and Tait do not refer, like Clebsch, their force- and couple-

components (a, /?, y, , ?/, )
of the total stress on a cross-section to axes

fixed in the element of the rod, but to axes fixed in space. Thus since

the rod in the general case has finite shifts their method of treating the

question does not directly bring the bending moments, shears etc., into

the equations of equilibrium. Further in the application of many
systems of applied force, the system would be known relative to axes

fixed in the element, and therefore A", Y, Z^ Z/, M, N would be not

given directly, but only in terms of the unknown strained form of the

rod
;
the Equations (4) and (5) of Thomson and Tait would thus be

still more complicated in application than they at first sight appear.

Comparing the two methods with the corresponding equations for

the elastico-kinetic analogy, we may say that Thomson and Tait's

method leads to differential equations corresponding to the motion of a

rigid body referred to axes fixed in space, while Kirchhoff and Clebsch's

method leads to differential equations more nearly corresponding with

Euler's equations for the motion of a body referred to its principal axes.

[1696.] In the following sections, 615-9, the results are

applied to special cases of naturally straight wires, but the authors

pass by a somewhat abrupt transition to
"
to a uniform bar, beam or

1 The conditions under which a surface-load may be practically replaced by a

body-force are of great importance. One investigation for a special case of continu-

ous loading has been given by the Editor : Quarterly Journal of Mathematics, Vol.

xxiv., pp. 87 and 106. Cambridge, 1889.
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plank
"
aud even to continuous beams. The need here of a prelimi-

nary investigation as to the form of the distorted cross- section, and

as to the real limits within which the strain-energy of this distortion

may be neglected, becomes very manifest. In 619 it is shewn that

the problem of a continuous beam is determinate, but the method

sketched for its general solution becomes in most practical cases

far too laborious to be workable, and a reference might have been

expected to Clapeyron's Theorem : see our Arts. 603, 607 and 893.

[1697.] We now pass to, perhaps, the most interesting part of

our authors' treatment of wires, namely, problems relating to wires

of equal or unequal flexibility rotated round their central line.

This occupies 621-6. We note the following points :

(a) A wire of equal flexibility, straight when unstrained, offers

when bent and twisted in any manner no resistance to being turned

round its central line. This is the principle of the equable elastic rotating

joint, which admits of the rotation about any axis of one body being
transferred equably to a second body rotating about any other axis.

The wire which acts as the joint must have the tangents at the

terminals of its central line exactly in the axes of rotation of the two
bodies. If the wire be not accurately of equal flexibility there will be a

periodic inequality in the rotations of the two bodies having for period
half a turn of either

j
if it be not absolutely straight an inequality of

period equal to a whole turn of either
( 621-2).

(6) Consider a piece of wire or ribbon which in the unstrained

state has its central line a circular arc of radius a
;
the plane of greatest

flexural rigidity at each point being inclined at an angle a to the plane
of the central line. Let its central line be strained into a complete
circle of radius r, and let a couple Loa applied to each element on of

the wire in the normal plane of the central line be required to hold the

win-, 10 that its planes of greatest flexural rigidity make an angle <f>

with the plane of the central line. Then the expression (i) of our Art.

1690 for the strain-energy per unit length of central line, since there is

no twist, reduces to the form :

or, transforming this expression by reference to the planes of principal
flexural rigidities (A v

and A^ A
l
> A 3),

to :

. ( A /cos$ coso\ f /sin< sinaV)MM -
T) +M r )}

............

Clearly :

dw A
l
sin 4 /cos < cos a\ A t oos < /sin sin a

.^
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Further let C be the couple in the plane of the central line, or plane
of bending, which acts between the matter on either side of a cross-

section then :

cosa\-
)

r a /

This follows from our Art. 1692, for clearly

C cos < = ^ and C sin
<f>
=N

a
.

Thomson and Tait now consider most suggestive special cases of

these results.

Ccise (i). Rotation of a straight wire bent into tJie form of a hoop
round its central line.

Here = 00, therefore :

A-.-A* . . d*w A, -A*
L =

-L-y-' SID 2*, and ^ = -
-l-j-! cos 1*.

Hence when < - 0, or when planes of maximum flexural ligidity coincide

with the plane of the central line, w is a maximum, and the equili-
brium is unstable. When < =

7r/2, we have again equilibrium, but, as w is

a minimum, it is stable
( 623).

Case
(ii).

A wire equally flexible in all directions is strainedfrom a
circular arc of radius a to a ring of radius r and then turned round
its central line.

Here A l
= A 2 ,

a = 0, therefore :

AI sin
-/> J T jo

or dtp*

Hence
tf>
= and

<J>
= TT are positions of equilibrium, the former being

stable and the latter unstable
( 624).

Case (iii). Suppose A.2 = oo
,
which corresponds closely to the case of

a flat band or metal ribbon for example "a common hoop of thin sheet-

iron fitted upon a conical vat, or on either end of a barrel of ordinary

shape ".

Here if the strain-energy is not to be infinite we must have
r' 1 sin

<j>
= a~* sin a, or the plane of inflexibility must make an angle

sin" 1

(ra~
l

sin a) with the plane of the central line, when the band
is bent to a radius r. We have from (iv) :

nG l /cos< cosa\
= ---

I .

cos < \ r a /

Hence if < approaches near to ir/2, or if the plane of inflexibility

approaches the plane of the central line C gets extremely large and
the band must snap across

( 626).
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The many suggestive points with regard to problems of stability

which arise from this interesting discussion may justify the space
here devoted to its reproduction.

[1698.] The next portion of Thomson and Tait's Treatise

deals with the bending of plates ( 627-57). Of this 627-49

give a general theory of such plates, containing much that is of a

most instructive character. At the same time certain assumptions
are made which it is needful for us to notice here, and which will,

perhaps, be brought out best by the independent discussion of a

special case.

If the plane of xy be taken as the tangent plane to a surface at the

point x -
y = z - 0, then in the neighbourhood of the origin the form of

the surface is given by :

ttf) (i),

where r = d*z/dx>, a = d*z/dxdy, and t = d^z/dy
3

. As in the case of the

rod, Thomson and Tait take the strain-energy per unit area of the plate's

mid-plane to be a homogeneous quadratic function of the r, 8, and t of

the bent mid-plane at any point. The constants of this function are not

expressed at this stage in terms of the thickness of the plate and the

usual elastic coefficients (see, however, our Art. 1713), and it does not

appear from the discussion how far the general equations of elasticity
are satisfied by the assumptions made. I take it that, * = being the

unstrained mid-plane of the plate, 634-5 really amount to the Saint-

Venant-Boussinesq hypothesis that :

throughout the material of the plate.

Assuming this to be so, 1 propose to find an expression for the strain

energy at a given point of a plane plate with three rectangular planes of

elastic symmetry, one beinu tin- mid-plane, when (ii) holds and the

mid-plane at the j>oint in question is siujhtly l>ent to the form (i).

[1699.] The stress-strain relations are of the form (see our Art.

117):
= cua +s, + . ** - <r* \

M^f't + fay + d
1

',,
=W Y

u=e'8,+ d
t

8, + ctln w^fir*,,
*

Assume the following values for the shifts :

+ JCtf, \
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where ?*, $, t and C are arbitrary constants, and fi,fz arbitrary functions.

It will be found that u and v in (iv) have the most general values con-

sistent with the value chosen for w and with zx *yz 0. To satisfy

=
0, we must further have C --

e
'

r + d>t
and e'^ + d'^ - 0.

c dx dy
The value chosen for w gives :

w = % (rx* + 2sxy + ty
2

)

for the form of the distorted mid-plane, i.e. the mid-plane of the plate
is bent at the origin to the form suggested by Thomson and Tait. The
term JGV enables us to satisfy the relation ^z = at all points of the

plate. Further /! and/2 clearly refer only to strains in the plane of the

plate uniform throughout the thickness, and these terms are therefore

not due to bending at all. We may therefore neglect them from the

outset 1
. Thus we conclude :

u = rxz syz. . e'r + d't

---*? T~* ( ??*??** ,

Further :

e'r + d't \
sx =- rz, sy

= -
tz, sz = - -

,

.............. (vi),

<V=0, <rw = 0, <rxy
= -2sz

)

whence :

=

=^ =

(vii)

These stresses will be found to satisfy the body stress-equations.

Forming the expression for W the strain-energy per unit area of the

mid-plane of the plate at the origin we have :

f-fe

W= I (x*8x + W*y + WVxy) d&,
J -e

2c being the thickness of the plate. Thus

...... (Viii),

1 Their most general forms as determined from the body stress-equations and
zz =0, are f^Gd'x +D^ and /2= -

Ge'y + D^c, where G, D, and Z>2 are arbitrary
constants.
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or with abbreviated expressions for the constant- :

17=^(^1*+ '2Grt + #,*' + 4/X*
3 -

rt)| ...(viii bis).
9

Now let us find the couples acting on matter inside an element

round lines in the mid-plane of the plate parallel respectively to the axes

of x and y on strips of unit breadth and height 2c perpendicular to these

axes :

L = -

y
-/:

~ _,
** dW

ds'

> (ix).

Here the couples L and N acting on an elementary strip parallel to

the plane zyt
tend to turn x to z and y to z, and the couples M and J\T

acting on an elementary strip parallel to the plane 205 tend to turn y to

z and x to z res(>ectively. This is indicated in the accompanying figure.

[1 700.] Let x = x + M, y = y + v, z' = z + w. Then a straight line

perpendicular to tin- mid-plane before strain is given by# = o, y = ft.

After strain this line becomes by (v) :

x'-a
= y'-ff \(ra* + 28ap + eF)

ra + sfi sa+tp I + Cz

Tins is clearly no longer an exact straight line unless (7 = 0, but if C be

taken zero then M will not be zero and the values of the elastic constants

in (viii) will be changed. On the other hand, if the plate be very thin.

\Cz will be negligible in the above result and the transverses will

remain very approximately straight lines.

[1701.] We are now in a position to sum up <>ur conclusion* for

a plate with three planes of elastic symmetry, one coinciding with the

plane of the plate :
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(i) The strain-energy per unit area of the mid-plane required to bend
without stretching a small portion of the plate to the form (i) is a

quadratic function of the curvatures r, s and t.

(ii) The bending couples are given by the differentials of the strain-

energy with regard to r, s and t.

These agree with Thomson and Tait's conclusions for the most

general case of aeolotropy in 640-1. But :

(iii)
A straight line in the material of the plate originally perpen-

dicular to the mid-plane, only remains approximately perpendicular to

the mid- plane after bending. If it be assumed to remain absolutely

perpendicular, then the value of the flexural rigidities of the plate will

not be given as the proper functions of the elastic constants a, 6, c, d', e,

f and/
This result is stated by Thomson and Tait in (2) of 633 :

The particles in any straight line perpendicular to the plate when plane,
remain in a straight line perpendicular to the curved surfaces into which its

sides, and parallel planes of the substance between them, become distorted

when it is bent.

Thomson and Tait cite this result as deducible from "the general

theory of elastic solids." The above investigation by the " semi-inverse

method "
(see our Art. 3) while by no means free from objections, may

suffice, perhaps, to suggest that the result in question is an approxima-
tion to be justified for very thin plates by the general theory rather

than an axiom upon which the theory of plates itself can be based. It

coincides with Kirchhoff's hypothesis of 1850, the truth of which we
have questioned in our Art. 1236 (see also our Art. 1412). The results

(2) and (3) of our authors' 633 may be both true as approximations
obtained by the general theory, but they will hardly serve as a basis for

an elementary theory of plates, for while (3) would lead us to introduce

the term J(7z
2
, (2) would cause us to omit it. The whole question is, I

think, on a par with the Bernoulli-Eulerian theory of rods. The

postulate that the cross-sections of a rod under flexure remain undis-

torted is not an a priori truth. It received its first justification in

Saint-Venant's memoir on flexure (see our Art. 92), which shewed that

the cross-sections actually are distorted but that in certain cases this

distortion is negligible. Experiment on a moderate sized iron bar

shews clearly the distortion of the cross-sections, and the distortion of

the transverses can be exhibited in moderately thick iron or glass plates.
If it be objected that our investigation depends on the assumptions

(a) that the sole stress lies in the plane of the plate (i.e. Equation (ii))

and (b) that there is only negligible stretching of the mid-plane (see our

Art. 1699) we must remark that the same assumptions are made by our

authors : see their 634 (1) and 633 (1). Hence their results may be

compared with our investigation based on a more general theory.
The further condition on which Thomson and Tait insist, namely,

that:
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The deflection is nowhere, within finite distance from the point of reference,

more than an infinitely small fraction of the thickness ( 632, (3)),

does not seem involved in our investigation, and it certainly appears at

first sight to exclude from treatment the most useful and ordinary appli-
cations of the theory to thin plates

1
.

From the above, I think, we may conclude that Thomson and Tait's

ultimate conclusions are true, but that their axioms are not absolutely

necessary ; they would, indeed, if treated as rigidly and not approxi-

mately correct, lead to erroneous values for the flexural rigidities.

Further their mode of discussion scarcely enables us to clearly realise the

nature of the internal stresses in the plate.

[1702.] Some valuable remarks and definitions occupying
637-40 must be referred to here. We have already noticed Ran-

kine's analysis of uniplanar stress (see our Arts. 453 and 465 (6)).

Clearly, since L, M, N are only the ^-integrals of the products of z

and **, yy and *P, a precisely similar analysis holds for these couples.

Thus let n as in our Art. 465 (6) denote the normal to a plane

perpendicular to the mid-plane of the plate, and let this normal

make an angle < with the axis of x, and let, as in that article, t be

the trace of this plane on the mid-plane ; then if H be the

>s-couple in the plane normal to n, tending to turn n towards

z and JfJ the stress-couple tending to turn t towards z, we have

by integrating the results of that article multiplied by z with

regard to z:

U = L cos2

<f>
+ M sin3

<f>
+ N sin 2$, )

ja = i(Z-J/)sin24>-#cos2<. }

'

Hence clearly there are two directions determined by :

tan2<J>=2AY(Z-Jf)..................... (xi),

t.ii which the stress-couple, whose axis is normal to the plane
over which we are reckoning the stress, vanishes.

These are termed by Thomson and Tait the principal axes of
bending stress ( 637). Let

<f>
be a value of

<f> satisfying (xi) tlu n

we may write (x) :

-$.X)

where ft

1 The pressure of the finger at the centre of the bottom of a round tin canister
(teems to produce a deflection which is far from being an "infinitely small fraction

of the thickness
" and which might I think be fairly discerned by the ordinary theory.
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Thomson and Tait now term ^(L + M) a synclastic stress.

Clearly this term gives the same stress-couple round every line

in the plane of the plate. On the other hand they term H an

anticlastic stress
; clearly the terms in the stress-couples due to

H are such that they change sign without alteration of magnitude
when

<f>
is increased by a right-angle. If the axes of x and y be

the principal axes of bending stress then clearly the condition

for a pure synclastic stress is that L = M, or for a pure anticlastic

stress that L = M, i.e. the principal stress-couples must be equal
with the same or opposite signs respectively. Compare our Arts.

325 and 453.

[1703.] In 644 our authors deduce from purely statical considera-

tions the general equation connecting the couples Z, M, N and the forces

applied to any small element of the plate. This amounts in the notation
of our Art. 384 to :

dX" dT"
j-j- + 2 -57- + -j-j-

= Z + j- + = ............... (xm).dor dxdy dy* dx ay

Thomson and Tait do not distinguish between body-forces and surface-

load, nor do they investigate how far the existence of the normal force

Z' is consistent or inconsistent with the assumptions : (a) that the stress

is supposed zero
(

634 (1)), and (b) that the whole thickness of the

plate remains unchanged (
633 (3)). Further they introduce shearing

stresses a, /?, perpendicular to the mid-plane of the plate, which seem

directly excluded by their 634, (1), from which 639 and equation

(3) of their present investigation indirectly flows.

Assuming W a homogeneous quadratic function of the three curva-

ture-components r, 8 and
,
we can write down at once the equation for

the normal deflection of an aeolotropic plate. This is more general
than our result (v) of Art. 385, which may be at once obtained from

Equations (ix) and (xiii) above. But the authors do not shew how the

six flexural rigidities of the aeolotropic plate are to be determined in

terms of the 2 1 elastic constants.

[1704.] In 6458 we have a discussion of the boundary-conditions
for a thin plate. The authors point out the contradiction between Poisson
and Kirch hoff, and then proceed to reconcile their conclusions. This is

the famous Thomson and Tait "reconciliation" to which we have
had repeated occasion to refer when discussing Poisson, Saint-Venant,
Kirchhoff and Boussinesq : see our Arts. 488*, 394 and 1239, 1522-4.
It has been so fully explained in our Arts. 488* and 394, and the

precedence of our authors so fully acknowledged by Boussinesq, that

there is no need to discuss the subject further here.
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[1705.] ^ 649-653 deal with the case of a finite or infinite

plate symmetrically strained round a point. The material of the plate
i- -upposed to be isotropic. The authors only investigate that part of

the shift of points on the mid-plane which is perpendicular to the

plane. Their results are therefore far less complete than those of our

^. 328-37. They give the couple L per unit length of a cylindrical
surface of radius r, whose generators are perpendicular to the mid-plane,
the axis of the couple being a tangent to the trace of the mid-plane on
the cylindrical surface : and they further give the value of the total shear

S per unit-length of the same surface parallel to the generators. They
do not, however, give the radial shift or the stresses in the material of

the plate : see our Arts. 329-31.

Let Z' We the force applied normally to the plate per unit area of the

mid-plane. Then for an isotropic plate we have by our Art. 385 :

1 d ( d rl d / dw

Call the right hand side Z'lA, then the solution is :

w = *

[^jrdrl^jrf'dr
+ \C (log 7- - 1) r2 + j-CV

+ C"logr+C"" .................. (ii),

where C, fl", C" and C"' are undetermined constants.

Further, L and S are given, if H be the plate-modulus of our Arts.

323 and 385, by:
dw

d*w dw

and :

(v).
or

The expression for L follows at once by substituting the isotmpie
values of the constants in the results (ix) of our Art. 1699 and taking
the axis of a; to coincide with the radius r. The expression for has

been previously considered in our work (see our Art. 1536). Thomson
and Tait do not apparently recognize that with their previous aystimp

>' 01 1 -I it. to be zero. They appeal in fact to the "general theory of

elasticity" (see 633-4), lmt on the Kasjs of that general theory their

solution is only accurate provided BtfMMi like 7r, *?, p7, or in this case

st and rr, are zero, or negligible as compared with the other stresses.

The relative order of the stresses and the conditions under \\hnh we
. neglect certain of them in the cano of a thin plate form one of tho
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most delicate investigations in the whole theory of elasticity: see our
Arts. 385-8, 1438-40. Yet after an investigation which really depends
for its accuracy on the neglect of the shearing stress ^ and the normal
stress 7r, we are confronted by the introduction without remark of

s

and of Z' equal presumably to (72)+e
- (^)- . Clearly if ^ and Tz

are not zero the statements 633 (2) and 634 (1) are only approxima-
tions, and we must shew in calculating the strain-energy W (see our
Art. 1699) that the terms due to these stresses are negligible. This in

most cases is probably the fact, but the difficulties of the investigation
do not seem effectively brought out by our authors' mode of investi-

gation. For the value of ^ in a special case : see our Arts. 329-30.

Assuming our authors' conclusions to be correct, we have
( 649) :

+
$C'(A+c)-C"(A-c)^ (vi),

S=-- IrZ'dr -C-.. ...(vii).r J r

[1706.] Our authors give an interesting investigation of the

physical meaning of the various terms in the solution expressed by
(ii), (vi) and (vii), ( 651), and then work out the following interesting

problems, for the special analysis of which we must refer our readers to

the Treatise :

(a) The symmetrical flexure of a circular annulus acted upon by
any given bending couples and shearing forces distributed uniformly
round the outer and inner edges ( 652).

(b) The same annulus acted upon in the same manner with the

addition of any load symmetrically spread over its area. The solution

is indicated for a special case only ( 653). In 655 our authors indi-

cate the solution of the circular plate problem for the case of non-

symmetrical loading. This problem had been completely solved by
Clebsch some years earlier in his Treatise: see our Arts. 1380-2.

[1707.] Two further paragraphs .(
654 and 656) in the authors'

treatment of plates deserve special notice.

Let Z' (x, y) be the load on a plate at the point .r, y, then the form of

the plate equation for an isotropic material is :

+ ^L\ w = '

(x, y)/A (see our Art. 399).
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A particular integral, w0j of this is

", y") log/?',

where R = J(x -x? + (y
-yj and R =

^(a;"
-

a')
8 + (y"

-
y').

The solution is thus thrown back on the complete integral of

[1 708.] Returning to the results (iv) of our Art. 1 699, let us suppose
the material subjected to a unifonn anticlastic curvature (Art. 1702),
obtained by putting L = M = 0, and therefore N = ^fs.

Hence if a rectangle with its sides parallel to the axes of x and y
were to have its edges subjected to the uniform couple N (see figure of

our Art. 1699), there would be anticlastic curvature and a deflection

given ((iv), Art. 1699) by

Now by Thomson and Tait's * reconciliation
' a couple may be replaced

by a distribution of shearing force. N the couple per unit length of the

edge may be replaced by shearing forces \P and \P at infinitely small

distances from each other and such that P = \N. These will cancel

each other except at the corners, where from each edge we shall have a
force /, or P as a whole. Thus we have the case of a rectangular

plate subjected to normal forces /*, P at the ends of one diagonal and
normal forces - P, P at the ends of the other diagonal. Such a

system of force therefore produces uniform anticlastic curvature in the

plate and a deflection from the mid-point given by

3P

In the case of isotropy,/*=/n, the slide-modulus.

Clearly the shifts in this case are given by (iv) of our Art. 1699 as :

3P 3P 3P

Turning to our Art. 29, we see that these results exactly correspond to

the torsion of a very thin rectangular prism, i.e. if in the results of that

article we neglect c/6, write M^2bP, and therefore take r = 3/>

/(8/c*)l

f and c being respectively /A an<l <. Thus the breadth of our plate

ij 26, we see that uniform anticlastic cui\:itun j s |.r..luced in a
thin plate by torsion. Tli-uusoi, ;.M.| Tan ivtum t. this identical case

t the flexure and torsion problems later ( 71' 23 : see our Art 1713)
as a means of determining the tl* \

lity
<>t tin

]>lat< in terms of

the slide modulus, a determination which is necessary in tin -ir mode of

i i FT n. 27
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approaching the plate problem : see our Art. 1698. The investigation
is one of very considerable suggestiveness and great physical interest.

In 657 the authors remark :

Few problems of physical mathematics are more curious than that presented
by the transition from this solution, founded on the supposition that the

greatest deflection is but a small fraction of the thickness of the plate, to the
solution for larger flexures, in which corner portions will bend approximately
as developable surfaces

(cylindrical,
in fact), and a central quadrilateral part

will remain infinitely nearly plane ;
and thence to the extreme case of an in-

finitely thin perfectly flexible rectangle of inextensible fabric.

Unfortunately, they give no analysis, nor any suggestion for the

mathematical treatment of this case.

[1709.] The next forty-one articles ( 658-98) of the Treatise

form a luminous discussion of the general equations of elasticity,

which, however, as traversing well-known ground need not detain

us long.

We may draw attention to the following points :

(a) If W denote the "whole amount of work done per unit of
volume in any part of the body while the substance in this part
experiences a strain (sx) sy ,

sz ,
<r
yz , a-^, cr^ from some initial state

regarded as a state of no strain", then

dW= dsx + yydsy + ^dsz + ydcryz + Txda-zy. 4- ^ydar^y.

Upon this result our authors make the following weighty statement,
which I believe had not been clearly expressed before, and which has
too often been disregarded since:

This equation, as we shall see later, under Properties of Matter [alas
/],

expresses the work done in a natural fluid, by distorting stress (or difference
of pressure in different directions) working against its innate viscosity ;

and
W is then, according to Joule's discovery, the dynamic value of the heat

generated in the process. The equation may also be applied to express the
work done in straining an imperfectly elastic solid, or an elastic solid of
which the temperature varies during the process. In all such applications
the stress will depend partly on the speed of the straining motion, or on the

varying temperature, and not at all, or not solely, on the state of strain

at any moment, and the system will not be dynamically conservative

( 671).

An attempt has been made by the Editor of the present volume to

form the generalised equations of elasticity when the speed of the

straining motion is taken into account : see the Proceedings of the

London Mathematical Society, Vol. xx., pp. 297-350. London, 1889.

(b) There are a number of definitions in these paragraphs which ought
to be regarded. A perfectly elastic body is defined as a body which,
" when brought to any one state of strain, requires at all times the
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same stress to hold it in this state ;
however long it be kept strained, or

however rapidly its state be altered from any other strain, or from no

strain, to the strain in question". Here the effect of variation of

temperature is neglected in the theoretical *

perfectly elastic
'

body, but

our authors point out that "
by making the changes of strain quickly

enough to prevent any sensible equalization of t< mperature by conduc-

tion or radiation," or again
"
by making them slowly enough to allow

the temperature to be maintained sensibly constant ", the perfectly
elastic body of theory finds close approximations among natural bodies

The first clear statement of the relation of thermal effect to strain

is due to Sir William Thomson : see our Art. 1631.

(c) In 673 we have the expression of W (see (a) above) as a

quadratic function of the strain-components, and the remarks as to

Boscovich's theory, which we have criticised in other parts of our

History: see Arts. 924* 928*, 276 and 299.

(d) What we have termed the dilatation- and slide- moduli, or the

F =
(3X -h 2ft), and the ft of an isotropic solid, are defined as the bulk-

modulus and the rigidity in 680. There seems some objection to the

latter word as the term Jlexural rigidity has been widely used in

quite a different sense, i.e. in the cases of a beam and of a plate, where
its value has on the multiconstant theory no direct relation to the

slide-modulus ft. The reciprocal of the bulk-modulus is termed the

compressibility. Thomson and Tait use the letter n for our
ft,

the letter

k for our F= J (3X + 2/x) and the letter m for our X +
ft.

It follows

that our E =
9nk/(3k + n) and our

17,
the stretch-squeeze ratio,

= ^ (3k 2n)/(3& + 7*). Moduli expressed in terms of k and n are

generally more complex than when expressed in terms of X and ft, but
k has a more direct physical signification than X. Young's modulus,
our stretch-modulus, is identified in 686 with "what we also sometimes
call... longitudinal rigidity". This I venture to think completes the

confusion which has hitherto been attached to the word rigidity
1
.

(e) The criticisms of uniconstancy in 684-5, for the reasons often

cited in this History, do not seem to me to carry conviction with them :

see our Arta 921*-933*, 192, 196, 1201, 1212 and 1273.

1 In a footnote to thin paragraph occurs the slip concerning the stretch-modulus
of ice to which I have referred in Art 872*, footnote. It should be noted that if

a
perfect

fluid might be compared with an elastic solid for which the slide-modulus
TO, hut the dilatation-coefficient X finite, then the stretch-modulua would also

be zero ; but if a column of the material were placed in a cylindrical vessel with

rigid sides and stretched by a traction T, the corresponding stretch would be

T/X. In this case, owing to the vanishing of n. the dilatation-modulus wouM
also be X. The phenomenon of th< uch a material is illustrated by
the fact that even a column of water will, if air-free, bear a pull of many atmospheres
before rtiptur. -. If a fluid be compre**il>l. in the leant degree, then a column

will resist stretching, if it be given lateral support. The water rope
'

paradox
thus finds an elastic analogue.

272
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[1710.] 699-710 deal with Saint-Venant's Torsion Problem:

see our Arts. 17-60. Our authors treat of the application of con-

jugate functions to the torsion of prisms and indicate their appli-
cation to the case of cross-sections in the form of annular sectors

( 710). The method itself is due to Clebsch (see our Art. 1 348 (e)\

and the suggested application has been later fully worked out by
Saint-Venant : see our Art. 285.

In 705 a hydrokinetic analogue to the torsion problem is

given, which differs, however, materially from that of Boussinesq

published some years later: see our Art. 1430.

It runs as follows :

Conceive a liquid of density p. completely filling a closed infinitely

light prismatic box of the same shape within as the given elastic prism
and of length unity, and let a couple be applied to the box in a plane

perpendicular to its length. The effective moment of inertia of the

liquid will be equal to the correction by which the torsional rigidity of

the elastic prism calculated by the false extension of Coulomb's law
must be diminished to give the true torsional rigidity.

Further, the actual shear
[i.e. slide] of the solid, in any infinitely

thin plate of it between two normal sections, will at each point be,

when reckoned as a differential sliding parallel to their planes, equal to

and in the same direction as the velocity of the liquid relatively to the

containing box (705).

By
"
effective moment of inertia" the authors understand that of

a rigid solid fixed within the box, which if the liquid were removed

would make the motions of the box the same as when it contained

liquid.

The reader will find it of interest to compare Thomson and

Tait's analogue with Boussinesq's, especially in reference to the

insight both throw on the position of the fail-point, as in general
the point on the contour nearest the axis : see our Arts. 23 and

1430.

[1711.] Another important matter in our authors' discussion

of Saint-Venant's torsion problem is contained in the following
words of 710:

A solid of any elastic substance, isotropic or aeolotropic, bounded by
any surfaces presenting projecting edges or angles, or re-entrant angles
or edges, however obtuse, cannot experience any finite stress or strain

in the neighbourhood of a projecting angle (trihedral, polyhedral, or

conical) ;
in the neighbourhood of an edge, can only experience simple
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longitudinal stress parallel to the neighbouring pail of the edge ;
and

generally experiences infinite stress and strain in the neighbourhood of

a re-entrant edge or angle; when influenced by any distribution of

force, exclusive of surface-tractions infinitely near the angles or edges
in question. An important application of the last part of this state-

ment is the practical rule, well known in mechanics, that every re-

ring edge or angle ought to be rounded to prevent risk of rupture,
in solid pieces designed to bear stress.

The writers remark that want of space obliges them to leave

this statement without formal proof. A certain portion of the

proof may be given readily as follows, although the general
demonstration in the case of a polyhedral angle might be

difficult.

Consider an edge of a solid bounded by two planes meeting in a
line taken as axis of z. Further let two parallel planes be taken

perpendicular to the edge cutting off a wedge-shaped portion of the edge.
It the planes be taken very close together and we deal only with a very
small portion of the wedge in the immediate neighbourhood of the edge,
the variation of the stresses with z may be neglected as compared with
their variations with regard to r and <, polar coordinates in the

angular face of the wedge. If 2a be the angle of the wedge and <

be measured from the angular bisector, the most general expressions
for the radial and cross-radial shifts and for the dilatation will be found
to be:

w = 2 \Cm > cos m'<j> + Dm - sin
iri<f>\

rm
'~ l

+ 2
{ w _ 2 cos (m -

2) $ + J/m_8 sin (m - 2) <} r"1' 1

,

v = 2 \Dm . cos m'<t>
- Cm - sin m'<f>} rm

'~ l

+ 2{vm_, (3/m_ 2 cos (w 2)</>
-Zrm _ 2 sin (///

= 2 {(mLm_t
- (m -

2) v.^L,,^,) cos (m -
2) <f>

+ (m*m_s
- (m - 2) vm^Mm.,) sin (m - 2) *} r"

where vm

and m, m, Cm -

t
Dm <

t
Lm_tt Mm _ z , an- arbitrary constants to be determined

I'V the surface conditions, i.e., the values of the stresses over
(i) the

surfaces
<f>
= a and, </>

= -
a, and over (ii) a cylindrical surface of small

radius about the axis of z, giving the internal stresses in the body at

small distances from the edge. The latter stresses PP, ^ will be of

tin- form
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where the values of the constants ap ,
6p,

a p and b'p are supposed
known. The former stresses ^, are according to Thomson and Tait

to be zero in the neighbourhood of the edge, i.e. to vanish with r.

By forming from
(i)

the expressions for 7r and Zj> we find from
(ii)

that m and ra - 2 will both be of the form ^
,
and that accordingly

both Zr and Z$ will involve powers of r of the order 2. Hence
a

in order that the stresses may not become infinite at the angle we must
have

pir > 2a,

or, since from
(ii) the least value of p will be unity,

2a<7r.

Thus the stress at the edge will not be finite if the edge be re-entering.

By taking the tangent to any point of a curved edge as axis of z, we may
apply the above analysis to any small portion in the immediate

neighbourhood of its point of contact. A very similar proof holds in

the case of a conical angle.
The condition that i and

,
over

<f>
= + a, are to vanish in the

neighbourhood of the edge, compels us to give zero values to any
constant terms in the expressions for 7r and ^. Hence the strain

vanishes in the neighbourhood of the edge, if it be a projecting edge.
This is the first part of Thomson and Tait's proposition.

[1712.] 711-718 deal with the problem of flexure. In a

marginal note, this treatment is spoken of as " Saint-Venant's solution

of flexure problem ". But the problem to which reference is made is not

that of the great memoir of 1856 (see our Art. 69), but that much

simpler case of " circular flexure," or of bending a straight rod into a

circular arc by couples, which is dealt with in the memoir on Torsion

(pp. 299-304) and in the Legons de Navier : see our Arts. 9-13, 170.

In this case if the rod be of isotropic material, and if z be the direction

of the unstrained axis, xz the plane of bending and 1/p the curvature

after bending : xxx
** = -<l

p
,

= *-, ,
= --,

Ve
= "c = Vxy

= 0.

Whence we have for the shifts :

U = 7r{z2 + rl(x*~y*)}> V =-W> w = --xz,
2p p p

and therefore for the stresses :

^_^ x ^, ^ _^ ^^
zz = E

,
and xx = yy = *yz = zx = xy = 0.

P



1713] THOMSON AND TAIL 4-15

The above shifts corresjKmd in the case of a rectangular cross-section to

the distorted form depicted in our Art. 1485*, the under-edge of the

section corresponding to the outer side of the beam after flexure, and
the axis of x being positive when measured towards the upper edge
of the section in our figure. The anticlastic nature of the curvature

on the faces of the beam perpendicular to the plane of flexure is

obvious.

Since the usual mathematical theory of elasticity assumes that

measured from the same set of axes, the shifts are small, it is clear that

the radius of curvature must be great compared with x and y, i.e.

with both the depth and breadth of the beam. This is a point to

which we have frequently had to refer in cases where the theory of

beams has been applied to the case of cylindrical shells : see our

Arts. 537 and 1555. Thomson and Tait remark (717) that :

Unhappily mathematicians have not hitherto succeeded in solving, possibly
not even tried to solve, the beautiful problem thus

presented by the
flexure of a broad very thin band (such as a watchspring) into a circle com-

parable with a third proportional to its thickness and its breadth.

[1713.] An ingenious application of the results in Art. 1708 is

made in 719-20 to obtain the flexural rigidities
1 of a plate of isotropic

material. Take a square element of the plate of unit side and suppose
the thickness of the plate to be 2. Let pairs of balancing couples NI
be applied to one pair of opposite sides, and pairs Nt to the other pair
of opposite sides, each tending to produce concavity in the same sense.

Then we easily see that N
1
= ^E^/p and N^^Efjp. Hence by the

results of the preceding article, if v
l
and r2 be the total curvatures :

1
=

3 \-

If to be the strain-energy of the plate per unit area of mill-plane,
assumed a quadratic function of v,, v., (see our Art. 1698) and A' and
c the ' flexural rigidities

'

we have :

whence N
t

= dw/dvl
= A'v

l
+ cVa .

3(1 17*)

These results agree with those given l.\ Kiivhhi.il i.y aid of a very
difl -i ess: see our Arts. 1237 and 1296.

1 So termed by our authors, notwithstanding that they have previously defined

rigidity
' with reference to resistance to shearing action : see our Art. 1709, (d).
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[1714.] 724-9 deal with what we have termed "the
elastic equivalence of statically equipollent systems of load ",

with special reference, however, to Thomson and Tait's recon-

ciliation of the Kirchhoff and Poisson boundary conditions for

a thin plate. It is shewn that systems of forces in equilibrium

applied to elementary lengths of the edge of a plate produce

only insensible shifts at a distance two or three times the

thickness from the edge. These investigations take as their

starting-point Saint-Venant's solution for the torsion of a flat

prism of rectangular cross-section. They are a necessary part of

the Thomson and Tait reconciliation and a valuable contribution

to our knowledge of the exact meaning of the above-mentioned

principle of elastic equivalence. At the same time we shall not

discuss them further here, as the whole matter has been investi-

gated at a later date with rather more complete results by

Boussinesq, and these results have been already cited in our

Chapter XIII.

[1715.] 730-4 deal with the solution of the general body-
shift equations of elasticity with certain special applications.

Lame*, as we have pointed out, first introduced the potential solution

into the theory of elasticity : see our Arts. 1062* and 1489. But
to Thomson and Tait belongs the honour of having indicated its

wide applications ; applications, which have been carried out with

great ingenuity by Cerruti and Boussinesq : see our Arts. 1486-

1524.

Without entering into the elegant analysis by which our

authors obtain their solutions we may, in our own notation

and terminology, record their results for the important cases

with which they deal.

(a) Let a spherical element (radius a) of an infinite homogeneous
isotropic elastic solid be subjected to the constant body-forces pX, pY,
pZ, so that the type of body-shift equation is :

Then Thomson and Tait find shifts of the type :

1

w,
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d p(Xx+Yy + Zz]

dx i*

where the centre of the spherical element is at the origin and r is its

distance from the point at which we are measuring the shift

(6) From the second of the above results our authors easily deduce,

by making a vanishingly small, expressions for the shifts at x, y, z in

an infinite elastic medium subjected to the body-forces X', Y', Z1

at a/, y', z'. Let R =
[x
-

x')* + (y
-
y'T + (z

-
*'?}*, and let the body

forces be such that R*J'X* + Y* + Z* approaches zero as the point
x'

t y', z moves to an infinite distance from the origin. Then the type
of the shifts is given by :

-(X + M)^ ......
(iii),

where p'F = {p'X
f

(x
-
x')+p T(y- y')+p'& (z

-
z')}/JK, or is the body-force

resolved in the line joining x', y', z' to x
y y, z. The integration must

be extended over the whole portion of the medium to which body-
force is applied ( 731).

[1716.] (c) As the authors point out, the above general solutions

for an infinite solid enable us to reduce the body-shift equations for a
finite solid to the type :

Ifi

where the body-forces have been removed by aid of a solution of the
above type and by imposing the needful surface-stresses or surface-shifts

( 732).

(d) If the body-forces form a conservative system, or

p(Xdx+ Ydy + Zdz)^,n\\
it is pointed out in 733 that they give rise to a dilatation

a i nl that the shifts which remove the body-forces are then of the tyj>e

dx-

where x i a solution of V x = - W. If ir=2^, W
i being a solid

spherical harmonic of degree ,
then x = -S 2 ,^ 3

> Wt ( 733).

The remai!.- in kbfl article cited on conservative systems are of

great interest and should be consulted
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[1717.] In 735-9 two important general cases are solved :

(i) The strain in a solid sphere or spherical shell subjected either

to given surface-stresses or to given surface-shifts : these problems have

already been dealt with in our discussion of the memoir of 1862 : see

our Arts. 1651-5.

(ii) The general solution for uniplanar strain in terms of polar-
coordinates. The values given for the radial and cross-radial shifts

agree with those of our Art. 1711 in other symbols and with other

expressions for the four series of constants of the solution.

[1718.] A few remarks must suffice to indicate the remaining
features of this portion of the Treatise.

(a) In 740 a general proposition of importance is stated. The
authors draw attention to the fact that if two elastic solids of like

substance and similar shapes be taken, and by the application of force

they be similarly strained, then the stresses across similarly situated

elements either of real boundary or of geometrical surface within the

substance will be equal. The total stresses across any similar surfaces

are accordingly as the squares of the linear dimensions of the two

bodies, but any similar body-forces or the mass-accelerations are as the

cubes of the linear dimensions. Hence it follows that the greater body
will be the more strained. The strains at similar points will be simply
as the linear dimensions, while the shifts at similar points will be as the

squares of the linear dimensions.

Analytically we may look at this result in the following manner.

Taking the body-stress equations we see, since the body-forces per unit

volume are the same, and since the bodies are similar, that the stresses

must be as the linear dimensions. Therefore the strains, since the

bodies are of the same elastic substance, are also in the ratio of the

linear dimensions, while the shifts are as the squares of those dimensions.

(b)
In 741 our authors adopt the term plasticity for that group of

phenomena, wherein bodies change indefinitely and continuously their

shape under the action of continued stress. This is the sense in which

the word has been used in our History. They further describe under

the term viscosity of solids " a distinctfrictional resistance against every

change of shape" which they say has been demonstrated by many
experiments (" on metals, glass, porcelain, natural stones, wood, india-

rubber, homogeneous jelly, silk fibre, ivory, etc.") and has been " found

to depend on the speed with which the change of shape is made." They
further state that :

A very remarkable and obvious proof of frictional resistance to change of

shape in ordinary solids is afforded by the gradual, more or less rapid,

subsidence of vibrations of elastic solids
; marvellously rapid in india-rubber,

and even in homogeneous jelly ;
less rapid in glass and metal springs, but

still demonstrably much more rapid than can be accounted for by the

resistance of the air.
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The last statement embodies KupfFer's discovery of 1852: see our
Art. 748. The reference to silk suggests Weber's classical experiments:
see our Art. 707*. Yet in both these cases the reduction of the ampli-
tude of oscillation was attributed to elastic after-strain. Now it seems
to me difficult to identify frictional resistance and elastic after-strain.

The "
creeping back "

to the original shape which goes on, it may be for

minutes, hours or even days after the removal of the load (see our
Arts. 720*, 817*, 827*, 1224*-6, and 1431*), can hardly be due to

any frictional action 1
. I have previously referred to the danger of

masking the real nature of elastic after-strain by the use of the term

>sity : see our Arts. 708* ftn. and 750. I think it would be better

to limit the use of the term viscosity to after-set.

[1719.] The only other portion
2 of Thomson and Tait's great

Treatise with which we as elasticians are concerned is contained in

832-48, and deals with the earth as a solid elastic body. A great
deal of this portion is rewritten with supplementary articles by
G. H. Darwin in the second edition, which I follow in this analysis.

The problem itself is stated in the following words :

A few years ago [see our Art. 1663], for the first time, the question
was raised : Does the earth retain its figure with practically perfect

rigidity, or does it yield sensibly to the deforming tendency of the

moon's and sun's attractions on its upper strata and interior mass ? It

must yield to some extent, as no substance is infinitely rigid: but
whether these solid tides are sufficient to be discoverable by any kind of

observation, direct or indirect, has not yet been ascertained [see our
Art. 1726]. 832.

[1720.] The first point to be dealt with is the limit to the

mathematical theory. This is considered in 832', but in a

manner with which the Editor of the present volume cannot

express himself satisfied. The following statements should be

noted:

(a) Nature, however, does impose a limit on the stresses : if they
exceed a limit the elasticity breaks down, and the solid either flows (as
in the punching or crushing of metals) or ruptures (as when glass or

stone breaks under excessive tens;

1 A curious example of elastic after-strain, which some of oar readers may have

remarked, occurs occasionally with razors. A razor which seems by rough or

uual usage to have quite lost its sharpness, will frequently, if laid aside for a
few weeks, be found quite capable of again performing its functions after this lapoc
of time.

* An Appendix reproduces the Appendix to Sir William Thomson 1

! memoir of

1868: see our Arts. 1661 and 1250.
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(6) The theory of elastic solids as developed in 658, 663, &c.,
shews that when a solid is stressed, the state of stress is completely deter-

mined when the amount and direction of the three principal stresses are

known, or, speaking geometrically, when the shape, size, and orientation

of the stress-quadric is given. It is obvious that the tendency of the

solid to rupture must be intimately connected with the shape of this

quadric.

(c) The precise circumstances under which elastic solids break have

not hitherto been adequately investigated by experiment. It seems
certain that rupture cannot take place without difference of stress in

different directions. One essential element therefore is the difference

between the greatest and least of the three principal stresses. How
much the tendency to break is influenced by the amount of the inter-

mediate principal stress is quite unknown.

Now throughout the investigation the stress-difference is

calculated from the elastic theory, and therefore the very import-
ant assumption appears to be made that the elastic theory holds

up to tbe beginning of plasticity or even to rupture. This is far

from being borne out, except for very special materials, by experi-

mental facts : see our Vol. I., pp. 891-3. The stress-quadric as

found from "the mathematical theory of elastic solids" can only
be used in discussing the limit to perfect elasticity, i.e. to a linear

stress-strain relation. At the same time we have seen in the

course of our work that it is rather a value of stretch than of

stress which ought to fix a limit to the application of the

mathematical theory. The stretch-quadric may determine the

fail-limit (see our Arts. 5 (e) and 169 (#)) but it is very doubtful

whether we have any right to associate this fail-limit with the

rupture-limit.

In the next place the statements quoted do not seem to me to

clearly mark the distinction between materials which flow pre-

viously to rupture, and those which do not. Nor further, if the

material be one which flows, is it clear that it will in all cases of

stress have the power of doing so. It is well known from Tresca's

experiments that flow commences in a plastic solid when the

maximum shear (or half the difference between the greatest and

least of the principal stresses) reaches a certain value : see our

Arts. 1368*, 259 and 1586. But the general equations of plasticity

(see our Art. 250) are not those of mathematical elasticity, and

it is the latter equations which are applied by Thomson and
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Tail and Darwin to the present problem. That the equations of

mathematical elasticity hold up to flow is not borne out by the

simple phenomenon of stricture in a bar under longitudinal
traction : see our Vol. I., pp. 889-91. Even if plasticity followed

at once on linear elasticity, it does not seem justifiable to apply
the plastic condition to rupture, which follows, if at all, long after

plasticity has been established and linear elasticity disappeared.

Further, the theory that rupture depends only on the maximum
stress-difference leads us to the conclusion that neither a plastic

nor a brittle material, if subjected to a strain in which the principal

stresses are all three equal will ever give way. It may be incon-

ceivable that any amount of uniform pressure applied to the

Mirface of a solid sphere of isotropic material would cause it to

rupture, but it is also very difficult to believe that a uniform

tension, if it could be applied to its surface, would not, were it

indefinitely increased, produce rupture. To hold that such a

tension would not produce rupture seems to involve the assertion

that intermolecular force is not only infinitely great at an infinitely

small distance, but also at some finite distance. If this were true,

it would be difficult to grasp how even a shear of a certain

amount could cause the molecules of the material to permanently

separate by sliding over each other
;
for such a slide is accompanied

by a finite separation of the molecules in the direction of one of

the principal axes of the slide. To sum up : it seems to me
that we may legitimately find a "fail-limit" by the condition of

maximum stretch, and that when the material is such that it

a very high-elastic limit (e.g. hard steel), we may look upon
the fail-points or fail-surfaces as those at which, in the present
state of our knowledge, rupture will probably take place. I

think, that the maximum stress-difference does not give a limit

which can be safely applied to the mathematical theory of

elasticity, and, if we are to take it as a rupture limit, it ought

only to be applied to plastic materials which are being dealt with

by the general equations of plasticity. This is, I think, the use

which Boussinesq practically makes of it, when applying it to the

problem of loose earth : gee our Arts. 1568, 1586 and 1594. The
n mainder of 832 is a r&um^of O. H. Darwin's memoir: On the

Stresses caused in the Interior of the Earth by the Weight of
Continents and ,V /'/,//. TVon*., V,.]. 17:!. Part I . pp. 187-
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230. London, 1882. The discussion of the results of this paper
would carry us beyond the scope of the present chapter.

[1721.] Chree in a very valuable memoir entitled : Some

Applications of Physics and Mathematics to Geology (Philosophical

Magazine, Vol. 32, pp. 233-52 and 342-53. London, 1891) has

dealt with the application of the mathematical theory of elasticity

to the problem of strains in a solid earth. He states some im-

portant objections to the application of the theory of an isotropic

elastic solid to physico-geological problems. These must be noted

here, so far as they qualify the problem of the elastic solid tides

of the earth. The following causes have to be considered as

contributing to the deformation of the earth's surface : 1 the

mutual gravitation of its parts, 2 the centrifugal acceleration

produced by the diurnal rotation about its axis, 3 the gravitational

influence of the sun and moon.

We may express the action of the last two causes by the following
force-function :

F= p i<oV + i*>V (I
- cos2

<)
-
f 3

r2 (i
- cos2

= p {ror
2 + rr2

(J
- cos2 *)

- TV
(J
- cos2

^)}

where a> = the spin of the earth about its polar axis, p = the density of

the earth at distance r from its centre, <f>
= the angle the direction r

makes with the polar axis, ty
= the angle the same direction makes with

the line from the centre of the earth to the tide-raising body, M = the

mass of the latter body, D its central distance, and T
O , T, r are written

for J<u
2
, |o>

2 and \M\IP respectively. Clearly if the terra ^o>V be put
on one side, as only producing a radial extension, the effects of rotation

and of the tide-producing body can be deduced, the one from the other,

by interchanging T and T', and the line of centres with the polar axis.

The solution therefore for the case of the body-tides in an isotropic elastic

sphere can be deduced from the results of our Arts. 563 and 568.

The first type of force, that due to mutual gravitation, leads to some
difficulties in the treatment. Suppose the sphere in a state of strain

owing to spin or tide to be converted into the spheroid r = a (1 + 21^),

Yi being a surface harmonic of degree i. Then the internal stress due

to mutual gravitation will be partly due to "the attraction of the

harmonic inequalities
" which produce a potential

or,
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if g be the mean value of gravity over the surface neglecting tJte >

and partly due to surface-stresses on the spherical surface r = a caused

by the action of the harmonic inequalities. In the case of an incom-

juv.ssible viscous fluid thej-.e stresses reduce to a surface-traction due to

th- weight of the harmonic inequalities, i.e. to a surface-traction

= gpaSt Yt
. Darwin has shewn that in the case of an incompressible

\i-rous fluid, we may replace this surface-traction together with the

potential due to gravitational attraction of the harmonic inequalities by
an " effective potential

"

According to Thomson and Tait, Darwin's analysis is "almost literatim

applicable to the case of an elastic incompressible spheroid." But the

hypothesis of incompossibility is scarcely justified in the case of the

earth. Further, this result, unlike the above expression (i) for /',

necessarily supposes p to be a constant.

[1722.] Chree in an important memoir in the Cambridge Philoso-

phical Transactions (Vol. xiv., pp. 278-86. Cambridge, 1888) has worked
out the shifts produced by the mutual gravitation of a nearly spherical

mass, of which the boundary may be represented by r = a(l +21r

,).

For the purposes of our present discussion it will be sufficient to deal

with his results (p. 280) for the case in which i=2, and 7
a
=

Q-cos
2

<),
the boundary of the gravitating mass is a spheroid of ellipticity e.

In our notation (Art 568) he finds for the shifts, ult v
l ,
w

l :

<JPa

10 (A

a fr
3 SX + G/tl

""

3\ + 2,xJ

(ii).

The shifts in a j>erfect sphere due to a force-function of the form :

F = p(Tf* + r*Y9'),
if r,' = (J-cos4>),

are easily found from our Art 568, or better still from p. 287 of

( 'In. . 'H Camb. Phil. Trans, paper cited above, to be of the form :

fr 5X + I

(iii).
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Here if TO be put zero, T = r and < replaced by ^, we have the

shifts in a perfect sphere due to a tide-raising body.

[1723.] Now several important conclusions may be drawn from
the above results.

(i) Consider only the term in ?^ + n2 tending to produce the same

compression of the body along each radius, i.e.

pa

Now g o)
2a may be practically taken equal to the mean surface value

gt
of gravitational acceleration, and we then have the following results :

84
=

u'/r is everywhere negative, but sr = du'/dr will be a positive
stretch at the surface, where it equals s

, say. Thus we find n '

being
the radial shift at the surface :

(a) Uni-constant isotropy, if E be the stretch-modulus :

,_ <7oP
2

"

(b) Incompressible substance, or fjL/\
=

:

2gQpa
15X'

"
15X

'

Now the very roughest attempt to turn (a) into numbers shews that u '

and s have quite impossible values, if E be given a value not largely

exceeding that of any known mineral. As Ohree (Philosophical Magazine,
loc. cit. pp. 247-8) has been the first to point out, u '

becomes a large
fraction of the earth's radius and the strain s becomes immense, both

suppositions entirely inconsistent with the mathematical theory of perfect

elasticity, which supposes the shifts and strains to be both small. On
the other hand for a nearly incompressible substance (for which

JJL
is

finite) both the surface shift and strain will be vanishingly small. It

is difficult, however, with our knowledge of the materials which form

the terrestrial crust to suppose that at any rate at the crust X is

immensely greater than p those materials approximate more closely to

iron and stone than to india-rubber in their nature. It is clear then

that the strains produced by gravitation are such that permanent set

and probably variations in density would be produced, if the earth

were treated simply as an isotropic substance, compressed under the

mutual gravitation of its parts. We are therefore compelled to suppose
that mutual gravitation has produced nearly its full effect before we

proceed to investigate the effect of a tide-producing body in directly

altering the ellipticity of the earth, or in indirectly altering it by
altering the form of its mutually attracting parts. But it will then be

at once noticed, that to treat as homogeneous and isotropic the sub-

stance of the earth which has consolidated under the enormous stresses
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resulting from the mutual gravitation of its parts is by no means a

satisfactory hypothesis. It must only be adopted as a very rough first

approximation, and until our knowledge of the arrangement of density
in Ixxlies consolidating under great stresses has advanced beyond its

present stage. These points do not seem brought out very clearly in

Thomson and Tait's discussion of this matter. Thus in 834 they
only remark of the term pv2

,
i.e. ^pwV

2
,
that its effect "

is merely a

drawing outwards of the solid from the centre symmetrically all round".
But this term may have very considerable influence on the magnitude
of the stresses. Indeed, the rotational terms as a whole, as Chree has
shewn (Phil. Mag. pp. 245-6), lead on Darwin's hypothesis of the

maximum .stress-difference to results, under which it is certainly doubtful

whether masses of rock or heterogeneous mineral would remain per-

manently in equilibrium. It seems, therefore, desirable that the reader

should regard these articles of the Treatise on the distortion of the solid

earth as replete with suggestions for future investigation, rather than
as expressing the definite analytical results of an irreproachable physical

investigation.

(ii) So far as the terms measuring the ellipticity produced by
rotation directly and indirectly through the change in the character of

mutual gravitation i.e. the terms in T, are concerned, these do not lead

on the maximum stretch hypothesis to results necessarily incompatible
with the elastic straining of an isotropic solid. They are, however,
identical in form with those due to tidal action and thus need not detain

us here.

(iii) We now come to the terms due solely to the tidal action
1

,

;tnl we note that for r = a (1 + 72),
the radial shift u" - u, +M, is then

of the form :

"" = (&?.- A n-

This gives at once for the ellipticity e :

C = ft-ft-ft,
or e is negative, i.e. the spheroid prolate, and of ellipticity

=&/(! -&+/?,).
We easily find on substituting the values of ft, ft and ft:

- I05XV + IQSAji* + 36/i?)
*

r'pa* (5X + 4ft)

c =

+ f)/
*"

5/i(19A+4/t)(3X + -J

1

They are obtained from
(ii)

of Art. 1722, and from (iii) of the name article by
putting in the latter r = and - r' for r.

I I IT. ||. 1>S
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[1724.] We will consider special cases of this result.

(a) Suppose the indirect gravitational influence to be neglected,
then if c' = ert

T>2
(5A + 4^)

r

~>(19A + Up)
'

If F be the dilatation-modulus = J (3A + 2/x), this may be thrown into

the form :

'

which agrees with the second result of (20) in 834.

(b) Next let us suppose A = 00 and fi
= 0, or that we are dealing

with a perfect incompressible fluid. In this case if c' = e
g

g =~. (
819 and 839.)

Thus cr and &
are respectively the ellipticities due to rigidity without

gravitation, and to gravitation without rigidity.

(c) Generally we have :

'
~

,. fg
2 (5A + 4M) (3A + 2,u)

'

If we have uni-constant isotropy (A = /x) :

If we have an incompressible substance (ft/A
= 0):

1 _1 1
-I .

r ff

The last relation is stated by Thomson and Tait in 840 as if it

were universally true. This is only approximately the fact, as is

indicated by the previous case of uniconstant isotropy.

(d) For uniconstant isotropy, cr
= j\ rp'a

2

//x,
and for incompressi-

bility r=^W Tpa-/t
ji. Since -^=-2727 and T

5 = -2632, we see that

the magnitude of the ratio A//A does not exercise a very large influence

on the value of cr ( 837). In 838 Thomson and Tait give the value

of e,. for a steel ball of the size of the earth. They calculate it on the

supposition that steel is incompressible and find for its value 77 x 104
. r.

It would, perhaps, be better to suppose the steel mass to possess uni-

constant isotropy. In that case a closer value would be 79 x 104
.T'.

The value of eg is found in 839 to be 162xl04
.r'. Thus from

(c) we see that the tides have somewhat less effect supposing the earth

as rigid as steel indirectly through the changes they make in gravita-
tional action between the parts of the earth, than directly through the

gravitational action of sun or moon. Approximately for steel c
g
= 2^

and e
-

^Cp. For glass c' = fe
g
about ( 841).
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[1725.] We are now able to estimate the influence of the elastic

strain of a solid earth of uniform density on the superficial water-tides.

Disregarding the diurnal rotation the equation to the form of the

prolate spheroid that would be assumed by the solid earth is r =a(l -'}'..')

This produces a potential at a point outside itself given by :

Thus neglecting the self-attraction of the superficial coating of water, it

will have for its level surface under tidal attraction :

g
al _ *

g
'

7; _ Ty 7,' = constant.

This is clearly a prolate spheroid of ellipticity e" given by

Hence the difference of ellipticity between the solid earth and the

superficial fluid is :

= "- '= -f' = (-'), by (6) of Art. 1724.

If we write v for the expression

f (10A
2 + ISA/* + 6/x

2
)/(5X + 4/x) (3X + 2/i),

we find by (c) of Art. 1724 :

g g + Vf
For the case of an incompressible solid v = 1, and we have :

_r'a g
C - - -

9

9 *g
+ r

which agrees with Thomson and Tait's result in 842. In rough
numbers (Art. 1724) for steel tg

- 2^ whence

-4'
:

Thus, if the earth were as rigid as steel, its elastic yielding would reduce
the height of the tide to about of its value as calculated from a

theory in whidi the earth is supposed to be absolutely rigid. If tin-

earth had only the rigidity of glass (c
- f<P about), then the tide would

be decreased by as much as J of its value on the absolutely rigid

theory. Thomson and Tait rem:.

I in perfect as the comparison between theory and observation as to the
actual height <>f tho tides has been hitherto, it is scarcely possible

to believe

that the height is in reality only two-fifth** of what it would be if, as has been

universally assumed in tkbl theories, the earth were
perfectly rigid. It seems,

therefore, nearly certain. rh. i \i.lcn. than in afforded by the tides,

the earth must be greater than that of glass

( 843).

-2
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There is a point here which it is important, however, to bear in

mind. The theory really deals with the "equilibrium hypothesis", and
on that hypothesis there is an admitted *

lagging
'

of the tides. It is

hardly reasonable to suppose that the water and earth tides will lag
at the same rate. There is no reason therefore why the major axes of

the two prolate spheroids corresponding respectively to water and
earth tides should approximately coincide, unless we are dealing with
tides of long period, i.e. at least with the fortnightly tides. It is these

fortnightly and monthly tides which G. H. Darwin has considered in

detail.

[1726.] The remaining sections of the Treatise, 844-8, deal with
evidence deducible from tidal data in favour of earth tides. The evidence
is chiefly due to G. H. Darwin, who does not feel, however, that it justi-
fies any very definite statements. He sums up with the remark :

On the whole we may fairly conclude that, whilst there is some evidence
of a tidal yielding of the earth's mass, that yielding is certainly small, and
that the effective rigidity is at least as great as that of steel ( 848, Part II.,

p. 460 of 2nd Edition).

In a later paper (Dynamical Theory of the Tides of Long Period :

Royal Society's Proceedings. Vol. 41, pp. 337-42. London, 1886)
Darwin raises an objection to Laplace's equilibrium theory, and he
concludes from a dynamical theory which neglects friction (p. 342) :

1 That it is not possible to evaluate the effective rigidity of the

earth as attempted in the Natural Philosophy from the fortnightly and

monthly tides by aid of the equilibrium hypothesis.

2 That the investigation in that work may however be accepted
as confirming Sir William Thomson's view of " the great effective

rigidity of the whole earth's mass".

3 That Laplace's theory would hold for the minute tide of nearly
nineteen years' period, but that this tide cannot probably be appreciated.

4 That "
it does not seem likely that it will ever be possible to

evaluate the effective rigidity of the earth's mass by means of tidal

observations ".

With the words cited at the commencement of this article

the text of Thomson and Tait's Treatise closes. If occasionally

the analysis adopted does not seem to the present writer free from

difficulties, yet the work as a whole made mathematical elasticity

a branch of academic instruction in Great Britain. Few works on

elasticity have been published which present so much that is

suggestive, and arouse in the reader so great a desire to push
further the many inquiries which the authors place before him.
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[1727.]
1 Note on Mr Gore 's Paper on Electro-torsion. Pliiln-

soj,
/,;>-,,? Transaction*, V..1. i.xiv., pp. 560-2. London, 1874.

This refers to the twisting observed by Gore, aud previously by
i -. \Vi. ik-mann, in an iron wire when magnetised at once longi-

tudinally and circularly. An explanation of the twisting is

<! rived from the alteration of length in magnetised iron bars

observed by Joule (see our Art. 688). The direction of the

resultant magnetisation is inclined to the axis of the wire, and

so in accordance with Joule's results (for intensities lower than the

critical points found by Shelford Bidwell, Proceedings of the Royal

>ety, Vol. L., pp. 109-133. London, 1886 and subsequent

papers) there is a lengthening of the material in this direction

and a contraction in a perpendicular direction. The two strains

are equivalent to a torsional strain round the axis. This theory
h;i<l been already given by Maxwell though in a less complete
form (Electricity and Magnetism, Vol. II., Art. 448. Oxford, 1873).

It does not appear to be accepted by Wiedemann (see Annalen

der Physik, Bd. 27, S. 381-2), but it fits in well with a

ininilxT of the facts (see Knott : Trans. Roy. Soc. Edinburgh, Vol.

\\xvi, p. 507. Edinburgh, 1892). At the end of the paper
it is inferred from the effects of loading observed by Joule (see our

Art. 688, (iv)) that with sufficient longitudinal and torsioual

stress the direction of the twist would be reversed. A reversal

has in fact been obtained by Shelford Bidwell in high fields

(Philosophical Magazine, Vol. XXIL, pp. 251-5. London, 1886).

[1728.] Electrodynamic Qiuilities ofMetals*. Part VI. Effects

of Stress on Magnetization. Phil. Trans., Vol. CLXVI., p] ttS,

in ls77 (.V. I'.. Vol. ii., pp. 332-53). An abstract is given
in Proceedings Royal Society, Vol. xxill., pp. 445-6. Loudon.

1875 (M. P., Vol. II., pp. 401-3). This deals with tin iutlu.

of longitudinal load on the induced and residual magnetisation
of steel and iron wins. Tin- win- was suspended vertically and

magnetised by a current in a -m rounding coil, its magnetic changes

being observed by the ballistic method. Tin- earth's vertical

magnetic component remained uncompensated during the experi-
ments on r.-Milual magnetisation. Tin- principal n Milts are given

1
I owe the following eleven articles to the kindnem of Mr C. Chree whose

knowledge of the topics discussed in them is far mure extensive than my o n.
* For the earlier portions of this memoir : see our Arts. 1044-7.
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in the abstract in the Proceedings and on pp. 712-3 of the

Transactions. The following are the results given for steel :

(1) The magnetization is diminished by hanging on weights, and
increased by taking the weights off, when the magnetizing current is

kept flowing.

(2) The residual magnetism remaining after the current is stopped
is also diminished by hanging on the weights, and increased by taking
them off

(3) The absolute amount of the difference of magnetization produced

by putting on or taking off weights is greater with the mere residual

magnetism when the current is stopped, than with the whole magnetism
when the magnetizing current is kept flowing.

(4) The changes of magnetization produced by making the magnet-

izing current always in one direction and stopping it are greater with the

weights on than off.

(5) After the magnetizing current has been made in either direction

and stopped, the effect of making it in the reverse direction is less with

the weights on than off

(6) The difference announced in (5) is a much greater difference

than that in the opposite direction between the effects of stopping
the current with weights on and weights off, announced in

(4).

(7) When the current is suddenly reversed, the magnetic effect is

less with the weights on than with the weights off.

[1729.] These results refer apparently only to a single field,

123 C.G.S. units approximately (see p. 696), and to hard steel piano-
forte wire under loads from about an eighth to a half of the breaking
load. When stating them Sir W. Thomson was not aware of

the previous observations of Matteucci (see our Art. 705) and

Villari (Annalen der Physik, Bd. 126, S. 87-122. Leipzig, 1865).

The latter observer had found the induced magnetisation in iron

and some specimens of soft steel to be increased or diminished by

longitudinal pull according as the field was low or high. Prof.

Ewing has found similar phenomena even in hard pianoforte steel

wire (Phil. Trans., Vol. CLXXVI., p. 625. London, 1886). Thus

(1) is true only in fields above the Villari critical field as it is

called, and there is a similar limitation with respect to (2). The

critical fields or magnetisations, as Ewing has shewn, depend

greatly on the nature of the wire, and are lower the larger the

load. The phenomena to which conclusions (3)-(7) refer are also
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largely dependent on the field and the load (see Ewing, I.e.,

pp. 623-630). In his experiments on iron Sir W. Thomson
found what seemed very anomalous results. These find however

a satisfactory explanation in the existence of the Villari critical

field, which he did not recognise till later.

[1730.] Effects of Stress on Inductive Magnetism in Soft Iron.

R,,,,,,l SocMty, Vol. XXIIL, pp. 473-6. London, 1875

(M. P., Vol. ii., pp. 353-7). This records the rediscovery of the

Villari critical field for soft iron. Observations were made in a

large variety of fields, and the results are shewn in curves whose

abscissae represent the fields and ordinates the changes in

magnetisation due to load, p. 475 (M. P., Vol. II., p. 356). The
exactness of the information as to the fields and the relative

magnitudes of the changes in magnetisation in different fields

mark a great advance from the somewhat vague data previously
existent.

[1731.] Electrodynamic Qualities of Metals. Part VII. Effects of
* on the Magnetization of Iron, Xirkel, and Cobalt. Phil. Trans.,

Vol. CLXX., pp. 55-85. London, 1880 (M. P., Vol. n., pp. 358-395).
An abstract occurs in Proceedings Royal Society, Vol. xxvii., pp. 439-
443. London, 1878 (M. P., Vol. n., pp. 403-7). This commences with a

reference to Villari's discovery of a critical field. It then describes,

pp. .">6-63 (M. P., Vol. n., pp. 359-69), experiments determining how the

effect of tension on a soft iron wire depends on the temperature. The

wire,
""

iniii. in diameter, received a small permanent stretch under a
load of 18 Ibs. and was then subjected to cycles of load on and off

with a load of 14 Ibs. Experiments were made in a series of fields

up to abut 40 c.G.s. units. In each field loading and unloading were

repeated until the changes of magnetisation became cyclic, and it i-

this cyclic change that is dealt with. Observations were taken at the

ordinary temperature and at 100C. The results are shewn in plate 3

and on p. 61 (M. P., plates n. and in.). Tin- position of the Villari

t was practically the same at both tempt -ratures, but the magnitude
of the cyclic change of magnetisation in I'M Ids both ;iU\<- and below the

Villan point was greater at the lower temperature. P. 62 and

plate I (.17. /'., pp. 367-8, plates iv. and v.) describe similar results

when the load was 7 Ibs. or 21 Ibs. The statement on p. 62 that

the Villari field was nun-h
_,'!

-a tn- for 7 Ibs. (ban for 1 t ll>*. i

accordance with the general coneliisinn of K\vm^ </'/,*/. '/V.IJM.. Vol.

CLXXVI., pp. tii'1-3. London, ISM;). Th.- n-Milt however that ih-

Villari field was higher t-r Jl 11. II Ibs. seems anomalous,
unless perhaps the elastic qualities of the wire were altered by the

greater weight.
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[1732.] Pp. 62-3 and plate 5 (M. P., Vol. n., pp. 368-9, and plates
vi. and vn.) describe some experiments of the following character.

A load of 14 Ibs. or 21 Ibs. was applied and removed 10 times, and
with it off the magnetising current was made and the throw tv of the

ballistic galvanometer observed. Then while the current continued to

flow 14 Ibs. or 21 Ibs. was applied and removed 10 times, and with it

off the current was broken and the galvanometer throw L2 observed.

Both j and t, were considerably greater at an ordinary temperature
than at 100 C. for all the fields tried.

[1733.] Pp. 64-7 (J/. P., Vol. 11., pp. 370-4) treat of the effects of
" transverse stress

" on the longitudinal magnetisation of iron. The
inner surface of a gun barrel of "

tolerably soft iron
" was subjected to

applications and removals of a hydrostatic pressure 1000 Ibs. per sq.

inch, and the (cyclic 1) changes of magnetisation were observed by the

magnetometric method. The effect was found to be the exact opposite
of that of longitudinal pull, i.e. pressure diminished or increased the

magnetisation according as the field was below or above a critical field.

The data on p. 65, and in curves (2), plate 7 (M. P., Vol. n., p. 371 and

plate x.), seem to prove that this Villari field was much lower for the

material near the middle of the barrel than for that at the ends. This

may be accounted for in part by the probable hypothesis that the

intensity of magnetisation was greatest near the middle. It would be

desirable, however, to know the distribution of strain in the barrel, as

the validity of interpretations of the phenomena may depend largely on
this. Pp. 65-7 and plates 8 and 9 (M. P., Vol. IL, pp. 371-4, plates xi.

and xii.) deal with the changes in the induced and residual magnetisa-
tions of the gun barrel produced in each case by 10 pressure cycles.

These changes measure what may be called the non-cyclic effects of

pressure. In weak fields the pressure cycles caused a marked increase

in induced magnetisation ;
and the general effect on tbe residual

magnetisation was a marked decrease (see Wiedemami Lehre von der

Elektricitat, Bd. in., S. 666-7). The phenomena were however complicated

by the uncompensated action of the earth's vertical magnetic component.

[1734.] P. 67 (M. P., Vol. IL, pp. 373-4) propounds the theory of

the development of an "aeolotropic property of different magnetic in-

ductive susceptibility in different directions" by all systems of stress

other than uniform normal tension or pressure. Thus in a circular

cylinder under torsion the strain consists of equal stretch and squeeze
in lines inclined at 45 to the axis in planes orthogonal to perpen-
diculars on the axis, and Sir W. Thomson assumes, as the result of his

experiments in fields below the Villari point, an increased susceptibility
in the direction of the stretch and a diminished susceptibility in the

direction of the squeeze. This view had been already propounded by
Maxwell, Electricity and Magnetism, Vol. n., Art. 447. Oxford, 1873.

Sir William Thomson thence argues that when the torsion of a wire is

very small the magnetic susceptibility in the direction of its length is
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unaltered, and if finite torsions produce a change in susceptibility, it

" must ultimately (for very small torsions) vary inversely [? directly]
as the square of the amount of torsion ". He apparently considers this

explanatory of the results of Matteueci, Wiodemann and Wertheim (see
our Arts. 703, 7 1 _' an-1 > 1 :> (ii)), vi/. that in the cyclic state magnetisation
is diminished by torsion in either direction and increased by detorsion.

[1735.] Pp. 67-7'J and plates 10-12 (M. P., Vol. n., pp. 374-80,

plates xin. -xix.), describe the effects of torsion on a soft iron wire (22
B. W. G.) exposed to longitudinal pull of various amounts. The wire,
whose length was 81 cm., passed through the cycle of twist

1

0, + 320,
0, - 200, 0, where the + sign refers to the direction of the first twist,

the angles referring to the twisted end of the wire. Readings were
taken for every 20 of twist, the magnetizing force being simply
the earth's vertical component. The general character of the results

was always the same, viz. that with torsion in either direction there

was a loss, and with detorsion a recovery of magnetisation. The effect

of the torsion varied but little as the longitudinal pull was raised from
10 to 20 Ibs., but as the load was further increased the effect of

torsion fell off rapidly. The wire was not in a cyclic state, there being

always a fall in the magnetisation as the result of the torsion cycle, but
in some of the later experiments the result of a second torsion cycle
is given. Attention is drawn, p. 72 (M. P., Vol. n., p. 379), to a

"lagging of quality", or what Ewiug has since called Hysteresis.

necessity for a more exhaustive enquiry, distinguishing between
the cyclic and non-cyclic effects, and varying the magnetic field and
the torsion cycle, is abundantly shewn by the experiments ot

\Viedemaim (Amtalen der /'/,//>//.," l',.l. L'7, S. 376-403. Leipzig, 1886).
With a torsion cycle 0, 210, in soft iron wire he found in the

cyclic state that the curve whose abscissae give the twists, and ordinates

the changes of induced magnetisation, was nearly By inmetrical about a
maximum ordinate answering to the mean twist (see also our Art.

Recent experiments by Nagaoka (PkUotOjMdal Magazine, Vol.

\\vii., pp. 117-132. London, 188i)) having shewn that the pheno-
inc-na which accompany the application of twist to loaded magnetised
nil k* 1 wires completely alter in character as the load and field are

varied, the sign even of the magnetisation 1>< -ing sometimes reversed,
fresh experiments were undertaken by Bottomley and Tanakadate

(/'/lilosophical Magazine, Vol. \\vii , p. 138. London, 1889) on a

piece of the iron wire used l.y Sir \V. Thomson. They tried whether
in a very weak field and with a heavy load the effect of twist would
rli.ii;-. in character as suggested by what happens with m.-k.-l

,
l.ut

they found no such change, their results being of the same character

as Sir W. Thomson's. They do n profess to regard the

question as finally settled.

1 e the reading on the torsion , . the toroion WM nil meant in general
to have been about + 40.
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Pp. 73-4 (M. P., Vol. ii., pp. 381-2) refer to the discovery by
Wiedemann (see his Lehre von der Elektricitat, Bd. in., S. 680) of the

production through torsion of longitudinal magnetisation in a wire

magnetised by an axial current. Sir W. Thomson refers to his theory
of **

aeolotropic susceptibility", which gives results according with

AViedemann's if we assume the magnetisation below the Villari point.
He believes, however, that explanation to fail, as he supposed Wiede-
rnauu's currents so strong as to have given a field above the critical, and
in a footnote he adds that experiments he had made with very strong
currents gave effects the same as Wiedeniann's. A possible explana-
tion has been suggested by Ewiug (see his Magnetic Induction in

Iron and other Metals, pp. 223-4 and footnote. London, 1891).

[1736.] Pp. 74-9 (M. P., Vol. n., pp. 382-7) describe experiments

by the magnetometric method on the etfects ot longitudinal pull on the

magnetisation of bars of nickel and cobalt magnetised by the earth's

vertical component, and compare the effects with those in a tolerably
soft iron bar similarly situated. In the nickel bar the non-cyclic effect

of pull was as in iron to increase the magnetisation, the only difference

being the much greater proportional change in the nickel; but when the

cyclic state was reached the effect of pull was the exact opposite of that

in iron, i.e. in nickel the magnetisation was least when the load was on.

In cobalt the same phenomena were observed as in nickel, but the

bar broke at an early stage of the proceedings, and no experiments were

made in higher fields. Subsequent experiments have confirmed these

conclusions for cobalt in weak fields. A critical field however ensues,
much higher than the Villari field usually is in iron, and in stronger
fields the effect of stress is the same as in iron below the Villari field

(see Chree, Phil. Trans., Vol. CLXXXI., A, pp. 329-387. London,

1891, and Ewing, Magnetic Induction in Iron... p. 92 and pp. 210-2).

Pp. 79-83 (M. P., Vol. ii., pp. 388-93) describe further experiments on

nickel with higher fields. YVith cycles of load the residual magnetisa-
tion always shewed a distinct minimum when the load was on, and the

cyclic change of magnetisation after strong fields shewed no tendency to

diminish but seemed to tend to an asymptotic limit. With the induced

magnetism there was unuiistakeably the same effect in weak fields, but

as the field was raised the cyclic change passed through a maximum
and then decreased.

An attempt was made to reach a Villari critical field with a

second smaller nickel bar, and this seems at first to have been thought

successful; but a note dated June 4, 1879, says the result had not been

confirmed by later experiments. There remains, however, on p. 83 (M.

P., Vol. ii., p. 393) an uncontradicted statement that a Villari critical

field and a distinct reversal of the effects of pull were obtained by

altering the magnetometer, originally opposite an end of the bar, so as

to bring it more nearly opposite the centre
(cf.

our Art. 1733). If

this can be trusted, a Villari field actually exists. But Ewing, who
has experimented with nickel under both tension and pressure (Phil.
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>-., Vol. CLXXIX., A, pp. 325-32 and 333-7. London, 1889),
while continuing Sir W. Thomson's conclusions as to the opposite

i viour of nickel and iron iu weak fields, has found no trace of a
Villari field in nickel. He appears, it is true, from his p. 331 and
footnote to have looked for a Villari point in low fields, so his

experiment* are perhaps hardly conclusive. His results and those of

Sir W. Thomson refer to the total magnetisation. For the temporary
magnetisation i.e. the magnetisation which disappears on the removal
of the magnetising force a Villari field has since been found by
H. Toiulinsou (Philosophical Magazine, Vol. xxix., pp. 394-400.

London, 1890). The reader should also consult the conclusions reached
l>\ Slidt'onl Kid well

( Proceedings of the Royal Society, Vol. XLVIL, pp.
1 7 --9. London, 1890). Pp. 84-5 (M. P., Vol. n., pp. 393-5) describe

some experiments by the maguetometrie method on the effects of pull
on very soft iron wire. The results are in agreement with those ob-

tained by the ballistic method.

[1737.] Note on tfie Direction of the Induced Longitudinal
< rent in Iron and Xickel Wires by Twist when under Longitudinal

Minjnijti:iinj Force. Philosophical Magazine, Vol. 29, pp. 132-3.

London, 1890. A statement is here given of how the direction of

these currents may be specified by reference to the directions of

twist and magnetisation. A specification had been given for iron

by Matteucci (see our Art. 701). In nickel under similar conditions

the longitudinal current is opposite in direction to that in irou.

The rule so far as is known applies for all intensities of magnetisa-
tion

;
for though the longitudinal currents diminish in intensity

when the field is sufficiently raised, a reversal in sign has not yet
I- 11 observed (see Nagaoka, Philosojiliixil Magazine, Vol. xxix..

pp. 123-132. London, 1889, or Ewing, M<i
:
/nctic Indu<

pp. 225-8).

In tracing the complicated relationships between mechanical

strain and magnetisation the reader will derive much assistance

ii"ia a study of pp. 47-72 of J. J. Thomson's .!/
.> of

Dynamics to Physics and (
'lit'mi.stry (London, 1888), but aonij>l. h

explanation of SOUK <>i these relations will probably require account

to be taken of possible perm.-un -nt <liti. i.-uces of elastic (and

magnetic) quality in ditVrivMt din -t inns, more especially in the case

of the magnetic pin n>mena accompanying torsi, .n in wires, as Di-

strain is then frequently much above the elasti. limit.

[17'.s ]

/ of the Earth. Mature, VoL v.
,,,,. J23-4.

London, 187 1' I i unly of extract* from the memoir of tin-
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same title published in 1862, and from the Treatise on Natural Philoso-

l>lt</: see our Arts. 1663 and 171925.
Tfie Internal Fluidity of tlie Earth. A letter to Mr G. Poulett

Scrope. Nature, Vol. v., pp. 257-9. London, 1872. This letter brings

arguments against the internal fluidity of the earth : see our Art. 1665.

Certain arguments introduced into this letter based upon the effects on

precession of the elastic yielding of the Earth's surface were withdrawn

by Sir William Thomson in 1876 : see Mathematical and Physical
Papers, Vol. in., p. 321.

[1739.] T/te Internal Condition of the Earth, as to Temperature,

Fluidity and fiigidity. Transactions of the Geological Society of
Glasgow, Vol. vi. (1876-80), pp. 38-49. Glasgow, 1882. This paper
is really a resume without mathematical analysis of work by Sir

William Thomson, which so far as it relates to elasticity has been

already sufficiently dealt with in our History : see, especially for the

arguments relating to the rigidity of the earth, to tides, to precession
and nutation, our Arts. 1663-5 and 1719-25.

[1740.] On a new methodfor discovering and measuring Aeolotropy

of Electric Resistance produced by Aeolotropic Stress in a Solid. A
paper read before the Physical Society

1

; Abstract, Nature, Vol. xvni.,

pp. 180-1. London, 1878.

A diminution of electric conductivity is produced by stretching
metallic wires : see our Art. 1647. Now the toision of a wire produces
slide, which may by Saint-Venaiit's Theorem (see our Art. 1570*) be

resolved into a stretch and a squeeze in the principal axes of the slide,

or in directions making angles of very nearly 45 with the axis of the

wire. Thus the electricity in a wire would tend to flow in spirals, or

have a component of flow round the wire. The external effect of this

flow would be sensible near the terminals, or inside the twisted tube.

Evidence of its existence was demonstrated by M'Farlane and Bottomley.

[1741.] Elasticity. This is an article contributed to Vol. vn.

(pp. 796-825) of the Ninth Edition of the Encyclopaedia Britannica.

London and Edinburgh, 1878. United to the article on Heat

contributed to the same work, it afterwards appeared as an

off-print (Edinburgh, 1880). Finally it was reprinted on pp. 1-112

of Vol. ill. of the Mathematical and Physical Papers (Cambridge,

1890). The article incorporates two important memoirs by
the author namely : Elements of a Mathematical Theory of

Elasticity. Philosophical Transactions, Vol. CLXVI., pp. 481-98,

London, 1856, and On the Elasticity and Viscosity of Metals.

Proceedings of the Royal Society, Vol. xiv., pp. 289-97. London,

1 The title only is printed in Vol. in. of the Society's Proceedings.
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1865. These memoirs have accordingly not been separately dealt

with in their proper chronological order. The article forms one

of the chit f elementary accounts of the physics of elasticity in the

English tongue. All we can do here is to notice individual points
in connection with it, especially where the author's definitions differ

or his conclusions add t<> thosr already adopted or recorded in this

Hist'

[1742.] The first 36 sections deal with the definitions of

elasticity and treat of the limits of elasticity, of viscosity, etc., etc.

(a) The following definition is given of
//< /;/'

/ //,.////// in 1 :

The elasticity is said to be perfect, when the body always requires the
same force to keep it at rest, in the same bulk and shape and at the same
temperature, through whatever variations of bulk, shape and temperature it

be brought.

This definition clearly covers the whole range between the usual

limits of elasticity", but this need not necessarily mean the propor-

tionality of stress and strain: see our Arts. 929*, 299 and Vol. I.,

pp. 891-3. Thus this definition of 'perfect elasticity' covers more
than what the mathematicians include in their treatises on "the
mathematical theory of elastic solids". The 'perfect' in the one refers

in the first place to a physical conception, and in the other to a

simplified set of formulae i.e. linearity of the stress-strain relations.

I! . -dgkinson's "defect of elasticity" (see our Vol. I., p. 891) would
be covered by Sir William Thomson's definition of 'perfect elasticity'.
In 37 we read :

I** invoked minutely accurate experimental measurement to
find how nearly the law of simple proportionality holds through finite ranges
of contraction and elon-ation. Tin- answer happily for mathematicians and

engineers is tl,<i( II 'led, a* ac<mrately as any experiments
hitherto made <" t-H, for .til metaU and hard solids ea.-h through the whole

range within its 1m tioitj; and for woods, cork, india-rul>ler, jellies,
i> not more than two <>r three per cent., or the angular

more than I few hundredths of the radian (or not more than
two or three degrees).

In the li^ht of the researches recorded in the volumes of our History^

impossible to identify generally the range between the elastic limits

with proportionality of stress and strain (see our Vol. i., p. 891

\Villi.ini Thomson himself adds that a small deviation from H coke's

law has been found by M'Farlane for steel pianoforte win- n

e.niibined torsional and tensile strain. The exceptions are wider than

\ample might lead the reader to infer and occur e\en for

simple tensile ?
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(b) As in Thomson and Tait's Treatise (see our Art. 1709 (d)) the

important distinction between elasticity of bulk and elasticity of shape is

emphasised. Homogeneous solids such as crystals and glasses are stated

( 3) to probably possess elasticity of bulk to perfection i.e. no amount
of comjrression would produce set in them. It is clear of course that the

compressive test is practically the only one to which we can readily

subject such bodies, but theoretically it must be considered a very
doubtful question whether such bodies would exhibit elasticity of bulk
to perfection could we submit them to a uniform surface traction of any
arbitrary amount. To assume that it is so, is to reject a priori the

maximum stretch-limit to safe-loading. Such an assumption leaves us

indeed in a very vague position as to what the limit of elasticity really
means when we are dealing with diverse types of strain, or how we
are to apply the results obtained from a tensile test to more complex
systems of strain. Some of the interesting points connected with this

subject are noted in 8 and 21 l
. On the whole the treatment of the

elastic limits in these sections requires modifying in the light of the

splendid researches of Bauschinger and others, to bring the statements

quite up to the present state of knowledge
2

. The paper by James
Thomson incorporated in 10-20 and to which we have already
referred does not, I think, fully represent the state of our existing

knowledge on the alteration of the elastic limits: see our Arts. 1379*-

81*, 709-10 and 767.

(c) The following definitions of brittle and ductile solids may be

compared with those of Rankine (see our Art. 466):

If the first notable dereliction from perfectness of elasticity is a breakage,
the body is called brittle, ifa permanent bend [more generally a set?], plastic
or malleable or ductile

( 7).

(d) In 23 the elastic limit for slide or change of angle appears to

be deduced from the elastic limit for stretch. If a bar be pulled

longitudinally till it reaches its elastic limit s, then on the supposition
of isotropy there is a slide in planes at 45 to the axis of the bar of

magnitude s (1 +
77),

but the converse does not hold, namely, that when
there is a slide of this magnitude then there will necessarily be a stretch

of magnitude s. Indeed a pure slide of this magnitude would have for

its components a stretch and squeeze each of magnitude Js (1 + 77), and
would not therefore on our theory correspond to the elastic limit. As
we have shown in the course of our work, an elastic limit for stretch s

corresponds to an elastic limit for slide <r = 2s and not =s(l+ij).

1 The hypothesis of the maximum stretch-limit, supposing the elastic limit to

coincide with the limit to linear elasticity, has perfectly definite answers to the

questions asked in 21, and there does not seem to me any a priori reason to

doubt the physical correctness of the answers it gives.
2 A correction should be made in 9 where by a slip it is stated that in the case of

the flexure of a bar of any shape of cross-section by opposite bending couples applied
at the ends one-half the substance is stretched the other half shortened ;

the

amount of the substance stretched or squeezed depends on the shape of the section.



174:} 1744] SIR WILLIAM THOMSON, 439

Thus for the numerical case taken by Sir William Thomson the limit

to angular distortion would, on the maximum stretch theory, be ^ and
not ^ of a radian.

[1743.] 29-36 are occupied with a discussion on viscosity.

We have already referred to the sense in which Sir William

Thomson uses the word 'viscosity'. In our History a material is

termed '

viscous ', when a shear, however small, if applied for a

sufficiently long period produces set. On the other hand a

material is termed '

plastic ',
if a shear above a certain magnitude

is required to produce set. The word shear is here used instead

of stress generally, merely to mark that a uniform surface pressure

would not give a test of either viscosity or plasticity. The dy-
namical equations for viscous and plastic materials differ very

considerably: see our Arts. 246, and 250. Further it is difficult

to associate the phenomena of
"
after-strain" with anything of the

nature of either viscous or plastic action in our senses of these

words : see our Arts. 708* ftn. and 1718, (6). The viscosity of fluids

may be represented by a force of resistance directly proportional
to the velocity of change of shape. Hence the small effects can be

superposed. This superposition does not seem to be true for elastic

after-strain (see our Art. 717*). Weber, Kupffer and Sir William

Thomson himself 1

appear to attribute the diminution of the

amplitude of vibrations to elastic after-strain. Lord Rayleigh in

his Theory of Sound introduces a Dissipative Fi't;(lll into his

treatment of the vibrations of elastic bodies, which corresponds
to true viscous terms (i.e. a resistance proportional to the velocity

of the strain). Without venturing an opinion as to whether the

subsidence of vibrations is due to true fluid viscosity or to elastic

after-strain, it seems to me most important to keep the two

iiotion> distinct until their real nature and possible relationship

have been clearly ascertained. The 'creeping back' in elnstic

after-strain seems to distinguish it fundamentally from molecular

friction or viscosity: see our Art. 7

[1744.] At the same time Sir William Thomson does not

1 "It was in fact as it would be if the result wer. irfaa .ally due to

imperfect elasticity, or 'elastiaohe nachwirkung' elastic after-working as the
: .ans call it

( 36) ". We may remark that "imperfect elasticity" may mean
r an elastic stress-strain relation which is not linear, or a strew accompanied

by a set strain. In neither case does it correspond to elastic after-strain.
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suppose like Lord Rayleigh that the resistance which he terms

viscosity in solids is simply proportional to the velocity of change
of shape, he only suggests that this molecular friction is some

function of this velocity of change of shape.

After dismissing the thermodynamic dissipation of energy,
which occurs with every strain in an elastic solid, as in many cases

too small to account for the loss of energy observed ( 31), he

continues :

The frictioncd resistance against change of shape must in every solid

be infinitely small when the change of shape is made at an infinitely
slow rate, since if it were finite for an infinitely slow change of shape,
there would be infinite rigidity, which we may be sure does not exist in

nature. Hence there is in elastic solids a molecularfriction which may
be properly called viscosity of solids, because, as being an internal resis-

tance to change of shape depending on the rapidity of the change, it

must be classed with fluid molecular friction, which by general consent

is called viscosity offluids ( 32) \

Sir William Thomson's experiments were made upon the

torsional vibrations of round wires supporting different vibrators

and his first conclusion 34 (a) runs :

It was found that the loss of energy in a single vibration through
one range was greater the greater the velocity (within the limits of the

experiments); but the difference between the losses at low and high

speeds was much less than it would have been had the resistance been,

as Stokes 2 has proved it to be in fluid friction, approximately as the

rapidity of the change of shape.

The experiments were not however sufficient to determine

any simple law of relation between viscous resistance and strain-

velocity.

[1745.] Sir William Thomson's second series of experiments relate

to the alteration of the torsional viscosity of wires owing to increase in

the longitudinal traction. They may be compared with Kupfler's results

cited in our Arts. 735 (iii) and 751 (d). It is not quite clear how far

Sir William Thomson's vibrators were sufficiently heavy to produce by

1 If like Sir William Thomson and others (see our Arts. 928*, 192 (a) and 299)
we apply Maclaurin's Theorem to deduce Green's expression for the strain-energy,
there seems precisely as much, or as little, reason for applying it to the problem of

viscosity. If we do apply it, however, we only reach Lord Bayleigh's Dissipative

Function, or fluid-viscosity.
2 The reference is, I suppose, to Stokes' memoir of 1845. Poisson in 1831 and

Saint-Venant in 1843 had arrived at the like conclusion, the latter by a method
which appears to be as satisfactory as Stokes'.
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mere tension either sensible elastic after-strain or set in the wires

used. He found that when the weight of the vibrator was increased the

viscosity of the vibrator was always at first much increased, but that it

diminished day by day and ultimately became as small in amount as it

had been with the lighter vibrator ( 34 (6)). Here again no general
law was ascertained.

[1746.] The third series of experiments relate to the subsidence of

vibrations in aluminium wires. Sir William Thomson found that the

number < >t' vibrations during the subsidence from a higher to a lower ampli-
tude (say 20 to 10) was less when the vibrator was started at 40, and
allowed before counting to sink first to 20, than if it were started at 20
itself ( 34, (c)). The author does not appear to have noticed the effect

remarked on by Kupffer that the period of vibration was a function of

the amplitude (see our Arts. 735 (iii), 709 and 751 (rf)), nor is it clear

whether the drag of the air on the vibrator was allowed for: see

our Art. 735 (i). The remark as to the air-resistance on a spring in

does not seem to entirely cover this difficulty. Possibly it was tested

and found to be negligible. Kupffer, however, endeavoured to measure
and then eliminate it.

[1747.] The third series of experiments seemed to indicate that
' viscous

'

action depends on previous molecular condition, namely on
whether the wire is started from rest, or has immediately beforehand
been subjected to still larger repeated strains. A fourth series of

experiments was accordingly instituted in which two equal and similar

whvs with equal and similar vibrators were dealt with, one being kept
in as far as possible a continual state of vibration, the other being
vibrainl only for the sake of one daily experiment. It was found
in the case of two copper wires that the quiescent one subsided through
tin same range of amplitudes only after longer time and more vibrations

with a shorter mean period than the frequently vibrated one 1

(
34

(</)).

[1748.] Finally series of experiments with much smaller maximum
distortions were made in order to determine : (i) the law of subsidence of

range in any single series of undisturbed oscillations, and (ii) the relation

between the laws of subsidence for two sets of oscillations with the

same elastic body performing oscillations of different periods, owing not

to a change of weight, but to a change of the moment of inertia in the

su- ponded vibrator (8 35). The answer to the first question "so far as

the irreguhiritirs dr|M-iidiiig on previous conditions of the elastic sub-

stance allowed any simple law to be indicated" was that :

The differences of the logarithm- <>f the ranges were proportional to the

interval* of time ( 36).

1 Tims while the amplitude wan reduced a half the quiescent wire made 98
vil .rations with a mean period 2*4 sees., while the frequently vibrated one made 69
vibrations with a mean period

2*46 neon. A possible redaction in the period with

the change of amplitude is not referred to.

! IT. II.
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This held for distortion much smaller than the palpable elastic limit.

The result resembles that due to a true fluid viscosity, or that produced
by the drag of the air on a vibrator.

The only approach found to an answer to the second question was
that:

the proportionate losses of amplitude in the different cases are not such as

they would be if the molecular resistance were simply proportional to the

velocity of change of shape in the different cases
( 36).

Here again it seems as if Kupffer's experiments and results might
have been found suggestive. On the whole the experiments, especially
the last three series, appear to suggest the influence of that 'creeping
back ' which is peculiar to after-strain and seems quite masked under
the term viscosity. Sir William Thomson speaks of these later results as

shewing a very remarkable "
fatigue of elasticity

"
( 30). It would be

interesting to know whether this fatigue was only of kinetic or also of

static elasticity, and further whether the distortions being below the

elastic limit, the elastic limit and even the absolute strength were affected

by it. The term fatigue although appropriate has been used by engineers
in such a definite sense, namely the lowering of the absolute strength of

a material by repeated strain below the rupture strain, that it is perhaps
unadvisable to give it a new meaning in reference to elasticity. It is

clear that Sir William Thomson's '

fatigue
'

is a phenomenon differing
from that dealt with by Braithwaite or Wohler : see our Arts. 970 and
997-1003.

Sir William concludes his remarks on viscosity by suggesting an
elastic vesicular solid, the vesicles being filled with a viscous fluid like

oil. Such a model solid would, he holds, suffice to elucidate some, but far

from all, of the properties noted in the above series of experiments (36).

[1749.] 37-72 reproduce matter from the author's memoirs or from
the Treatise on Natural Philosophy which has already been amply dealt

with in our Histwy. The arguments in favour of bi-constant isotropy from
the action of cork and jellies are again referred to. We have already

pointed out that they will only become valid when it has been demon-
strated experimentally that cork and jelly are true isotropic elastic

solids, i.e. can have all relations between stress and strain expressed by
aid of two constants : see our Art 192 (b). In this matter we must bear

in mind what Sir William Thomson himself ( 37) says of such "elastic

or semi-elastic 'soft' solids" as cork, india-rubber or jellies:

The exceedingly imperfect elasticity of all these solids, and the want of

definiteness of the substance of many of them, renders accurate experimenting
unavailable for obtaining any very definite or consistent numerical results.

In fact the elastic action of cork on the one hand and of gelatinous
substances on the other would probably be best exemplified theoretically

by treating them as porous elastic solids, the pores containing air and

liquid respectively. The argument used in 48 for multiconstancy
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based on a jointed bar mechanism we shall deal with in our Arts. 1771-2.

It is really an appeal to the principle of "modified action." The
articles on Resilience 1

, 52-56, are reproduced from the Treatise.

They conclude in the reprint in the Matlieinatical Papers (Vol. III.,

p. 47) with a table of the elastie resiliences and the slide- and stretch-

moduli of a variety of wires. This table is based on experiments carried

out in the Physical Laboratory of Glasgow University. In 62 (1) we
note that Sir William Thomson adopts the Bresse- Saiut-Venant mode
of dealing with the flexure of beams when the stretch-modulus varies

from point to point of the cross-section : see our Arts. 169 (e) (f)
and 5i:.

[1750.] 73-6 deal with the thermo-elastic relations, and of

course draw largely on the memoir of 1855 : see our Art. 1631.

Turning to Equation (vi) of our Art. 1633, or :

t dw
~775'

where t is measured in the absolute scale, let r be the increase of

temperature due to the sudden application of a stress S corre-

sponding to a strain s, x tne strain produced by an elevation of

temperature of one degree when the body is kept under constant

stress, this strain being measured in the opposite sense to that

of the constant stress*, K the specific heat of the substance per
unit mass under constant stress, p the density, and J Joule's

equivalent, then :

j
- dw ~ds .dsH = K '>r' dt=- S

di>

whence we deduce

With regard to this formula Sir William Thomson remarks:

The constant stress for which K and \ are reckoned ought to be the
mean of the stresses which the body experiences with S and without 6'.

Mathematically speaking, S is to be intinit. simal. l.m pr.u tidily it may
be of any magnitude moderate enough not to give any sensible difference

1 The historical statement that Lewis Gordon first introduced the word rvrfifou*
to denote the work done by a spring or other elastic body returning to the unstrained
state from some strained limit is erroneous. He only adopted the word from Young :

see our Vol. i. t p. 875.
ist be an expansion if 8 denotes a pressure uniform in all

ions, or x mn*t be a stretch if S denotes a longitudinal compression, etc.

29-2
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in the value of either K or x> whether the " constant stress
"
he with S

or without S, or with the mean of the two
( 74).

[1751.] 75 deals with the important distinction between

static and kinetic elastic moduli. This distinction appears first to

have been pointed out in a clear scientific manner by Sir William

Thomson himself:

When change of temperature, whether in a solid or a fluid is

produced by the application of a stress, the corresponding modulus of

elasticity will be greater in virtue of the change of temperature than

what may be called the static modulus denned as above, on the under-

standing that the temperature if changed by the stress is brought back

to its primitive degree before the measurement of the strain is performed.
The modulus calculated on the supposition that the body, neither losing

nor gaining heat during the application of the stress and the measure-

ment of its effect, retains the whole change of temperature due to the

stress, will be called for want of a better name the kinetic modulus,

because it is this which must (as in Laplace's celebrated correction of

Newton's calculation of the velocity of sound) be used in reckoning the

elastic forces concerned in waves and vibrations in almost all practical

cases.

Let M be a static, M' the corresponding kinetic modulus. Clearly,
if a body is not allowed to either lose or gain heat, then the strain will

be, since there is a change of temperature r, equal to

but this equals SjM
f

; equating the two we have by using (i)
:

M' 1

JKp

Further if K and K' denote thermal capacities of a given quantity of the

substance under constant stress and constant strain respectively then :

M' K

The values of the ratios M'fM or KjK' are tabulated in two "Thermo-

dyuamic Tables 1 " for a temperature of 15 C, the quantities Jt p, K, M
and x being the experimental data. Thus Sir William Thomson gives
for the ratios :

1 In the first Table we find " J 42400 centimetres" and the slip is repeated in

the reprints. Here is a chance for the foot-pound, that unhappy "no-system" to

have its revenge !
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Dilatation.Modulus *
V
/F
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(a) In 78 and Table VIII. we have results of experiments by
M'Farlane on the results of a sei*stretch in wires upon their slide-

modulus. The effect of a set-stretch was partly decrease of density with,
as a rule, decrease of the slide-modulus. The results may be compared
with those of Kupffer : see our Arts. 735 and 741, (b).

(b) Results for the change of the stretch-modulus with the tem-

perature were in the earlier issues of the paper cited from Wertheim's
memoir of 1844 (see our Art. 1292*) but they are removed from 79 of

the reprint in the Mathematical and Physical Papers (Vol. in., p. 80)
as "very far wrong". The sole result cited in the latter work is one for

a steel tuning-fork due to Macleod and Clarke *, from which it would ap-

pear that the stretch-modulus for steel diminishes at the rate of 23*2 x 10~5

of itself per degree centigrade of elevation of temperature.
Results for the influence of temperature on the slide-moduli of iron,

copper and brass are cited from F. Kohlrausch and F. E. Loomis 2
.

There is no reference to the results of Kupffer : see our Arts. 754-6.

[1754.] 80 records some experiments by J. T. Bottomley on soft-

iron wire, from which it appears that the gradual addition of stress

during a long interval increases the ultimate tensile strength. This

point had been previously noticed by several technical elasticians. An
iron bar tested to the beginning of stricture, will after being left

quiescent for a period suffer striction at a different section and a higher
load, and in this manner the ultimate strength may be raised very
considerably. In some of Bottomley's experiments, the increase of

tensile strength amounted to as much as 15 to 26 p.c. : see our Arts. 1503*
and 1125.

[1755.] Finally in 81 we have the effect of permanent tort on
the elastic nature of wires. Thus it developed seolotropy in the sub-

stance of the wire, and altered both the stretch- and slide-moduli. For

example, the slide-modulus of copper permanently torted decreased with
the increase of tort even to 1/6 of its original value, and then slightly
increased again before rupture. Steel pianoforte wire shewed a dimi-

nution and then a slight augmentation of the slide-modulus under tort.

Thus it first sunk from 751 x 106
grammes per sq. centimetre to 414 x 10"

and then rose to 430 x 108
. Iron wire shewed a diminution of 14 p.c. of

the original value before rupture.
In copper wire the stretch-modulus on the other hand was increased

10 p.c. by a permanent tort. In steel wire no sensible alteration due
to tort was noticed in the stretch-modulus.

There is no reference to the experiments of G. Wiedemann on the

subject of tort : see our Arts. 708 and 714.

1 Phil. Trans. Vol. CLXXI., Part i., pp. 1-14. London, 1881.
2 Annalen der Physik, Bd. CXLI., pp. 481-503. Leipzig, 1870.
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[1756.] As an appendix to the article we have the mathe-

matical theory of elasticity to which reference has been made in

our Art. 1648. All but the last Chapter, i.e. xvn., appeared in the

Pit if. Trans, for 1856. Several important points in this memoir
must be noticed.

Chapter I. Def. I. A stress is an equilibrating application of

force to a bo

This definition of stress appears to identify it rather with load

or body-force than with stress in the sense of this History. It

does not readily suggest the idea of "
stress across a plane in the

material ". The vagueness of this use of the word is, I think,

exemplified by Def. I. of Chapter II. :

A stress is said to be homogeneous throughout a body when equal
and similar portions of the body, with corresponding lines parallel,

experience equal and parallel pressures or tensions on corresponding
elements of their surfaces.

If a cylindrical shell or part of a spherical shell were turned

inside out, it could hardly be described in customary language as

having in its new state an application of force, but it is very clearly

in a state of stress. It seems better to preserve the primitive use

of the word stress, as adopted by Rankine and sanctioned in the

Treatise on Natural Philosophy.

C/tapter III. Cor. 3. Here the following ellipsoid is introduced :

where the axes are the principal axes of the stress, Tlt Tt ,
T9 are the

jirim -ijial tractions (see our Art. 603*), and e any indefinitely small

Tliis represents the stress in the following manner:

i any j">mi /' in flu- surface of the ellipsoid draw a line in the tangent
t-\\.iy towards tin- point \\lim- thi-* pi. UK- is out by a perpend^
ugh the centre; and from the n-1 -t' tin- ftnt-meooo&ad line draw a

1 line to meet the surface of a sphere of unit radius concent n. with the

cllipx.1,1. Tin- ti-iisii.ii at thi> point "f tin- >urla-r .:

in th- lin.- from it to /'; ami it> am. 'tint JUT unit of surface ia

t.. the length of that intmiU-ly small lim-, divided by e.

>!i>tni. tion does not seem so simple as that of the usual

_;iven the direction of any plane, it ia not clear how we
should tin-! in >m the above construction except by a tentative process
the direction and magnitude of the stress across it.
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Chapter IV. Prop. 3. An ellipsoid of the following type is given :

where the axes are the principal axes of the strain (or, as is well-known,
of the stress : see our Art. 614*) and slt s2 > ** are the principal stretches.

...the position, on the surface of this ellipsoid, attained by any particular

point of the solid, is such that if a line be drawn in the tangent plane, half-

way to the point of intersection of this plane with a perpendicular from the

centre, a radial line drawn through its extremity cuts the primitive spherical
surface in the primitive position of that point.

[1757.] We now reach on the basis of the preceding ellipsoids the

following definition (Clwpter IV., Prop. 3, Cor. 1 and Def. 2) :

For every stress, there is a certain infinitely small strain, and conversely,
for every infinitely small strain, there is a certain stress, so related that if,

while the strain is being acquired, the centre and the strain-normals [= prin-

cipal axes of strain] through it are unmoved, the absolute displacements of

particles belonging to a spherical surface of the solid represent, in intensity

(according to a definite convention as to units for the representation of force

by lines) and in direction, the force (reckoned as to intensity, in amount per
unit of area) experienced by the enclosed sphere of the solid, at the different

parts of its surface, when subjected to the stress.

Such a stress and the infinitely small strain related to it are termed

of the same type.
This type requires five quantities to define it, two ratios between

principal tractions (or principal stretches) and three angular directions

defining the position of the principal axes.

Further definitions of what is meant by orthogonal stresses and
strains are given in CJiapter VI., Def. 1-3 :

A stress is said .... to be orthogonal to a strain if work is neither done

upon nor by the body in virtue of the action of the stress upon it while it is

acquiring the strain.

Two stresses [or strains] are said to be orthogonal when either coincides

in direction with a strain [or stress] orthogonal to the other.

[1758.] Chapter VIII. is entitled : Specification of Strains and
Stresses by their Components according to chosen Types.

Six stresses or six strains of six distinct arbitrarily chosen types may be

determined to fulfil the condition of having a given stress or a given strain for

their resultant, provided these six types are so chosen that a strain belonging
to any one of them cannot be the resultant of any strains whatever belonging
to the others.

This follows from the fact that six independent parameters are

required to specify any stress or strain whatever. The six arbitrarily

chosen types of stresses or strains are termed types of reference.

Definition. An orthogonal system of types of reference is one in
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which the six strain or stress components are all six mutually ortho-

gonal (Cluipter IX.). When the types of reference expressing the

strain constitute an orthogonal system then the component stresses may
be expressed by the differentials of the strain-energy with regard to the

six component strains.

This principle is deduced in Chapters XI. and XIII. by a considera-

tion of what is defined as concurrence between stress and strain.

[1759.] We now turn to the contents of Chapters XIV.-

XVI. which form perhaps the most important portion of the paper
under consideration.

ket ?i> ?a> &> ?<> ?5 f specify a strain by means of one system
of types of reference, and f,, ?2 > fs, ?4> (*> fe the same strain by
means of another system. Then any strain f, will be a linear

function of the f-system and the relation will contain six constants.

In general there will be 30 constants connecting the f- and

^-systems. Now the strain-energy is a quadratic function of the

strain-components and involves 21 constants. We can accordingly

always make use of 15 out of our 30 disposable constants to

eliminate the product terms of the strain-energy by a linear

transformation. Thus in an infinite variety of ways the strain-

energy can be expressed in the form :

w = i(A& +A& +Af +A& +Af + A.&).

In this case a strain of any one of the f types, if impressed on the

solid will be accompanied by a stress orthogonal to the five others

of the same system. The stress will be proportional but not gene-

rally equal to dw/d.

[1760.] The investigation of the previous article has left us

\sitli l."> disposable constants and we can employ these to make
the six strain types f mutually orthogonal ;

for the condition that

two strain types shall be mutually orthogonal involves only one

relation and there are just 15 pairs in G things. This follows

from the algebraic theory of the linear transformation of quadratic
in notions, associated with the condition for orthogonality: see

V Cur. 1 and 2.

'11ms we reach the following important proposition :

...a single system of six mutually orthogonal types may be dft<niim<l

my homogeneous elastic solid, so that ita potential energy when

homogeneously Htr.iinl in any way, is expressed by the sum of the
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products of the squares of the components of the strain, according to

those types, respectively multiplied by six determinate coefficients

(Chapter XV. Prop. 1).

Definition. The six strain-types thus determined are called the Six

Principal Strain-Types of the body.

[1761.] If
, ,, ?3 , ?4 , ?5 , & denote the six principal strain

types, and Slt S.2 ,
S3 ,

S4) S5 ,
S6 the corresponding stresses we have

the strain-energy of the form :

and generally S = dw/d%= A f.

It follows that the stress required to maintain a given amount

of strain is a maximum-minimum if it be one of the six principal

types (Prop. 4).

We can now return to 41 of the article on Elasticity for the

following definitions :

A modulus of Elasticity is the number obtained by dividing the number

expressing a stress by the number expressing the strain which it produces.
A modulus is called a principal modulus when the stress is such that it

produces a strain of its own type.

An seolotropic solid has in general six principal elasticities, namely,
the A-coefficients of the above value for the strain-energy. Sir William

Thomson appears in 41, (6) of the article on Elasticity to identify the

six principal elasticities with six principal moduli. I am not certain

how far this is consistent with the definition that a modulus is the ratio

of the number expressing stress to the number expressing the strain

which it produces. My point of difficulty is whether a '

principal stress

type' is always capable of being expressed by a single numerical stress,

or whether it will not often consist of a system of stresses. Thus the

bulk-modulus in Sir William Thomson's sense (see our Art. 1776 and

footnote) might be a principal elasticity, but, as it corresponds in some

cases to a system of stresses, is it always a principal modulus ?

[1762.] Sir William Thomson gives in Chapter XV. Prop. 2

the following examples of principal elasticities :

(a) For cubical (eolotropy (see our Arts. 450, (v) and 1639) :

Modulus of compressibility, the rigidity against diagonal distortion

in any of the principal planes (three equal elasticities), and the rigidity

against rectangular distortions of a cube of symmetry (two equal

elasticities).

In the notation of our Arts. 1203 (d) and 1206 these moduli would

be J (a + 2/'), d and J (a -f) respectively.
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(b) Yor perfect itotropy:

Modulus of compressibility and the rigidity (five equal elasticities).

In our notation these moduli are ^ (3X + 2/n) and p..

Further statements as to principal moduli will be found in 41 of

the article on Elasticity, but I do not clearly comprehend their meaning;
tli us it is said that a crystal of the rectangular parallelepiped (or

"tessera!") class has six distinct principal moduli "three, of the

three (generally unequal) compressibilities along the three axes; and

three, of the three rigidities (no doubt generally unequal) relatively to

the three simple distortions of the parallelepiped...." I do not follow

what is meant by the "three compressibilities along the three axes"

they cannot refer to the three stretch-moduli as these are not principal
moduli.

The whole discussion would have been much clearer if the strain-

energy, for a tesseral crystal say, had been written down in terms of

the principal moduli and the six principal strain-types, these principal
moduli being then given as functions of the usual nine elastic coefficients

and the principal strain-types in terms of the usual stretch- and slide-

components of strain. I have not succeeded in accomplishing this
1

.

I am indeed in doubt as to how to apply the condition for "orthogo-

nality of strains
"

;
nor if a dilatation can be a principal strain am I at

all clear what is the corresponding principal stress
;

it certainly cannot

be like most stresses a directed quantity.

[1763.] In diopter XV., Prop. 6, Sir William Thomson remarks
that:

A homogeneous elastic solid, crystalline or non-crystalline, subject to

magnetic force or free from magnetic force, has neither right-handed nor left-

handed, nor any dipolar properties dependent on elastic forces simply propor-
tional to strains.

Hence he argues that the elastic forces concerned in optical pheno-
mena such as occur in quartz or tartaric acid cannot depend on the

magnitude, but can solely depend on the heterogeneousness of the strain

in the portion of the medium through which the wave passes. Polar

properties of crystals whether crystal lographic, optical or electrical, can
have no corresponding characteristic in elastic forces which are simply

proportional to the strain.

[1764.] Cltapter XVII. is entitled : Plane Waves in a Homogeneous
jEolotropic Solid. It does not go further than demonstrating that in

general three pairs of plane waves are possible in such a medium in

the case of an incompressible solid re.lu, in^ to two pairs in \\hirh the

ion is parallel to the wave-front. The three velocities of these three

n of waves are determined neither in terms of the 21 elastic con-

1 It ig easy. Sir William Thorn- i vontiRate the principal gtrain-type
;,-ai elasticities for a crystal of the teraeral class (Chapter XVI., Cor.).
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stants, nor of the direction of the wave-front. The problem had been

previously discussed by Blauchet (see our Arts. 1 166* 78*) and has been

exhaustively dealt with by Christoffel : see Annali di Matematica, T. VIIL,

pp. 193-243. Milauo, 1877, and Love: Treatise on tlw mat/iematical

Tlieory of Elasticity, Vol. I., pp. 134-40. Cambridge, 1892.

[1765.] Notes of Lectures on Molecular Dynamics and the Wave

Theory of Light. Delivered at the Johns Hopkins University, Balti-

more. Stenographically reported by A. S. Hathaway. Baltimore,

1884. This is a shorthand report reproduced by papyrograph of

what Sir William Thomson said in twenty lectures delivered at

Baltimore before a distinguished audience of physicists and mathe-

maticians in 1884. The preface to Vol. ill. of the Mathematical

and Physical Papers announces that Vol. IV. will contain a printed

edition of these lectures. That volume not having yet appeared,
our references will be to the pages of the papyrograph (pp. 1-328 +

Index). The report was not revised by the lecturer, owing to

his departure from America.

We shall put on one side the large portion of these lectures

devoted to molecular theories, treating only of those points which

relate to the theory of elasticity, and briefly of some problems in

which that theory is applied to the luminiferous ether.

[1766.] Lecture I. (pp. 1-20) is chiefly historical and intro-

ductory. The position of the lecturer at that time is indicated

in the following words:

In the first place we must not listen to any suggestion that we must
look upon the luminiferous ether as an ideal way of putting the thing.
A real matter between us and the remotest stars I believe there is, and
that light consists of real motions of that matter, motions just such as

are described by Fresnel and Young, motions in the way of transverse

vibrations. If I knew what the magnetic theory of light is, I might be

able to think of it in relation to the fundamental principles of the wave

theory of light. But it seems to me that it is rather a backward step
from an absolutely definite mechanical motion that is put before us by
Fresnel and his followers to take up the so-called electro-magnetic theory
of light in the way it has been taken up by several writers of late. In

passing, I may say that the one thing about it that seems intelligible to

me, I scarcely think is admissible. What I mean is, that there should

be an electric displacement perpendicular to the line of propagation and
a magnetic disturbance perpendicular to both. It seems to me that

when we have an electro-magnetic theory of light, we shall see electric

displacement as in the direction of propagation simple vibrations as
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described by Fresnel with lines of vibration perpendicular to the line of

propagation for the motion actually constituting light I merely say
that in passing, as perhaps some apology is necessary for my insisting

upon the plain matter of fact dynamics and the true elastic solid as

giving what seems to me the only tenable foundation of the wave theory
of tight in the present state of our knowledge.

Tli.- luininiferous ether we must imagine to be a substance which so

far as luminiferous vibrations are concerned moves as if it were an

elastic solid. I do not say that it is an elastic solid. That it moves as

if it were an elastic solid in respect to the luminiferous vibrations, is the

fundamental assumption of the wave theory of light (pp. 5-6).

In the last eight years Sir William Thomson has without doubt

modified his view as to the respective merits of an elastic solid

and an electro-magnetic theory of light: see in particular his papers
referred to in our Arts. 1806-16. But the emphasis laid on the

"real matter" and "real motion" of the luminiferous ether seems

to the Editor of this Histw*y a grave danger in this method of

speaking of the ether. The ideal nature of geometry involves the

ideal nature of kinematics and ultimately of mechanism, and the
"
luminiferous ether" is only an intellectual mode of briefly

summarizing certain wide groups of sensations. The advantage of

the electro-magnetic over the elastic solid theory of light appears
t> lie in the wider range of phenomena it enables us to epitomise
under one conception.

The difficulty of the passage of the stellar bodies through the

ether is explained by aid of the principle first indicated by Sir

G. G. Stokes (see our Art. 1266*), i.e. that as in the case of

cobblers' wax, which vibrates to rapidly alternating forces, long
continued but very small forces suffice to produce permanent

change of shape
1
.

Whether intinitesimally small forces produce change of shajM- or not

we do not know
;
but very small forces suffice to produce change of

shape. All we have got with respect to the InminitVrous ether is that

the exceedingly small forces required to be brought into play in the

luininiferous vibrations do not, in the times during which they act

suffice to produce any sensibly permanent distortion. The come and

go effects taking place in the period of the luminiferous vibrations

do not give rise to the consumption of any large amount of energy,

'

<rlycerine is also suggested as an example illustrating the ether on p. 119,
and Maxwell's experiment in which the sadden turn of a stick in Canada Balsam

gave the medium a doable refractive power, \\liirh rradually disappeared, is referred

to on pp. 11920.
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not large enough an amount to cause the light to be wholly absorbed in

say its propagation from the remotest visible star to the earth (p. 8).

[1 767.] Lecture II. (pp. 20-5) opens with a brief elementary theory
of elasticity containing, however, nothing beyond what is given in the

Encyclopaedia article on Elasticity: see our Art. 1741. Lecture III.

(pp. 31-3) indicates the general solution of the equations of vibration for

a homogeneous isotropic solid. Lecture IV. (pp. 38-48) develops this

solution, chiefly in reference to the sound vibrations represented by an

equation of the type :

rjj^(!+*)'*>
Lecture VI. (pp. 57-66) continues the discussion of these sound vibra-

tions.

[1768.] Lecture VIII. (pp. 77-91) deals with distortional waves,
or those for which the dilatation = 0. Consider the function :

C . 2

*;^
which satisfies the equation :

r being the distance from the origin, C and I being constants.

(a) A solution of the body-shift equations, subject to =
0, is given

by:

w = 0, -y = , w = -j- .

dz dy
At a considerable distance from the origin the solution takes the

approximate form :

2ir z %TT y

where q is written for
-j-

I r / - t\ .

Further the twists at a considerable distance are given by :

1

Thus there are rotations proportional to (sin q)/r round the axis of x
t

and to (sin q) x/r
2 round the radius-vector.

If you think out the nature of the thing, you will see that it is this :

a globe, or a small body at the origin, set to oscillating about Ox as an axis.

You will have turning vibrations everywhere ;
and the light will be everywhere

polarized in planes through Ox. The vibrations will be everywhere perpendi-
cular to the radial plane through Ox (p. 79).
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(6) Besides this solution for a torsional vibration, Sir William
Thomson gives (p. 84) the solution for a small to-and-fro motion in the
axis of Xj viz.

4ir*
, <P<f> (F<f> #6

w =
j* # + jLa v=

7
'

jT w ~ T^T >

Is tbr dydx dzdx

<f> liaving still the value

C . 2

At a considerable distance from the origin we have approximately:

~4ir*a .w = - C -- sin

where 7 has the same value as above, and clearly the resultant of these

shifts is perpendicular to the radius-vector. Further at a great distance

there is no appreciable shift at points in the axis of x at all. In the plane
of yz we have v = w -

0, or the shift is perpendicular to this plane.

light would be polarised in this plane (p. 86).
Sir William Thomson refers with regard to this solution to Sir

G. G. Stokes' theory of the blue light of the sky. He further deals at

considerable length with models of vibrators which would produce
vibrations corresponding to either of the above cases. It is clear that

the solutions given by Sir William Thomson are special cases of those

due to Voigt and afterward dealt with by Kirchhoff: see our Arts.

1309-10.

[1769.] While Case (b) of the preceding article deals with the to-and-

fro motion in the axis of x of a single small body at the origin, Lecture

IX. (pp. 92-4) considers the case of a doublet of such motions at the

origin. Such a motion might be considered as given by discs attached

to the two ends of a tuning-fork, neglecting the prongs, or by two small

balls connected by a spring and pulled asunder so as to vibrate in and
out (p. 94). The expressions for the shifts may be found from those

given in Case (6) alx>ve by simply differentiating them 1 with regard to

x and introducing a new constant into <. Thus, at a considerable

distance from the vibrator the shifts will be approximately of (In-

forms :

,,, a*
- r* n,3?y si,***u = C . x cos q, v = C -f cos q, ta = C cos 7.

It U easy to prove that the complete solution represents a distortional

\ il.ration (0 = 0), and that the radial component of shift at a considerable

distance is zero. There is zero shift in the plane of i/z and along the

axis of x. Further treating the motion as that of light, we see that
"

.c papyrograph hat a slip at thia point, it peaks of ,h ,lr, ,i, </>/ m-.l

as the shifts (p. u:i).
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would be "polarized in the plane through the radius of the point consi-

dered and perpendicular to the radial plane through Ox" (p. 93).
Sir William Thomson holds that :

" This is the simplest set of vibra-

tions that we can consider as proceeding from any natural source of

light" (p. 94) \

Much of the remainder of this Lecture, dealing with the simplest
conceivable form of elementary vibrator in the case of light, is of great
interest, but it would lead us beyond our legitimate subject to discuss

the lecturer's suggestions here.

[1770.] Lecture XI. (pp. 124-37) treats of seolotropic

elastic solids. The first nine pages (pp. 124-32) deal with the

'constant* controversy. After referring to the meaning of the

term wolotropic, and " the somewhat cloud-land molecular be-

ginning" of the theory of elasticity, Sir William Thomson remarks

that :

...we have long passed away from the stage in which Father Boscovich
is accepted as being the originator of a correct representation of the

ultimate nature of matter and force. Still, there is a never-ending
interest in the definite mathematical problem of the equilibrium or

motion of a set of points endowed with inertia and mutually acting

upon one another with any given force. We cannot but be conscious

of the one grand application of that problem to what used to be called

physical astronomy but which is more properly called dynamical astro-

nomy, or the motions of the heavenly bodies. We have cases in which
we have these motions instead of the approximate equilibriums or in-

finitesimal motions which form the subject of the special molecular

dynamics that I am now alluding to (pp. 125-6).

It is then pointed out that those who have treated the theory
of elasticity from the standpoint that :

matter consists of particles acting upon one another with mutual forces,

and that the elasticity of a solid is the manifestation of the force required
to hold the particles displaced infinitesimally from the position in which
the mutual forces will balance (p. 126),

have been led to rari-constant equations. This statement should,

I think, be modified by the addition to
" mutual forces" of the

words "which act in the line joining the particles and are functions

1 This statement is modified in Lecture XII. (p.. 145), where the lecturer points
out that the condition for the ceutroid of a molecule remaining stationary while

the molecule acts as a vibrator, would be satisfied not only by the double to-and-fro

motion of our Art. 17G9 but also by Case (b) of our Art. 1768, if the vibrator were a

Thomson "shell-spring" molecule, i.e. one with a massive nucleus carrying an
external shell-surface of extremely small mass by means of connecting springs.
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only of the mutual distances." The statement of the Lectures does

not exclude the hypotheses of modified action and of aspect,

either of which being admitted lead to multi-constant equations :

see our Arts. 276 and 302-6.

Sir William cites Sir G. G. Stokes as having first called attention

to
" the viciousness of this conclusion (i.e. uni-constancy) as a

practical matter in respect to the realities of elastic solids."

Jelly and india-rubber, our old friends, are referred to as examples
of elastic solids which do not fulfil the uni-constant condition, but

no attempt is made to complete the validity of the argument by

demonstrating that they are true elastic solids at all, i.e. that

two elastic moduli will suffice to determine absolutely the relations

between all types of small stresses and strains in these materials.

For example, in the case of these materials are the stretch and

squeeze-moduli practically the same, and if the slide-modulus and
the dilatation-coefficient (X, see Vol. I., p. 884-5) be determined

from torsion and pure traction experiments, are the values of the

dilatation-modulus (\+/u),the spread-modulus [/Lt(3X+2/*)/(\+2/*)]

and the plate-modulus [4/A (/* -f X)/(X -I- 2/*)] calculated from these

results in agreement with experiment ? These points require very
careful consideration before the argument from jelly and india-

rubber can be recognised as conclusive: see our Arts. 1636 and

1T49.

[1771.] Sir William Thomson now raises a more interesting

argument against rari-constancy. He introduces it with the

following remark:

Stokes also referred to a promise that I made, I think it was in the

rear 1856, to the effect that <ut of matter fulfilling Poisson's condition

[i.e. rari-conHtunt matter] a model may be made of an elastic solitl, which
when the scale of parts is sufficiently reduced will l>e a homogeneous
elastic solid not fulfilling Poisson's con<lftion. Stokes refers to that promise

n* whi.-li was made very nearly 30 years ago. I propone this mmm-nt
to fulfil it never having done so before. It is a very simple affair (p. 127).

The following is the model suggested.

o a geometrical right six-face as our element and suppose 8 particles
at its angles. These may be connected by the 1 2 edges, the four internal

diagonals and the 12 face diagonals. Each edge will h< long
to four such i faces, and each face diagonal to two right six-faces

;

I. --nee we are left with only 13 disposable links for each element

Suppose these links replu j <>f diiV. i.-nt elasticities.

I 1. IT II.
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This gives us 13 arbitrary constants. Two further constants come
from the ratios of the three edges, and three from the arbitrary
directions which we may take for our coordinate axes of reference.

Thus we have at present 18 arbitrary constants. To get three more
constants Sir William Thomson places bell-cranks at each corner and
connects them by pieces of wire, so that the wire, thought of for

the moment as continuous through the bell-cranks, passes twice

round the edges of the right six-face. This can be done in a variety
of ways. These pieces of wire connecting the bell-cranks can be

taken of different elasticities in the directions of the three principal

axes, and we thus have three more disjxjsable constants, or 21 in all.

Sir William Thomson speaks of this arrangement as "a model of a solid

having the 21 independent coefficients of Green's theory." He draws
attention to the fact that for the case of an isotropic solid if the bell-

crank wires are inelastic, the right six-face can suffer no dilatation. In

fact, we might place smooth rings at the corners and take a continuous

inextensible string twice round the edges ;
for small strains the solid

would then be inextensible (if not incompressible)
1

.

[1772.] Now there seems to me to be grave difficulties about this

model. It consists really of a space framework with a considerable

number of supernumerary bars, besides a binding of wire and bell-cranks.

These involve 18 disposable constants. But why stop at 18? We cannot,

indeed, put in any more straight supernumerary bars, but there is nothing,
I think, to hinder us running wire and bell-cranks round the diagonal

bracing bars in a great variety of ways. I see no reason why the dis-

posable constants should stop at 1 8. Yet no one will assert that because

we can build up a frame with supernumerary bars, bell-cranks and wires

which has 24 or perhaps 30 disposable constants, that therefore we can

have an elastic solid with 24 or 30 disposable coefficients. Clearly there

is a portion of the argument which is very far from completed by the

lecturer. Out of material obeying rari-constant conditions, we can build

up a frame with 18 (or possibly 80 disposable constants), but it has yet
to be proved that the relations between stress and strain for such a frame

will contain tlie same number of independent coefficients. The complexity
of the supernumerary bars in Sir William Thomson's model framework
renders it difficult, if not impossible, to work out the relations between
the elasticities of the various members and the elastic coefficients of the

corresponding elastic solid. Till that is done, however, we have no evi-

dence that certain inter-constant relations may not after all hold for this

model 2
.

1 An inextensible string alone would not answer the purpose in the case of an

aeolotropic medium, for if a, b, c be the edges of the right six-face, the condition of

inextensibility gives 5a + Sb + 5c = 0, but that of incompressibility + + - = 0.
Ct C

The further conditions: a= b = c, are necessary and sufficient.
2 Sir William Thomson remarks on p. 131: "We have 18 available quantities,

which will make by solution of linear equations the required 18 moduluses," This
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Even the particular case of isotropy is by no means easy of analysis in

tin- model, we have of course straight off only one edge elasticity, one face

diagonal elasticity, one internal diagonal elasticity and further one elas-

ticity of the binding wire, four constants in all. Sir William Thomson
tells us (p. TJ9) that without the binding wire the three other elasticities

for isotropy reduce to a single one and that " an isotropic solid made up
in this way will have an absolutely definite compressibility; we cannot

make the compressibility what we please." It would be an interesting,
but I fear complicated piece of analysis to ascertain even in this case the

relations between the elasticities of the three bars and to determine

whether the stretch-modulus is or is not of the slide-modulus.

[1773.] Since Sir William Thomson introduces supernumerary bars

into his frame, it is clear that the action between any two particles

depends on the action between other pairs, for a strain in one bar

produces strain in all the others, which strains of course influence

the stress in the first bar. Thus he is really constructing a model
which introduces the hypothesis of modified action. This hypothesis
is expressly excluded by the assumptions of Navier and Poisson, and
we have already recognised that it may lead to multi-constancy. Whether
it leads in the case of the model described in this lecture to complete

multi-constancy, I do not think we have evidence enough to determine.

Clearly the model does not carry us further than, if indeed as far as, the

statement, that modified action leads to multi-constancy: see our Arts.

1529* (and ftn.), '276 and 305. The remainder of the Lecture (pp. 132-7)
is devoted to a discussion of wave motion in an aeolotropic medium and
covers practically the same ground as the Encydajmedia article on

'//: see our Art 1764.

[1774.] Lecture XII. (pp. 1 37-43) discusses the differences between

aeolotropic and isotropic solids in the matter of wave motion. It indi-

cates rather by suggestion than analysis what is the probable solution for

waves in the former case, and also the nature of the conditions wliirh

must hold in order that condensational may be separated from distor-

tionul waves. As to indications of the former wave Sir William
Thomson says:

The want of indication <f any Mich actions is sufficient to prove that

if there are any in nature, they must be exceedingly small. Hut that

are uch waves I believe, and I lelieve that the v'rU-ity !' propagation of

electrostatic force is the unknown condensational velocity that we are

speaking of I do not mean that I believe this as a matter of vision*
faith, but rather as a matter of strong scientific probability (p. 143).

[
1 775.] Lector* XIII. (pp. 1 54-62) contains some rather disconnected

but still suggestive remarks on aeolotropy and wave motion in aeolotropic

does not I think mean that the 18 coefficient* are linear fuii.-ti.M-. of the 18
modulate*. They come oat, I think, very complicated functions of the 16 clati-
citiea and the two length ratio not see <i priori why thene function* mutt
be independent.

30-2



460 SIR WILLIAM THOMSON. [1776

solids. On p. 1 56 the form of the equations for wave motion in an inconi-

jyressible isotropic solid is generally indicated, and the method of obtaining
those for an incompressible aeolotropic solid is suggested. Franz and Carl

Neumann had dealt previously at some length with these problems: see

our Arts. 1215 et seq. The lecturer then turns to Rankine's nomenclature
and deals esj^cially with cyboid or cubic aeolotropy : see our Arts. 443-

52, especially Art. 450 (v). He points out that Rankine had remarked
that according to Sir David Brewster this sort of variation from isotropy
was to be found in analcime 1

. He then quotes Sir G. G. Stokes to the

effect that no optical phenomenon observed in cubic crystals gives any
evidence in favour of the existence of this sort of aeolotropy, and that not

even Brewster's experiment is a true instance. Thus we are thrown back
on physical elasticity rather than on optics for examples of cyboi'd aeolo-

tropy, and the lecturer illustrates it from woven material and basket work,
where the elasticity may be the same in the direction of the two (or three)

principal axes, but the resistance to shear may vary widely with the

direction of the shear. He refers on p. 159 to the error of Rankine
noticed in our Art. 421.

Starting from cyboi'd aeolotropy, Sir William Thomson, supposing in-

compressibility and annulling the " difference of rigidities for the prin-

cipal distortions in each of the three principal planes," reaches an elastic

solid with three principal moduli and giving Fresnel's wave surface. For
a fuller discussion of the details of this investigation, which is only in-

dicated in the briefest manner in the Lectures, we may refer the reader

to the memoirs cited in our Arts. 917*-18*, 148-50 and 1214-15. As
in Neumann's investigation the shifts lie in the plane of polarization

(pp. 161-2).

[1776.] Lecture XIV. (pp. 173-78) has some interesting
remarks and results bearing on various features of aeolotropy.

(a) The first elastic problem is to find the bulk-modulus, i.e. the dila-

tation-modulus for an aeolotropic solid (p. 174). We take the bulk-

modulus 8
to be the elastic-constant by which uniform pressure on the

surface of any portion of a homogeneous aeolotropic solid must be divided

1 See Herschel's Light . Art. 1133. Encyclopaedia Metropolitana. London, 1854.
2 Sir William Thomson here defines the bulk-modulus to be the mean normal

pressure divided by the compression when the solid is compressed equally in all

directions, i.e. when the strain denotes a pure change of size. This, however,
does not give the relation between pressure and dilatation for the case which
we can actually experiment on, namely: a uniform surface pressure. Further

making an aeolotropic body incompressible for the stress which produces pure change
of size, does not insure that the body is really incompressible for every form of stress.

The bulk-moduli in Sir William Thomson's sense and in our sense of the word
coincide only for cubical crystals and isotropic bodies. In other cases it is difficult

t ) see how this modulus in Sir William Thomson's sense satisfies his definition of

a modulus of elasticity : see our Art. 1761. It is the ratio not of an actual, but of an
average stress to the dilatation. This bulk-modulus cannot be ascertained by any
simple experiment, and no arrangement of load capable of being practically applied
would produce such a pure change of size in an aeolotropic body.
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in order to obtain the compression per unit volume of the solid. If

this be so, the proper method of procedure seems to be to equate the

three tractions in their most general form to the pressure with its sign

changed (p), and further to put the three shears zero. From the six

equations so obtained the slides must be eliminated and the three stretches

found. Tin- sum of the three stretches then gives the dilatation (i.e. the

compression) in terms of the pressure, and so determines the dilatation-

modulus. The answer can be at once written down in the form of

rminants, but to expand them for the most general case of an

aeolotropic solid is very laborious. For the case of three planes of
elastic symmetry, we find for the dilatation-modulus F in the notation of

Art. 117:_abc + '2(Tef' -ad*- be 3 - cf*~

This agrees with Neumann's result in our Art. 1205 for a special case

and also with the value of F for isotropy.
Sir William Thomson, with the definition of the footnote to our Art.

1776 deduces from the expression for the strain-energy that (p. 168) :

F=\ [\jcxxx\ + \yyyy\ + \zzzz\ + 2 (\n*z\ + \zzjcx\ +

for the general case of aeolotropy, the notation being that of our A it .

116, ftn. This result does not involve like the previous one the direct

slide coefficients nor those of asymmetrical elasticity.
For the case of three planes of elastic symmetry it becomes

F = J {a + b + c + 2 (d
1 + e +/)},

which di tiers from the result given above. It agrees with that result

and with the usual value (A + ^/z) in the case of isotropy.
This value of F given on pp. 168 and 174 leads me to believe

that the, second problem treated by Sir William Thomson, namely
the valu. >f the strain-energy for an incompressible aeolotropic elastic

solid, is erroneously worked out 1
.

(b) The third problem is entitled: To annul sketonesses relatively to

Ox, Oy, .. 'I'h is amounts to equating to zero the coefficients of asym-
metrical elasticity: see our footnote p. 77.

(c) The fourth problem ii ,,\d weblike a- . the skew-

nesses being annulled (pp. 17 >

8),
l'.\ annulling the weblike aeolo-

t ropy "Sir William Thorn-mi understands introducing a condition of the

following kind :

a pUne perpendicular to any one of the axes, say that of Or,
and suppose lines in the direction Oy to receive a stretch Jx, and lines in

1
I have iwed the word 'erroneous* here although tin- matter in rather one of

I..M. We are dealing with two balk-moduli (taitinomio and thli|min<-

differently defined. But it neeim to me imporaible to oon*intenUy define a nolid. m
Home system* of loading do produce compression, as incompressible.
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the direction Oz a squeeze J, then the work done in this strain is to

be equal to the work done in giving a face perpendicular to y a slide

parallel to z of magnitude s. Geometrically the slide and the stretch

and squeeze are equivalent, and Sir William Thomson introduces an

isotropy with regard to slide in the planes perpendicular to each of the

coordinate axes. Thus the condition is :

to express that there is such a deviation from aeolotropy as would be produced
if we were to annul the differences of rigidity relatively to a shear 1

produced
by pulling out one diagonal and shortening the other compared with the shear
of sliding one face past the other (p. 177).

The strain-energy < for an aeolotropic solid in which the "skew-
nesses are annulled

"
is easily seen to be :

2<f>
= as/ + bay- + csz

2 + 2d
r

Sy8z + '2e's^sx + 2f'sxs!/
+ d<r

Hence for : s
y
=

^s, sz = &, we have, all the other strains being zero :

2</>
= J (b + c-2d')s--

and for <r
vz
=

a, and all the other strains zero :

2< - ds2
.

Thus the condition for annulling weblike aeolotropy is d= \(b + c - 2d'),

or

Similarly :

1.
(
c + a)

=
(2e + e'),

Now these are precisely Saint-Venant's ellipsoidal conditions of the

second kind (see our Art. 230), or " weblike aeolotropy" is not consistent

with the aeolotropy produced by permanently straining an isotropic elastic

solid so as to have three planes of elastic symmetry: see our Art. 231.

[1777.] There is another way of looking at the results of the

preceding article, which is not without instructiveness. Consider a

strain confined to the plane xy, and defined by the three strain-

components sx , s,,,
and o^. Let r be a line in this plane which makes

an angle with the axis of x and let r be a line perpendicular to it.

Then we easily find for a solid with the skewnesses annulled :

ov =
(sy

- sx) sin 26 + a-xy cos 29,

and > = 1
{*, (/ -

a) +
s,, (b -/)} sin 20 +f<rxy cos 20.

See (vi) and (viii) of our Art. 133.

The second result holds in the case of weblike aeolotropy. Now give

1 Shear is here used for strain, in the sense of our slide.
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any uniplanar strain without dilatation, or such that * + *,= 0. Then,
if there is to be isotropy of slide, we must have :

i.e.

or tin; same condition as before. This method of obtaining the result

brings out more clearly that absolute isotropy of slide does really exist.

when weblike aeolotropy is annulled in each principal plane for strains

without dilatation in that plane.

[1778.] Sir William Thomson uses (pp. 169, 177-8) the results of

tin-
|
nv vious article to obtain an expression for the strain-energy < of an

elastic solid without either 'skewnesses', or ' web-like aeolotropy' and
strained without dilatation. He takes to insure the latter condition

We then find
1

:

Thus wr have the strain-energy expressed in terms of the three slide-

moduli alone, and so in a form suitable for discussing waves of

distortion.

[1770.] In Lecture XV. pp. 182-93 are devoted to the subject of

elasticity and the elastic theory of light. The remarks on pp. 182-3
as to the conditions for iucompossibility seem to me doubtful, owing to

the use of the fiarticular value of the dilatation-modulus before referred to :

see our Art 1776. Sir William thru passes to the thlipsinomtc co-

efficients. Adopting the notation for these o>' ili< i nts suggested in our
Art. 1 is, \\.- have Q| t \ p.- :

tx = (aaa/i) + (aabb) n + ((MCC) + (aabc)^ + (aaca) -I- (aaab) 4^,

o-,,
= (boon) 4- (bcbb) TV + (kccc) + (bcbc) ^ + (bcca) w + (bcttb) 7).

Clearly we must tin -n write

(aacc)

+ (aabb) + (

+ (W/./., +(N
f (ccbb) + (ccoc)

(aabc)

(bbbc)

(' 4-(occa) +(ccab)

1 Die papyrogrftph (p. 169) appears to have the factor 2 inntead of | in the three

last t>riMx.
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Hence we have the following six conditions for complete incompressi-

bility under all forms of stress :

(aaaa) + (aabb) + (aacc)
= 0, (aabb) + (6666) + (cc66)

= 0,

(aacc) + (66cc) + (cccc)
= 0, (aabc) + (bbbc) + (ccbc)

= 0,

(ctaca) + (66c) + (ccca)
= 0, (aaab) + (bbab) + (ccab)

= 0.

Sir William Thomson remarks (p. 1 84) :

It is startling to think of six equations to express incorupressibility, I have
not really noticed it before, but it is quite right...

In thlipsinomic coefficients it is clear that the conditions of in-

compressibility can only be expressed by the above six relations
;
but it

is not so clear that in the case of tasinomic coefficients six relations

will be necessary.
For example, we have, in the case of three planes of elastic

symmetry
1

,
when the plagiothliptic coefficients, i.e. those of un-

symmetrical pliability, vanish (see our Art. 448) :

bc-d'* d'e'-f'c f'd'-e'b(aaaa)=, (aabb)= ^ , (aacc)= ,

/M.WA ca ~ e
"'

/A/ \ o'f-d'a , x &-/'
2

(6666)
=

, (66cc)=^^ , (cccc)
= --

,

where A = abc + 2d'e'f'
- ad'z - be'

2 -
c/'

2
.

Hence the conditions for incompressibility reduce to :

6c - d'
z + d'e' -fc +f'd'

- e'b _ ca- e'
2 + e'f

- d'a + d'e' -f'c _~~ ~~ ;
'

Now we can satisfy these by making all three numerators zero, which

does not involve any of the tasinomic coefficients being infinite (and

certainly not all six, a, 6, c, d', e',f infinite, as seems to be suggested by
the lecturer on p. 175), or we can take A=oo

,
without making the nu-

merators infinite. For example, if we take a and d' infinite, or 6 and e'

infinite, or c and f infinite, the conditions of incompressibility will be

satisfied. To judge from this special case the general rule seems to be

the following which is not in complete agreement with that stated by
Sir William Thomson. For incompressibility it suffices that six

relations be satisfied among the tasinomic coefficients, none of them

becoming infinite
;
but in special cases the becoming infinite of a number

1 The reader must carefully distinguish between the a, &, c of the symbols for

the thlipsinomic coefficients which denote merely directions, and the a, 6, c which
are the direct stretch coefficients (tasinomic constants) of an elastic solid with
three planes of elastic symmetry.
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than six of the tasinomic coefficients will suffice to ensure inuoinpres-

sihility.

The further condition for the vanishing of the "skewnesses" in

tlilipsinomic coefficients is discussed on pp. 186-7. It is of course

merely the vanishing of Raiikine's plagiothliptic coefficients. Sir

William Thomson speaks of them here as well as of the plngiotatic
coefficients as "side-long coefficients." They are the coefficients such as

Ijrjrjwi, ijrxxr!, (abbe), (cuiac) etc., which contain an odd number of any
su I script letter.

The remainder of Lecture XV. (pp. 187-93) and the first part of

'>tre XVII. (pp. 209-13) contain a criticism of Green's "extraneous

pressures." The criticism misses, I venture to think, the real ]x>int of

what Cauchy, Green and Saint- Venant denote by these "extraneous

pressures," or by what we have by preference in our History termed
><d stresses : see our Arts. 616*, 1210* and Vol. I., p. 883. It is of

the very essence of such initial stresses that the principle of the super-

position of small strains does not apply. Compare our Arts. 129 and
1 H.")-6 with Sir William's remarks on p. 192, noting, however, his

p. _' 1 '2. The footnote p. 189 together with the addition on p. 213 must,
I think, be taken as probably marking a withdrawal after further con-

sideration from the standpoint of the lectures : see also our Art 1789.

[1780.] The only other part of Lecture XVII. (which is mainly
occupied with considerations as to the reflection and refraction of light
at the interface of two media, and as to the plane of polarisation) relating

closely to our subject is the further discussion of aeolotropy on pp.
213-6. Sir William Thomson refers in particular to * web-like asym-
metry

' and refers to braced structures having only one set of diagonal

bracing bare as representing something analogous in framework. He
is also to the probability that crystals of the cubic class possess it,

and suggests the importance of experiments. Clearly were we to

annul ' web-like asymmetry
'

in regular crystals, they would become

isotropic elastic bodies 1

,
and they would cease to be crystals from the

elastic standpoint. Klang as early as 1881 and Voigt in a series of

memoirs have determined the constants a, f and d for regular crystals,
and shewn that the rari-constant relation a-^d+f is very far from

holding : see our Arts. 1203 (d), and 1212. How tar their experiments
inspire full confidence will be discussed later.

[17SL] /.,,-t,,r> XYIll.
(pp, Ifltli with the reflection and

ft inn <>f light at the interface of two media on the elastic solid

theory. The method adopted ia very close to Lord Kayleigb's treat-

ment t' heory : see the Philosophical M \ .1 vi.u .. pp.

81-970, London, 1^71. The discussion is very suggestive <>n H numl>.

points, but they belong rather to the theory of light than to that of

1 Thi follows at onoe if we introduce the annulling condition ora = *d + f into
the stress-strain relations of our Art. 120H
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elasticity. The first suggestion, I have come across, of using an elastic

medium loaded with gyrostatic molecules, as a mode of explaining
the rotation of the plane of polarisation by quartz, etc. is given on

pp. 242-5.

Lecture XIX. (pp. 256-69) so far as it concerns elasticity deals

further with the subject of the reflection and refraction of light at an
interface. It discusses chiefly from Lord Rayleigh's standpoint the
" condensational wave." The language used (p. 267) as to Neumann's
work especially if we consider the latest form of his researches seems

to me both in the present and previous lectures too severe.

Lecture XX. (pp. 270-88) concludes the body of the work. It deals

principally with the theory of light, but one or two points are

sufficiently close to our subject to be noted here.

(a) Sir William Thomson refers on p. 270 to Rankine 1 as the

originator of the idea of "
aeolotropy of density

"
in the medium which

transfers light in a crystal. This idea was deduced by Rankine from

his hypothesis of "molecular vortices": see our Arts. 424 and 440.

Speaking of this hypothesis the lecturer says (p. 270):

I do not think I would like to suggest that Rankine's molecular hypothesis
is of very great importance. The title is of more importance than anything
else in the work. Rankine was that kind of genius that the names were of

enormous suggestiveness ;
but we cannot say that always of the substance.

We cannot find a foundation for a great deal of his mathematical writings,

and there is no explanation of his kind of matter. I never satisfy myself until

I can make a mechanical model of a thing.

The hypothesis of
"
aeolotropy of density

"
has been further

investigated by Lord Rayleigh : see the Philosophical Magazine,

Vol. XLL, pp. 51928. London, 1871.

It leads to equations practically identical with those adopted by
Sarrau and Boussinesq to explain double refraction : see our Arts. 1476,

1480 and 1483. The hypothesis itself is rejected by Sir William on

the ground of a paper by Stokes in the Proceedings of tJie Royal Society,

Vol. xx., pp. 443-4. London, 1872. Stokes had verified HuyghenV
construction as the true law of double refraction for Iceland spar within

the limits of errors of observation and had remarked :

This result is sufficient absolutely to disprove the law resulting from the

theory which makes double refraction depend on a difference of inertia in

different directions (p. 444).

(b) Some further considerations on the difficulty of the motion of

molecules through the ether occur on pp. 277-80 : see our Art. 1766.

1
Philosophical Magazine, Vol. i., pp. 444-45. London,
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Here we have the particles going with a velocity of half or a quarter <>t a

kilometer per second in the kinetic theory of gases, and yet we have the

molecules creating waves of light by vihrat ions of a velocity which may
not U more than one kilometer per second, and cannot probably be as

much a> a thousand kilometers per second (pp. 277-8).

Sir William, however, falls back on the analogy of glycerine;

namely that it is not the velocity of the vibrations, but the shortness of

their period which enables the ether to act as an elastic solid.

Why does a collision between molecules in the kinetic theory of gjises
rise t< velocities of one or two kilometers per second, or change the

ity one or two kilometers per second ? Answer, because the whole time
of collision is enormously greater than the four hundred million millionth of

a second or than the slowest of vibrations that Langley has found The
medium's l>eing perfectly elastic for the to-and-fro recoverances of motions in

the 20 million millionth of a second is perfectly consistent, it seems to me,
with its being like a perfect fluid in respect to forces acting perhaps for one
millionth of a second (p. 279).

See our Arts. 930* and 444.

(c) On pp. 288-9 will be found: Tlu Lament oftfo 21 Coefficients;
this deserves, perhaps, a passing reference here as the one occasion in

the history of our subject on which a poet (Professor G. Forbes) has
( -ondescendcd to touch such a serious theme as elasticity.

[1782.J Certain appendices to this volume of lectures may be

briefly referred to here.

(a) On pp. 290-3, 320-327 and 328 will be found an Appendix
entitled : Improved Gyrotttatic Afolecule. This Appendix not only
discusses the dynamics of two types of gyrostatic molecule, but applies
the theory of an elastic medium in which an infinitely great number
of such molecules are imbedded to explain the rotational effect of certain

m. di;i on t!i- plane of polarisation of transmitted light. To discuss the

details would lead us beyond our proper sphere ;
the subject has been very

fully treated by J. Larmoi in a )>aper entitled: The equations ofpropaga-
tion of r/!>/// rlxdK - a in </.'//">'" /<''"//'/ Itaided medi". /'i-iwedinga of tfie

Inn Mathematical Society, Vol. xxin., pp. 127 :*">. London, 1891.

(6) The second Appendix deals with Metallic Reflection and

occupies j.|>.
iMM :\\:\. It starts with a development of the Green-

Rayleigh theory of the reflection and refraction of waves at the
t wo elastic media, and endeavours to apply the results to

B&etellk p fraction hy making the square of the index of refraction

negative. Th- littl.- hromatii- di.sp.Tsion in reflation at metallic

surfaces forms a difficulty in th- theory:

We are thus forced t , -tallic reflection

tli.- prr-i-nt, I'Ut I? help
iyiiamieal n whirli is so much d.^inil. Th.it it doe*

ind.--d oooUio
i
-art ..;' the essence of the true dynamical theory, can scarcely

be doubted after we have considered the next two subject* on which we are
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going to try it: the translucency of thin metallic films, and the effect of

magnetism on polarised light incident on polished magnetic poles, or travrr^-

ing thin films of magnetised iron, nickel or cobalt (p. 313).

(c) The third Appendix entitled : Translucency of Thin Metallic

Films, occupies pp. 3149. Here we require an application of the Green-

Rayleigh conditions at each of the two faces of the plate or film. Sir

William again puts the square of the refractive index negative, and
obtains an expression for the intensity of the wave transmitted through
the film and for the advance of the phase in the two cases of vibrations

in and perpendicular to the plane of the incident and transmitted rays.
The results although suggestive are not in accordance with the experi-
ments of Quincke (p. 317). The theory explains Kerr's results for

the normal reflection of polarised light from magnetic poles, but not

Kundt's for the transmission of polarised light through thin magnetised
iron sheets. Being unable to abandon a pure imaginary value of the

refractive index for metals, Sir William hopes :

that extinctivity on a true dynamical foundation in connection with our
molecular theory

1
,
which it must be remembered is due originally to

Sellmeyer, may serve to solve the numerous difficulties in connection with
metallic reflection and transmission, which give us so much anxiety (p. 319).

As a last remark on the elastic theory of light we may cite the

remaining words of this Appendix :

Extinctivity, however, cannot help to solve the great difficulty as to re-

flection at the interface between two transparent mediums, in the case of

vibrations in the plane of the three rays. Green's attempt to explain this

difficulty by gradualness in the transition of physical quality from one
medium to another seems to me most unpromising if not utterly hopeless.
There remains Green's other suggestion of "extraneous force," by which as

we have seen he opened a door for explaining how the velocity of light in a

crystal can depend on the direction of the line of vibration irrespectively of

the line of propagation. If this suggestion becomes realised it must modify
the circumstances at the interface which determine the reflection. Is it

possible that it can lead to the true law for reflection of waves consisting of

vibrations in the plane of the three rays ? (p. 319).

[1783.] Sir William Thomson's Baltimore Lectures are undoubtedly
a most suggestive and interesting study such a study as brings the

reader into the creative workshop of a great scientist. But they
are a study which should be undertaken after rather than before the

perusal of what other leading physicists Green, Neumann, Lord

Rayleigh, Sarrau, Boussinesq etc. have achieved in the same field.

This seems to me the sole method of fairly weighing the strength
of the author's criticisms and of duly appreciating the importance of

his ideas. A careful study of this kind would go a long way to

convince the student that the elastic theory of light cannot in the

form of "the mathematical theory of perfectly elastic solids" (what-

1 See pp. 246-7 of the Lectures for considerations on the storing of luminiferous

energy by the attached molecules, especially in relation to anomalous dispersion.
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ever be their degree of aeolotropy) prove serviceable as a dynamical

explanation of optical phenomena.

[1784.] Elasticity viewed as possibly a Mode of Motion. Pro-

ceedings of the Royal Institution of Great Britain, Vol. IX., pp.

520-1. London, 1882. Popular Lectures and Addresses, Vol. I.,

1st Edn., pp. 142-6. This is a brief resume* of a lecture given on

March 4, 1881. Numerous examples are cited, spinning-tops,

hoops, bicycles, chains, etc., in motion where a stiff elastic-like

firmness is produced by motion. The lecturer suggested that the

elasticity of every ultimate atom of matter might be thus explained.

But this kinetic theory of matter is a dream, and can be nothing
until it can explain chemical affinity, electricity, magnetism,

gravitation, and the inertia of masses (that is, crowds) of vortices.

[1785.] (a) Oscillations and Waves in an Adynamic Gyro-
stntic System (1883).

(6) On Gyrostatics
1

(1883).

The titles of these papers only are given in Proceedings of the

Royal Society of Edinburgh, Vol. xil., p. 128. Edinburgh, 1884.

Their contents relate probably to
'

elasticity as a mode of

motion.' Some slight account of them will be found in Nature,

Vol. xxvn., p. 548.

[1786.] Steps towards a Kinetic Theory of Matter. Report of
t/"' British Association (Montreal Meeting, 1884), pp. 613-22.

London, 1885. (Nature, Vol. xxx., pp. 417-21
; Popular Lect>

and Addresses, Vol. I., 1st Edn., pp. 218-52.) This paper still

further develops the gyrostatic theory of elasticity, i.e. elasticity as

a mode of motion. In particular the author indicates how a model

spring balance might theoretically be constructed from a fur-link

frame, each link carrying a gyrostat so that the axis of rotation of

tli- fly-wheel is in the axis of the link which carries it (pp. 618-9).

He further extends the conception to the constitution of elastic

solids and to the model of a solid which would present the

magneto-optic rotation of the plane of polarised light (pp. 619-20).

The paper concludes by shewing that perforated solids with fluid

1 On the general theory of gyronUtica : me Art*. 819, Example (G), and ft46

845""" of Thomaon and Tail's Natural /Vu'/o-.pty, Part i l*e, 187.



470 SIR WILLIAM THOMSON. [1787

circulating through them might, if linked together, be made to

replace a system of linked gyrostats.

[1787.] (hi the Reflection and Refraction of Light. Philosophical

Mtt'/nzine, Vol. xxvi., pp. 414-25. London, 1888.

The expression for the work of an isotropic elastic medium is given

by the integral :

W = i/IKM
8 + 2/* (*** +V +O + /* (V + **** + V)} dxdydz.

If T be the resultant twist tins is easily thrown into the form :

r- j (
x + *,^ * 4, _

Integrating the term in curled brackets by parts we have

W= J///{(X + 2/1) fl
2 + 4/xT*[ fefydz

dv dv\ dw dio\ / du du

where I, m, n are the direction-cosines of the normal drawn outwards

from the element dS of the bounding surfaces. Now if the medium be

rigidly fixed at the bounding surfaces (i.e. u = v=w-0 there), then the

surface-integrals vanish. Further, the medium may change its density
at any surface, provided that at this surface u, v, w are functions of the

same function of x, y, z and t (Glazebrook : Philosophical Magazine,
Vol. xxvi., p. 523. London, 1888), and lastly there be equality of /n

on both sides of the surface
1

. Subject to these conditions, if there be a

fixed boundary or boundaries, W will always reduce to

JF= J///{(X + 2/x) 6* + 4/xr
2

} dxdydz.

Sir William Thomson now notes that this expression for the work
will be positive if X + 2/x is positive, or even zero, provided /w,

be

positive. Thus the medium as a whole will be stable. According to

our Vol. i. p. 885, the dilatation-modulus = J (3A. + 2/x) ;
hence if X = -

2/x,

this dilatation-modulus is negative, or the medium would collapse if not

1 The interfaces between two media being either closed surfaces or extending to

infinity, the surface-integrals may be thrown into the form :

4/xJJ{
lu (sx -6) + mv (sy -6) + nw (s,

-
0)}dS

=
2JS(lu + mv7v + nw )

dS - 2 (X + 2/x) jje(lu + mv + nw) dS.

Hence for media for which X + 2/x= 0, we must have at an interface l

the same for both, if these surface terms are to disappear. Sufficient conditions

would be : (a) M, v, w, the same and the tractions ZZ, w, the same for both media,
or (fe) u, v, w the same, ^ the same and the stretches 8X ,

sv ,
*g ,

the same for both

media. Case (n) does not appear to involve the sameness of /u.
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ti.vd to rigid boundaries. As an example of this kind of medium, Sir

William Thomson cites "homogeneous air-less foam held from collapse

by adhesion to a containing vessel, which may be infinitely distant all

round "
(p. 414). Such a medium "

exactly fulfils the condition of zero

velocity for the condensational-rarefactional wave
;
while it has a definite

rigidity and elasticity of form, and a definite velocity of distortional

wave, which can easily be calculated with a fair approximation to

absolute accuracy" (p. 415).

[1788.] Unlike Green, who made his ether absolutely incom-

pressible, Sir William Thomson suggests a " contractile ether," for

which \ +
'2fji

= 0, fixed to an infinitely distant containing vessel. He,
then, in a manner very similar to Green's, investigates the intensities of

the reflected and refracted rays at the interface of two media, and finds

FresnePs sine-law for vibrations perpendicular to the plane of incidence

and his tangent-law for vibrations in the plane of incidence (pp. 421

and 4:

In the paper itself the author takes p the same for both media with

a view of simplifying his results. In a Note added on pp. 500-1 of the

same volume of the Philosophical Magazine, Sir William Thomson
states that Glazebrook had pointed out to him that the equality of p.

for both sides of the interface of two media for which X + 2/x
= 0, is

needful for stability. Glazebrook himself extends Sir William Thomson's

hyixithesis of a contractile ether to double refraction, dispersion, etc.

in a }>aper which will be found in the same volume of the Phtiosojthical

Magazine, pp. 521-40.

[1789.] On Cauchys and Greens Doctrine of Extraneous

'e to explain dynamically FresneVs Kinematics of Double

Refraction. Proceedings of the Royal Society of Edinburgh,
Vol. XV., pp. 21-33. Edinburgh, 1889. This paper was read on

December 5, 1887. It is also printed in the Philosophical
M'i'i i:ine

t
Vol. xxv., pp. 116-28. London, 1888. Our references

will In- to the pages of the latter journal.
This is an important paper in that it gives an expression for

the energy of an incompressible elastic medium initially isotropic,

but subjected to a finite homogeneous strain, when a small

uniform sli<l<- is given to it in any direction. It then applies this

ilt to the elastic theory of light, the ether in crystals being

supposed incompressible but subjected to a surface stress which

produces a homogeneous strain throughout the interior.

[1700.] l^t .V,
-

1, .S',- 1, ,S'
n
- 1 be the princi|*l stretches of th.

hon 'Met a slid'- r. \\\\<^<- mitt m.i\ !.
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lected, be given to the material, so that the plane with direction-cosines

/', ?n', ri receives a slide in the direction /, ?/&, n. Let the directions of

the initial principal stretches be taken as axes of x
t y, z. Then the point,

whose coordinates are before initial strain x, ?/, ,
after the initial strain

and the slide is given by the coordinates #', y', z where :

x1 = xSl + apl, y = ySs + <rpm, \
,.

'

where p = l'xSl
+ myS2 + rizS.^ and IV + mm' + nri = 0.

Let the principal stretches after the slide <r be S
t
+ BSl 1, S2+8S2

-
1,

S9 + SS9 1, then they are to be found by making x"* + y'
z + z'

2 a maxi-

mum or minimum for variations of x, y, z, subject to the condition that

As typical result we find, neglecting o-
3

:

Whence:

'"-*-w.(*+fcT~
with similar values for &Si/ 2 and

Now let E + SE be the strain-energy in the condition Sl + BSlJ

Sz -f 8S2 ,
^3 + ^3. then it must be a function of Sl + 8Slt *S

y

2 + $S2 ,
S3 + $S3 ,

or, (neglecting cubes of the small quantities 8^, 8$2 , 8^3) 8^ miist by
Taylor's theorem be of the form :

,

-^- ...... (m),

where the quantities A, B, C, a
lt

blt clt a2 ,
52 ,

c2 are functions of

9u A.S2 ,
S3 .

Now since the medium is incompressible :

and therefore :

Oj /S<j A3 $2"^3 ^3^1

Hence still neglecting cubes we have relations of the type :

which enable us to throw
(iii) into the form :

-4/*5;*+^+Oj O2 O8 Oi

where A, E, (7, Glt H^ 7, are functions of the initial strains ,, *%, *%.
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[1791.] Noting that (mn' + nmj = \ -/-'-/'-' +2 (W -my - nV),
-e IF + mm + nn = 0, /*+ m* + n2 = 1 and I'* + 7^+ w'2 = 1

) with similar

relations for (nf + In')* and (Im' + ml'y*, we find by transforming (ii),

substituting in (iv) and neglecting (r
3
,
that :

N- LP- Mm*- Nn*

BSf-CSf CS*-AS* ASJ-3S*L = *= ^-

This result agrees with Sir William Thomson's on p. 124, if we put

20, i'//. 27 respectively for our 6
l

-
J4, T,

-
|5, A -

JC.

[
1 7 (

J2.] A physical meaning can be found for the constants A
y B,C.

The work done per unit volume in producing a change &Slf &S'2 ,
8S3 of

infinitesimal magnitude in Slt ^3, A^-J may, if Tlt T.2t T3 are the normal

forces per unit area in the directions of $,, ,, Sst be written :

TAMZ + T&ijs, + r3.y,52s.% = r,
8

f + T,
8

|
2 + r3^ ,

>, O, *5S

siiM-o 8^*83= 1. Hence by (iii) clearly 7*,, 71

,, 3T, are equal to 4, 5, C,
or the latter are the initial principal stresses. Clearly since the material

is incompressible

[1793.] Sir William Thomson now supposes a finite plate of the

medium of thickness h and very large area a to be displaced by the

shear <r, the medium being initially in a state of strain given by <&>',,
Stt S9 .

The bounding faces of this plate are supposed unmoved and all the solid

exterior to the plate undisturbed by a except some slight strain round

its edge. If a be given as some function of p the distance from one face

of the plate, f(p) say, then clearly :

>dp
= Q (vi).

Kurt her neglecting, since the area of the plate is very great, the work
d-.i.e at the edge of the plate as small command with the strain-energy
duo t<> sli lor the total strain-energy of the plate:

+ (A
- L

)
r +

(
R -M )

m* + (C - N)

/r>
--2(//I

+ ^-Ar -/,-

- L - M- \C) V| (**//*. . -'

i. i: IT. n.
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By wave-theory the problem is now to find the values of /, ??i, n which
rli

make the coefficient of I crdp a maximum or minimum. This reduces
Jo

to finding the principal diameters of the section in which the ellipsoid

-L- M- tf n* - N z2 = const.

is cut by the plane
I'x + m'y + n'z = 0.

These two directions of /, m, n are those for which the force of restitution

and the shift coincide in direction. The magnitude of the velocity V of

the two simple waves with fronts perpendicular to I', m', n is then given

(viii),

where p is the density of the medium and {J}
1

is the maximum or

minimum value of the factor in curled brackets on the right of (vii),

such value being obtained from the values of 7, m, n found for the

principal axes of the section of the above ellipsoid (p. 125).

[1794.] Taking the case of a wave-front perpendicular to the

principal plane yz, we have I - and the factor in curled brackets

in (vii) will then be a maximum or minimum (p. 125) either for

(vibration perpendicular to principal plane)

or, for I = 0, m = n, n = m'

(vibration in principal plane).
In the first case :

V2
P = (M+N) + (-M)m"2 + (C-N)ri* .........

(ix),

and in the second case :

F2
p = L + Bm'* + Cri* + ^(^ + 1,- 2L - \B - \C} m'W. . . (x).

According to Fresnel's theory Vz
p in (ix) must be a constant, and

the coefficient of m'2 "2 in the value of F 2

p in (x) must vanish. These

results, taking into account the symmetrical results for the other prin-

cipal planes, lead to :

Hl + Il
= 2L- \A, /! + Gl

= 2M- \B,

since A+fi + C = Q.

1
{J} is clearly the elastic modulus for the strain when the shift and the force of

restitution are concurrent,
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If fi be a function of Slt $2 ,
Ss we find from these equations in the

in aimer indicated by Sir William Thomson on p. 126 that:

1 . / 1 1 I

where _ =
.^_

+ _ + _

in id j5, C, Jf, ff, HI, /,, are given by proper interchanges.

[1795.] Substitute (xi) in (iv) and we find :

,ltS, H; f, , /(SS,)'**"-
V its. ta, &s,
+ +

- +

To terms of the third order the coefficient of n'/S* vanishes owing to

the considerations stated in Art. 1790 above. To the same order the

coefficient of // is equal to

l l

or to

Thus we hav-

Thus, if
/x'

be constant, we have (p. 127),

If in the value (iv) of SE we put ,
= &, = ,= !, S^j-O, we find,

since ^ = B = C - 0, and ff
l
= 7j = p! by (xi) :

Now for a pure sliding strain (Sa + &Sa) ( 8 + 8S3 ) = 1, whence it may
easily be shewn that neglecting terms of the cubic order, the slide a is

given by

!

or, if // be considered as a constant, we see that it is the slide-modulus

he isotropic material before initial strain.

[1706.] If the value of {./} in (viii) be calculated by aid of (xi) we
have (p. 128):

*\
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Clearly the velocity of a wave for vibrations parallel to any one of three

directions of initial principal stretch may be found by dividing th<>

velocity of transverse vibrations in the isotropic material by the corre-

sponding ratio of elongation. Sir William Thomson indicates that tin-

results are entirely in agreement with Fresnel's Kinematics of Double

Refraction, and therefore of course with the view that the vibration is

perpendicular to the plane of polarisation. If we take the vibration in

the plane of polarisation, V in (x) must be constant, for this would now
be the ordinary ray. But this involves A = B = C =

0, or perfect isotropy
without of course double refraction.

[1797.] The general method indicated in this memoir of cal-

culating the strain-energy when there are initial strains seems of

great value. So far as it relates to the ether the assumptions
made are that in a crystal (i) the ether is incompressible, (ii) is

in a state of homogeneous initial strain, and (iii) that the quantity

fi of our Arts. 1794-5 is a constant for all values of the initial

strains. The investigation seems in several important respects

superior to that of Green: see our Arts. 917* and 1779 (p. 465).

[1798.] Molecular Constitution of Matter. Proceedings of the

Royal Society of Edinburgh, Vol. xvi., pp. 693-724. Edinburgh,
1890. M. P., Vol. in., pp. 395-427. This paper although of

very great interest only explicitly touches on the topic of our

History at one or two definite points and then, alas ! without the

mathematical analysis which " must be deferred for a future

communication": see the final sentence of the memoir. One

of the chief results of the memoir is that Sir William Thomson

withdraws the reproach he had previously cast on Boscovich's

theory : see our Art. 924*. He remarks :

Without accepting Boscovich's fundamental doctrine that the ulti-

mate atoms of matter are points endowed each with inertia and with

mutual attractions or repulsions dependent on mutual distances, and
that all the properties of matter are due to equilibrium of these forces,

and to motions, or changes of motion, produced by them when they are

not balanced; we can learn something towards an understanding of the

real molecular structure of matter, and of some of its thermodynamic
properties, by consideration of the static and kinetic problems which it

suggests. Hooke's exhibition of the forms of crystals by piles of globes,
Navier's and Poisson's theory of the elasticity of solids, Maxwell's and
Clausing' work in the kinetic theory of gases, and Tait's more recent

work on the same subject all developments of Boscovich's theory pure
and simple amply justify this statement ( 14).
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Sir William Thomson's increased respect for Boscovich's theory

may possibly have arisen from his discovery that it will suffice to

explain multi-constancy. We shall consider below the conditions

by which he attains this result, while avoiding the limitations of

Cauchy and Poisson.

[1799.] The memoir opens with some introductory remarks

which belong so essentially to our subject that they may be

quoted here :

Tin- scientific world is practically unanimous in believing that all

tangible or palpuMe matter, molar matter as we may call it, consists of

groups of mutually interacting atoms or molecules 1
. This molecular

constitution of matter is essentially a deviation from homogeneousness
of .suh>tance, and apparent homogeneousness of molar matter can only
be homogeneousness in the aggregate. "A l>ody is called homogeneous
when any two equal and similar parts of it, with corresponding lines

parallel and turned towards the same parts, are undistiuguisbable from
one another by any difference in quality" [Treatise on Natural Philosophy,
Part ii., 675-8]. I now add that unless the "part" of the body referred

to consists of an enormously great number of molecules, this statement

is essentially the definition of crystalline structure. It is, indeed, very
difficult to imagine equilibrium, static or kinetic, in an irregular random
crowd of molecules. Such a crowd might be a liquid, I can scarcely
see how it could be a solid. It seems, therefore, that a homogeneous
isotropic solid is but an isotropically macled crystal; that is to say, a

solid composed of crystalline portions having their crystallineMaxes or

lint's of syimii. -try ili>triluted with random equality in all directions.

The proved highly perfect optical isotropy of the glass of object-glasses
of great refracting telescopes, and of good glass prisms, seems to demon-
strate that the ultimate molecular structure is fine-grained enough to let

tin-re be homogeneous crystalline portions, which contain very large
numbers of molecules while their extent throughout space is very small

in comparison with the wave length of light ( 1).

William Thomson's remarks as to the "
isotropically macled

crystal
" seem to suggest Saint-Venant's amarphic bodies.

Th.-se bodies (see our Arts. 231 and 308) have_
elastic constant*

her of the type: 2d+d"-<Jbct
or of the type:

_'./ 4- d' - J (b + c).
In both cases isotropic "amorphic bodies" have a

single iutercoiiHtttnt relation 2d + il'=n. \\hieh reduces their stress-

relations tO the t
VJM-.S

:

>*

Editor : tory can hardly DAM this wntenoe without a word of

respectful protest. What science seems to him to have achieved is the denarii

(iu some respects very accurate) of the sequences of the perceptual world
of sense-impressions) by aid of a conceptual model of atoms and molecules which

corpuscles have not necessarily equivalents in the material universe.
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or, to the usual bi-constant types. On the assumption of rari-constancy
we should further have d = d'. On both these hypotheses therefore there

is no distinction in the elastic constants between an absolutely homo-

geneous isotropic solid and an isotropic amorphic body (i.e. an isotropi-

cally macled crystal). The reason for this apparent paradox seems to

lie in the fact that the elements, the action between which we consider in

our elastic theories, are supposed to contain an enormously great number
of the individual crystals, and so are dealt with as if they were essentially

homogeneous. If the element does not contain this great number, then,
I think, the above stress-strain relations must not be considered as

holding for the stress across any individual element but only for the

mean of the stresses across a great number of individual elements

subjected to the like strain. I think this idea might be used to throw
some more light on the question of bi-constant isotropy. Such bi-con-

stant isotropy may be physically due to amorphism, such amorphism
not being so fine-grained as to admit practically of the application of

that principle of absolutely homogeneous distribution to which the

rari-constant elasticians appeal in calculating the stresses from their

molecular hypothesis.

[1800.] 3-13 deal with Space-Periodic Partitioning and

homogeneous distributions of assemblages of points. To consider

these matters would lead us beyond our limits. They are

still further discussed in 45-61, which contain a Summary
of Bravais Doctrine of a Homogeneous Assemblage of Bodies,

and deal generally with what Sir William Thomson calls the
" molecular tactics" of crystals. Attention may be drawn to

the explanation given of H. Baumhauer's discovery of the artificial

twinning
1

of Iceland spar by means of a knife in 58-61. The

structure of Iceland spar is here built up as suggested by Huyghens

(see our Art. 836 (a)) of oblate ellipsoids of revolution, and the

twinning is described on either of two hypotheses by aid of the

turning and sliding of these oblates, accompanied by a shrinkage
and an elongation of their figures. The explanation is thus based

on a geometrical change in certain rather artificial elements of

which Iceland spar is assumed to be built up, and it presents

to my mind the old difficulty as to what is the exact physical

equivalent of these closely packed geometrical globes and ellipsoids.

[1801]. 14-44 entitled: On Soscovich's Theory, and 62-71,
On the Equilibrium of a Homogeneous Assemblage of mutually Attracting

1 The subject of the artificial twinning of crystals is treated with ample reference

to the original memoirs of Baumhauer and others in Th. Liebisch

Krystallographic, S. 104-18. Leipzig, 1891.





ADDENDUM TO ARTS. 1801-5.

On June 15, 1893, Lord Kelvin communicated a paper to the

Royal Society entitled : On the Elasticity of a Crystal according
to Boscovich. I owe to the courtesy of the author the sight of a

brief abstract of a portion of this paper. Its contents refer to the

following topics : (i) Demonstration that the simplest Boscovichian

system leads to rari-constancy, (ii) Demonstration that a homo-

geneous group of double points enables us to give any arbitrarily

assigned value to each of the twenty-one coefficients by assigning

very simple laws of variation to the forces between points, (iii)

Determination of the values to be assigned to the twenty-one
coefficients so as to render the medium incompressible. The

discussion seems based on action between nearest neighbours.
The paper may remove some or all of the difficulties felt by the

Editor in the paper of 1890, and the reader is accordingly re-

quested to consider our Arts. 1801-5 in conjunction with this new

paper. Models illustrating the " molecular tactics
"

of crystals

discussed in our Arts. 1798-1805 were exhibited at the annual

soiree of the Royal Society, June 7, 1893. A brief account of

them (as well as of a model of an incompressible elastic crystal

with twelve arbitrarily given rigidity moduli) will be found in

Nature, Vol. 48, p. 159. London, 1893.

To face p. 479 of Part 11,
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deal more closely with our subject. They begin by describing
the construction of various homogeneous assemblages of points. A
homogeneous assemblage of points having been denned as *' an assemblage
which presents the same aspect and the same absolute orientation when
vi.-wed from different points of the assemblage" such an assemblage
as the centres of equal globes piled homogeneously (21 and 45),
Sir William Thomson tells us that he has investigated the moduli of

elasticity produced by a homogeneous strain in such an assemblage. He
finds that the solid so constituted is not elastically isotropic it

deal only with t'oives Iftineen nearest iieiylibours, and suppose, as on

Boscovich's theory, that the forces act in the lines between pairs of

points and are functions only of the distances between individual pairs
of points (i.e. admit no modified action). The solid possesses in fact the

properties of a cubic crystal, i.e. its stress-strain relations may be

expressed in terms of the three moduli : dilatation-modulus /', slide-

mot lulus for a face /i,, and for a diagonal plane /x.,.

1

Extending the investigation to include forces between next nearest

neighbours, the moduli still remain unequal, but can be equalised by
certain hypotheses as to the forces between points. If they are equalised
then we find uni-constancy results :

...it will no doubt be found that this restriction is valid for any sin^K-

equilibrated homogeneous distribution of points, with mutual forces accor<

to Boscovich, and sphere of influence not limited to nearest and next-nearest

neighbours, but extending to any large, not infinite, number of times the

distance between nearest neighbours ( 65).

[1802.] In 27 Sir William Thomson seems to indicate that for

any single homogeneous assemblage of Boscovichian atoms he finds tin-

relation :

1 1 this be so then in 65 the cubical isotropy of which he sjMuks
i.e. the elasticity of a cubical crystal is not the cubical isotropy of

multi-constancy, but as we see from the footnote to the previous artielr.

it involves d=f', or ktuyi = ixiwi the rari-constant condition: * our

l>. 77, ft n. II* nee the single homogeneous assemblage always lead

rari-conxtancy, whether or not we cause it to lead to uni-constancy

by taking /*,
--_

^L,. Thus Poisson's restriction is essential to such a system

apart front the question of isotropy.

[1808J Sir William Thomson tells us ( 28) that the uni-

coustant relation is not obligatory \\li.n:

the elantic solid consists of a homogeneous assemblage of doul.l-

triple, .r multiple IJose >\ i.-h atoms, < Mi the contrary, any ar
chosen values may be given to the bulk-modulus and to the rigidity, by

' With the notation of our ArU. 1208 (d) and f-i(a + ty*) **( -A *!*
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proper adjustment of the law of force, even though we take nothing
more complex than the homogeneous assemblage of double Boscovich
atoms above described.

The two-atom system here referred to consists of two simple

homogeneous assemblages of points:

reds and blues, as we shall call them for brevity ;
so placed that each

blue is in the centre of a tetrahedron of reds and each red in the centre

of a tetrahedron of blues
( 69).

Such an assemblage "the next-to-the-simplest-possible mode
of arranging an assemblage of points" Sir William tells us

produces an elastic solid realising Green's ideal, and is of course

much easier to conceive than the model of the Baltimore Lectures:

see our Arts. 146 and 1771. Unfortunately the mathematical

analysis is not as yet published, so that it is difficult to realise

whether the statement made depends in any manner on : (1) a

difference between the forces between two blues, two reds and a

red and a blue, or on (2) the extent of the sphere of intermolectilar

action. That a very great number of intermolecular actions

should go to make up the stress across any elementary plane in

an elastic solid and that these actions should be distributed

practically uniformly in all directions seems essential to our

notion of a practically isotropic elastic solid. It is certainly

involved in the principles from which Poisson and Cauchy deduced

rari-constant elasticity on the basis of Boscovich's theory. When
the condition that a very great number of intermolecular actions

cross an elementary plane is not satisfied, then it is difficult to

treat the assemblage of points as situated in a like manner with

regard to every elementary plane of section, and we thus lose the

notion of an isotropic medium.

[1804.] Failing the mathematics of the multi -constant Boscovichian

system, we are thrown back on a mechanical model, described by Sir

William in 67-8, as a means of elucidating the double-atom homo-

geneous assemblage.

Suppose six equal and similar bent bows taken and freely jointed

together so as to form a tetrahedron. Take four equal bars and joint
them to a boss to be placed at the centre of this tetrahedron, and let

the bars connect the boss with the angles of the tetrahedron. If the

bars are just the distance from the centre to the angles in the unstressed

condition of the tetrahedron the rigidities (i.e. the two slide-moduli as

in our Art. 1802) remain unaltered by the insertion of the bars.
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It the tie-struts are shorter than this, their effect is clearly to augment
the rigidities ;

if longer, to diminish the rigidities. The mathematical investi-

gation proves that it diminishes the greater of the rigidities more than it

diminishes the less, and that before it annuls the less it equalises the greater
to it ( 67).

Looked at from the standpoint of a Boscovichian system it would
seem that the forces between the points at ihe tetrahedron angles

might thus be of a different sign to the forces between the point at the

centre and those at the angles in the case where the two rigidities are

equal or there is isotropy. The model is evidently a framework with

sujiernunierary bars (see our Arts. 1772-3). What would be the nature

of the force between two centre-points in the Boscovichian system is

hardly suggested by the mechanical model, nor does the model include

actions other than those of nearest neighbours.

[1805.] 71 concludes the memoir as follows :

Leaving mechanism now, return to the purely ideal mutually
attracting points of Boscovicli

; and, as a simple example suppose
mutual forces to be zero at all distances exceeding something between

and v/2.

Let the group be placed at rest in simple equilateral homogeneous
distribution : shortest distance . It will be in stable equilibrium,

constituting a solid with the compressibility, and the two rigidities
referred to in 27 above

[i.e.
those noted in our Art. 1802]. Condense

it to a certain degree to be found by measurements made on the

Boscovich curve 1

,
and it may become unstable. Let there be some

means of consuming energy, or carrying away energy ;
and it will fall

into a stable allotropic condition. The Boscovich curve may be sm-h

that this condition is the configuration of absolute minimum energy ;

and may be such that this configuration is the double homogeneous
assemblage of reds and blues described above. Though marked red and
I 'luc, to avoid circumlocutions, these points are equal and similar in all

qualities.

According to the above statement it would almost appear as if

uni-constant isotropy were the normal condition and bi-constant

isotropy a special allotropic condition which might be produced
in uni-cniistaiit substances by a process of (nxlciisatiuu. At an\

rate it seems marked by intermolecular four U-ing attract

between certain molecules and repul>i\i 1>< tween others. Until

have before us tin |.r..mi-rl in;itl..-mati-nl investigation it \\ill

be impossible to full\ realist- ih !' th< arrangement by

curve which connects intermolecular force with intermolecular .

and which is marked according to Boscovich by numerous transition* from attru.

to repulsion.
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which Sir William Thomson has deduced bi-constant isotropy
from a Boscovichian system of points, nor till then can we clearly

recognise the features in which the homogeneity of this system,
and the extent of its sphere of intermolecular action differ from

those of the systems from which Poisson and Cauchy start their

investigations.

[1806.] On a Mechanism for ilie Constitution of Ether. 1'ru-

ceedings of the Royal Society of Edinburgh, Vol. xvn., pp. 127-32.

Edinburgh, 1890. The author describes a model consisting of

telescopic rods connecting
" an equilateral homogeneous assemblage

of points" and further of rigid frames built up of three mutually

rectangular bars each of which carries four "liquid gyrostats" and

rests on a pair of the telescopic rods which go to form a tetrahedron

of the equilateral homogeneous assemblage. Such a model :

has 110 intrinsic rigidity, that is to say, 110 elastic resistance to change of

shape ;
but it has a gwasi-rigidity, depending on an inherent quasi-

elastic resistance to absolute rotation. It is absolutely non-resistant

against change of volume and against any irrotational change of shape.
Or it is absolutely incompressible (p. 131).
A homogeneous assemblage of points with gyrostatic quasi-rigidity

conferred upon it in the manner described... would, if constructed on a

sufficiently small scale, transmit vibrations of light exactly as does the

ether of nature. And it would be incapable of transmitting condensa-

tional-rarefactional waves, because it is absolutely devoid of resistance

to condensation and rarefaction (pp. 131-2).

[1807.] This paper is reprinted as 7-15 of Article 0,

Vol. in., pp. 467-72 of the Mathematical and Physical Papers.

1-6 of this Article (pp. 466-7) contain the translation of a

Note from the Comptes Rendus, T. cix., pp. 453-5. Paris, 1889.

This Note describes a gyrostatic model of the ether. It is built up

by bars terminating in little cups resting on a system of spheres,

these bars carrying gyrostats. Before the gyrostats are "energised"
the model represents a perfectly incompressible quasi-liquid.

When they are "energised" the model possesses a rigidity not

like that of ordinary elastic media, but which depends directly on

the absolute rotations of the bars. This relation between quasi-

elastic forces and absolute rotation is akin to what we require for

the ether as it offers resistance to "irrotational distortion." It is not

however such a complete representation of the ether as the model
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referred to in the preceding article, for the irrotational distortion of

the structure requires a "
balancing forcivc" or system of force.

[1808.] Motion of a Viscous Liquid ; Equilibrium or Motion

of an Klnxtic Solid; Equilibrium or Motion of an Ideal Substance

called for brevity ETHER; Mechanical Representation of Magnetic
Force. This paper was published for the first time, May, 1890, in

tin- Mtitln'in'ifi'-dl and Physical Papers, Vol. ill., pp. 436-65.

Cambridge, 1890.

It compares the analytical expressions in the form of equations,

which represent the physical properties of viscous liquid, elastic

solid and ether.

[1809.] 1-11 are devoted to the viscous liquid. Assuming that

stress is proportional to speed of strain (see our Arts. 1264* and 1744)
the stresses are of the following type :

k du fdw dv^

where /* is a constant termed the *

viscosity,' p is the mean pressure, and

u, v, w are the speed-cornpoiients of the point #, y, z of the fluid. If p
be the density, and X, Y, Z the body-forces per unit mass, then the

type of the equations of motion is :

(du du du du\ dp
P \~jl + U-J- + V - +w -} = pV*u + pX - ~

(n),r
\dt dx dy dzj

win -iv it' the motion be slow we need retain only p -j- on the left-hand

side.

[1810.] $ 12-13 deal with the equilibrium or motion of an iso-

t
!")>!< elastic solid.

The stress-equations are now of the form :

3X
k
du

ili-' dilatation-coefficient, /A is now the rigidity and u, v
t
w

the shifts and not the speeds. The '

pressure
'

p will be given by :

I

where Fw the dilatation modulus or l.ulk modulus.

Finally the shift-equations will be of the type:



484 SIR WILLIAM THOMSON. [1811

When A//X oc the stresses in
(i)

bis become identical in form with

(i),
and the body-shift-equations are of the type :

-

Sir William Thomson speaks of (iv) bis as being true for any elastic

solid
( 13) : This is certainly not the case if the constant in

(iii)
be the

bulk-modulus and p the '

pressure
'

as he supposes. The constants of the

pressure in the stress-relations (i) bis and in the body -shift-equations (iv)
are only equal to unity as in the case of a viscous fluid if

A.//M
= <x> .

Our author draws attention to the case of F = oo
,

du dv dw
or -j- + j-+-j~-^ ........................ (v),dx dy dz

i.e. that of an incompressible elastic solid, spoken of as a jelly, /x being
finite, equations of the types (i) and (iv) bis now hold.

We have then always four equations to find u, v, w and p. Their
solution for the case of equilibrium is easily written down :

The three equations of type (iv) by aid of
(iii) lead to

dX dY dZ

Thus p is the potential due to an ideal distribution of matter of

density
F (dX dY dZ\

\dx
+
dy

+

and by aid of (iv) u, v, w are also at once expressible as the potentials
due to certain distributions of matter : see our Arts. 1653 and 1715-6.

Sir William Thomson terms that distribution of body-force on
matter continuously occupying space for which :

dX dY dZ
-j- + , + -j- = 0,dx dy dz

a circuited forcive, and says that in this case p = and u, v, w are the

potentials due to distributions of matter of densities :

since /x
V2w + pX = 0, /x

V2
i; + pY = 0, /x^'w + pZ = ...... (vi).

Thus if the forcive be circuital, the shifts will be the same whatever
the degree of incompressibility of the infinite body may be

( 36-8).

[1811.] 14-20 deal with the Equilibrium or motion of an ideal

substance calledfor brevity, Ether.

This ether is described as follows :

What I am for the present calling ether, is an ideal substance useful for

extending the " Mechanical representation of electric, magnetic and galvanic
forces" ......[see our Art. 1627] ...... For the present I suppose it absolutely
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incompressible. It has no intrinsic rigidity (elastic resistance to change of

>h;q>e) ;
but it has a </?/W-rigidity depending on an inherent MMMMMMtk)

resistance to absolute rotation. This
//////.</- ri.'idity may be called simply

rigidity for brevity ;
but when it is to be distinguished from the known

natural rigidity of an elastic solid it will be called gyrostatic rigidity ( 14).

Sir William Thomson accordingly introduces shears proportional to

the twists (see our Vol. I., p. 882), besides which there may be something
of the nature of fluid pressure. He thus has the following system of

stresses :

^ ^ ^ _ ~ fdw dv- p > '* m
*\yf-

du dw\ fdv du- m

These lead us at once to equations identical with (iv) hi* and (v)
above for an incompressible elastic solid.

We may then ask what is the difference between this ether and a

jelly 1 Sir William Thomson answers :

N" difference whatever in respect to the equilibrium-displacement, or the

motion, throughout any portion of homogeneous substance of either kind, if

the position and motion of every point in the bounding surface of the portion
idered are the same fur the two, l>ut in respect to the traction on the

bound ing surface of a detached portion, and therefore also in respect of the
rfacial relation Iwtween portions of the substance having different rigidi-

ties, there is an essential difference between the two, of vital importance for

the inclusion .if magnetic induction in our mechanical representation ( 17).

When there is equality of rigidity on either side of an interface,

while tl ::>-"ntiiiuity due to a difference of body-force or of

density, then all the interfacial conditions are the same for both jelly

and ether, and may be best expressed by saying that
//

and the nine

differential coefficients of u, r, w must have equal values for the two
media at th< interface (20).

[1812.] $21-8 deal with K,,.T,,>I f stressed jetty or of
piker.

strain-energy per unit volume of the stressed ether is

wh-iv r is the resultant twist.

i-u'v JM-I-
unit volume of the jelly

=
ft (^ + if + f.) + J/* (cr,,

+ * 4- crV)-

It' tli.' boundary of a volmm- I'..t' jelly or ether be fioo*l %
then the

in -ni !,'> involve. 1 in | tied strain "f .-itlin- substance within

volume is the same for both (24) : see our Ait 1 787.

Examples of the correspondences between jelly strain-energy and

ether strain-energy are given in 25-8. Their bem
on .

.tgnetism than
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[1813.] 29-45 are entitled: Mechanical representation of the

magnetic force of an electro-magnet.

Imagine a piece of endless cord, in the shape of any closed curve, to

be imbedded in a jelly, and a tangential force to be applied to this cord

uniformly all along its length. Further let the substance of the cord

be exactly the same as that of the jelly. This "
tangential drag

" on
the jelly causes stress and strain throughout the jelly, becoming nil

only at infinitely great distances. The twist at any point of the jelly
caused by this circuital force is equal

" to half the magnetic force at the

corresponding point in the neighbourhood of a conducting wire, taking
the place of our tangentially applied force and having an electric

current steadily maintained through it
"

( 30).

This is Sir William Thomson's " mechanical representation
"

of

electro-magnetic force due to a closed circuit, and completes what he

had reserved for a future paper in 1847 : see our Art. 1627. Various

special cases are illustrated; thus a circular circuit in 31-2; equal
and opposite currents in straight parallel conductors in 33-5. More

general cases are referred to in 36-40.

Thus if X, 7, Z denote components of electric current, and F, G, H
the components of magnetic force due to the current, the mechanical

representation of an electro-magnetic field consisting of any distribution

of closed electric currents may be obtained from the jelly as follows :

Take the components of magnetic force equal to twice the twists,

then by means of (v) we find :

- ---- -- _ - - V
Uij

- = V
fj

- - -=

dy dz dz dx dx dy
whence we see by (vi) that :

the components X, F, Z of electric current, i.e. dlljdy
-
dG/dz,

dF/dz dH/dx, dG/dx dF/dy divided by 4?r, are proportional to the

body-forces pX, pY, pZ of the previous investigation for the jelly or

for any unlimited elastic solid in the case of a " circuital forcive
"

: see

our Art. 1810. We see further that if an infinite homogeneous elastic

solid be acted upon in some parts by circuital forcives, then at points
unaffected by force :

F-d* G--* H -dx
~dx y

~di ~dz'

or the twist-components are the differentials of a single function x- The

electro-magnetic analogue to x is a quantity differing only by a constant

factor from the magnetic potential at x, y, z of the electric current system
X,

[1814.] 41-3 deal with the SyntJiesis of a circuital forcive from
1 The reduction of the strain-energy to a single term proportional to the square

of the twist in the case of a jelly with rigidly fixed boundaries was pointed out

by the Editor of this History in a Note on Twists in an infinite elastic solid;

Messenger of Mathematics, Vol. xni., pp. 84-5. Cambridge, 1884. A somewhat
different elastic analogue to the electro-magnetic field is given in the same paper.
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[I , q Cm . q fnu = - -
I
- d*

t
v = j

-
\
-

ds, w =
-p

- -
4717* J r 4irp J r \-irp. j r

ugle force applied through a space coiu/'rlsnJ irif/iiu <m injiitif>-!i/

small distancefrom a
y 'iujtressible elastic solid (jell;/).

Let q denote the tangential force per unit length of the circuit, and
/, m, n the direction-cosines of its element ds, distant r from the point
of which a, v

t
w are the shifts, then Sir William Thomson deduces

from his solution of the elastic equations given in our Art. 1810 that:

q [I , q= - *-
I
- d* v =

wtil. x = _,

Q being the solid angle subtended by the circuit at the point for which

X is ascertained, and the integrations for * extending round the circuit.

The analogue to the magnetic potential is here obvious.

[1815.] In conclusion Sir William Thomson asks why, the ana-

logies being so complete, we cannot be satisfied with the jelly for a

hanical representation of electro-magnetism ? The answer lies in the

difference of conditions at the interface between two jellies and between
two substances of different magnetic permeabilities in a magnetic field.

The magnetic force being in our analogy the rotation of the jelly, or ether,
we see...that the proper interfacial condition 1 between substances of different

rigidity (/*) is not fulfilled by the jelly, and is fulfilled by the ether ( 44).

Referring to his 'ether' Sir William Thomson draws attention to

the fact that it :

whether extending to infinity in all directions, and having vesicular or
tubular hollows, or a finite portion of it given with a boundary of any shape,

provided that only normal pressure act on the boundary, takes precisely tin-

same motion for anv given motion of the boundary as does a frictionless

incoi: liquid in the same space, shewing the same motion of boundary
(46).

The importance of this, e.g. in the length it goes towards explaining
Sir G. G. Stokes' theory of aberration, is pointed out

( 46), but at the

same time Sir William indicates how very obscure still remains our

knowledge of the real relations between ether, electricity and |>on-

derable matter (47)

[1816.1 Ether, Electricity, and Ponderable Matter. Mathematical
and Physical Papers, Vol. lii . pp. 484-515. Cambridge, 1890. This

paper constituted part of th< Tioi. Initial Address to the Institution

loctrical Engineers, delivered on .January 10, 1889.

I- contains some references to the elastic solid analogies of tin-

1
Equality of normal components of magnetic force and proper
ntial components to the magnetic permeabilities on either tide the interface.
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ether and a description of a gyrostatically loaded network ( 21-6),
which would serve in some respects as a model for the ether The whole

is more fully developed in the memoirs referred to in our Arts. 18067.
The address concludes with words of hope in future knowledge following
on a confession of present ignorance i.e. the inadequacy of existing
theories to represent the relation between ether, electricity and pon-
derable matter.

[1817.] The third volume of the Mathematical and Physical Papers
closes with two papers (Arts. cm. and civ.), which may be looked upon
as appendices to the Encyclopaedia article on Elasticity. The first

deals with Tait's experimental results for the compressibilities of water,

mercury and glass, and the second gives inter alia (p. 522) the velocity of

elastic waves (distortional, pressural in an infinite solid, longitudinal in

rod) in iron, copper, brass and glass, as well as the moduli for the same
four materials.

[1818.] Summary. It is a very difficult task to preserve an

accurate historical stand-point with regard to a physicist or, as

we ought to call him, a naturalist (M. P. Vol. ill., p. 318) so close

both in time and country to ourselves as Sir William Thomson, now

Lord Kelvin. We can hardly see him in the same perspective as

we see Saint-Venant or Franz Neumann. At the same time the

function of this History would hardly be fulfilled did its Editor

leave this chapter without some slight summary of its contents.

To the future must be left any real test of his critical accuracy.

A distinguished biologist once stated to the Editor of the

present work that he had for many years given up endeavouring

to ascertain what others had done or were doing in his subject.

To follow the great mass of contemporary work meant to expend his

time in historical investigations rather than in original research.

When he devoted his energies to the latter, he was fairly certain

that fifty per cent, of his published results would be new contribu-

tions to scientific knowledge. A man of Sir William Thomson's

surprising productivity covering almost every field of physical

science must perforce be occasionally content with the rediscovery

of known laws. The reader of our present chapter will have

marked instances of this in the researches on the elasticity of

springs, in those on light in the Baltimore Lectures and more

particularly in the investigations on the relations of stress and

electro-magnetic properties. The repetitions are, however, small
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as compared with the new material, or with the fertile conceptions,

which abound even in the treatment of old themes.

In two points a further criticism will also probably be raised

in the future, a paucity of experimental demonstration, which

occasionally accompanies the statement of an important physical

law compare for example the elaborate experiments of Wiede-

mann, Ewing or Bauschinger with Sir William Thomson's in

similar fields, and further the absence of mathematical analysis
at points where the less gifted are liable to stumble, and may feel

compelled either to reserve their judgment or to accept on faith

compare for example the molecular discussions of Saint-Venant

and the investigations on crystals of Franz Neumann with those of

Sir William Thomson's Molecular Constitution of Matte)' or his

M'lthei/Kitir'tl Theory of Elasticity. But this occasional paucity of

experiment or analysis is largely due to our author's eagerness to

reach the physical law as the all-important goal ;
he rightly recognises

experiment and analysis as only means and not ends in themselves.

H'- is in this a pleasing contrast to those mathematical elasticians

who are far more desirous of obtaining a complete solution, what-

ever be its physical value, than reaching any approximation,
however important its bearing on natural facts.

Of the great advances in our subject which will always be

associated with the name of Sir William Thomson we must

mention especially the accurate foundation of the science of

thermo-elasticity, the suggestion that the principles of elasticity

ought to be applied to the earth itself, and the first consideration

following upon this suggestion of tides in the solid earth. Equally
fruitful of results if indeed they are largely negative results

have been his researches on the elastic theory of light, leading as

they have done to the rejection of the old elastic theories. Here

it is that be has suggested with his gyrostat ically loaded nudium
a new kind of elasticity or quasi-elasticity, which bids fair to open

up an entirely new field of investigation, and which may in the end

make elasticity the predominant physical science.

Not only in the border-land of optics, electro-magnetism and

molecular physics have Sir William Thomson's researches widened

<ur kimwle.l^e .t tin- possibilities of elastic theory, but in CMMJUMC-

tiuu with P. O. Tait his geometry of strain and his treatment of

rods and plates have largely contribute, I t. our appreciation of

1 K. IT. II. -T2
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pure elastic problems, and further have rendered the discussion of

them accessible to British students. In these latter cases, as well

as in his more recondite researches, there is that fertility of idea,

and that mark of genius which have made Sir William Thomson

the leader and characteristic representative of physical science in

our own country to-day.
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Abaa, use of, in strength of materials,
921 and ftn.

Aberration, of light, Boussinesq's theory
of, 1449, 1478, 1482; Sir William
Thomson on, 1815

Adams, W. A., on railway waggon springs,
969 (a)

Adnhiria, hardneas of, 836 (d); optic
axes of, change with temperature, 1218,
ftn.

Aeolotropy, defined by Sir \V. Thomson,
1770; Rankine obtains a 16-constant,

wave-motion in aeolotropic solid,
'. -5; dilatation moduli for,

ITTti ()] w.-Mike annulled. 17

: strain-energy for aeolotropi
n 'akewneaaea' and weblike aeolo-

tropy are annulled and there ia no
dilat 9 ; discussed by

iwn, 1780; conditions f

compressible, 1776 (a), 1779

<ify, suggested by Ban-
to explain double refraction,
lered by Lord Rayleigh, rejtoUd

: \V. Thomson on ground of Sir

'. Stokea' experiment* on Iceland

spar, 17H1

After-strain, general remarks on, 748 9

distinguished from frictional action*

750 (a) ; not a pure frictional resistance

and masked by term viscosity, 1718 (6),

1743; is not proportional to load, 760

(}>); chief cause in producing subsi-

dence of oscillations according to

Seebeok, 474 (r)-c/: in -ilk and

spider filaments, 697
(ft);

in glass and
silk threads, (i) p. 514, ftn.; experi-
in. utally discovered in metals by Kup
ffer, 726, his discussion of, by torsional

vibrations, 734 ; its effect in subsidence

of torsional vibrations, 17448 ; effect

of working on, 750 (ft); how influenced

by change of temperature, 756; ne-

glected by Wertheim in torsion experi-
ments on metals, 803, his erroneous

statement as to, for metals and glaaa,
1 > :*8 (g), 1081 ; in razors,
.n caoutchouc springs,

; is proportional to load in oaout-

IKil; in organic tiHSOet, 898

85; Weber, K. on, for muscle,828; lUess
strain relation for final load, linear,

Wundt's form of after-strain curves,

880; Wertheim's hyperbolic form of

-2

851
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stretch-traction curve confirmed by
Volkmann, 8312; the curve elliptic
for muscle, 832

; controversy between
Wundt and Volkmann, 8335.

After-*trtiin Coefficient, 734, 739; for

copper and steel, 751 (d)

Air, resistance of, to torsional vibrations,

727, 735 (i), 1746

Airy, Sir G. B., on the strains in the
interior of beams (1863), 666

Albaret, on economic form of girder, 952

Alloys, hardness of, 845 ; tensile strength,

ductility, hardness, etc. of alloys of

copper with zinc or tin, 1063 and ftn.

Alum, its optical and elastic axes do not

coincide, 788, 789 (c) ; experiments on
the stretch-modulus of, 1206

Aluminium, stretch-modulus of, 743;

density of, (i) p. 531; hardness of,

(i) p. 592, ftn.; absolute strength of,

1162; effect of cold-hammering, 1162 ;

may be beaten to leaves, 1163
;
stretch-

modulus, elastic-limit and density of,

1164; subsidence of torsional oscilla-

tion in wire of, 1746
Aluminium Bronze, absolute strength
when cast and hot-hammered, 1162,
1164

Amagat, his experiments on stretch -

squeeze ratio, 1201 (e)

Amorphic Bodies, elastic coefficients for,

308; identified with isotropic bodies

by Rankine, 467 ; of Saint-Venant seem
akin to Sir W. Thomson's isotropically
macled crystal, 1799: see also Ellip-
soidal Distribution

Amorphism, or confused crystallisation,

115, 192 (d)

Analcine, supposed to possess optical

cyboi'd aeolotropy by Brewster, 1775

Angers, Church of, factor of safety for

columns, 321 (b)

Angle, stress at projecting angle zero,
but infinite at re-entering, 1711

Angstrom, A. J., on the relationship of
the various physical axes of crystals

(1851), 6837
Annealing, effect of, 879 (/); does not
remove aeolotropy, 802

; may in itself

produce aeolotropy, 1056; effect on

tenacity, 1070; of wires, 1131; effect

on strength and elasticity of cast

steel, 1134: see also Working
Anticlastic Surfaces, Thomson and Tait's,

325, 1671

Apatite, hardness of, 836 (d), 840

Approximation to solution of elastic

equations, doubtful method adopted
by Cauchy (620*, 661*), 29, 395; by
Poisson (466*); by Neumann, 1225

6; by Basset, 1296 b is; by Boussinesq,
1422, 1574, 1586

; by Sir W. Thomson,
1635

Arches, flexure of, 514 7 ; shift of central

line, 519 20; terminal conditions for

pivoted and built-in arches, reactions,

5213; temperature effect, 523, 525,

1013; theorem as to symmetrically
loaded, 524 ; thrust, due to isolated

load, 525, continuous loading, either

along central line or horizontal, 525,
due to change of temperature, 525;
simple formulae and tables for finding

thrust, 526 8; maximum stress in,

529 30
;
most advantageous form of,

531 ; general discussion of curved rods

and arches, 534, 536 ;
historical account

of theory of, 1009 ; approximate treat-

ment of, by Morin, 880 (c) ; line of

pressure in, 1009 ;
total stress in cross-

section, 1010; stability of, 1014;
braced, 1022; wooden, experiments on,
C. et A. pp. 4 10; wooden arches,

925; cast-iron elliptical, 1011
; experi-

mental determination of strain due to

temperature and live-load, 1109; com-

parison with defective theory, 1110;
Collet-Meygret and Desplaces on de-

flection of, 1110

Ardant, his experiments on wooden
arches, C. et A. p. 4

;
his theory of

circular ribs, C. et A. p. 10

Armstrong, Sir W., see Bri-Brachion

Arnoux, on axles, (i) p. 610, ftn.

Artery, after-strain in, 830, 832, stretch-

modulus of, 830
Atomic Constitution of bodies, indivisi-

bility of atoms, Berthelot and Saint-

Venant on, 269 ;
Boscovich and Newton

on, 269 ;
Saint-Venant on, 275 80,

arguments that they are without ex-

tension, 27780; atoms as liquid

spheres, 841
; vibratory motion of a

sphere of ether surrounding, 868;

theory of Boussinesq, action between
atoms of different molecules neglected,

1447; homogeneous assemblages of

mutually attracting Boscovichian

atoms, 1801 5; single assemblage
leads to rari-constancy, 1802; double

assemblage does not necessarily lead

to rari-constancy, 1803; multi-con-

stant Boscovichian system described,

1803 5 : see also Intermolecular Action

and Molecules

Atomic Weight, relation to stretch-modu-

lus, 71721 ;
to hardness, 841

Atwood G., on the vibrations of watch
balances (1794), (i) p. 466, ftn.

Audi, experiments on earthwork, 1623
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Augutt, E. F., on simple experiments to

demonstrate Taylor's law for vibrating

strings, (i) p. 573, ftn.

Autenheimer, ron, on torsion (1856),
581

Axes, feathered, strength of, 177 (c)

Axes, 'optic* and 'optical' distinguished,
1218, ftn. ; dispersion of optic axes,
12189 and ftn.; optic, 1476, 1483;
different sets of rectangular systems
exist in crystal for distribution of dif-

ferent physical properties, 683 7,

121820, 1637; Neumann's theory of
distinction between optical and elastic

axes, 1216 8, 1220; elastic axes do
not coincide with optical for alum,
788; optical, thermal and elastic not
coincident for gypsum, etc., 12189
and ftn.

; diamagnetic, electrical and
other properties distributed about dif-

ferent axes, 1219

Axetof Elasticity, 13"), 137 (iii), 137 (vi),

(i) p. 96, ftn., 44351; defined, 444;
orthotatic and heterotatic, 445 ; euthy-
tatic, 446

; metatatic, 446, 137 (vi)

Axles, how affected by prolonged service

and vibration, 881 (b) and ftn., 970;
strength, 905; of railway rolling stock,
calculation of dimensions, 957 9;

mieH's hollow railway axles, ex-

periments on, 988 9 ; flexure of rail-

way axles under static load, 990;
ranee to impact of cast steel, '.i

(

.i.~>.

of ordnance, 996 ; fatigue under re-

peated flexure of railway, 998, 10003,
under repeated torsion, 999, 1000 3

Babbage, C., hardness of diamond varies

with <lir. i-tion, 836 (d)
Hubi'nft.hi* proof of velocity of pressural,

or sound wave, 219
Baden- l'<nc ell, influence of torsion on

magnetisation, 811

h, on simple beams and braced

gird.

on the actual lateral

pressure of earthwork, 1606 ;
his rule

for breadth of supporting walls, ir.o;

/'., on law of molecular
fore* 1

. HMi

Bar, heavy tension bar of equal strength,
1886 (a): see .Rod, Beam, Flexure,

Impact, etc.

'i, on statically indeterminate

reactions, (i) p. til. ftn

/>'///"/ :,i fr 1 1 \ilratilic press,

901, 1044 (/.), 1069, 10767; expert-
mentt on wrought-iron beams, 987 (c) ;

on combined girder- and suspension-
bridges, 1

Barlow, W. H., attempts to explain
'

beam-paradox' by a theory of lateral

adhesion (18557), 9308, 1016
Barnes, cuts steel with rapidly rotating

soft-iron disc, 836 (h)

Barton, J., on wrought-iron beams, 1016
Basset, A. B., on thin cylindrical and

spherical shells, 1296 bis, 1234

linntlrimont, A., researches on vibrations
of aeolotropic bodies (1851), 821

Hdiimeister, his experiments on stretch-

squeeze ratio referred to, 1201 (e)

Baitmgarten, on flexure of solids of equal
resistance, 929 ; on stretch-modulus of

calcspar. 1210

Baumhauer, on twinning of Iceland spar,
1800

Bauschinger, his results partially antici-

pated by Wiedemann, 709 10; on
elastic limits referred to, 1742 (6)

Beam, lines of stress in, Kankine, 468,

Kopytowski, 556, Scheffler, 652
;
uni-

planar stress in, 582 (c); slide intro-

duced into theory, Bresse, 535, Jour-

avski, 939, Scheflfler, 652, Winkler,
6612, 665, Airy, 666; strength of,

increased by building-in terminals,
5717, 9425 ; strength of, given by
graphical tables, 921 and ftn.; for

various forms of cross-section, 927;
transverse vibrations of,when suddenly
loaded, 539; live load on, 5401;
formulae for statical deflection when
loaded, 7602; strength of 'split*

beams, 928; general treatment of,

1006; Thomson and Tait on, 16u6;
of variable cross section, flexure of,

929; small beams relatively stronger
than large ones, 936 (iii) ; central line

of, under transverse load, really
stretched, 941 ; supports of beam
under transverse load really subjected
to side pull, 940; cast-iron beam of

strongest cross-section, 176, 177 (6),

951, 1023; strength of various forms
of cast-iron beams, and Barlow's at-

tempt to explain paradox, 930 8; para-
dox neglected by Morin,881 (a) ; proper
proportion of web and flanges in

wrought-iron beams, 1016; formulae
for stress-strain relation when stretch-

and squeeze-moduli are unequal, 178 ;

rupture of, deduced from empirical
stress-strain relation, formulae of
Saint-Venantand Hodgkinson, 178: see

also .mt, Itodt, /.

Load, Torsion, Flexure, Impact, etc.

Beam- Engine, strew in beam, 868;
danger of certain speeds of fly-wheel,
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Beam- Paradox, 920, 929, 930, 971 (4),

1038 (b), 1043, 104953, 1086;

according to Bell does not exist for

large girders, 1117 (iv)

Bt'cki-nkamp, verifies F. Neumann's

expression for stretch-modulus of

regular crystal in case of alum, 1206

Becqtterel, E., torsions produce magneti-
sation, 811

Jii'laniier, J. B., on strength of materials

(185662), 893
Bell, H'., on the laws of strength of iron

(1857), 11179
Belli, on gravitation and cohesion cited,

1650

Kelt, cylindrical : see Hoop
Bcltrami, properties of potential due to,

1505

Bender, W., experiments on hollow axles,

989

Bendiny-Moment, safe limit of, for non-

symmetrical loading, 14
; how related

to total shear, 319, 534, 556, 889,

1361, ftn. ; for beam partly covered by
a continuous load, 557

; synclastic
and anticlastic bending stress in

plates, 1702
Bent (= flexural set), how affected by

application, removal, reversal, etc., of

load, 70910
Bergen, T., on hardness of gems, 836 (c)

Bernard, F., on vibrations of square
membranes (1860), 825 (c)

Bernoulli, Daniel, first attempted prob-
lem of transverse impact, 474 (/)

Bernoulli-Eulerian formulae for flexure,

71, 80; theory of beams justified by
Phillips for curved arcs under couples,
6779

Bcrtelli, F., statically indeterminate re-

actions, first suggests need of elastic

theory (1843) and uses experimental
method, 598

Berthelot, on atoms, 269

Berthot, on law of intermolecular action,
408

Bertot, II., on total stress on section of

arched rib, 1010

Bertrand, reports on Saint-Venant's
memoir on transverse impact, 104

Bessemer, preparation of wrought-iron
and steel, 891 (b) and (e), 1114

Bidwell, Shelford, cited as to variations

of coefficient of induced magnetisation,
1321

;
on relation of stress to mag-

netisation, 1727, 1736

Binet, on elastic rods of double-curva-

ture, 155

Biquadratic surface for stretch-modulus
of regular crystal, 1206

Bixnuilli, effect of compression on its

diamagnetic properties, 700 ; hardness

of, (i) p. 592, ftn.

Bl-aclier, gives Clapeyron's formulae for

springs, 482, 955

lilakely, on the construction of cannon

(1859), 1082

Blanchard, experiments on material
under great pressure, 321 (6)

Bltinchet, his researches on waves in

aeolotropic medium referred to by
Boussinesq, 1559

Body-Forces, how removeable from gene-
ral equations of elasticity, 1653, 1715 ;

removal of, when there is a force-

function, 1658, 1716 (rf); when they
may be used to replace surface-load,
1695, ftn.

Boilea-u, P., on the elasticity of springs
of vulcanised caoutchouc (1856), 851,
1161

Boiler, cylindrical, proper dimensions
for spherical ends of, 125

; strength
of curved sides, of flat ends, stress

due to weight of material and of water,
642 5 ; Joule on mode of testing,
697 (a) ; French formula for strength
of iron plate boiler, 879 (c) ; Prussian,
French and Austrian formulae for

cylindrical boilers, 1126 ; old Prussian

government formula agrees with

Boussinesq's for collapse of belts,

1555; erroneous results for thickness

of walls of, 961 ;
effect of unequal

heating, 645, 962, 1060; relative

strength of flues and boiler-shell, 985;

strength of materials for, 9078;
strength of iron and copper stays for,

908
; rivetted, 904 ;

how strength of

boiler plates with and across fibre

altered by temperature changes, 1115 ;

cast steel plates for, 1130, 1134 : see

also Flues.

Bolley, on molecular properties of zinc,
1058 ; effect of vibrations in producing
crystalline and brittle state, 1185

Bolts, iron, effect of case hardening,
comparative strength of screwed and
chased, 1147

Boltzniann, L., on longitudinal impact of

bars, 203
;
Fes trede on Kirchhoff (ii)

p. 39, ftn. ;
his theory of stress on

elements of dielectric criticised by
Kirchhoff, 1317

Borax, optic axes change with tempera-
ture, 1218, ftn.

Borchardt, equations of elasticity in

curvilinear coordinates, 673

Bomemann, on flexural strength, 920 ;

on graphical tables for flexural strength ,
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'.'-'I ; experiments on wooden and cast-

iron bars of triangular cross-section,
971

Bo*covich
y
his theory of aton

280; deprived atom of extension, 269 ;

his theory criticised by Thomson and
Tait, 1709 (c),by SirW. Thomson, 1770,
remarks on, 276 ; does his theory lead
to rari-constancy? 423, not necessarily
if molecules are groups of atoms,

(Cauchy, 1839), 787; his theory used

by Sir W. Thomson to reach multi-

constancy, 17991805 ; single homo-
geneous assemblage of Boscovichian
atoms leads to rari-constancy, 1801
2

; double or multiple assemblage does
net necessarily involve uui-coustancy,
1802 ; model illustrating double Bos-
covichian assemblage and multi-con-
stant solid, 1803 4 ; doubts as to its

nature, 18035
linttoiitlfi/, effect of twist on loaded and

magnetised iron wire, 1735 ; on aeolo-

tropy of electric resistance produced
by aeolotropic strain, 1740 ; on increase

of tensile strength by gradual increase

of stress, 17.1

lioucht, A., on molecular attraction

v.i60), 870 1

Bourgct, on vibrations of square mem-
branes (I860), *_

esq, pupil of Saint-Venant, Hi;,

1117; Saint-Venant's views on his

theory of light, 265, on his theory of

pulverulenee, ir.ll>, general analysis
of his researches, 292; accounts of his

work, 1117: Khun.m t on his solution
for tr.iiisverse impact, 414, on his

theory of pulverulence, 161011,
1 ''>_'">; publishes with Flamant a life

and bibliography of Saint-Venant,
415

Ilefcrettcet to : proves conditions of
; :itiliilitv for ^'iven system of

i.mvrs .'llipsoidal

conditions for amorphic bodies sub-

jected to permanent ft

points out error in Saint- Ven.mt's

memoir of 1863, 238 ; on stability of

loose earth, 242 ; on solution in finite

termsof longitudinal impact of I >

4012 ; his treatment of thick plates,

(i) p. 223, 385; on
cation of potentials to elasticity, 338,

. 1715 ; on determination of local

stretch produced immediately by small

weight striking a bar transversely
with great velocity, 871 (iv) (1587

i theory of thin plates,
885 (143740); hi* controversy on

thin plate problem with Levy, 397

(1441, 1522) ; his correction of error

of Resal's with regard to flexure of

prisms, 409
Rfgearche* of: on elastic bodies

one or more dimensions of which are

small as compared with others (rods,

1871, complement, 1879), 141836,
(plates, 1871, complement, 1879.)
1437 40; controversy with LeVy on
contour conditions and local perturba-
tions in thin plates (18778), 1441;

theory of periodic liquid waves (with
equations of motion of any medium,
1869), 14426; on the molecular
constitution of bodies (1873), 1447;
on the interaction of two molecules

(1867), 1448; on the theory of lumin-
ous waves

(1873), 1449; on two simple
laws of resilience (1874), 14505; on

geometrical constructions for stress

and strain (1877), 14569 ;
on hydro-

dynamical analogies to the problem of

torsion (1880), 1460; on the stretches

produced by the deformation of a
curved elastic membrane (1878), 1461;
on the transverse vibrations of an

indefinitely large plate (1889), 1162 ;

Lectures on Mechanics (1889), MU:I;
on the physical explanation of fluidity

(1891), 1464

Essay on the theory of Light
(1865), 1465; on vibrations of iso-

tropic media (1867), 1466; on waves
in media subjected to initial stress

(1868), 1467 74; on vibrations and
diffraction in isotropic and crystalline
media (1868), 14757 ; new theory of

luminous waves (1868), 147882; ex-

tension of this theory (1872), 14834
On calculation by means of poten-

tials of the strains in an indefinitely

large isotropic medium (1882), 1485;
Treatise on the application of poten-
tials to elastic problems ( 1885), I486

strain in tin infinite elastic

solid bounded by a plane to which
stress is applied (1888), 148996; on
the collapse of rings and controversy
thereon with Levy (1888), 155461

On the application of conjugate
I a in lions to

plasticity (1872), 15027;
on an experimental manner of deter-

mining the plastic modulus (1872),
15689; on the integration <

'

equation in conjugal*' fmu tinn of a
nilent mass (1878), 1570; Essay

<i the theory of the equilibrium of

pulverulent masses
(1876), 1571

1604; on the nniplanar distribution
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of stress for isotropic bodies in a state

of limiting equilibrium (1874), 1605;
on the lateral pressure of a pulverulent
mass with horizontal talus (1881),
1606 7; on horizontal thrust of pul-
verulent masses against vertical walls,
etc. (18825, diverse memoirs), 1608

20

Summary of Boussinesq's work,
1626

Bracing Jinrn, on distorted form of, in

multi-bracing, 1017, 1026, 1028; ex-

periments on buckling of, 1019 : see

also Girder*

Braithiraite, F., on fatigue of metals

(18534), 970

Brame, Ch., on planes of cleavage, 849 ;

experiments on iron-plate, 1106

Brass, elastic flexures increase more
rapidly than loads, 709 (i) ;

flexural

sets or bents, how influenced by
alterations of load, etc. 709 ; effect of

rolling and hammering on stretch-

modulus, 741 (a); thermo-elastic pro-
perties of, 752, 754, 756; after-strain

and temperature, 756; relation of

stretch-modulus to density, 759 (e),

(i) p. 531, 824, 836
(ft); ratio of kinetic

and static stretch-moduli, 824, of

kinetic and static dilatation-moduli,

1751; slide-, stretch-, and dilatation-

moduli of, 1817 ;
thermal effect on slide-

modulus, 1753 (b) ; thermo-electric

properties under strain, 1646
;

ren-

dered brittle by sudden atmospheric
changes, 1188; nature of rupture,
1667

Bravais, on homogeneous assemblages of

bodies, 1800

Breguet, on velocity of sound in iron,
785

Breithaupt, attempts to introduce a
new scale of hardness, 835 (d)

Bresse, Researches of: memoir on the

flexure of arches (1854), 51430;
treatise on applied mechanics (1859
65), 53242

;
on elliptic flues, 537 ;

on solution for long train continu-

ously crossing a bridge, 382, 541

References to : on elastic rods of

double-curvature, 291; his treatment
of elastic rods commended by Saint-

Venant, 153
;
his formula for beams

of varying stretch-modulus, 169 (e),

515 ; on approximate treatment of

slide due to flexure, 183 (a), 535 ; on
the core, C. et A. p. 3, 515

;
corrects

error of Phillips', 540

Brewster, on double-refraction artificially

produced, 792 3; the principle of

his Teinometer adopted by Wertheim,
794, 797 (e) ; on production of crystal-
line structure by stress (1853), 864

;
on

analcine, 1775
Hri-Brachion (? Sir W. Armstrong) on

the cause and prevention of the de-

terioration of wrought-iron ( 1860) ,1189

Brick, strength of, 880 (b), 1173, 1182

Bridges, deflection of railway viaduct at

Tarascon, 520 (6) ; transverse vibra-

tions of, 539, 10345; effects pro-
duced by a rolling load, 37282,
Bresse corrects error of Phillips', 540 ;

repeated loading of, 1035
;
deflections

of Flemish bridges, 1020 ; treatises

and text-books on bridge-construction,

883, 88590, 915, 950; historical

account of (1857), 890; "Bitter's

method ", 915 (b) minor memoirs
on, 100436

Special Bridges: Tarascon, 520 (b),

1109 ;
St Louis, U. S., (i) p. 358, ftn.;

Britannia and Conway, 560, 603, 607 ;

Hungerford, 579; Manchester, 1007;
Newark Dyke, 1012; Coin, 1019;
Flemish, 1020 ; Niagara, 1025 ; de la

Roche-Bernard, 1033 ; over the canal

Saint-Denis, 1034

Bridges, Suspension, form of chains, 579 ;

oscillations of, 612, 883; impact on,

883; iron-wire for, 904; when, where
and by whom first introduced, (i) p.

622, ftn.; girder suspension bridges,
1025

Brill, points out an error in Saint-

Venant's memoir of 1863, 239

Brillouin, on the elasticity, fluidity and

rigidity of bodies, 1464

Briot, Saint-Venant's views on his theory
of light, 265

Brittle, defined, 466 (vii), 1742 (c);

metals not rendered, by cold, 697 (c) ;

state, 1185, 1188

Brix, on strength of railway-rails, C. et

A. p. 11
;
on fail-points of uniformly

loaded beams, C. et A. p. 12
;
erroneous

theory of resistance of cylinder to in-

ternal pressure, (i) p. 712, ftn. ;
on

strength of stone, 1181; on set in

cast-iron due to heating, 1186

Bronze, gun-metal, effect of head on cast-

ing, 1038 (/), 1050 ; rupture of rings

of, 1044; guns of, 1045; physical

properties of, 1063 and ftn. ; stress -

strain diagrams for, 1084; torsional

strength of, 1039 (c), 1113, 1166; ten-

sile strength of, 1113, 1166

Brooks, C. H., erroneous theory of resist-

ance of hollow cylinders, 1080

Brown, Captain, introduces iron cables
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(1811), 904; experiments on wrought-
iron cables, 879 (e)

limicn, Sdinnel, builds first suspension-
bridge in Great Britain (1819), |i) p.

. ftn.

Kroicnimj, c. 7.., on the tensile stretch

and set of wrought-iron, 1125, HM
Hue kit tuj Load, of struts, under dead-

load, 11, under impact, 407 (2), 1552,
error as to in Vol. i. corrected, C. et

A. p. 2; of columns, 477 80; on

bracing bars, 1019; theory of, modi-
fied form of Scheffler's theory, 64950,
Sc-hwarz, Ritter, etc., on 889, 914, 956;
Rankine on Tredgold-Gordon formula,
469: see also Column* ainl Strut*

7<M//Vrx, railway, formulae for resilience

of, 595, %9: see Spring
Hurt), A. mn, on Kohn's experiments

as to repeated torsions, 991; on the

strength ofcast-steel, 1 130 ; on strength
of aluminium, 1162

Rurxtinri, of glass cylinders and globes
under pressure, 857 60

; of wrought-
iron tubes, 983 ; of cannon, 1038, 1055,
loTl; of musket-barrels, 1038 (c); of

gntta percha tubes, 1160; of earthen-

ware pipes, 1171

CabU: see dm in

Cadmium, hardness of, (i) p. 592, ftn.;

thermo-electric properties under strain,

Calcsptir, hardness of, 836 (d) and (n ;

strain due to change of temperature,
1197 ; experiments on stretch-modulus

of, 121i

( 'ullnn, erroneous theory of boilers, 961

Calvert, F. C., on hardness of metals
and alloys (1860), 845; on chemical

analysis of cast-iron after repeated
iiH-kin;/-, IKK); influence of prepara-
tion on elasticity, set and strength of

cast-iron (1853), 1102
Canada Doubly refractive power
produced in, by sudden turn of stick.

1766, ftn.

Cannon, researches on strength of ma-
terials for, 103792, 1113; solid and
hollow cast, 1038 (g) ; oast-iron, 1048

;

nee of various metals for, 1062 ;

built-up by shrinking on coils, 1069,

107682, 1078, 1082; tables of

al constanta for material
1071 i n; Lur-ting of, 1088,1065,1074;

experiment* on gups built-up by coils

of wire round cylinder, 1078; on ex-

treme proof of, 1047 (6), 1092

equality of strength m
straight and curved, 926

Caoutchouc, divergency between Wer-
tkeim's and Clapeyron's experiments
on, 192; experiments of Clapeyron on
ratio X//t for, 610

;
to be excluded from

mathematically elastic substances ?

1326, 1749; slide-modulus of, (i) p.

420, ftn.; on springs with alternate

discs of iron and vulcanised caout-

chouc, 851 ; experiments on elastic

fore- and after-strain of, 1161
c iirl>< m, influence of, on strength of cast-

iron, 1047 (c); how amount varies

with repeated meltings of cast-iron,

1100; is not sole cause of difference

between elastic properties of iron and
steel, (i) p. 736, ftn.

Cuttings, stronger at the periphery than
the core, 974 (c) ; influence of size on
relative strength, 1045 ; effect of dead
head, 1038 (/), 1050, 1060

Catenaries: see Strings

Citnctuj, References to: reports on Saint-

Venant's torsion memoir, 1; reports
on Wertheim's memoirs, noticing that
hi- value of the stretch-squeeze ratio

is inconsistent with rari-constancy,
787 ; notices that if molecules are

built-up of atoms, the Boscovichiau
atomic theory does not necessarily lead
to rari-constancy, 787, 192 (d) ; a slip

of, corrected by Wertheim and Saint-

Venant, 809; his theory of elasticity

discussed, 1193, 1195; his ellipsoids,
226, 1194 ; suggests variation of angle of

torsion across cross-section of prism,
20 ; on torsion of prisms of rectangular
cross -section, 25, 29; his torsion

formula wrongly applied by Wertheim,
805 6 ; his erroneous method of deal-

ing with flexure, 75, 316, and with

torsion, 191, on his erroneous method
of approximation in general, 12256;
error in his theory of impact of bare,
Jo l; on contour conditions for thin

plate, 3956; his general equations
tor stress in terms of strain, when
there is initial stress, 129; criticism

of his deduction of stress-strain rela-

tions, 192 ("i: Sumt-Venant's viewa
on his theory of light, 265 ; on double

refraction, 195, 1214; his theory of

dispersion, 1221, criticised, 549; his

researches on waves in an aeolotropic
medium referred to by Boussinesq,
urn

Cur,tin, ./., on the resistance of solid*

subjected to impulses like the firing
of cannon (I860), 108802; on the

strength of stone (1861), 1 1 M
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880 (6), before and after immersion,
etc., 1168; tensile, compressive and
transverse strengths of Portland aud
Roman, 1169; strength of, ascertained

by flexure, 1170

CVrnifi, on application of potential to

theory of elasticity, 338, 1489, 1626
;

his researches on the equilibrium of

elastic solids, particularly certain pro-
blems in the stress and strain of a

solid bounded by an infinite plane

(1882), 1489

Chalcedony, attacked by rotating iron-

disc, 836 (h)
Cluiin Cables, first introduced by Captain
Brown, 904

Chains, Links of, general theory of,

618 21; link symmetrical about two

axes, 622; circular link (or anchor-

ring), 623 5; circular link with stud,

626 7 ; comparison of links with and
without studs, 628; rule as to welding,
629 ;

oval link with flat sides, 6302 ;

elliptic link with and without stud,
633 8, 640 ; comparison of strengths,

weights and extensions of circular, oval

and elliptic links, 639; absolute strength
of chains, 641

; strength of wrought-
iron chains depends on shearing stress,

879 (<?);
absolute strength of links of

iron and steel, 1132; break later at

less than proof load, 1136 ; effect of

red heat on absolute strength, 1136 ;

testing of, 1154

Chappe", T. F., experiments on cast-iron

elliptic arches, 1011

Chemical Composition, its influence on

elasticity, 791; how affected by re-

peated meltings, 1100; its bearing on

physical structure, 1047 (c), 1081

Chery, graphical tables for strength of

beams, 921, ftn.

Chladni, his values for notes of circular

plates tested by Kirchhoffs calcula-

tions, 12423
Chladni-Figures, mode of forming, 613;

uninfluenced when vibrating plate is

placed in electromagnetic field, 699 :

see Nodal Lines, Plates, Membranes

Chree, C., on velocity of sound in rods,

437_8; on elasticity of solid earth,

567, 570; on longitudinal vibrations

of rods, 821 ; on some applications of

physics and mathematics to geology,
1721 ; on the equations of an isotropic
elastic solid in polar and cylindrical

coordinates, their solution and appli-

cation, 1722; analysis of Sir W. Thom-
son's papers on the relations of stress

and magnetisation, 1727, ftn.; on

Villari critical field in cobalt,
1736

Christoffel, on waves in aeolotropic
medium (1877), 1764

Cinnabar, molecular condition of, 861
Circular Arc, expression for normal shift

of, 585 : see also Arches

Clapeyron, his formula for springs, 482;
his theorem of the three moments
(1857), 603; his theorem of elastic

work (1858), 60811
Clapeyroji's Theorem : see Moments, Theo-
rem of three, and Continuous Beams

Clarinval, on hardness of metals (1860),
846

Clark, on iron rivets, 903; on iron plate,
902, 1121

Clausen, on form of pillars (1851), 476 80

Clausius, discussion by Saint-Venant of

his views as to elastic constants, 193 ;

criticism of them by Wertheim, 819 ;

011 after-strain, etc., 197

Clay becomes as hard and dense as rock

by great compressive stresses, 1155

Cleavage, Planes of, taken by Raukine

perpendicular to euthytatic axes a
doubtful hypothesis 451; how related

to hardness in crystals, 839 40; po-
sition of, 84950; doubtful if they
determine planes of elastic symmetry,
1637 ; produced by continuous shear-

ing? 1667

Cleaving, defined, 466 (a)

Clebsch, References to: his wrong limit

of safety, 5 (c), 1327, 1348 (<j)(h),
criticised by Saint-Venant, 320; com-
bines Saint-Venant's flexure and tor-

sion problems under one analysis, 17,

1332, Saint-Veuant on, 198 (/); his

treatment of elastic constants dis-

cussed by Saint - Venant, 193; his

treatise on elasticity translated by
Flamant and Saint-Venant, annotated

by latter, 298, 1325
;
his treatment of

Kirchhoff's Principle, 1253
;
on thick

plates, 13507, on thin plates, 1375

85; how his treatment of plates is

related to that of Kirchhoff and

Gehring, 12923, 13759, criticism

of it by Saint-Venant, 383; on thin

rods, 1358 74; how his treatment
differs from Kirchhoff's, 1257, 1258,

1265, 1270, 1282, 13589, from that

of Thomson and Tait, 1691, 1695
Researches of: on the equilibrium

of flexible strings (1860), 1322 3 ;
on

the theory of circularly polarised media

(1860), 1324
;
his Treatise on the Elas-

ticity of Solid Bodies (1862), 132590
(criticised, 1325, 1390); his posthura-
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ous Principles of Mathematical Optics,
1391 ; on reflection at a spherical
surface, 13921410; accounts of his

life and work, 1390, (ii) p. 107,
ftn.

Cobalt, effect of longitudinal stress on

magnetisation, Villari critical field,

1736

Coefficient of Optical or Photo-elasticity,

Coefficient of Plasticity (K), or plastic-

modulus, 247, 249, 259; does it vary?
15689, 1586, 1593: see also Plas-
tic it i/

Coefficient of Restitution, or dynamic
elasticity, 209, 217, 847 ; really varies

with masses, sizes and shapes of col-

liding bodies, 16823
Coefficients, Elastic, names for in this

ry, (i) p. 77, ftn., Tables, 445, 448 ;

Ilnmnfntlc, 136, 446; of Pliability arc

reciprocals of coefficients of lligidity,
of Estt-ntiliility (longitudinal

and lateral, or direct and cross) and

Compressibility, 425; Taalnoinic (eu-

thytatic, platytatic, goniotatic, plagio-
ttitic), 440 ; Thlipsinomic (euthythliptic,

platythliptic, goniothliptic, plagioth-

liptic), 448; transformation of, Kan-
kme's use of surface of fourth order,
432 ; in any direction expressed sym-
bolically, 133; for various crystals,

12035; numerical values, 1212; for

a material with three planes of elastic

symmetry, 307; for amorphic bodies,
282 (8), 308; for equal transverse

elasticity, 308 (a) ; of wood do not ad-
mit of ellipsoidal conditions, 308 (a) ;

for bodies possessing various types of
elastic symmetry, 281 2

; experimen-
tal methods of determining, 283, 1205

1 1 ; expressions for, in terms of

initial stress, 240; effect of initial

stress on stretch-modulus, 241; effect

of set on cross-stretch coefficients, 194 ;

Lament of, 1781 (c) : see also Constants
and M,.,i

Cohesion, Herschel, Segntn and Sir W.
Thomson endeavour to explain it by
molecules of infinitely great density
and infinitely small volume attracting

according to Newtonian law, 866, (i)

p. 600, ftn., 1650; supposed by Zabo-
rowski to depend on absolute con-

tinuity of matter, 867 : see Molecules,

Strength, etc.

OoUuden nmi Dorfar, cut steel, chalce-

dony and quartz by iron disc in rapid
ition, 836 (A), 153*. :

zoineter referred to by F. Neumann,
1201 (c)

Collet-Meynret, on bridge-structure

(1854), 1109 12; cited, 169 (e) t (i)

p. 368, ftn.

Columns, best form of, discussed by
Clausen, 47680; strength of wooden,
880 (a) ; cast-iron, tables and curves for

strength of, 880 (c), do not obey ordi-

nary elastic theory, 1117 (v), Hodgkin-
son's later formulae for strength of, 973

(cf. 469, 64950, 956), relative strength
of those with rounded and with bedded

ends, 974 (a), loss of relative strength
due to removal of external crust, 974

(c); strength of square, triangular
and circular cross-sections, 974 (d) ;

on strength of long columns, 978;

empirical formulae for steel columns,
rounded and bedded ends, 978 ; ditto,
for wrought-iron columns, 978 : see

also Strut*

Combes, report on Phillips' memoir on

springs, 482
Combination of Strains: see Strain, Com-

bined

Compatibility, of given system of strains,
conditions for, 112, 190 (c); proved
by Boussinesq, 112, 1420, by Kirch-

hoff, 1279

Compression, difficulty of experiments to

determine squeeze-modulus, influence
of buckling in long and friction in

short specimens, 793

Condenser, spherical glass, strain pro-
duced

by charge, 1318
( 'umliii'tirity, electric, of iron and copper,
how altered by strain, 1647 ; rendered

aeolotropic by aeolotropic stress, 1740
Cone, very sharp, vibrations, notes and

fail-point of, 13067; truncated, im-

piirt longitudinal on, 223, duration of

blow, maximum strain, etc., 1542 4

CnnjiHiiitf l-'iuK-tions, in torsion problem,
285, 1460, 1710; used to solve un.

planar equations of plasticity, 1562 7,

to solve those of pulvcrulence, 1566,

Connecting /;.-/, stress produced by vi-

brations in, 583, by variations of pres-
sure, 6812

Conservative systems of Force, 1709 (a),

1716 (d)

Constant*, Elastic, equality of cross-

stretch and direct-slide on rari-con-

fltant hypothesis, 78; controversy a-

bout, 68, 192, 198, 196, 197, 276, 801 ;

hi-constancy of iron and brass wire,
727; bi-constancy investigated by
stretching hollow prisms, 80S, 1901
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(6); Wertheim's views on uni-con-

stancy, 819 ; multi- or rari-constancy
of crystals, 1212, 1636; methods of

investigating bi-constancy, 1201 (a)

(e) ;
no crucial test of bi-constancy

from tones and nodal lines of circular

plates, 1242 3, nor from experiments
on wires, 1271, 1273, nor from action

of cork, india-rubber and jelly, 192 (6),

610, 1326, 1749 ; Kirchhoff 's experi-
ments on steel and brass, 1271 3

;

reference to other experiments, 1201

(f); the 21-constant model, 1636,

1771_3 ;
Sir William Thomson on

constant controversy, 16367, 1709

(e), 1749, 1770; 21-constant model
as argument for multi-constancy, 1771

2, leads no further than hypothesis
of modified action, 1773; remarks on
constants of amorphic bodies and on
bi-constant isotropy, 1799; single as-

semblage of Boscovichian atoms leads

to rari-constancy, 1802 ;
double assem-

blage to either uni- or bi-constancy,
1803 5, but certain difficulties remain
to be cleared up, 1803, 1805 ; views of

Brillouin and Boussinesq, 1464; F.

Neumann's 36-constant medium,
1202, 1216, 1218; relations between
constants required for elastic theory
of double refraction, 1214 5 (but see

Refraction, Double); the Lament of the

21-coefficients, 1781 (c) : see also Inter-

molecular Action, Streteh-Squeeze Ra-

tio, Rari-constancy, Muni-constancy,
Coefficients, Elastic.

Continuous Beams, Bresse's work on,

532, 535 ;
increase of strength by

building-in terminals, 5747; Dorna

supposes beam rigid and only supports
elastic, 599602; Clapeyron's Theo-
rem of the Three Moments, 603, 607,

893; Schemer's treatment, 653; special
cases of, 890 ; general case and special
treatment of five spans, 946 ;

two

spans, mid-support not on same level

as terminals, 947; three spans, com-

plete numerical treatment, 948 ;
four

spans, complete numerical treatment,
949 ; general theory of, 949 ;

Clebsch's

treatment, uniformly loaded, equi-

spanned, 1386 (c) ; Thomson and
Tait's treatment, 1696

Contractile Etlier, theory of, 17878
Copper, thermal effect of stretching, 689,

692; thermal effect of compression,
695

;
thermo-elastic properties of, 752,

754, 756 ;
after-strain and tempera-

ture, 756; ratio of kinetic and static

dilatation- and stretch-moduli, 1751 ;

thermal effect on stretch-modulus, 752,
on slide-modulus, 690, 754, 1753 (b) ;

effect of tort on slide- and stretch-

moduli, 1755; no magnetic influence
on strain of wire observed, 688; effect

of electric current on absolute strength
of wire, 1187 ;

effect of strain on
thermo-electric properties, 1642 6 ;

electric conductivity altered by stretch,
1647 ;

slide-
, stretch- and dilatation-

moduli of, 1817 ; stretch-modulus of,

743, by transverse vibrations, 771, how
related to density, (i) p. 531

;
tensile

strength of, 1166, (i) p. 707, ftn.
;
hard-

ness of, (i) p. 592, ftn., (i) p. 707, ftn.,

836 (6) ; ductility, etc., (i) p. 707, ftu.
;

nature of rupture, 1667 ; rotating wheel

of, used to cut glass, 1538, ftn.
; stays

for boilers, strength of, 908
Cord : see String
Core, introduced by Bresse, 515, 533;

discussed by Eankine and applied to

structures, 465 (e)

('oriolis, on longitudinal impact of bars,
204

Cork, 1749

Cornelius, C. S., on the constitution of

matter (1856), 868

Cormi, his experiments on the stretch-

squeeze ratio and the value of elastic

constants referred to, 235, 269, 282,

284, 1201 (e)

Coromilas, experiments on stretch-moduli
of gypsum and mica, 1210

Corundrum, cut by quartz sand, 1538, ftn.

Coulomb, comparison of Saint-Venant's
and his torsion results, 19 ; cited, 800 ;

on his theory of the thrust of a pulve-
rulent mass, 1609, 1620, 1623

Cox, Homersham, on impact, 165 ;
his

method of dealing with impact con-

sidered by Saint-Venant, 201 ; his hy-

pothesis for the transverse impact of

bars, 344, 366, 368371; his hypo-
thesis demonstrated generally by Bous-

sinesq, 1450 5; on the mass-coeffi-

cient of resilience, 1550, ftn.; on
trussed cast-iron girders, 1015

Craig, W. G., on india-rubber railway

springs, 969 (b)

Crane, wrought-iron tubular, 909, 960

Crank, stress in, 681

Cresy, on punching, 1104
Cross-sections of bars remain plane,

difficulty of supposition, in problems
of impact, 414, in treatment of rods,

1687, 1691

Crushing, defined, 466 (a) ;
of cast-iron,

1100 : see Strength, Crushing, Iron,

Stone, etc.
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Crystalline Axes, differ for each physical

property : see Axfs

Crystalline Form, how related to elas-

ticity. T'.'l.

Crystalline State, of iron, 861, 970, 1185;

produced by vibrations, 1189 ; hin-

dered by imparities, 1189

Crystalline Structure, produced in pow-
ders and soft solids by stress, 864;

produced according to Mallet by pas-

sage of heat through body, 1056; is

the cause of difference between iron

and steel, how changed by tempering
and annealing, (i) p. 736, ftn. ; pro-

bably that of most isotropic bodies,

but macled, 1799

Crystallisation, Confuted, 115, 192 (d);

Cauchy's hypothesis as to, 192 (d) ;

Sir W. Thomson on, 1799

Crystals, problem of their classification

by elastic constants, 451, of monoclino-

hedric system, relationship of their

various physical axes, optic, acoustic,

thermal, diamagnetic, electric and of

hardness (Angstrom's experiments on

gypsum and felspar), 6837, 12189
and ftns. ; directions of various physi-
cal axes do not coincide with those of

elasticity, or with each other, 684,

686 ; Angstrom holds that elastic axes
of this system of crystals are not rect-

angular, 687
; optical axes do not in

regular crystal coincide with elastic

but change with pressure, 788, with

temperature, 1218, ftn., 1229 (d)

Effectof pressure in alteringdouble-
refractive power of rocksalt, fluorspar
and alum, 789 ; why they exhibit no

rotatory power in magnetic field, 698
hardness of, how related to planes

of cleavage, 83940 ; how shape of,

I'd by change of temperature
11 '.'7. TJll; stress-strain relations for

various types of, 1203, 1639 ; effect of

uniform pressure on regular and rhoni-

bohedral crystals, 120.1; stn tch-modu-
lus of regular, in any <lin rti<>n. rjot)

7 ; ri 'ze ratio of regular,
1206 ; alteration of angles )>

faces of regular, due to traction, 1 -'< >'.'
.

stretch-modulus for rhomboli- <lr.il

crystals, 1210 ; change of facial iin-.'l.-

of rhombohedral, due to surfn

sure, l-'ll. nUtioM to tin i mal effect,

1-1 1 mts of rocksalt.

fluorspar, etc. i in bi

tween crystallographic, elastic and

optical crystals, 1*212. ftn

uwnn's theory of change of optical

axes with temperature and pressure,

1220; Sir W. Thomson on axes of

crystals, 1637, on regular crystals.

1639, 1780, on principal elasticities of,

1762; artificial twinning of, 1800 and
ftn.

Cnbitt, J., experiments on deflection of

Warren girders, 1012

Curvature, geometrical, of rods discussed,

1669, of surfaces, anticlastic and syn-
clastic, 1671

Citrri linear Coordinate*, expression for

Laplacian V 2 in terms of, (i)p. 374, ftn. ;

uni-constant equations of elasticity in

terms of, 673

Cybold aeolotropy, Rankiue on, 450 (v) ;

Sir W. Thomson on, 1775

Cylinder, sttlid, under combined torsion

and flexure, 1280

Cylinder, hollow, subjected to surface

pressures, when its material has cy-
lindrical elastic distribution, 120

;

conditions for longitudinal or lateral

failure, 122 ; when elastic distribution
is ellipsoidal, 122

; subjected to inter-

nal pressure rupture first on inside,

1055, 1082
; bursting of, under external

and internal pressure, 858 60 ; of

steam-engines, formulae for strength

of, 900 ; when unequally heated, 962,
645 ; resistance to hydrostatic pressure,

experiments on, 1038 (c) ; ruptnn- of

cylindrical belts, 1044 ; five erroneous
formulae for resistance of, to internal

pressure, 1069, a sixth, 1080

Cylindrical Coordinate*, equations of

elasticity in terms of, (i) p. 79, ftn.

Cylindrical Shell. I.<>\- and Basset on,
1*96 tfc

, /., on strength of wire ropes
and cables, 1136

I>alilm<tnn, It., on absolute strength of

certain kinds of iron and steel, 1189

I>\llfinbert, on statically indeterminate

reactions, (i) p. 411, ftn.

1 hilt on, elastic properties of iron and
steel due to nature of crystallisation,

(i) p. 736, ftn.

and Coll<i<ln, on rotating iron

disc attacking steel, chalcedony and

quartz, 836 (h), 153H, ftn

Darwin, Q. II., on rliis-tinty ,,f solid

earth, 567, 670, 171926; on !

stresses in the interior of the earth
niMKfil l>v tin- w.-u'ht of n.ntin.-nts tmd
mountain n the

dynamical theory <>f tides of long
period (1886), 1726 ; on the horuonul
thrust of sand (1883), 1609; BOUMI-
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nesq on his experiments, 1609 11,
1623

Davies, on beam of strongest cross-

section, 951, 1023 ; on wrought and
cast-iron beams, 1023

De Clercq, on the distorted form of the

bracing bars of lattice girders, 1026

Decomble, experiments on the rupture of

cast-iron beams, 1024

Dehargnc, on galvanisation of iron-wire

for suspension bridges, 1096

Delanges, on statically indeterminate

reactions, (i) p. 411, ftn.

Deloy, confirms experimentally Phillips'

theory of springs, 596

Jh'iixity, how related to elasticity, 791 ;

to stretch-modulus, 741 (a), 759 (e),

772 ;
to hardness, 1043

;
to tenacity,

891 (a), 1039 (a), 1047 (a), 1050
; how

it influences ratio of transverse to

absolute strength in cast-iron, 1086 ;

decreasedby wire-drawing,cold-rolling,
etc., 1149

; indicates '

quality
'

of iron

but not of steel, 1149; how affected

by head and bulk of casting, (i) p. 707,
ftn.

; produced in bodies by enormous

compressive forces, 1155

Desplaces, on bridge-structure, 1109 12
;

cited, 169 (e), (i) p. 368, ftn.

D'Estocquois, on molecular attraction in

liquids, 863
Dia magnetism : see Magnetism
Diamond, and graphite, relation of den-

sities and elasticities, 791 and ftn.;

squeeze-modulus of, 797 (/) ; hardness
of varies with direction, 836 (d) and (e)

Dielectric Polarization, strain due to,
considered by Kirchhoff, 131321, es-

pecially, 1318

Diwger, his contribution to theory of

elasticity (1854), 549

Dietzel, on elasticity of vulcanised

caoutchouc, etc., 1161

Diffraction, Boussinesq on, 1477

Discontinuity, remarks on, in mathe-
matical and physical problems, 1511

Dispersion, Cauchy's theory of, rejected

by Dienger, 549; is not sensible in

artificial double-refraction, 796 ;
of

the optic axes, 1218 and ftn., 1229 (d);
in uncrystalline media, references to

theory of F. Neumann, of Cauchy
and of O'Brien, 1221; Boussinesq on,

1465, 1481; in metallic reflection,

1782 (b)

Dissipative Function, 1743 4 and ftn.

Donkin, his equation for transverse

vibrations of rods more general than

Seebeck's, 471 ; mis-cites Seebeck,
472

Doolittle, /., on Barnes' discovery as to

iron cutting steel, 836 (h)

Dorna, A., on statically indeterminate

reactions, 599602
Double-Re fraction : see Refraction,
Double

Doyne, criticises Hodgkinson's beam of

strongest cross-section, 1016, 1119

Drum-head, irregularly stretched, equa-
tion for vibrations of, 1300 (c)

Ductile, defined, 466 (vi), 1742 (c) ;

coefficient of ductility
= after-strain

coefficient, 739 : see also Plasticity

Dufoitr, L., on changes in absolute

strength of wires produced by long-
continued transit of electric currents,
1187

Duhamcl, his priority as to thermo-
elastic equations, 1196

Duleau, his experiments on bars of

circular and square cross- section, 31,

191

Dunn, T., on chain cable and timber

testing machines (1857), 1154

Duportail, A. C. Benoit-, theory of rail-

way-axles (1856), 9579
Dupuit, on thrust on points of support

of beam under flexure, 940

Earth, Figure of, Lamp's and Resal's

investigations, 561 70; elastic equi-
librium of spherical crust of a planet
spinning about a diameter, under
action of mutual gravitation of parts
and with external and internal pres-
sures (ResaVs Problem), 562; shifts

and stresses due to pressures and

gravity, application to case of earth,

5637; shifts due to spin, 56870;
times of oscillation of gravitating

liquid sphere of density and size of

earth and of steel globe of size of

earth under ellipsoidal deformation,
1659

Earth, Rigidity of, solid elastic, 1663,
value of ellipticity, 1664 ; earth cannot
be thin shell enclosing liquid mass,
1664, 17389 ; effect of elastic yielding
on precession and nutation, 1665

;
ir-

regularity of earth as time-keeper,
1665 ; does it yield to solid tides? 1719,
1738 9 ;

force- function due to mutual

gravitation, centrifugal acceleration,
and attractions of sun and moon,
1721 ;

shifts due to mutual gravita-

tion, 1722; shifts due to spin and
tide raising influences, 1722; unless

earth be incompressible, strain at

surface would be immense, 1723 ;

difficulties of inoompressibility of
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earth, 1723, of its isotropy, 1723 (i),

of Thomson's and Darwin's investi-

gation, 1723 (i); elliptieity due to

tidal action, 1723 (iii); parts due to

rigidity and to gravitation, 1724 (a)

(c) ;
numerical values for steel and

glass globes of size of earth, 1724 (d) ;

effect of solid earth tide on super-
ficial water-tide, 1725; attempt to

determine effect by tidal observations,

1725 t>; improbability of evaluating
effective rigidity of earth from tidal

data, 1726(4)
Earth, Stability of loote, Levy, Saint-

Venant, Boussinesq and Rankiue on,

_MJ; Rankiue's treatment of.

Holt/.mann's, 582 (6); Boussinesq's,
1570 lfi'25 : see for full references

Pulrinil

Ka rth, Talu*, slope of natural, tables

for various kinds of, 1588
]-:,irtln'inciii-t' pipes, strength of, 1171;

empirical formula for, 1172

Kate, State o/,4(>),5 (a), 164, 70910,
749, 767; for cast-iron, 896, 1084:

see also A7/.s-fi"r Limit*.

Easton and Amox, their experiment re-

ferred to, 164

**agf, defined, 169 (b)

Edge, of elastic solid, if re-entering

ought to be rounded off to prevent
weakness, 1711

re of Bernoulli, forms of,

traced by Thomson and Tait and by
Saalschiitz, 1694 and ftn.

Eli ft ic Enuiral-nce of statically equi-

pollent loads: see Loads

Life of materials, Kupflfer's
scheme for investigating, 731; under

slowly increasing load, 1144
di-tinction between

ical and mathematical, 1742 (</);

hew affected by application and re-

versal of load, 709-10, 7I'.. 767;
Morin's erroneous views on, *".

cast-iron, 8956, 1084; in steel,

11, 1; in wood, 1157; Clebuch on.

ussion of, by Thomson and
loubtful assumption that a solid

rtowBorruptureawh.ii .hi-th limit i-

reach I
.-...IMS.... on,

171'J <tniin dis-

'

'itiun.

linearity >:.

n flexure is not

17-J; elementary proof of equ
in.- to I'.mcelet, 188; at built-in

ends of beam or cantilever ban al>i uj.t

change of slope. 188; for initially

straight lamina, 1694; for rods of

double curvature, 291 : see Rod*,
H'/Yo, Jieama, etc.

l-'.lmtif Mtululi : see Moduli
l-'.loxtic Solid, probable molecular struc-

ture of, 1799 ; when subject to special

types of surface-load or of body-force :

see Solid, Elastic

]:Iu.*ticity, as a mode of motion, gyro-
static theory, 17846 ;

modern theory
of, originated according to F. Neumann
and others in the inability of hydro-
dynamical equations to explain Fres-
nel's new theory of light, 1193;
Rankine's distinction between fluid

and solid elasticity, invalid as deduced

by him, 4234, *1448; short history
of, by Saint-Venant, 162;

how influenced by working, 732 ; of

cast, rolled and forged bodies, effects of

working on elastic homogeneity, 115;
its dependence on density, chemical
constitution and crystalline form, 791 ;

little influenced by set, 1084

Elasticity, perfect, definition of, 1709(6),
1742 (a) ; linear as distinguished from

perfect, (i) p. 9, ftn.; limit of linear,
164 ; relation to temperature, 170!) (b),

1742 (a) ; is not identical with range
of Hooke's Law, 1742 (a)

Ela*tirity, Axes of: see Axe*

l-'.liaticity, Character of, (distribution of

homogeneity) symmetrical about three

planes, 117 (a); isotropic in tangent
plane to surface of distribution, 117

(b); for amorphic body, 117 (c); for

rari-constant amorphic body, 117 (</);

ellipsoidal distribution, 117 (c): see

also Ellipsoidal Dintrilmtiim

Kltinticiti/. Itistrilnititni i\ round any
point of a solid. rj>, 127 et *eq., 135;
symbolical method of treating, 198 (f);
ll.mkine on, 443 52

it ii, (iViii-r.i/ l-:<iuntiont of, have

unique solution, 6, 10, 19H (//), 1198,
f for crystal?) 11 '.'.. 1210, 1265,

(if equilibrium stahl. 1278, 1881,
n. '11 -2; f,,rin ,.f, deduced, from
niohrultir coiiHiderations, 228, on
rari-constant lines from molecular

potential, 66772, 1195, by Navier's

method, 1195, by Poimon'a and

Cauchy's methods, 1195, deduced from

strain-energy by piiiuiple of virtual

momenta, 1285, ducuaaed by Thomson
and Tait, 1709; in curvilinear oo-

ordinates, 118, 678; in cylindrical
coordinates, (i) p. 79. ftn.; in spherical
coordinate!*, (ii )>

7 >. tin.; expreeaed
M.licallv. 1MI; *,,l,,ti<m of, by
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Bankine, 442, by Popoff in cylindrical

coordinates, 5112, in uniplanar
polar coordinates, 1711, 1717 (ii), by
Thomson and Tait, 17156, in po-
tential forms, 1628 30, method of

removing body-forces from, 1653,
1716

Elasticity, Generalised Equations of,

with initial stress, with large shifts,

190 (a) (c) ; involving initial state of

strain, 237; on rari-constant lines,

retaining shift-fluxions of high orders,

234, of fourth order, 549 ;
when strain

is not small, C. Neumann, 670, 1249
;

Sir W. Thomson, 671, 1661, 1249 ;

when strain depends on speed of

straining motion, 1709 (a) ;
when shift

is large, obscure treatment of Kirch-

hoff, 12448; when squares and pro-
ducts of shift-fluxions are not negli-

gible, 234, 14436
Elasticity, General Theory of, Saint-

Venant, 4, 72, 190, 224 ; F. Neumann,
1194; Kirchhoff, 12779; Clebsch,
1326

;
Sir W. Thomson, 1661, 1709,

175665, 1767

Elasticity, Principal, denned, 1761
;

six values for aeolotropic solid, 1761
;

values for cubical aeolotropy, isotropy,

etc., 1762
Elastico-kinetic Analogy, 1267, 1270,

1283 (b) and (c), 1364, 1694
Electric Current, influence if long con-

tinued on absolute strength of wires.

1187; how affected by torsion of con-

ducting wire or tube, 1740

Electricity, distribution of, on disc, etc.,

1510 (c); elastic analogue to, 1630;
Sir W. Thomson on relation to ether

and ponderable matter, 1815 6

Ellipsoid, of optical elasticity, 1218
and ftn., 1483; Cauchy's, 226, 1194

;

Lame's, 1194, in tangential coordi-

nates, 1326; Clebsch's treatment of,

1348 (g)

Ellipsoidal Conditions, 198 (e) ;
in terms

of thlipsinomic coefficients, 311 ; sup-

posed by Rankine to hold for all

homogeneous substances, 430; hold

for initially stressed isotropic bodies,

1470, 1474; vibrations in medium
obeying, 1559; annul weblike aeolo-

tropy, 1776 (c) ; adopted for drawn or

rolled metals, stone, etc., 282 (8);

for amorphic bodies, 117 (c), 230;

application of potential of second kind

to elastic equations when these con-

ditions hold, 140, 235; reduce tasi-

nomic quartic to ellipsoid, 139; hold

for amorphic solids, for forged, drawn

or rolled materials, 142
; proof of this

on rari-constant lines, 143; identical

with Canchy-Saint-Venant conditions

for double-refraction, 149
; applied to

wood, 152, but do not hold, 308 (6) ;

strain-energy under, 163

Ellipsoidal Harmonics, properties of

proved by Painvin, 544

Ellipsoidal Shell, vibrations of, 544 8,

cannot be entirely dilatational, 548;

bursting of glass globes in form of,

857

Ellis, Jr. M., experiments on strength
of various metals (1860), 1166

Emerson's Paradox, 174

Energy, Conservation of, assumptions
made in usual proofs of, 303

;
intrinsic

of body, defined, 1631
; potential, of

strained solid : see Strain-Energy
Enervation, defined, 169 (6) ; 175

Equations of Elasticity : see Elasticity,
General Equations of

Erdmann, 0. L., on molecular state of

tin as affected by vibrations, 862

Ether, Luminiferous, number of its elas-

tic constants, 1459, 452, 1214;
elastic jelly theory of, 121321;
Cauchy, F. and C. Neumann, Lam6
and others on, 12146, 1274; under

pressure, 1215; fixed at an infinite

distance, 1215
;
initial stresses in ether

of crystal, 12167; MacCullagh's
views on, 1274; Kirchhoff 's views

on, 1274, 1301
;
Clebsch really makes

rariconstant, 1391; fixed at surface of

totally reflecting body by Clebsch,

1393; treated as an initially-stressed

isotropic solid by Boussinesq, 1467

74; Sir W. Thomson's views on

(1884), 1766, illustrated by cobbler's

wax and glycerine, 1766 and ftn.,

1781 (6); difficulty as to transit of

molecules through, 1781 (b); hypo-
thesis of aeolotropy of density of, in

crystals, 1781 ; contractile, used by
Sir W. Thomson and Glazebrook to

explain reflection, refraction, double-

refraction, dispersion, etc., 17878;
gyrostatic models of, 18067, 1816;
equations of motion of ideal, 1811,

compared with those of stressed jelly,

180912; relation to electricity and

ponderable matter, 1815 6

Enter, on problem of plate, 167; on

statically indeterminate reactions, (i)

p. 411, ftn. ;
his formula for transverse

vibrations of loaded bar, 759 (a) ;
his

formula for buckling load of struts,

974 (b) and (d), 977, 979

Euthytatic Axes, 446, taken by Ran-
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kine as basis for classifying crystals,
451

, his experiments on stituh

squeeze ratio referred to, 1201 (e)

/.//;//, on coefficient of induced mag-
ition cited, 1314; on relation of

strain and magnetisation cited, 1321,

1729, 1731, 17357
ibility, Coefficient of, by heat,

for brass, 730, 823

F.xtinctivity, 1782
Extraneous Forces: see Stress, Initial

Fabian, C., on extensibility of alumi-

nium, 1163
concludes from experiment tbat

central line of a beam under flexure is

really stretched, 941

/// Cliimnfyg, stability of, 463

Faamtli, Q. % erroneous treatment of

problem of body resting on more than
three points, 509

Fail- Limit : see also Fail-Point, general

equation for, 5 (</) (e) ; experimental
determination of relation between

shearing and tractive, 185 ; in case

of combined strain, 183 ; modified for-

mula for, 321 (c)

>int= (Poncelet's point dangereux),
5 (e) ; in case of torsion it lies near-

est to axis of prism, 23
;
relation to

\'i.'ld-rn,nt. 169(0); for flexure, 173,
177 (a), not necessary at point of great-
est stress, C. et A. p. 9 (b) and (c) ;

of feathered axis, 177 (c) ; for torsion,
181 (e) ; for a cantilever, 321 (d) ; of

uniformly loaded beam, C. et A. p. 12

Failure, to be measured by strain rather

than . 1327/1348 (</) (h),

//); difficulties of maximum stress

difference adopted as limit by Thomson
and Tait and by Darwin, 1720; on
maximum stretch limit to safety,

I (b)

Fiiirbn ..on collapse of globes
and cylinders, and strength of glass

(1859), 85360; on useful metals

(1857), 891; his 'Useful Information
for Engineers' (185560), 90610;
on tubular cranes, 960 ; on application
of iron to hull-link' purposes (1854),
'.HI (n); on iron ship building (1865),
HI >n collapse of tubes and flues

(1868), 9805; on repeated loadings
of a plate girder (1860), 1085 ; on effect

of repeated u

(1862), 1097 1100; on tensile strength
of v. D at various tempera-

; 1 1) on .1. M-;nes pro-
duced by enormous oompressive forces

.
. IT. II

(1854), 1155; on solidification of
bodies under pressure (1854), 1156;
on strength of mixtures of cast-iron
and nickel (1858), 1165 ; on strength,

rupture-surface, etc. of stone (1856),
1182; on punching resistance, 1104

his experiments on strength of

plates rejected by Mallet, 1066, dealt

with by Morin, 879 (d), by Love,
902 ; on effect of repeated meltings on
cast-iron by Hawkes, 1101

Fatigue of Metals, 169 (g), 970; Sir W.
Thomson's sense of term, 1748

Felspar, axes of, optic, acoustic, thermal,
diamagnetic and electric, 686 ;

hard-
ness of, 686, 840

Film*, translucency of thin metallic.
Sir W. Thomson's discussion of,

1782 (c)

Fink, on increased resistance of wooden
beams to flexure when subjected to

traction, 918; on formulae for the
flexure of bridges, 1036

Finlnj, J., builds first suspension-bridge
(1796), (i) p. 622, ftn.

!>ox, strength of, 908
Flaiiumt, pupil of Saint-Venant, 416;

translates Clebsch with Saint-Venant,
298 ; writes memoir on longitudinal

impact with Saint-Venant, 401 ; on
absolute strength, (i) p. 117, ftn. ; is-

sues posthumous memoir of Saint-

Venant, 410 4; publishes with Bous-

sinesq a notice of Saint-Venant, 415
;

gives an account of Phillips on springs,
508; throws Rankine's researches on
loose earth into geometrical form,
1571 ;

his discussion of pulverulence,
1571; his application of Boussinesq's
theory of pulverulence, 1606, his ap-

proximate formulae for that theory,
1611 ; his numerical tables for thrust

of pulverulent masses, 1625; his r(-

sum6 of Boussinesq's theory, 1610

Flaws, Bitter's error as to, 916 (b) ; Lar-
mor on, 1348 ( /") ; case of rotten core
in torsion, 1348 (/), 1430

/'/,./(//-. list of authors dealing with

subject before Saint-Venant, 70; his-

tory of problem, 815
Saint- Venant's treatment: some

results for, given in Torsion Memoir,
I-', when load plane is not one of

inertial symmetry of cross-sections of
i
, 14, for prisms of rectangularand

elliptic cross-sections, 14; distortion

oHs-sections, 15; of prisms, Saint-

Venant's chief memoir on, published,
trength of beams under skew, 66,

171 (<i) ; Bernoulli Kuhrian formulae
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for, 71, 80; Poisson and Cauchy,
erroneous theory of, 75 ; general equa-
tions of, Saint-Venant's assumptions,
7779, 190 (d) ; integration of general

equations, 82 4 ; errors of Bernoulli-

Eulerian theory, 80, 170, 1349; limited

nature of load-system admitted by
Saint-Venant, 8081 ;

form of dis-

torted cross-sections, 84, 92 and

frontispiece to Part (i) ; total deflec-

tion, 84 ;
treatment of special cases,

85 ;
cross-section an ellipse, 87, 90 (i) :

a circle, 87, 90 (ii)
: a false ellipse, 60,

88 : a rectangle, 62, 936 ; deflection

when slide is taken into account, 96 ;

distortion of cross-section, 97; of prism
with any cross-section, 98 ; comparison
of Saint-Venant's and the ordinary

theory of flexure, 91 ; elementary proof
of formulae, 99 ; load not in plane of

inertial symmetry of cross- section, 171;

position of neutral line and ' devia-

tion,' 171 ;
elastic line, when flexure

not small, 172 ; rupture by, and fail-

point in case of, 173 ;
of beam of great-

est strength, 177 (b); when stretch- and

squeeze-moduli are unequal, theory of

rupture, 178 ; elementary discussion

of, 179; combined with torsion, 180,

183, for circular section, 1280, for

elliptic section, 1283; approximate
methods for flexural slide, 183 (a) ;

producing plasticity, 256
Clebsch's treatment : 133247, he

criticises Bernoulli-Eulerian theory,

1349; Morin's superficial treatment,
881 (a) (6); Eoffiaen's treatment of,

925, 1090; unpublished memoir on,

by Wertheim, 820 ; Kupffer's first me-
moir on, 747, his doubtful formulae
in case of loaded rod, 759 (e), criticised

and corrected, 7602
'Circular' flexure, dealt with by

Saint-Venant, 11, 170, by Thomson
and Tait, 1712; flexure of rods or

ribs with curved but plane central

line by couples, 677 9; initial form
of bar, which will become straight
under flexure, 919; resilience of, 611;

rupture under Saint-Venant's theory

(178) applied to cast-iron, 1053 ; rup-
ture of cast-iron girders, 1031

;
flexure

of girders under not accurately trans-

verse loading, 1036; experimental de-

termination of stretch-modulus by,

7289, 128990 ;
wooden bars under

flexure have increased strength if sub-

jected to traction, 918; effect of re-

peated flexural loading on bars, 992,
on railway axles, 998, 1000-3, on

girders, 1035; stress-strain diagrams
for flexural loading, 1084

Flexural Rigidity, C. et A. p. 8, 1687
and ftn.

; determined for plate of

isotropic material, 1713
Flexural Set: see 1',,-nt

Florimond, on brittleness produced in

brass by sudden changes of atmo-

spheric temperature, 1188

Flow, of ductile solid, 233, 1667 : see

Plan tic it i/

Flue, elliptic dealt with by Bresse, 537,

by Macalpine, 538, by Winkler,
642 5 ; formulae for collapse of boiler-

flue, 980 5 ; empirical formulae based
on Fairbairn's experiments and due
to Grashof and Love, 9867 ; strength

of, deduced from ring, 1554 5 : see

also Tubes

Fluid, nature of stress in, 582 (a) ;

elastic analogue to the stretching of,

1709, ftn.

Fluid Action, as factor of intermolecular

force, 424, 429, 431, 1448

Fluidity, hypotheses as to, 1464
; coef-

ficient of, with Rankine =X-/x, 424
;

with Kupffer = after-strain or vis-

cosity constant, 734, 7389, 7489
Fluor Spar, double refractive power

under compression, 789 (b) ;
hardness

of, 836 (d), 839
;
elastic constants for,

1212

Fly-wJieel, danger of certain speeds for,

359 and ftn.
;

stress due to spin in,

646; influence of spokes, 647; full

theory, 5848
Forbes, G., on rupture of glaciers, 1667 ;

as poet, 1781 (c)

Force, analysis of, as applied to elastic-

medium, isorrhopic and rhopimetric
axes for, 455 7; removal of body-

. force from elastic equations, 1653,

1716; Saint-Venant on, 294; Bous-

sinesq on, 1463

Forcive, circuital, defined, 1810 ; discus-

sion of, in jellies, 1813 4

Forcings, much weaker when large than

original iron, 1128

Fourier, on waves of transverse vibration

in infinite plate, 1462, in infinite bar,
1534

Fowke, F., experiments on strength, set

and elasticity of various woods (1856

67), 11589
Fracture, nature of, classified by Ran-

kine, 466 (a) ;
of hard and soft bodies

by Torsion, 810, 1667 ;
of cannon

under internal pressure, 810, 1055 ;

in brittle and in viscous solids, 1667,
1720 ; general remarks on, 1720 ;

of
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cast-iron, copper, zinc, tin and alloys,

(i) p. 707, ftn., 1099, 1100; whether

'crystalline' or 'fibrous' and how
such may be produced, 1143 ; effect of

concentration and distribution of
stress in determining nature of

fracture, 1143: see also Rupture,
. Iron Cast, etc.

Framework, Menabr^a's principle of

minimum work of elastic stresses,

6046; Ritter's method, 915 (b)\

supernumerary bars, single node load-

ed and attached to any number of
fixed points, 1387 ; case of nodes in

bars themselves, 1388 ; isosceles truss
with vt-rtical strut, 1388; experiments
of Morin to test stresses in, given by
theory, 881 (c) ; wooden, C. et A. p. 5,

925, 1022: see also Girders, lattice,

etc.

Frankenheim, among first to give valu-

able results for hardness (1829), 836

(0)

Franz, /?., on the hardness of minerals
and a new process of measuring it

(1850), 83740
Fresnel, on artificial double refraction,
793 (iii) ;

his researches on light con-
sidered by F. Neumann to be starting

point of modern elastic theory, 1193 ;

Cauchy- Saint-Venant conditions for

his wave-surface, 148 9; his laws
of double refraction deduced by F.

and C. Neumann and by Lame* from
io jelly theory of the ether, 1214

6 ; his laws deduced by Boussinesq,
(1st theory) 14724, (2nd theory)

(3rd theory) 1481, 1483 ; by Sir
\V Thomson from cyboid aeolotropy,
177" . hi- laws do not follow from

hypothesis of aeolotropy of density,
1781 (a) ; deduced by Sir W. Thomson
from theory of initial stresses, 1789
96 : see also 11 "/</<

(nations for, given by
Poisaon (1831), Saint-Venant (1843),

i Stokes (18 -I.-, i. 17 II

internal of pulverulent matt,

1587, slope of natural talus for various

sands and earths, 1588; in sand,
1609: see also

n of solids, 1744: see also VIM-

cosily
n, rolling, explained on theory of

elasticity, 156
. his views as to rays referred to

by Kirchhoff, 1311

Frost, influence on absolute strength of

1148
illinc forms of dii

kinds of iron and steel, (i) p. 736,
ftn.

Funinieri, on statically indeterminate

reactions, (i) p. 411, ftn.

Fun ion
t
its influence on hardness, 1042

Galopin, on double refraction, 154

Gnlrtini*ation, its influence on strength
and ductility of iron wire, 1096 ; does
not increase strength of certain iron-

plates, 1145 (iii)

Gaudet, on steel, 897

Gauss, his theorem as to inextensible

surface proved by Bonssinesq, 1461

Giiii-I.ussac, on magnetisation produced
by vibration, 811

Gehring, on aeolotropic plates (1860),
1411 5

; comparison of his researches
with Kirchhoff's, 12923 ; cited by
Clebsch, 1375, 14123

Gems, tested by hardness, 836 (c)
(it-m-ral Equations of Elasticity: see

Elasticity, General Equations of
Gi'iii-ralim-il Hooke's Law: see Hooke's
Law and Stress-strain Relations

Geological Problems, application of
elastic theory to, 1577 with 1583,
16645

Germain, Sophie, on plate problem, 167 ;

criticised by Kirchhoff, 1234

Gilbert, vibrations, regular or irregular,

develop magnetisation. 811

Girders, stress in bars of braced. r..~>l,

10046, 1027; wrought-iron plate,

953; economic form < :. :t.vj : ivlutive

strength of cast- and wrought iron,

954, 1008 ; Warren, 1012 ; deflections

due to impact, temperature, etc., 1013 ;

repeated loading of plate-;

theory of braced girders, 1022 ; form
assumed by bracing bars under strain,

1017, 1026, 1028
l<ttt>,-,\ o.inpjirrl with plate, 1017,

1019. 1 _:. 1028 30: see
also Bridges, /taint*, Arches, etc.

Giiilio. his results for helical springs
reached by Thomson and Tait, 1698

', nature of rupture, 1667
Gladstni, l. M. oa -uperiority of
malleable to east-iron girders, 1008

Glass, thermal effect of compression,
695; thermoplastic

properties of,

752 ; effect of compression on electro-

iiHiK'iirtir r.'tut.'i v
j...

\\i-r of crown and

698; double-refraotiYe power
und.r n.iii|.i.-^i.Mi. 7*', ; uftrr-train
in thrrmU ..f. in p. .Ml. ftn.; .-rushing
and tennile strengths of flint, green
>it id crown, 855 6; crushing strength
of cubes of, 856 ; ratio of tensile and

-2
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compressive strengths, etc., in bars

and plates of, 850 ; compressibility
of, 1817; slide-, stretch- and dilatation-

moduli of, 1817 ; ratio of kinetic and
static dilatation- and stretch-moduli,

1751; resistance of cylinders and

globes of, to external and internal

pressures, 857

Glazebrook, criticises Saint -Venant's

views on light, 147, 150; his Report
on Optical Theories, referred to, 1221,

1229, 1274, 1301 ; explains double-

refraction, dispersion, etc., by con-

tractile ether, 1788
Globes : see Spherical Shells

Gobin, experiments on pulverulent
masses, 161011, 1623

Gold, thermo- elastic properties of, 752 ;

after-strain and temperature in, 756 ;

stretch-modulus of, 772, (i) p. 531,
824

; hardness of, (i) p. 592, ftn., 836

(&)

Gore, on electro-torsion (1874), 1727

Gough, his results for india-rubber con-

firmed by Joule, 693

Gough-Effect, in india-rubber, 693, 1638

(iv)

Gouin et Cie, experiments on rivets, 879

(d), 903, 1108; on steel, 897; on

iron-plate, parallel and perpendicular
to direction of rolling, 1108, 1121,

cited, 1104

Grailich, J., his sklerometer and de-

termination of hardness of Iceland

spar (1854), 8424
Granite : see Stone

Graphical Tables, for strength of ma-

terials, 921 and ftn.

Graphite, relation of its elasticity and

density to those of diamond, 791 and
ftn.

Grashof, criticises Scheffler on struts,

etc., 653; on combined strains, 924;
on increase of strength of beams due
to building-in terminals, 943 4

;

criticises Scheffler's treatment of this

topic, 944 ; on strength of thread of

screws, 966 ;
his empirical formulae

for Fairbairn's results for tubes, 986

Gravitation, value to be measured by
transverse vibrations of a vertical and
loaded rod, 742 (b) ; attempt to

explain cohesion by aid of law of,

865, 1650

Gray, F., on Tredgold's formula for cast-

iron cylinders, 962

Green, his theory of light, referred to

or criticised, (ii) p. 26, ftn., 1274;
his conditions for propagation of

light, 146; his theory of double

refraction criticised, 147, 193, 229,

265, 1473
on initial stresses ('extraneous

pressures'), 130, 147; criticised by
Sir W. Thomson, 1779, 1782; used

by Sir W. Thomson to explain double

refraction, 1789 97
his form of strain-energy, demon-

strated by Sir W. Thomson, 1632 ;

his strain-energy function deduced by
rari-constant theory and Lagrange's
process, 229 ;

on a possible modifi-

cation of its form, (i) p. 202, ftn.
;

Saint-Venaiit accepts his reduction of

36 to 21 constants, 116 ; criticism of

his deduction of stress-strain relation,
192 (a)

Green's Theorem, (in analysis) used by
Kirchhoff, 1312

Greenhill, on elastico-kinetic analogue
referred to, 1267

Gun : see Cannon
Gun-metal : see Bronze
Gutta Percha, thermal effect in, 689,

692 ; bursting of tubes of, 1160

Gypsum, optical axes of, (i) p. 472, ftn.,

change with temperature, 685, 12189
and ftn., 1229

; dispersion of its optic

axes, 1218 ftn., 1229 ; acoustical and
thermal axes of, 685 ; hardness of, 685,
836 (d) and

(i), 839 ; behaviour as to

electricity and magnetism, 685 ;

stretch-modulus of, 1210

Gyrostatic Medium, used to explain

optical phenomena of quartz, 1781,

1782, 1786 ; equations of propagation
of disturbances in, 1782 (a), 1785 (a)

Gyrostatic Models of Ether, 18067
Gyrostatic Molecule, 1782 (a)

Gyrostats, 1785 (b) and ftn. ; in motion
used to form an elastic medium, 1784

6

H., memoirs on continuous beams with
numerical tables (185860), 9468

Hagen, his experiments on stretch-

modulus of wood, 152, 198 (e), 308 (a)

Haldat, De, sound vibrations have less

effect than irregular vibrations on

magnetisation, 811

Hamburger, on longitudinal impact of

bars, 203, 210, 214
Hamiltonian Principle, used by Kirch-

hoff, 1256, 1277

Hammering, effect on stretch-modulus
of brass and iron, 741 (a): see also

Working
Hardening, of steel in water reduces, in

oil increases strength, 1145 (i)

Hardness, of materials, early history of
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subject, 836 (a) (A-); scales of, for

metals, 830 (b), for minerals, 836 (d);

varies with direction, 83(5 (a) and (e) ;

use of metal and diamond scribers,

836 (/) and (#); varies with speed
of scratching or tearing substance

(rotating soft-iron discs cut hardened

steel, chalcedony, and quartz) 836 (/i);

first scientific sklerometer used by
Seebeck, 836 (t) ; problems to be con-

sidered in testing hardness, 836 (j) ;

definition and analysis of, 837 8;
ray-curves for hardness in various

directions, 839 ; laws connecting hard-
ness with planes of cleavage in crystals,
839 40; relation to atomic and mo-
lecular properties, 841 ; use of sklero-

meter, 843 ; scale of hardness of metals
and alloys, 845, 846, (i) p. 707, ftn.;

Wade's method of testing by indenta-

tion, 1040 2; experiments on cast-

iron, wrought-iron and bronze, 1042
3 ; relation to density in cast-iron,

1042 3
; for hardness of variousmetals

and minerals : see under their titles

Hart, erroneous theory of shrunk-on
coils for guns, 1071 (6)

Ilniujlittiit. discovers tasinomic quartic,

136, orthotatic ellipsoid, 137 ;
dis-

cussion on his views as to elastic

constants by Saint-Venant, 193 ; his

experiments on impact referred to,

JIT; cited by Rankiue (as to ^ = ^),

Jliittpt. //., on resistance of vertical

plates in tubular bridges, 1015

iniinjer, on longitudinal impact
of bars, J

//<//"/. /.'. /., scale of hardness (1801),
836 I'/i

-, W., on repeated meltings of

cast-iron, 1101

Hawkshaw, J. t on absolute strength and
deflection of cast-iron girders, 1007

.tt.inpted explanation by traus-

lational vibrations of molecules, 68 ;

explanation of its effect in dilating

bodies, and the nature of coefficient

ulatation, 2H
; stretch due to

thermal vibration. ^;H; thermal effect

depends on <! -nvatives of second order

of function giving intennolecular

action, 268; diagram of possible law
of intennolecular a . 179;

I)h. nomena of, accounted for by
ular translations! vibratioi

tin -01 i accordance
with npectral ]>|H-MOIMI-IIU. Tt I

(lurtK'n <>f preHHiire on Miin>un<lMiK
: Saint-

Venant rejects kinetic theory of gases,
273; passage of, produces crystalline
structure in metals, 1056: see also

i union, ('<h'jii<-i,')it <>/

Heat, Mi'chdiiicnl i-ijiiirnli'nt of, obscure
treatment by Besal, 716, by Vogel,
717, by Kupffer, 7245, 7456, 823

Heat, ]l,-l(ition to Elasticity : see Ther-
mal I\tr'>'ct, M<liilnx, etc.

7/<//.c: sec S/irinf/.-i, In'licnl ; principal
helices of win-, ir.'.rj

Helm, G., Die Lehre ron der /;/<, ';v//V.

cited, (i) p. 501, ftn.

HelmhnJt:, von, remarks on Knpffer's
treatment of mechanical equivalent of

heat, (i) p. 501, ftn. ; generalises Huy-
yhens' Principle, 1312; on change of

density and on stress due to magneti-
sation', 1313, 1315, 1316

Jli-nry, on strength of stone, 1180

Heppel, J.M.,on Three Moments Theo-
rem with isolated loads (1859), 607;
erroneous treatment of web and flanges
of iron girders, 1018

Hermite, reports on Saint-Venant's me-
moir on transverse impact, 104

llfi-ifcfiel, his explanation of cohesion by
gravitating molecules adopted by Se-

guin and Sir W. Thomson, 865, (i)

p. 600, ftn., 1650
on the impact of two solid elastic

spheres (1882), 15157, importance
of this investigation, 1140, 1684

Hess, on elastico-kinetic analogy, cited,
1267

Heterotatic Axes, 445
Heterotatic Surface, 445, 137 (v) ; has
no existence for rari-constancy, U7 <v)

Hotliikinaoii. account of his life, 975;
GK II. Love on his work, 895; re-

searches on strength of cast-iron pil-
lars (1857), 9725 ;

his '

Experimental
Researches' translated into French,
1095; on the elasticity of stone and
crystalline bodies (1853), 1177; his

experiments on stretch-modulus re-

ferred to, 169 (<); on Emerson'
dox, 174 ;

his experiments on beam
ofsti -srction criticised by

nt 17',. rejected by Moll
:ni'i Keauleaux, 875; exp
In- I wain of strongest cross- s>

-am referred to. < i. Mi.;.

experiments on com-

presHi oritteiMd by Werthdm, TWi
liin formula for cast-iron (jur

by Bell. Ill- Oil rxp, i:m,-nto OH
cast-iron beam w, 087

(a) u - graphical and
numerical pre* losults
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for compression of wrought- and cast-

iron, and his results for cast-iron pil-

lars, 880 (c) ; on cast-iron pillars, 972

5; on elasticity of stone, 1177; his

mass-coefficient ofresilience, 1550, ftn.;

his empirical formula for longitudinal

impact confirmed by Saint-Venant's

theory, 406 (1)

Hofmann, necrologue on Kirchhoff, (ii)

p. 39, ftn.

Hollow Prisms, torsion of : see Torsion

Holtzmann, C., on distribution of stress

(1856), 582

Homogeneity, defined by Cauchy, 4 (77) ;

semi-polar distribution of, 4
(77) ;

dif-

ferent distributions of, defined, 114
;

spherical, cylindrical, n-ic distribu-

tions, 1145
Homotatic Coefficients, 136, 446
Hooke's Laic, Kupffer confirms Hodg-

kinson that it does not hold for cast-

iron, 729, 759 (d), 767; does not hold
for stone and cast iron, 1177; nor for

caoutchouc springs, 851, 1161; nor
for elastic fore-strain in organic tis-

sues, 831 2; controversy between
Wundt and Volkmann as to form of

stress-strain relation for organic tissues,
833 5 ; Hodgkinson's experiments
show that it holds for stretch-traction

in wrought-iron, 793 (i) ;
for stretch-

traction in cast-iron, the stretch in-

creases more rapidly than the traction,
793 (ii) ;

for squeeze-pressure in cast-

iron, Hodgkinson's experiments not

conclusive, 793 (iii) ;
is not satisfied

for small stretches or squeezes accord-

ing to Wertheim, 796; receives no

support according to Wertheirn from
isochronism of sound vibrations, 809 :

see also Stress-strain relations

Hooke's Law, generalised, 4 (f), 169 (d)
reasons for, 192 (a) ;

Morin's experi-
ments on, 198 (a) ; Saint-Venant ap-

peals for proof to rari-constancy, 227 ;

deduction of, 299 ;
is reached through

a non-seqnitur in case of Cauchy,
Maxwell, Lam6 and Neumann, 1194,
Sir W. Thomson, 16356; its rela-

tion to elastic-limits, 1742 (a)

Hoop, distortion and stress in a heavy
circular hoop resting vertically on a
horizontal plane, (i) p. 448, ftn.

;
col-

lapse of, when subject to external pres-

sure, 1554 6; stress in, when rotated

round central line, etc., 1697 (6)

Hopkins, his formulae for shear proved
by Potier, Kleitz, L6vy and Saint-

Venant, 270, by Boussinesq, 1458,

1604; holds that earth cannot be

liquid mass enclosed in thin slu-11,

H)(4
;

his views on the rupture of

glaciers, 1667

Hoppe, R., on flexure of rods (1857), 593
Houbotte, on deflection, set and rupture

of plate girders (1856), 1021; testing
machine (1855, first hydraulic?), 1153

Hughes, S.
t
on beams and girders (1857

8), 950

Hugoniot, on impact of elastic bar, 341

Hugneny, F., experimental researches
on hardness of bodies (1865), 836;
criticises Franz, (i) p. 587, ftu.

Hunt, T., on railway springs, 969 (d)
Jin liter, J. B., his specimens of Liiders'

curves, (i)p. 761, ftn., and frontispiece
to Part

(ii)

Huyghens, on grouping of molecules in

Iceland spar, 836 (), 1800; on hard-
ness of Iceland spar, 836 (a)

Huyghens Principle, generalised by Helm-
holtz and demonstrated by Kirchhoff,
1312; form of it used by Clebsch,
1400, 1406

Hydraulic Presses, formulae for strength
of, 9001, 10768 and ftn.

Hydrodynamic Analogues to torsion pro-
blem, 1419 (c), 1430, 1460, 1710

Hydrostatic Arch, 468

Hypothesis of modified action, 276, (i)

p. 185, 305, 1773 ; accepted by Boussi-

nesq, 1447; leads to bi-constant for-

mulae, 3448

Hysteresis, 1735

Ice, strength of, 852
; melting of, under

pressure, motion of, as a plastic solid,

1649; rupture of, 1667
Iceland Spar, hardness of, varies with

direction, 836 (a), 839, 844; as to
whether it obeys relation between con-
stants required by Neumann, 1214,
ftn. ; artificial twinning of, discovered

by Baumhauer, theory of, by Sir W.
Thomson, 1800

Impact, history of theory of, 165; Poin-
sot's memoirs on, 591; coefficient of

restitution on Newtonian theory, 209,
847; unsatisfactorily treated in text-

books, 1682 4 ; calculation of maxi-
mum shift and principal vibration due
to, in case of any elastic body, 1450

5

Impact of Solid Elastic Spheres, Hertz's

theory, area of contact and duration
of impact, etc., 1515 7

Impact, Transverse of Plate, 1068; maxi-
mum velocity of shot, 1068 ; maximum
velocity of impact, 1538

;
shift of plate,

1545 ;
on circular, 1550 (b)
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t, LnniiHintimil of Cone, by second

cone, 223; by massive particle, 15-t-J l :

maximum velocity of impact, 1542 and
ftn. ; duration of impact, 1542; maxi-
mum strain,

Iinpnrt, Lonijitinlinnl on Xtrut, of neg-
ligible mass, which buckles, 407(2),
1552

Impact, Lnnfiitndinal of Bar, 202, 203 ;

history of problem, 204 ; Thomson
and Tail's, Rankine's proofs of special

problems, 205, 1683 ; of bars of same
section and material, 207 8 ; compari-
son of Saint-Venant's results with

on's for spheres, 209; diagrams
of compression, etc., pp. 141 2; Voigt
ami Hamburger's results disagree with
Saint-Venant's theory, 210, 214;
Voi^t's "elastic couch,"214; of bars

of different cross-section and material,
211 213 ; duration and termination
of impact, 216

;
loss of kinetic energy,

217
; Haughton's experiments,

217; elementary proof of results, 218;
of two bars, one very short or very
stiff, 221 ; of two bars in the form of

cone or pyramid, 223 ; of bars of

different matter, one free and the

other with one terminal fixed, 295;
solution for case of impelling bar

being very short or rigid, 296 ;
solution

in series corresponding to that of

Navier and Poncelet, 296 ; solution in

finite terms, 297; of elastic bar, by
rigid body, 339341 ; history of

problem, 340 1; Young's Theorems,
340 ; contributions of Navier, Poncelet,
Saint-Venant, Sebert, Hugoniot and

Boussinesq to problem, 341; graphical

representation of, by Saint-Veuant
jui'l 1 1 miant, 401 407; Boussinesq's
solution of the problem, tnl, ir,i7_50;
duration of blow, in:'. : shifts at various

joint- ut'i retches at various

points of bar, 405; maximum shifts

and squeezes, 406; repeated impact,

407(1); tendency of impelled bar to

lo, 407 (2); curves giving laws of,

4113; comparison of graphical and

analytical results, 412; Young's theo-

rem for, 1068; F. Neumann's investi-

gation of longitudinal impact of two

bars, priority of publication belongs
to Saint-Venant, 12245; Thomson
and Tait on, 16H3 ; infinitely long in

one direction, 1641; Boussinenq'n

>e, maximum strain,
tic energy,

1549: non-impelled end fixed, num.

coefficient of resilience, maximum
strain, etc., 1550 (a) (b)

, TruntveneofBar, 63, 104, 200,
_>U. :;}_'. 861; first attempt by D.
Bernoulli (1770), 474 (/) ; report on
Saint-Venant's memoir on, 104 ; rela-

tion of Saint-Venant's researches to

those of Cox and Hodgkinson, 1045,
107 ; analytical solutions for vibrations
of bar with load attached, when a blow
is given, 343354; Cox's hypothesis
for transverse impact, 344; transverse

beam, struck horizontally, 346 348 ;

functions required when beam is not

prismatic, 349 ; beam doubly-built-in,
350; cantilever receiving blow at free

terminal, 351; non-central blow on
doubly-supported beam, 352; case of

free bar with impulse at both ends,
353; with impulse at one end, 355;
carrying a load at its mid-point and
load receiving blow, 355 6 ; nu-
merical solutions for, case of doubly
supported bar centrally struck, 362 ;

representation by plaster model, 361;
nature of deflection-curves, 362; de-

flections tabulated, 363; maximum
stretch, 363 ; Young's theorem nearly
satisfied, 363 (cf. Vol. i. p. 895);
Saint-Venant's remarks on the direc-

tions required in future experimental
research, 364; vertical impulse on
horizontal beam, 365; hypothesis of

Cox compared with theory which
includes vibrations, 366; true for

deflections, not for curvature, 366,
371 (iii) ; mass-coefficient of resilience

y determined for a variety of impulses
to bar, 367 8; general value of -y,

368; general value of deflection in

terms of 7, 368
; approximate value

of period of impulsive vibration, 369 ;

beam projecting over points of support
mi. I struck at centre, 370(6); "solid
of equal resistance" for central impact
on beam, 370 (); maximum stretch

as deduced by Cox's method ii

its true value for several cases, 371 (iii) ;

stretch due to impact of smiili

with great velocity,

k-iving laws of, 41011, 4184; gra-
measurement of maximum

of bar, 418 ; Bouttineaq on
Saint-Venant's solution, 1646; Fla-

nmnt on Bousoinesq's solution, 414;
.oftded, 1689-40; wife

stretch, 1546; maximum vel<><

impact, 1537 ; duration of impact need-
ful to ensure injury, 1091; obscure
treatment of problem by Lcmoyne, 966
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883
, Tranxrerte on Xntpension Hridae,

Impulse, (rradnnl: see Impact and Resi-

lience

Impulsive Deflection, formula for, e.g. in

case of carriage springs, 371 (ii) ;
in

case of circular plate, 1550 (c) : see in

general Impact
Impulsive Loading, of bars and axles,
9911003

Incompressible Elastic Solid, equations
for, 1215, 1652; withcyboid aeolotropy,
1775; conditions for in terms of thlip-
sinomic coefficients, 1779, of tasinomic

coefficients, 1779
India, iron made in, tensile, transverse
and crushing strengths of, 1120

India Itubber, vulcanised, heated by
loading, 689; therrno-elastic proper-
ties of, 693, 1638 (iv) : see also Caout-
chouc

Inertia, Moments of, for trapezia and

triangles, 103
Initial Stress: see Stress, Initial

Intcnnolecular Action, as function of

intermolecular distance, 169 (a) ;
dia-

gram of possible law of, (i) p. 179 ; New-
ton treated it as central, 269

;
sums of,

difficulty in dealing with, Poisson and
Navier's errors, 228

; hypothesis of

modified action and influence of aspect

on, 276; Boscovichian theory does
not admit of aspect, but does of

modified action, (i) p. 185 ; change of

sign in, 276 ;
modified action leads

to multi-constancy, (i) p. 185 ; Newton
and Clausius consider it a function

only of distance, 300 ;
influence of

aspect on, 302-306; argument against
modified action from small influence
of astral on terrestrial molecules, 305 ;

forms for law of, suggested by Berthot
and Saint-Venant, 408, Weyrauch on
law of, C. et A. p. 1

;
law of force for

liquid molecules, 863; molecular theory
of Seguin, 865; molecular law of

Bancalari, 866 ; molecular theory of

Cornelius, 868; molecular law of

Bouch6, 870 1
; Boussinesq on

action between molecules, 14478,
1463: see also Molecules, Atomic Con-
stitution of Bodies, Constants, etc.

Iron, difference between various kinds
due to nature of crystallisation, (i) p.

736, ftn. , ratio of kinetic and static

dilatation- and stretch-moduli (? wire),
1751 ;

thermal effect on slide-modulus

(? wire), 1753 (b); general use of for

floors, girders, roofs, ships, etc., 891 (/),
907911

Iron />'<>//*, effects of case-hardening,
cooling, etc., 1145 (iii)

Iron Cables, strength of links of, 879 (f),

1132; attempt to take account of

traction of manufacture, 897
Iron, Cast, thermal effect of stress, 689,

692, 695, 752, 756; coefficient of ther-

mal expansion. 1111; set produced by
repeated heating, 1186; after-strain

and temperature, 756
hardness of, (i) p. 592, ftn., 846,

(i) p. 707, ftn., 10423
stretch-modulus and density of, (i)

p. 531; variation of stretch-modulus
with specimen and manner of its load-

ing, 1110; difference between stretch-

modulus at core and periphery of bar,

experimental values, 1111
; inequality

of stretch- and squeeze-moduli, 971
Hooke's Law does not hold for, 729,

759 (d), 767; stress-strain relation for,

895 6 ; Bell's proposed law of stress-

strain, 1118; stress-strain curves for

traction in, 879 (a), for flexure, 1084

5; elastic limits for in tension and

compression, 875, 951 ; state of ease

for, 895 6 ; torsional set of, 1039 (c)

relation of chemical to physical
constitution, 1045, 1047 (c) ;

molecular
constitution peculiar to shape of cast-

ing, planes of weakness, 1057

strength of, ratio of tensile and

compressive strengths, 176; absolute
or tensile strength, 899, (i) p. 707,

ftn.; 1039 (a), 1105, 1122, 1166,
not increased by mixture of nickel,
1165

;
difference between values at

periphery and core of specimen, 1111,

crushing or compressive strength,
1039 (e), 1100; rupture by compression.
169 (c) ;

transverse strength of, agrees
with tensile strength for large but not
for small specimens, 1117 (iv), value

of, 1039 (6), 1105; torsional strength

of, 1039 (c), when skin change of elas-

ticity is included, 186; of bars of

different cross- section, circular, hollow,

etc., 1039 (d) relation of crushing and
tensile strengths, 1039 (e), of tensile,

transverse, crushing and torsional

strengths, 1043, 1049, 10513, 1086;
influence of casting, mode of prepara-
tion, etc. on strength, effect of hot and
cold blasts, remeltings, maintaining
in fusion, casting under a head, etc. on

tenacity, 891 (a), 1038 (a) (c), 1039

(a), 1049, 10589; transverse and
tensile strengths, how affected by slow
or rapid cooling, 1038 (b), by pressure
during casting, 1038 (d), influence of
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mode of casting and head on strength,

104950, 1060, (i) p. 707, ftn. ; effect

of remeltings on transverse strength
and ultimate deflections, 1097 99,
1101

; strength of 'toughened 'cast- iron

girders, 1105; comparative strength of

various kinds of cast-iron (sets, loads

and deflections), 10'.3
;
nature of frac-

ture of, (i) p. 707, ftn., 103'.) (), of

small blocks, 321 (/

arches, elliptic of, loll

beams of, comparative strength of

various cross-sectious, 927, 936; ex-

periments on, 937 ; of strongest cross -

section, 176, 875, 927, 951, 101(5, liu:i,

1031 ; Barlow's attempt to explain
'

paradox
' as to inequality of tensile

and transverse strengths, 930 8 ; of

circular cross-section relatively stron-

ger than square, 1038 (/>) ; experiments
on beams of triangular cross-section,
'.'Tl : experiments on rupture of, 1024

columns of, 973 4

girders of, comparative strength of

cast- and wrought-iron, 954, of j_ and
I sections 10078, 1031

,
of toughen-

.-t-iron, 1105: see also (;inl<r*

and Beam*
ordnance, 891 (d), 1037, etc.: see

pipes of, Morin and Love's for-

mulae for strength of, 900; rings of,

bursting by wedging, 1044

Iron, Meteoric, very ductile, 1165
wretch-modulus and density

of, with and across fibre, (i) p. 531;
strength of, 87l (c) <rf), 902, 1066;
resistance to punching, traction, shear-

ing, crushing, 1104; experiments on

strength of, 1106; parallel and per-

pendicular to rolling, 879 (<*), 902,

11267; absolute strength and
ton with and across direction of

ng, 1141; strength when impul-

sively wedged asunder. 11'

of riveted iron-plates, II 21, 1127.

: effect of temperature on un-

wrought, 1097, 11J7; how affected

parallel and perpendicular to rolling

by change of temperature, ill. 1196

7 ; pipes and water reuervoirs of, 904
nlere of, 958: *

. strength of, 879 (d), 1100

changed by temperature, 1116;

proper thickness for, l 1 i

Imn .svr.i/i. vagueneHH of term, 1141

Iron Sheet, anomalous action under tor*

.'.107 1!

ed by tort, 810; influence of torsion
on magnetisation, 812

Iron Stays, strength of, 908
Iron Wire, thermal effect of stress, 689 ;

effect of annealing, 1131 ; not rendered
brittle by cold, 697 (c) ; thermo-electric

properties in relation to strain, It.j-j

6; conductivity under strain, 1647;

stretch-squeeze ratio
(17)

for, 1201 (a) ;

effect of tort on moduli of, 1755;
stretch-modulus of, (i) p. 531, 824;
velocity of sound in, 7*5; attempt to

take account of traction of manufac-
ture, 897

strength of, 902, 1033, (i) p. 753,

ftn., effect of galvanisation on, 1096,
effect of annealing on, 1131, effect of

long-continued electric current on,
1187, effect of long-continued stress,
1754 , magnetisation, effect of in produc-
ing strain, 688; effect of stretching on
magnetic properties, 705; effect of pull
on magnetisation of, 1727 8; Villari

critical field for soft iron-wire, 1730 1,

1736; effect of temperature on Villari

field, 1731 ; effect of torsion on loaded
jiml magnetised iron wire, 1735;relation
of magnetisation and torsional elastic

strain and set, 708, 714, 8126;
specification of direction of induced
current by twist when wire is under

longitudinal magnetising force, 1737
Iron. \\'mn

: ilit, thermal effect of stress,
i><_'. i.'.<> ; thernao-elastic properties of,

752, 756 ; after-strain and temperature,
756 ; effect of annealing, 879 (/) ; effect

of frost, 1148; effect of heat and
working in determining elastic axes,
1065

hardness of, (i) p. 592, ftn., 836 (&),
846

stretch-modulus of, how influenced

by hammering and rolling, 7 1

value of when roll. .1, r.i p. 681;
generally obeys elastic theory, 1117;
Liiders' stress curves for, 11;0 and
frontispiece to Part (ii); stress-strain

. for, 879 (a), stress-strain rela-

ti ..ii for, 793, 896; elastic limit of,

951
;
safe tractions for, 176

molecular state of, how affected by
repeated loads, 864, 8, by repeated
gradual or impulsive torsions, 994 4,

1186 ; in state of confused crystallisa-
:f forged in large masses, 1066;

lil.n.tis itii.l i-rvstiilliiir st.-itr* -I. st.l.

.'67; fracture whether
hl>ruir or 'crystalline' depends on

. 1148; effect of

sodden load. Ill-
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it less liable to 'crystallise,' 1189;
molecular constitution of, 1065, (i)

p. 736, ftn. ; molecular arrangement
rather than metallurgical constitution

affects strength and elasticity, 1129 ;

how weakened when converted into

massive forgings, 1128; nature of frac-

ture, (i) p. 707, ftn., 902, 1140, 1143

strength of, tensile, 902, 966, 1105,

1113, 1133, 113940, of bar, angle
and plate with and across '

fibre,' 1150,
increased by straining up to rupture,
1125, effect of processes of preparation
and working on tenacity, 891 (&) and

(d) ; strength when prepared by Besse-

mer process, 1114
; influence of size,

skin, forging on absolute strength,

1141; compressive strength equal to

tensile, 1118; torsional strength, 1039

(c), 1113; transverse strength, 1105
stricture of, 902, 113940, when

prepared by Bessemer process, 1114;

magnetisation, longitudinalhow effect-

ed by transverse force, 1733
Axles of, under repeated loading,

10003 : see Axles
Beams of, P. Barlow's experiments

on, 937 (c) : see Beams
Columns of, formulae for, 978 :

see Columns
Girders of, tubular, 1007, proper

proportions of web and flanges, 1016,
1018, 1023: see Girders

Pipes, bursting of, 983
Iron Commissioners' Report, 344, 371 (i),

translated into French, 1094

Isochronism, of spiral watch-springs,

theory and experiment, 676
Isostatic Cylinders (= conjugate func-

tions), 1562

Isotropy, defined, 4 (77) ;
its rarity, 4 (i),

115; very doubtful, if it exists in

wires, 1271, 1273

Jackson, on steel, 897

Jee, A. S., on deflection and set of

cast-iron girders, 1007

Jelly, 1749; equations of motion and

equilibrium of, and their solution,

1810; strain-energy for, 1812; com-

parison of equations with those of

viscous fluid and ideal ether, 180912
Johnson, R.

t
on hardness of metals and

alloys (1860), 845

Johnson, W. R., on strength, etc., of

stone (1851), 1175

Joint, equable elastic rotating, 1697 (a)

Jones, J., table of pressures necessary for

punching plate-iron (1853), 1103; em-

pirical formulae for his results, 1104

Joule, J. P., effects of magnetism on
dimensions of iron and steel bars

(1846), 688, cited 1321, 1727; on the

thermo-electricity of ferruginous me-
tals and on thermal effects of stretch-

ing bodies (1857), 689; on thermal
effects of longitudinal compression
(1857), 690; on thermo-dynamic pro-

perties of solids (1859), 6916; on

testing steam boilers (1861), 697 (a) ;

after-strain and thermal effects in silk

and spider filaments (1869), 697 (6) ;

action of cold in rendering iron and
steel brittle (1871), 697 (c)

Jouravski, his approximate method of

treating slide due to flexure of beams

(1856), 939, 183 (a) ; on vibrations in

lattice and plate girders, 1034

Journals, strength of, for railway axles,
959

Jnnye, on strength of "split" beams

(1855), 928

Kant, Saint-Venant's criticism of his

antimony, (i) p. 187, ftii.

Karmarsch, on absolute strength of me-
tal wires (1859), 1131

Kaumann, experiments on flexure of

railway axles under static load, 990

Kelvin, Lord: see Thomson, Sir W.
Kendall, T., on Barnes' discovery that

steel may be cut by rotating disc,
836 (h)

Kennedy, A. B. W., experiments on

rupture by pressure, (i) p. 215, ftn.

Kenngott, A., on relation between atomic

weight and hardness (1852), 841

Kerr, his results for normal reflection of

polarised light from magnetic pole
deduced from SirW. Thomson's theory,
1782 (c)

Ketteler, adopts F. Neumann's view of

dispersion, 1221

Kinematics, elastic deformations treated

kinematically, 294
Kinetic Energy, loss of by impact, 209,

217, 1517, 1684

Kinks, in twisted and bent wire, 1670

KirchhoJ}', hismemoirson elasticity, 1231 ;

accounts of his life, (ii) p. 39, ftn.; on
the equilibrium and motion of thin

elastic plates (184850), 123243;
on the elastic equations when the

shifts are not indefinitely small (1852),
1244 50; on the equilibrium and
motion of an indefinitely thin rod

(1858), 125170; on the stretch-

squeeze ratio of rods of hard steel

(1859), 12713; on the reflection and
refraction of light at the surface of
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dline media, 1274; Lectures on
mathematical Physics, Mechanics

(18740), 12751300, Optics (1891),
l.'ii 1; ou the transverse vibrations of

a rod of variable cross-section (1879),

13027; on the theory of the lumi-

nous point (1881), 130810; on the

theory of rays of light (1882), 1311

2; on the strain of an elastic solid

when magnetised (1884), 1313 8;
applications of the results of preced-
ing paper (1884), 131921

Refereticeg to: adopts a sugges-
tion of Saint-Venant's, 11; on problem
of plate, 167 ;

on contour conditions

for thin plate, 394 ; as to flexure of

rods, 198; his assumptions in dealing
with flexure, 316; comparison of his

researches on rods and plates with
those of Thomson and Tait, 1691,

with those of Clebsch: see

h ; his method of combined tor-

sion and flexure to determine the

stretch-squeeze ratio, 1201 (<), 1272;
discussion on his views as to elastic

constants by Saint-Venant, 193, 196

KirrhhnjT'* Principle, for elastic bodies of

which one or more dimensions are

indefinitely small, Kirchhoff's proof,

proof and general remarks,
- -9; not noted by Thomson

and Tait. :

A'/rAvi /////, I)., his experiments on com-

parative strength of steel and wrought-
iron (1860), 113751; his experi-
ments on fracture, 1667

KlntKi, elastic constants of fluor-spar,

1-jii', 1780

Klosf, comparison of straight and circu-

lar cantilevers, 926 ; strength of cast-

imn beams of different cross-sections,

Kiiiuht, on strength of stone, 1183

Knntl, on theory of latt < s 1027
KiKitt, on torsion and magnetisation,

L7S7

mek, /'.. his formulae and results

for thermal effect on elastic moduli

compared with those of Kupff<

4; on thermal effect on slide-modu-

lus of iron, copper, brass, 1763 (6);
his experiments on stretch-squeeze

red to, 12o i

i, It., experiments
on after-

strain in silk and glans threads, (i)

p. 514, ftn.

holm, experiments on impulsive and

repeated tomional loadings (1861),

Koo$fn. ./. //.. ..Wiirr trrnti:

fundamental equations of ela>ticitv

(1857), 5

Kopytotrgki, on the internal stresses in

a freely supported beam under rolling
load (1865), 55560; follows Rankine,
465 (6)

Korteweg, on strain in a spherical con-

denser of glass, 1318
Krnt't. on the strength of earthenware

pipes (1859), 1172

Kramf, on plate iron (1859), 1127

Krupp, strength of his cast steel (1855),
1113

Kriitarh, uses metal needles to test hard-
ness (1820), 836 (/)

Kundt, his results for transmission of

polarised light through thin magnet-
ised iron-sheets not explained by Sir

W. Thomson's theory of translucent

metallic films, 1782 (c)

Kupffer, A. T. , his annual report of the
St Petersburg physical observatory

(185064), 72344 ; on the mechani-
cal equivalent of heat (1852), 7456;
investigations on the flexure of metal-
lic rods (1854), 747 ; on the influence

of heat on the elasticity of metals

(1854), 747, (1857), 74857; his 'Ex-

perimental Researches on the Elasti-

city of Metals,' Vol. i. (1860), 75872;
raum6 of his various memoirs, 773;
death (1865), 722; his theoretical

treatment of transverse vibrations cri-

ticised by Zoppritz, 77484 ; obscurity
of his terminology, 723 (<i) ; his theory
corrected and his results in part re-

calculated by Zoppritz, 77484; re-

ferred to, 1746, 1748, 1753
Kur:, A., edits Clebsch's posthumous
pamphlet on optics, 1391

Laboratory, importance of national phy-
sical, 759 (&), 1137 and ftn.

Lnyrumji', on elastic rods of double-

curvature, 155; his method of passing
from isolated particles to continuous
bodies adopted by Menabrea, 660

Laitnle, /'. , on bridge-construction (1867,
1870), 8879

/..i!,mnf
t on graphical tables, 921, ftn.

I^amarle, A'., note on increase of 8t

resulting from buililiiiK'-in ti-rniin.-iU

of simple and continuous beams (1866),
6717

Lamb, H., on boundary conditions of
thin sheik. 1234; on time of o

tion of a solid steel globe of HIM of

earth, undergoing ellipsoidal deforma-
tion, 1669

reports on Saint-Venant's torsion
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memoir, 1
; gives expression for slide in

any direction, 4 (5) ;
uses doubtful

limit of safety, 5 (c) ; reports on Saint-

Tenant's memoir on transverse im-

pact, 104; Saint-Venant on his results

for cylindrical boiler, 125; his views

on propagation of light cited, 146,

121620, 1274 ;
Saint-Venant's views

on his theory of light, 265
;
criticism

of his deduction of stress-strain re-

lations, 192 (a); his definition of

-t icss, 225; his contributions to cur-

vilinear coordinates, 544
;
his views as

to vibrations, 546 ;
his contributions

to figure of earth, 562 8; his error

as to 'direct' potential, 1487 (a)

Lame's Problem, investigated by Sir W.
Thomson, 1651

Lame and Clapeyron, their condition

for rupture, 166; insufficiency of their

solution of infinite elastic solid, bound-
ed by plane subjected to load, 1487;
their solution for infinite plane plate
reached by Sir W. Thomson, 1660

Lan<i, }'. con, determination of constants

which occur in solution of equation
for transverse vibrations of rods (1858

9), 614, 616

Lunger, </., on wooden and iron lattice

girders, 1022

Larmor, J., on flaws in torsion bars,
1348 ( f ) ; on gyrostatically loaded

media, '1782

Latticed Girders : see Girders

Lauyel, A., on the cleavage of rocks,
850

Lavalley, on steel, 897; on iron plate,

902

Laves, introduces "
split

" beam or gir-

der (1859), 928
Laws of Motion, how far legitimately

applicable to atoms, 276 and ftn., (i)

p. 185, ftn., 305

Lead, thermal effect of stretching, 692,
695 ; thermo-elastic properties of, 752 ;

hardness of, (i) p. 592, ftn., 846, 836 (6);

thermo-electric properties under strain,

1645 6; ratio of kinetic and static

stretch-moduli, 1751 ; rupture surface

of, 1667 ; bursting of pipes of, 983

Lefort, report by Saint-Venant, Tresca
and Besal upon a memoir by, 266

Lemoytie, obscure theory of transverse

impact, 965
Le Roux, on thermal phenomena ac-

companying vibrations (1860), 827

Irfvy, M., pupil of Saint-Venant, 416
;

on stability of loose earth, 242
;
form

of equilibrium of pulverulent mass
studied by him, 1590; defect of his

theory, 1613
;
establishes general body-

stress equations of plasticity, 243, 245,

250; his general equations of plasti-

city corrected by Saint-Venant, 263

4, his method of finding deflection

of circular plate anyhow loaded, 336
;

his assumptions in theory of thin

plates, 385 ; his memoir on thin plates

(1877) and controversy with Boussi-

nesq as to 'local perturbations and
contour conditions,' 394, 1441; his

views on thin plates criticised by
Saint-Venant and Boussinesq, 394,
397 ;

his treatment of local perturba-
tions discussed, 1522 4; his contro-

versy with Boussinesq as to collapse
of belts subjected to external pressure,
1556

L6vy-Lambert, abac for Phillips' spring
formulae, 921, ftn.

Liebisch, Th., his treatise on physical
crystallography cited, 1800, ftn.

Light, relation to elasticity, 101
; propa-

gation of,when ether has initial stresses,

1456; theory of, Saint-Venant's
discussion of views of Cauchy, Green,
Briot, Sarrau, Lam6 and Boussinesq,
265; Rankine's theory of molecular
vortices applied to polarised light,

440, his oscillatory theory of, 441
;

luminiferons ether requires for its

refractive action fewer constants than
those of crystalline elastic medium,
452; Fresnel's equations deduced by
Menabrea, 551 (b) ; reflection and re-

fraction for in crystalline media, 594,

1274; historical treatment of elastic

jelly theory, 1213; Cauchy 's views,
F. Neumann's views (Fresnel's laws
with different plane of polarisation),

1214; C. Neumann's incompressible
ether, 1215

;
F. Neumann's researches,

1229 (a)(e) ; Kirchhoff, F. Neumann,
and MacCullagh on reflection and re-

fraction, 1274
;

Kirchhoff's elastic

theory of, 1301; source of, in elastic

ether, 130810; Clebsch on circu-

larly-polarising media, 1324; Clebsch
starts really from a rari-constant basis,

1391 ; Boussinesq's theory of lumi-

niferous waves, 1449; he retains second

shift-fluxions, 1465
;
he supposes aeo-

lotropy produced by initial stresses in

isotropic medium, 1467
;
discussion of

wave-motion, quasi -transverse and

quasi-longitudinal waves, FresnePs
wave surface, etc., 1468 71; assump-
tions made in Boussinesq's final elastic

theory, 1478 80 ; general remarks on,
1484

; Boussinesq and Sarrau's equa-
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for \\ii\r- in double-refractivo

medium, obtained for deformed iso-

tropic medium, 1559; on waves in

aeolotropic medium, 1764, 1773, when

incompressible, 1774 5, 1776 (a),

Sir W. Thomson on theory of

luminous waves, 1765 83, passim:
see also Refraction, Double, J-.ther,

lintnt'wn of Plane of pnlnri*ed liaht,

etc.

Liiitextmii- : st-t> 5

Limits, elastic-, pulverulent and plastic,
nature of, 15689, 15857, 15935,
1720: see also A7*/xfiV Limit*. Failure.

Fail -Point. Strength, etc.

' Pressure, in arches, 518, 1009

Link-Poly.ion, defined, (i) p. 354, ftn.;

used in theory of arches, 518
Link.*: see Chains, Links of

!
t, erroneous theory of vibrations

of light loaded rod, 774

lit, J., on transverse vibrations
of bars (1858), 825 (rf) ; on the optical
study of vibrations (1857), 826

Littmnnn, his experiments on stretch-

squeeze ratio referred to, 1201 (e)

Load : see Rolling-Load
"L/oydV experiments on iron plates
and rivettin^'. 11:',:.

Load, equivalent statical systems of, pro-
duce same elastic strains, 8, 9, 21, 100 ;

this "principle of elastic equivalence
of statically re pi ip<> 11ent loads "applied
to plates, 1354, 1440, 1522-4, 1714;

principle stated and demonstrated for

body-forces, effect of equal and oppo-
site forces and of couple, 1521 ; effect

of local load in producing stress in

extended elastic solid, 1487 (c); sudden,
effect on iron and fro/en iron, 1148;
repeated, how affecting materials, 364 :

see also Fatiiim-. dirdfr,Axle, Torsion,
distribution of, over

base of a prism not adhering to a
surface, 516; measured by a scale of

colours, 794

Loadpoint, 515 6
Load-System*, classified, l

Lotue, on the bucklin ..f th. bracing
bars of latticed gird.-, 1019

Lommel, adopts F. Neumann's view of

dispersion, r_''Jl

Lonffridge, J. A., on the construction of

Inry (1860), 1076 81

Loomis, his experiments on li

squeeze ratio referred to, 1201

experiment* on influence of tempera-
ture on xlide- modulus, 1768 (6)

Lorbrr i red to,

on statically indeterminate re-

actions, (i) p. 411, ftn.

Lonrel, graphic tables of resistance of

iron bars, 921, ftn.

Lore, G. //., his Treatise on strength of

Iron and Steel and their use in Con-
struction (1859), H94 905; reduces

elasticity to an empirical science,
894 5 ; on strength of pillars of steel

(1861), 978; his account of Hodgkin-
son, 975; his empirical formulae for

Fairbairn's experiments on flues, 987
Love, A. E. II., his treatment of flexure,

(i) p. ix., ftn. ; on boundary conditions
for thin shells, 1234 ; on thin elastic

shells, 1296 bis-, on Kirchhoff's as-

sumptions in theory of plates, (ii) p.

86, ftn. ; his Treatise on Mathematical

Theory of Elasticity referred to, 1764
LHtlri-x, jr., first drew attention to net-

work of curved lines on surface of

bar-iron, cast-steel and tin, LUder.^

curves in wrought-iron I-sectional

beams, 1190; in round holes punched
in steel plates, etc., (i) p. 761, ftn. and

(ii), frontispiece
Litminouti Point, in elastic ether, theory

of, 130810 ; types of motion started

by, 17689
I.inule, J. G., experiments on cast-iron

girders of Hodgkinson's section, 1031

MacConnell, on hollow railway axles

(1853), 9889
M,i<-( 'nil,i<ih, his theory of light referred

to, 1274
.Vi /-',11-1,1 ne. on aeolotropic electric re-

sistance produced by aeolotropic
strain, 1740; experiments on steel

pianoforte wire under combined trac-

tive and torsional stress, 17 1

as to effect of permanent molecular

change on elastic moduli, 1753
Mnelit itrin's Theorem, doubtful use of in

elastic theory, 16368, 1744, ftn.: see

VSjfSMffell

Macleod and Clarke, on alteration of

stretch-modulus of tuning-foil

temperature, 1753 (b)

Atacvicar, J. G., metaphysical views on
atomic theory (1860), 872

purity of iron, 1189

Magnetisation, Reltit -rut

historical notices,
on impulsive stress and magnetisation,

:<>!, ftn.. Sooresby, bonding and
tw.HtiiiK'. p. :.r,l. ftn.'. H,,l,-n. I'.mvll

DoHaldnt, Beoquerel,
Mattered, etc..
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fluence of torsional elastic and set strain

on temporary and jn'i nuinent magnet-
isation, 814 6; \\Vrthrim does not

recognise 'critical twist,' 818; he falls

back on a theory of ether vibrations

to explain magnetic phenomena, 817 ;

no sensible results in case of torsion

applied to diamagnetic bodies, 814

(xii); effect of long repeated torsions

on magnetic properties of wrought-iron
axles, 994; influence of torsion on

electro-magnetism, 7014, on magnet-
isation, 703; Matteucci's "bundle of

fibres" theory to account for magnetic
effect of torsion, 701, 704; influence

of torsion on magnetisation of steel

bars, 712; influence of magnetisation
on torsion of iron and steel wires,

713 4
; comparison of magnetic and

torsional phenomena, 714 (13) (16);
effect of temperature on magnetisa-
tion, 714 (17) -(19); Wiedemann's
mechanical theory of magnetisation,
715 ; twisting of iron-wire, when mag-
netised in a direction inclined to axis,

explanation of Maxwell, reversal ob-

served by Bidwell, 1727; soft-iron

wire subjected to longitudinal traction

and then twisted under earth's vertical

magnetic component, effect on mag-
netisation, 1735; effect of twist on
loaded and magnetised nickel wires,

1735 ; production by torsion of longi-
tudinal magnetisation in wire mag-
netised by axial current, 1735; on
direction of induced longitudinal
current in iron and nickel wires by
twist under longitudinal magnetic
force, 1737

Joule's experiments as to effects

of magnetisation on dimensions of

iron and steel bars, free and under

tension, 688; no magnetic influence

on copper wires, 688; influence of

tension on magnetisation, 705; influ-

ence of longitudinal load on induced
and residual magnetisation of iron

and steel wires, 1728; statement of

Sir W. Thomson's results for steel

pianoforte wire and consideration of

how they must be limited in light of

Villari critical field, 17289; Villari

critical field for soft-iron, 17301;
influence of temperature, 1731 2

;

effect of longitudinal pull on magnet-
isation of cobalt and nickel, Villari

critical field for cobalt, 1736, as to

this field for nickel (?), 1736; effects

of transverse stress on longitudinal

magnetisation of iron, 1733; develop-

ment of aeolotropic inductive suscept-

ibility by stresses other than pure
compression, 1734; diamagnetic power
of bismuth increased by compression,
700

magnetic rotation of plane of

polarisation in flint and crown glass
affected by compression, no sensible

rotation in slightly compressed crown

glass, 698 ; rotatory effect on plane of

polarisation is influenced and can be
annulled by mechanical stress, 797

H
Kirchhoff's theory of strain pro-

duced by magnetisation, 1313 21; he
assumes the coefficient of induced

magnetisation constant and neglects

square of strain, doubtful character of

his results, 1314, 1321
; strain in

isotropic iron sphere due to uniform

magnetisation, 131920; neglect of

terms connecting intensity of magnet-
isation with strain, 1321

Magnetism, elastic analogue to magnetic
force, 1627, 1630, 18135; analogues
to electro-magnetic force and to

magnetic potential in strained jelly,

1813 4
;

failure of analogue in the

conditions at interface of two jellies

and of two substances of different

magnetic permeabilities, 1815

Magnus, on thermo-electric currents

produced by strain, 1645 (iv)

Mahistre, on stress produced by rotation

of wheels (1857), 590; erroneous theory
of stress produced by rapidly moving
load (1857), 963

Mainardi, on equilibrium of strings

(1856), 580

Malfatti, on statically indeterminate re-

actions, (i) p. 411, ftn.

Malleable, denned, 466 (vi)

Mallet, on deflection of girders due to

rapidly moving load, 964 ; on physical
conditions involved in the construc-

tion of artillery (1855), 105472; on
resilience and influence of size of

casting, 1128 9; reports on proper-
ties of metals (183843), (i) p. 707,
ftn.

Mallock, his experiments on stretch-

squeeze ratio referred to, 1201 (e)

Manger, J., on strength of cements

(1859), 1170

Manometer, tested by teinometer, 797

Mantion, theoretical study of a canal

bridge (1860), 1034
Marble : see Stone

Marcoux, on axles, (i) p. 610, ftn.
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Mit raj, experiments on strength, elastic

limit and stretch-modulus of wood

(1855), 1157
his history of mathematics, 162

and ftn.

Mariotte, on stretch limit of safety,
5 (c)

V, apparatus for recording deflec-

M of bridges (1859), 1032

Masson, on correlation of physical pro-

perties of bodies (1858), 823 4

Mathi I- a. pupil of Saint-Venant's, 416;
his discussion of potential of second

kind, 235

Matter, cannot be continuous, 278
Mtittein-<-i. on rotation of plane of polar-

ised light under magnetic influence,
and on diamagnetic phenomena (1850),
6989; on the influence of heat and

compression on diamagnetic pheno-
mena (1853), 700; on the electro-

magnetic phenomena developed by
torsion (1858), 7015 ;

letter to Arago
on relation of torsion to magnetisation
(1847), 812 ; cited on relation oftorsion
to magnetisation, 1729, 1734, 1737

/, discussion by Saint-Venant of

his views as to elastic constants, 193,

196; his statements as to bi-constant

isotropy objected to by Wertheim, 797

(c) ; his views on stress-strain relations

referred to, 227; cited as to lines of

flow, 1564 ; as to relation of stress and

magnetisation, 1727, 1734
toil Equiral-nt of Heat: see

Mi-rlinnicdl Representation of Magnetic

/., on absolute strength of

iron and steel (1858). lliM

Membrane, equation for transverse shift

K); F. Neumann's treatment of,

KirchhofTs treatment of, 1292,
1300 (a); membrane terms in plate-

equations, 1296 9 ; stretch in curved
extensible membrane, 1461; Gauss'
theorem for inextensible membrane,
1461, 1671; vibrations of flexible,

composed >f two pi,-r s of different

material, 551 (6) ; nodal lines of square
membranes, 825 M, 1223; transverse
vibrations of regularly and irregularly

stretched, 1300 (<), of circular, 1885;
effect of stiffness on note, 1489

Mnabrfa, on theory of vibrations (1855),
550 1 ; on general laws of vibrations

(1855), 578; on the minimum property
of work done by elastic system (185H),

"yt oompreftibilityoi

, on theory of arches, 1009
Mft ids, generally amorphic and thus
have ellipsoidal elasticity, 144 ; drawn
or rolled, elastic constants for, 282;
stress formulae and elastic constants

for, 314; tables of their elastic con-

stants, 469, 752, 754, 756, 773, 17512;
hardness of, Musschenbrock's order,
836 (c), Calvert and Johnson's, (i) p.

592, ftn., Clarinval's, 846; how thermo-
electric properties are influenced by
strain, 16427: for general discus-

sion of their elastic, thermo-elastic

and other physical properties, see Iron,

Copper, Brass, etc.

Mi'tntntic Axes, treatment by Rankinc
and Saint-Venant, 137 (vi), 446

Meyer, O. E. , edits F. Neumann's Lec-
tures on Elasticity, 1192; on modern
researches upon the elasticity of crys-

tals, 1212

Mica, stretch-modulus of, 1210
Mir helot, on strength of stone, 1179
Milit:er, effect of long-continued and

repeated loading on electrical and
magnetic properties of wrought-iron

Millar, If. J., edits Rankine's papers,
418; Kankine's Manual of Applied
Mechanics, 464

M it'in u, on cast- and wrought-iron gird-

ers, 954

Mitsi-herlich, on strain in calcspar due
to change of temperature, 1197; on

change of optic axes in bi-axal crystal
with change of temperature, 1218

Models, in relief for torsion, (i) p. 2, 60 ;

for transverse impact of bars, 105, 361 ;

for vibrating string, 111; of elastic

structures, law of relation between
shifts and strains for large and small,
1718 (a); B omson's, of ft 21-

constant solid, 17713, of the ether,

18067, illustrating a double-assem-

blage of Boscovichian atoms and a
multi-constant elastic solid, 18045

./ .1. //,,/,. hypothesis of , 276, 805,

1447-8, 1770, 1773; seems involved
in Sir W. Thomson's multi-constant
Boscovichian system, 18085: see

also IntermoUcular Action and Con.
stain

M,,,!,,:,,* ,md I r.ncipal Modultu, denned

by Sir v. 1 .union, 1761; value of,

depends on working and is peculiar to

each test specimen. 1752; difference

U-twron kim-tir and Htat:c moduli at-

tributed by Seebeek to after-strain,

474 (d); Wertheim's views, 809; Bias.

ton's numbers, N-J i ; KuplTer's results,
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728 ; Sir W. Thomson's thermo-elastic

investigation of relation between ki-

netic and static moduli, 1750 1
;
tables

of ratio of two moduli for various

materials, 1751; on Werthoim's re-

sults, 1751

Moduli^ Dilatation (or Bulk, 1709 (d)),

investigated by Kirchhoff, 1279 ;
how

affected by temperature, 1638 and ftn. ;

table of, for variety of materials, 1752 ;

for an aeolotropic solid, Sir W. Thom-
son distinguishes two kinds, tasino-

mic and thlipsinomic, their values,
1776

Modulus, Plate, denned, 323, 385

Modulus, Slide (or Rigidity, 1709 (</)),

effecton torsional resistance of its varia-

tion across section, 186 ;
howinfluenced

by tort, 1755 ;
how influenced by set-

stretch, 1753 (a) ;
thermal effect on,

754, 756, for iron, copper and brass,

1753 (6); tables of, for wires, 1749,
for variety of materials, 1752

Modulus, Stretch (or Young's Modulus,
or Longitudinal Rigidity, 1709 (d));
how influenced by working strain, an-

nealing, etc., 727, 1753, by set, 194, by
tort, 1755, by initial stress, 241 ; varies

with manufacture, size, method of

placing and loading of piece tested,

1110, 1112; supposed relation to coef-

ficient of thermal expansion, 717, 823,
to atomic weight, 719 21

;
difference

between static and kinetic stretch-

moduli (from flexural experiments of

Kupffer) in case of steel, platinum,
brass and iron, too great to be ac-

counted for by specific heats, 728 ;
like

result from Masson's experiments, 824;
how affected by temperature, 1753 (/;),

756 ;
relation to density, 741 (a), 759 () ;

stretch- and squeeze-moduli not equal
for small loads, 796, 809, nor for cast-

iron, 971 (2), empirical formulae for

stress-strain relations in case of this

inequality, 178
variation of value across cross-

section of prism or bar, 169 (e) ; method
of treatment, 518, 1425, 1749 ;

formulae

for, due to Bresse and Saint-Venant,
169 (e) ; influence of this variation on

flexure, 169 (/); example, in case of

trunk of tree, 169 (/); skin-change in

value of, 169 (/), 974 (c), 1111
in case of aeolotropy, in terms of

36 elastic constants, 7 ;
for bodies

possessing various types of elastic

symmetry, 282; its distribution by
quartic, 309 10

; analysis of its values

when its variations are gradual and

continuous round a point, 312 4; ex-

pressions for values in stone and wood,
314; of regular crystal in any direc-

tion, 1206; directions of maximum
and minimum values, 1207; to be

experimentally determined by trans-

verse vibrations of rods cut in various

directions, 821
;

methods of determining, Kirch -

hoff's theory, by means of deflections

of stretched bar, 1289 ; from transverse
vibrations of loaded rods, 774 84 ; in

case of glass from double-refractive

power, 786
tables of values for metals, 752,

for wires, 1749, for various materials,

1752; value for alum, 1206, for calc-

spar, gypsum and mica, 1210

Mohn, on strength, etc., of stone, 1176

Mohs, modifies Haiiy's scale of hardness,
836 (d)

Moigno, Saint-Venantcontributeschapter
on elasticity to his treatise on statics,
224

Molecules, translational vibrations of,

used to explain heat, 68; size of,

according to Ampere, Becquerel, Ba-
binet and Sir W. Thomson, (i) p. 184 ;

molecular state of bodies affected by
stress, 861, by vibrations, 862; Mac-
vicar on molecular phenomena, 872;
Sir W. Thomson on shell-spring mole-

cule, 1765, 1769, ftn.; distinction

between velocity of molecule and of

particle, 14634; Sir W. Thomson
on molecular constitution of matter,
1798 1805; on probable molecular
structure of isotropic solid, 1799;
molecular tactics, their bearing on
rari- and multi-constancy, 1800 5:

see in particular Intermolecular Action
and Atomic Constitution of Bodies

Molinos, L., on bridge - construction

(1857), 890

Moll, C. TJ., text-book on strength of

materials (1853), 875
Moments of Inertia, values of, for tri-

angles and trapezia, 103

Moments, Theorem of the three, for con-

tinuous loads and uniform cross-sec-

tion, 603; for isolated loads, values

of reactions, 607 ;
for continuous loads,

unequal heights of supports, and un-

equal flexural rigidities, 893

Montigny, mode of counting vibrations

(1852), 822; his results contradict

Baudrimont's, 822

Mon'n, Lecons de mecanique pratique

(Resistance des matriaux (1853,

1856)), 876--82 ;
his erroneous views



on elastic limit, 878; on elasticity <>f

aluminium, 1H>1

Mortar, strength of, 880 (6)

/, graphical construction for line

of pressure, 1009

Multi-eotutancyt remarks on, 4 (f), 192,

193, 196, 197, results from hypothesis
of modified action, (i) p. 185 ;

model

illustrating, 17713; may be deduced

according to Sir W. Thomson from
Boscovichian system of atoms, 1798
1805: see for further references, Con-

*tnnt*, Elastic, Constant Contr<

. after-strain in, 828, 829- 30,
stretch-modulus of, 830

> A-, his method of measuring
scale of hardness, 836 (b)

MUttrich, his experiments on nodal lines

of square plates, C. et A. p. 4

.Vi///iixA-<i, on current in nickel wire
under longitudinal magnetizing force,

produced by t\vi>t, 1735, 1737
. gives formula for value of stretch

11 any direction, 4 (6) ; his lectures

edited and annotated by Saint-Venant,
160; on summing intermolecular ac-

tion, 228; on impact of elastic bar,

341; his memoir on rectangular thin

plates, 399; on statically iiuletenni-

nate reactions, (i) p. 411, ftn.
;

first

applies theory of elasticity to arches,
1009 ; F. Neumann adopts his methods,
ir.'.;. 1196

after-strain of, 830; stretch-

modulus of, 830
ral theory of elasticity

L196; introduces idea
'< impressible ether, 1215 and ftn.;

neralised equations of elasticity,

1250; discussion of his views as

to elastic constants by Saint-Venant,
his method of finding strain-

en*

Neumann, /'., hi-* "Lectures on the

theory of the elasticity of solids
"

(de-

d, 1857-71, pul.lished, 1885),
1 !'-' -1228; on the optical properties
of her ic crystals (183;'.

and ftn. ; on the double-refraction of

light ilHiU,, 1229, (1841), 12J

^flection and refraction of light

(1886), 1229; on Fresnel's formulae
>tal reflection (1887)

Lecture*on theoretical optic*
"

( 1885) ,

; his formula for torsion, 1280
.-f features of his researches:

no-elastic equ. 6 7 ;

general proof of uniqueness of elastic

T. i: PT ii.

equations, 1198 9; his discussion of

crystals, 120312, 1219; first deter-

mines stretch-modulus quartic, 151,
remarks on this quartic, 309, error in

Vol. i. about this quartic corrected, p.

209, ftn., C. et A. p. 3; his treatment
of waves and elastic theory of light,

12138, 12201, 1229; his theory of

impact of l>ars, 203, 1224 5;' his

definition of the plane of polarisation
of light, 1214; gives among the first

a true theory of dispersion, 1221 ;

erroneous method of approximation,
1225-6

erroneous identification of crystal-
line axes (788* 795*), 684; his theory
of influence of traction on torsionaJ

vibrations, 735 (iii); his method of

finding stretch-squeeze ratio by dis-

tortion of cross-sections under flexure,
736 and ftn.

; notices that, up to a
certain limit, volume of wire increases

under traction, 736; his theory of

photo-elasticity referred to, 792, 793

(iii) ; list of his pupils, 1192 and ftn.

Xt'iitnil J.n'x, distinguished from neutral

line, (i) p. 114, ftn. ; for flexure under

asymmetrical loading, 171 ; relation

to ellipse of inertia and stress-centre,
515

; applied to elastic bodies resting
on rigid surfaces, 515 6, 602; at-

tempted extension to curved surfaces,

602; does not pass through centroid,
if there be any thrust, 922; existence

or not of strain at, 1016 ;
in cast-iron

beams does not pass through centroid

(?), 971, 1091, 1117 (iii); erroneously

placed by Thomson and Tait, 1689
Xcutrnl Line, distinguished from neutral

axis, (i) p. 114, ftn. . ( -..incides closely
with central line if load be transverse,
930

Newton, his experiments on impact, 209;
his theory of impact criticised, 1682;
his proof of velocity of sound, 219;
treated intermolecular force as central,
269

admixture with cast-iron tends

to reduce strength of latter, 1165;

prevents crystallisation of h n. llv.
effect of torsion on loaded and mag-
netised nickel wire, 1785; effect of

nidiiml pull u magnetisati
: as to existence of a Villari

.il tirld. \~:\c>, du.

duood I. .ii.-Uu.iin.il .tin. nt hy twist

Imal magnetic force,

ixlnoes change in tough
iron, 1067
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Nodal Lines, of square membranes, 825

(e), 1223; of plates, (i) p. 575, ftn.,

123343, 1300 (6)

Nodes, of vibrating bars, 825 (a)(<l),
1228

Note, pitch of fundamental, asserted by
Wertheim to depend on intensity of

disturbance, 809; of circular plates,

1242, 1243; of membranes, 1223, 1439;
of rods of uniform cross-section, 1228,
1291 (b), of varying cross - section,

13027; of stretched string, 1291

(c)-(d)
Noyon, on the suspension bridge of Roche

Bernard, 1033

Nutation, effect of elastic yielding of

earth on, 1665, 17389

O'Brien, his theory of dispersion (1842),
1221

Oersted, his theory of the piezometer
discussed by Neumann, 1201 (c)

Okatow, his mode of finding stretch-

squeeze ratio referred to, 1201 (e)

Optic Axes, dispersion of, 1218, ftn.;

Neumann's theory of change of posi-
tion due to pressure or temperature,
1220

Optical Axes, defined, 1218, ftn.

Optical Coefficient of Elasticity, defined,

795
Ordnance : see Cannon
On-'* "Circle of the Industrial Arts " (On

the useful metals and their alloys,

(1857)), 891
Orthotatic Axes, 137 (iii), 445; Green's

condition for, in case of ether, (i)

p. 96, ftn.

Orthotatic Ellipsoid, discovered by
Haughton, named by Eankine, 137,
445

Ortmann, theory of resistance of ma-
terials (1843, 1855), 922

Owen, on strength of
'

toughened
'

cast-

iron girders, 1105

Pagani, on statically indeterminate re-

actions, (i) p. 411, ftn.

Painvin, on vibrations of ellipsoidal
shells (1854), 5448

Pansner, L., uses diamond and metal
needles to test hardness (1813), 836 (/)

Paoli, on statically indeterminate re-

actions, (i) p. 411, ftn.

Pape, on axes of atmospheric disinte-

gration in crystals, 1219

Paradisi, G., on nodal lines of plates

(1806), (i) p. 575, ftn.

Pearson, K., note on Clapeyron's Theo-
rem of threemomen ts(elastic supports) ,

(i) p. 413, ftn. ; on ratio of transverse
to absolute strength of cast-iron, (i)

p. 719, ftn. ;
on flexure of heavy

beams, 387, ftn., 1427; on intermole-
cular action, 1447; on condition for

replacing surface-load by body- force,

1695, ftn. ; on the generalised equations
of elasticity, 1709 (a); on the strain

energy of a jelly with rigidly fixed boun-
daries, 1813, ftn.

;
on torsion in axles

and shafting, (i) p. 668, ftn. and (i)

p. 673, ftn.

Pekdrek, F., his sklerometer, 842

Pendulum, conical, stress in its support,
589

Perreaux, L. G., testing apparatus for

yarn, thread, wire, etc. (1853), 1152

Persy, on skew loading of beams, 70;
C. et A. p. 9

Petin, on steel, 897

Petzval, J., on the vibrations of stretched

strings, 617

Phear, J. B., on Lame's stress-ellipsoid,
513

Phillips, E., on the springs of railway
rolling stock (1852), 482508 ;

errors
in results for rolling load on beam
corrected by Saint-Venant and Bresse,
377, 540; on rolling load on bridges

(1855), 165, 3723, 5524; on resili-

ence of railway buffers (1857), 595 ; on
springs (1858), 597; on the spiral

springs of watches and chronometers

(1860), 6749; on the longitudinal
and transverse vibrations of rods sub-

jected to terminal conditions varying
with the time (1864), 6802; writes
notice of Saint-Venant (1886), 415

Photo-elasticity, relation of contributions
of Fresnel, Brewster, F. Neumann,
Maxwell and Wertheim, 792, 793 (iii) ;

Wertheim's theory corrected by Neu-

mann's, 795

Pianoforte Wires, strength of, 1124

Piezometer, elasticity of, 115, 119, 121;
in form of spherical shell, 124; ex-

periments on copper and brass, dis-

cussed, 192 (b); theory of, 1201 (c)

Pillars: see Columns and Struts

Piobert, reports on Saint-Venant's tor-

sion memoir, 1

Pipes, cast-iron, formulae for strength
of, 900; when unequally heated, %2;
bursting of wrought-iron and leaden

pipes from internal pressure, 983;
earthenware, bursting strength, dry
and after soaking, 1171; formulae for

strength of earthenware, 1172: see

also Tubes

Pird, translates Hodgkinson's Experi-
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mental Researches into French.

Piston Rod, stress in, 681
Plum- Xurr'tice, of infinite elastic solid

subjected to Riven stress or strain,
'-98

Plnm't, application of theory of elasticity
to figure of: see Earth

Plastic Limit, 1568, 1586, 15935
/'/,/> ice, 1667

itii. 169 (6); flow of plastic solid

through circular orifice, 2:w : c<>cfii-

cionts of resistance to plastic slide and
stretch equal, '2'M\: name used in this

work for plant ico-di/ndiinc*, 243; trans-

ition from elasticity to, is there a
middle state? 244,257; general equa-
tions of, 245, 246, 250; Tresca's ex-

perimental laws of, 247 ; Saint-Venant
deals with uniplanar equations of, 248,

J -6; difficultyof solving equations
of, 249; equations for cylindrical

plastic flow, 252; equations of uni-

planar plastic flow reduce to discovery
of an auxiliary function, 253, 1562 6;

surface conditions of, 254, 1594 ; due
to torsion of right-circular cylinder,

to equal flexure of prism
of rectangular section, 256; plastic

pressure is transmitted as in fluids,

260; of a right-circular cylindrical
shell subjected to internal and ex-

ternal pressure, 261; same shell with

outer surface rigidly fixed, Saint-Ve-

nant obtains results differing from
Tresca's, 2W ; Saint-Venant corrects a

t of Levy's for the general equa-
tions of, 252, 2634; need of new

riments on, and method of making
these, 267; insufficiency of Tresca's

mode of dealing with theory of, 267 ;

uniplanar equations of, solved by
Bonssinesq, 1562 6

;

' isostatic' curves

obtained graphically, 1564 ; nature of

surface conditions, 159 1 ; uniplanar
i"!i- in polar coordinates, 1601;

belts of plastic material subjected to

>t pressure, 1602 (a)

(c) (of. 2612); action of cir. -ul.ir

punch, 1602 (d) ; wedge of plastic
material squeezed between two planes

d together, 1608 ; uniplanar body.
stress equation, when force-f

s 1605 (&)(<); how denned by
Thomson and Tait, 1718 (6)

./,/. Coefflci*** "/ (A'), 244, 247,

1686, 1608; method of determining.

try

Bfcutfe, history of problem. 1',7.

r_>:H. r>M. 1140; torsion of thin

plate, 29; is generally amorphic. if

rolleil, 11.-,

Pint,-, thick, Clebsch's treatment of,

135053, 13567; small but not

indefinitely small thickness, 1354;

special case of circular plate, stretched

by any system of loads parallel to the

mid-plane, i:r,f>; when infinitely ex-

tended, Boussinesq's suggestion for

solution, 1519 (d); annotated Clebsch,
Saint-Venant and Boussinesq's re-

searches, 322337 ; rectangular plates,
simple cylindrical flexure, 323; double

cylindrical flexure, 324 325; sub-

jected laterally to shearing load,

326; circular plates, symmetrical
loading, 328, 335; subject to lateral

shearing load, 329; circular annulus,
328330; complete plate resting on
rim of a disc, 331, 333; criticism of

Saint-Venant's solution, 331 ; circular

plate centrally supported, deflection,

etc., 332
;

deflections for complete
plate variously loaded, 334; complete
plate, deflection of, for any system of

loading, 335 6 ; Levy's principle, 336 ;

assumptions of theory, 337

Plate, thin, Kirchhoff's first treatment
of problem, 1236 40, doubtful assump
tions, 1236, expressions for

energy of bent plate, 1237, tl

boundary conditions. 1238 9, unique-
ness of solution, 1240; Kirchhoff's

second treatment, 1292 1300, finite

shifts of infinitely thin plane plate,

1293, obscure step in Kirchhoff's

reasoning, 1294, Love's views, (ii)

p. 86, ftn.. further assumption as to

stresses, 1295. strain-energy of plane

plat< -h. 11

contribute nothint: to strain-energy of

plane pl.i:

-li l:htl,.-n.liii/.lL".H '.i.( lobsch's

treats tinit.^hitt

8, mid-plane approximately a deve-

lopable surface, 1376, small shifts, ge-
neral equation* when no surface load,

137'.). .finite shifts

of isotropic plate, 1418 4, errors,

14 14, transverseand longitudinal shifts

of aeolotropic plate, errors of treat-

111.',; comparison of methods
of Kirchhoff, Clebsch and G.

12928,1876.1111
Tail's treatment. 16961704, utrain-

planes of elastic symmetry. 1698-9,
critu-iMii .-( a^umptions i ni i,l.. !->

842
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Thomson and Tait, 17001, 1703,

1705, comparison of their method with
those of Boussinesq and Saint-Venant,
and with Kirchhoff's first treatment,
1701, analysis of bending couples for

plate, 1702, syuclastic and anticlastic

bending stress, 1702, stress-couple

equation for plate, 1703, Thomson
and Tait's ' reconciliation ofthePoisson
and Kirchhoff boundary conditions,

1704, 1714, transverse shift of a thin

plate strained symmetrically round a

point, 1705, general solution for a

plate of any form under transverse

load, thrown back on the solution of

an equation free of that load, 1707,
flexural rigidities of isotropic plate

determined, 1713 ; Boussinesq's treat-

ment, 1438 40, assumption of stress-

relations, 1438, 1440, doubtful treat-

ment of curved plate, 1437, on contour
conditions (1238 9), 1438, 1441, Levy's
investigations and controversy with

Boussinesq,
' local' perturbations, 1441,

15224; Saint-Venant's treatment,

383399, his criticism of Clebsch's

treatment, 383; deduction of general

equations, 384; assumptions neces-

sary, 385; arguments in favour of

assumptions, 386; criticism of these

arguments, 387 ;
further expression of

the assumptions, 388; advantage of

this method of dealing with problem
over that which assumes form of po-
tential energy, 388 ; criticism of Lord

Bayleigh's, and Thomson and Tait's

mode of dealing with problem, 388;

equation for transverse shift, 385 ;

equations for longitudinal shifts, 389 ;

contour-conditions, 391 394; Saint-

Venant adopts Thomson and Tait's

reconciliation of Poisson and Kirch-

hoff, 394; his views on Levy's ob-

jections, 394, 397; remarks on his

views, 394

Plate, thin, equilibrium of, special cases :

Circular, contour (i) rests on a ring or

(ii) is built-in, uniform surface load,
398 (i) and (ii) ; shifts in its own plane
and transverse shifts, 1380; built-in

and loaded on any point, 1381 ; built-

in and uniformly loaded, deflection

and stress, 657 ;
thickness required to

carry a given uniform pressure, 659 ;

supported or built-in and subjected to

central impact, mass-coefficient of re-

silience, deflection, etc., 1550 (c). Cir-

cular annulus, subjected to bending
couples and shearing forces on its

edges, 1706. Rectangular, uniform

load and isolated central load, sup-
ported edge, 399 (a) and (b), subjected
to transverse loads P, - P, P, -P
at the four corners takes anticlastic

curvature identical with torsional

strain, 1708. Infinite, subjected to

given surface loads or shifts, 1660

Plate, thin, motion of, general equations,
1383. Infinite, transverse vibrations of,

1462, when subjected to an arbitrary
shift varying with time at a point,

1535, when subjected to arbitrary
normal impulses, 1536, limiting ve-

locity of impact for safety, 1538, im-

pact by mass striking normally, 1545
Transverse vibrations, 1300 (&),

1384, when aeolotropic, 1415 ; special
case of circular plate, nodal lines, (i)

p. 575, ftn., symmetrical and asym-
metrical vibrations of free circular

plate, 1241, calculation and compari-
son with results of Chladni for notes
on two hypotheses (\= M and \ = 2fj.),

1242 (a) and 1243, calculation and

comparison with results of Strehlke
and Savart for nodal circles on same
two hypotheses, 1242 (b) and 1243,

expression for fundamental note, 1243,
nodal lines dealt with by Clebsch,
1384

; special case of square plate,
nodal lines determined by Miittrich,
C. et A. p. 4.

Longitudinal vibrations, of aeolo-

tropic plate, 1415

Platinum, thermo-elastic properties of,

752 ; after-strain and temperature,
756 ;

stretch-modulus and density of,

(i) p. 531, 824; absolute strength of

wire, 1131
;
ratio of kinetic and static

stretch-moduli, 1751 ;
hardness of, (i)

p. 592, ftn. ;
thermo-electric properties

under strain, 1645 6

Pliability, denned, 466 (ix), as thlipsi-
nomic coefficient, 448

Pliicker, his results for crystals cited,

683, 6856, 1219

Poinsot, his memoirs on impact, 591

Poiree, J., on deflection of arched ribs

due to temperature, live load and im-

pact, 1013
; cited, (i) p. 368, ftn.

Poisson, erroneous method of dealing
with flexure, 75, 316, 12267; on

problem of plate, 167 ;
criticism of his

deduction of stress-strain relation, 192

(a) ; error in his theory of impact of

bars, 204; on summing intermolecular

actions, 228 ;
on contour conditions

for thin plate, 394 6
;
his treatment

of plates criticised by Kirchhoff, 1234;
on statically indeterminate reactions,



INDEX. 525

(i) p. 411, ftn.; his theory ofelu
referred to, 1 !'.:*, HJio; his views on

uni-constancy tested by the vibrations

of circular plates, 12423
/" it io: see Stretch- S<j /,-,; , R<it i, >

Polar Coordinates, general solution of

uniplanar strain in terms of, 1711,
1717 (ii); form of plastic equations in

terms of, 1601
Polir I'l-i'i'i'i-tit-it of Crystal*, have no

icnce in elastic forces pro-

portional simply to strain, 1763
Polnri.nitiini, Plane of, Neumann's defi-

iiiti.m. 121 I. 1215, 1217, accepted by
KirchhoiY, 1301; in Boussinesq's theo-

172: reached by Sir W. Thomson
from incompressible cyboid aeolotro-

py by annulling difference of rigidi-
W. Thomson on, 1780

ttioii, /ui^/forj/.Boussinesq's theo-

ry of, 1481 ; in gyrostatically loaded

media, 1782
(a),

1786

Pnhirixiiin .l/.-r///i, circularly, Clebsch's

theory of, 1324

't, reports on Saint-Venant's Tor-

sion-Memoir, 1
; reports on Saint-

:it's memoir on transverse impact,
104; on rupture, 164, 169 (c ) ;

on
elastic line, 1*8; on impact of elastic

bar, 311: his M<'i-<nii<jiit' IinliiJtrirllc,

C. et A. p. 10; reports on Phillips'
memoir on springs, 482 ; on theory of

arches, 1009 ; his results as to resili-

by Mill let, 10612
I., int. ^.-ration of elastic equa-
for vibrations |1>">.',|, .",l<i; inte-

. ni of general elastic equations in

cylindrical coordinates (1855), 511 2

of strained solid : see

i (,i- /'.-/. ntiiil, history
of origin of terms, 198 (c) ; general

property of attraction potential, 1487

(<); prO|M .muni,
;

of 1 tiicitv on elliptic discs,

nrstusedb.N lomson
for elastic problems, 162730, 171.",:

><>d of freeing elastic equations
i body-force* by aid of potentials,

; of second kind, use in solution

of elastic equations, 140, 286 ; vibra-

<!' mi infinite elastic medium
discussed by means of, 1486 ; applied
to discus* influence of local stress or

in on the sirens or strain at

I.H of an extended solid, 1486;

general remarks on potential solutions

comparison with those in terms
.urier's series, 1487; on different

kinds of, inverse, direct and logarith-
mic, 1488, 1518 ; infinite solid bounded
by plane surface, subjected to given

. vivi-n strain or partly one and
partly other, 1489 98; solutions by
potentials of special cases of pressure
on or depression of surface of elastic

solid, 14991517; solutions of special
cases of body-force in infinite elastic

solid, 151921; "spherical" potential
used to integrate equations of vibra-

tions of infinite isotropic medium,
1526

Pot i<-r, proves Hopkins' theorem in shear

anew, 270

Precession, effect of elastic yielding of

earth on, 1665

Prinacp, first noticed that heating pro-
duces set in cast-iron, 1186

Prixm, torsion of: see Torsion; flexure

of : see Flexure: see also Strain, Com-
bined

Pronnier, ., on bridge-structure (1857),
890

Pulrt-rnl, in-e, remarks on Le*vy, Saint-

Venant, Boussinesq and Rankine's

treatments, 242; Kankine on, 453;
Uoltzmann, 582 (b) ; uniplanar equa-
tions of, solved by conjugate functions,
1566, 1570; memoirs dealing with, from
elastic standpoint, 1571 ; Boussinesq's
theory, elastic constants of stress-

strain relations for, 1574 5; unipla-
nar stress equations, 1576 ; analysis of

and strain for pulverulent mass,
: solution of equations of equili-

brium for mass bounded by sloping
talus, 1580 2 ; introduction of bound-

ary wall at any slope, rough or smooth,
1584; mass in state of collapse, dis-

cussion of pulverulent limit, 1585 6;

angle of internal friction, 1587 ; natural

slopes of talus for various materials,
1588; thrust on supporting walls,

1 -1
; physically incorrect assump-

tion in these solutions, 1592 bit; most
stable forms of equilibrium, 1692;

equations for pulverulent mass on

point of collapse, 1598; Bar
relation, 1596; constancy of velocity
of puheiul<nt mass under varying
stress, 1696 ; conditions at a revetment
wall, 1597 8; upper and lower limits

to thrust on a revetment wall obtained,
1699 ; uniplanar equation in polar co-

ordinate, 1601 ; uniplanar body-stress

equations, if equilibrium b. lumtmr
and there be a force-function, 1606

(6)- Maker on breadth of

retaining walls, comparison with Bous-
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sinesq's theory, 1606-7; G. H. Dar-
win on horizontal thrust of sand,

comparison with Boussinesq's theory,
1609 11, 1623; Gobin's experiments,
161011, 1623 ; approximate formulae
for thrust, 1611; Boussinesq's final

theory for horizontal talus and verti-

cal wall, 1612 8; modified method
of finding superior limit for thrust,
1621 2; numerical tables for thrust

as given by Boussinesq's theory, 1625 ;

further approximations to thrust, not

rapid enough, 1624
;
remarks on Cou-

lomb's theory of pulverulence, 1609,

1620, 1623

Punching, 905; pressures needful for, in

case of plate-iron, 1103; empirical
formulae, 1104; graphical representa-
tion of stress due to, by aid of Liiders'

curves, 1190 and (ii) frontispiece;

Boussinesq's remarks on the action of

a punch, 1511
; action of flat punches,

1510 (c) ;
of punches with curved

faces, 1512
;
action of punch on plastic

material, 1602 (d)

Quartz, electro-magnetic field produces
no (? little) effect on compressed
laminae of, 698 (iv); may be cut by
rotating iron disc, 836 (/*); hardness

of, 840, 836 (d) ;
used to cut corundum

in sand-blast, 1538, ftn.; Boussinesq
on optical theory of, 1481; remarks
on elastic forces concerned in optical

phenomena of, 1763 ; optical properties

explicable by gyrostatic medium, 1781,
1786

Quincke, his experiments not in accord-

ance with Sir W. Thomson's theory
of metallic films, 1783 (c)

Raihvay, rail, torsion of, 49 (c), 182;
transverse strength of, C. et A. p. 11:

see also Axle, Spring, Continuous

Beam, etc.

liankine, centrifugal theory of elasticity

(1851), 417; laws of elasticity of solid

bodies (1850), 41826; sequel to laws
of elasticity (1852), 42732; on the

velocity of sound in liquid and solid

bodies (1851), 4339; on the vibra-

tions of plane-polarised light (1851),

440; on light (1853), 441; general

integrals of elastic equations (1856),
441 2; on axes of elasticity and

crystalline forms (1856), 443-52; on
earthwork (1857), 453 ; general solution

of equations of elastic equilibrium and

decomposition of external force (1860,

1872), 45462; stability of factory

chimneys (1860), 463; Manual of

Applied Mechanics (1858), 46470;
Miscellaneous Scientific Papers, 418;
competes for Grand I'ri.i, 454; Life:
see Millar's edition of Papers

Remarks on his work : his termin-

ology for elastic conceptions, 466, for

elastic coefficients, 44352, (i) p. 77,
ftu. ; on aeolotropy, 429 ;

on axes of

elasticity and classification of con-

stants, 44351, Saint-Venant on, 135
;

on tasinomic quartic, 136, 446; on
orthotatic ellipsoid, 137, 445; on nu 1 -

tatatic axes, 137 (vi), 446; S;iint-

Venant adopts his symbolic method,
198; his erroneous theory as to co-
efficient of rigidity, 421; on longitu-
dinal impact of bars, 205

;
on stability

of loose earth, 242, 1590, defect of his

theory, 1613
;
his hypothesis of atomic

centres, 423, of molecular vortices,

424, 440, 1781, of coefficient of fluidity,

4234, 42930, 1448
;
his hypothesis

of "aeolotropy of density" to explain
double-refraction, 1781

Rari-constancy, 68; a property of bodies
of confused crystallisation, 72; equality
of cross-stretch, and direct slide co-

efficients on hypothesis of, 73 ;
Saint-

Veiiant's arguments in favour of, 306
;

Eankine's attempt to elucidate by
means of the 'coefficient of fluidity'
423 4, 444; does not follow from
Boscovich's theory, if molecules be

groups of atoms, 787 (cf. 192 (d), 276) ;

investigated by stretching hollow

prisms, 802, by wires, 1271 3; is not

negatived by experiments on cork,

jelly or india-rubber, 192 (b), 610,
1636, 1770, unless it is shown that

bi-constancy really suffices, 1770, 610,
nor by experiments on wires, 1201,

1212, 12713, 1636 ; Thomson and Tait

on, 1709 (e), 1749; Sir W. Thomson's

argument against, based on 21-constau t

model, 1771, criticism of this model,
1772 3

;
non-fulfilment of rari-con-

stant conditions in case of crystals,
1780 ; rari-constancy follows from sin-

gle assemblage of Boscovichian atoms,
1801 2: see Constants, Elastic, etc.

Ray, defined by Kirchhoff, 1274, theory
of, 13112; Boussinesq on, 1477;
in aeolotropic medium obeying ellip-

soidal conditions, etc., 1560

Rayleiyh, Lord, on thin plate problem,
388; on normal functions of bar, 349;
overlooks Seebeck's results for stiff-

ness of strings, 472; on dissipative

function, 1743; works out llankine's
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hypothesis of aeolotropy of iU.Mi.Mt> t<>

explain double-refraction, 1781 : his

"Theory of Sound" cited, 821, 1238,

'<-. of body on more than tlm-r

points of support, 609 ; history of the

i-t, before the days of elastic

theory, (i) p. 411, ftn.; memoirs of

Bertelli, 598, of Dorna, 599602, of

Clapeyron, 603, of Menabrea, 604

6, of Heppel, 607: see also Con-
tinuous Beams

Reaumur, effect of hammering on mag-
ii. tisation, 811 and ftn.

Rebhann, G., theory of wood and iron

construction (1^56), 885; increase of

strength in beams due to building- in

tt-rminals (1853), '.142

r, formula for strength of

hydraulic press, 901

Reflect imaun's elastic theory
of. 1-J-JU di) and (c); Bonssinesq on,
1481 ; Kirchhoff's elastic theory of, in

.illine media, 1274
;

Clebsch's

elastic theory of, for wave impinging
on spherical surface, 1392 1410,
solution in solid spherical harmonics,

-9, any number of centres of

disturbance, 1400 2, single centre,

1403, longitudinal wave always pro-
duces longitudinal and transverse

reflected waves, 1405, application of

Huyghens' Principle, 140'>, wave

length large as compared with radius

of reflecting sphere, 1407 9, absence
of shadow, 1409 (iii) ; Sir W. Thomson
on, 17801, theory of, for contractile

ether, 1787 8; metallic, discussed by
W. Thomson, 1,

theory of, in crystalline

i;i, Stefan, 594; F. Neumann.
(b) and (c); Kirchhoff, 1274;

views of F. Neumann, MacCullagh
and Green cited, 1274 ; Boussinesq on

theory of, 1 M : MI- W. Thomson on,

17801; theory of, for contractile

Refrac , due to '

initial stress* ?

786, 789, 146774. tin

case of compressed glass (crown, plate
or flint) depends only on squeeze,
786; gives a means of finding stretch-

modulus, 786, 789; of rock-salt and

fluor-spar under
compression, 789;

produced by streat used to investigate
the stress-strain relation and 1-1

of stretch- and squeeze-moduli, 792

7; relation of stress to difference of

equivalent air paths of two rays, 795 ;

double-refractive power,' its relation

toj %deusity, to optical and elastic

properties obscure, 797 (a) ; no re-

lation according to \V i-theim between
natural and artificial double-refrac-

tion, 797 (b) ; produced by torsion,

802; produced in powders and soft

bodies by stress, 864
as to pressural wave, 101, 150;

Green's theory, 147, 193, 229, 1779,

1789; Saint-Venant on conditions

for, 148-9, 154; criticised, 150;
Green, Cauchy and Saint-Venant's

views, 193 5; elastic jelly- theories

of Cauchy, F. and C. Neumann,
Lam6, 12137, 1229 (a); Neumann
uses initial stresses, 121 1>; 1'. >u sinesq's
first theory, 146774, second theory,
1476, third theory, 1481; his equations
obtained for an aeolotropic medium
satisfying ellipsoidal and other con-

ditions, 1559; reached by Sir \V.

Thomson from cyboid aeolotropy (Fres-
nel's wave-surface, but Neumann's
plane of polarisation), 1775

;
Rankine'n

hypothesis of 'aeolotropy of density*
discussed, 1781 (a); deduced from
contractile ether, 1788; Sir W. Thom-
son's investigation by aid of 'initial

stresses,' 178997
Refractive Index, supposed by Sir W.
Thomson negative for metals, 1783

, explanation of anomalies in

his piezometer experiments, 115, 119,

121, 192 (b)

/,'//"//, his experiments on wooden
arches, C. et A., p. 6

licilly, Calcott, on longitudinal stress in

wrotight-iron plate girder, 953
n> ii'in.l.'t. on impact, 165; contributions

to problem of rolling load, 372; deals
\\itli problem of continuous rolling

load, 381; his problem discussed by
Kopytowski, 5589

Rendel, J. M. t on strength of cements,

<, on Emerson'* Paradox, 174
. influence of gradual

and sudden repeated torsion al and
flexural loads on molecular stm
9918; Wohler's early experim. -nts

on torsion and flexure of railway
axles, 9971003

//.. pupil of Suint Venant, 416;

application of elastic equation* to a

planetary crust (Itetal't Problem)
i, 661-70; on stress produced

by vibrations m connecting rods

(1856), 588 ; on stress in the shrunk-
.res of wheels (1859), 584-
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flexure in lamina supporting a conical

pendulum (1860), 589; on mechanical
effect of heat (I860), 716; on supposed
error in Saint-Venaut's theory of

flexure (1886), 409; his Fonts me-

tallique* (1885) cited, 978; on elastic

curve for rods of double curvature,
291 ;

his insufficient theory of impul-
sive flexural load, <Mr

Rfail fence, history of theory of, 165; de-

fined, 466 (viii); of springs, 493; of

proportioned framework, 609 ;
of tor-

sioual, flexural and tensional springs,

611; of spiral watch-springs, 675; of

railway buffers, 595; treated by Hitter,

916 (a) ; for transverse impact, 3634 ;

modulus of, 340 (ii),
108 (

J, 1091 ; values

of, for bronze and cast-iron, 1089 ; duc-

tile and elastic elements of, 1085; as

limit to impulsive loading, 1087 ; of

hard and soft iron, 879 (#); of cast-steel,

1134; tables ofcohesive resilience, 1062;
of elastic resilience, for metal wires,

1749; mass-coefficient of, in a variety
of problems of impact, 367 70; a

general expression for its value, 368
;

due to Hodgkinson and Homersham
Cox, 1550, ftn.

;
correctness of calcu-

lation of maximum shift and principal
vibration by Homersham Cox's hypo-
thesis demonstrated by Boussinesq,
1450 5

; special cases of mass-coeffi-

cient, for longitudinal impact of rod,
1550 (), for carriage springs, 371 (ii),

for thin circular plate with either

built-in or supported edge, 1550 (c):

see also Spring, Strain-Energy, Impact
and Appendix E. to Vol. i.

Resilience, Transverse, of Bar. (Gradual
Impulse.) Vertical bar carrying a

weight at its mid-point and acted on

by constant force, 357 (a) ; force some
function of time, 357 (6) ;

same bar

subjected to sudden small shift of mid-

point, 357 (c) ;
small shift a function

of time, 357 (d) ;
beam of beam-engine

subjected to periodic impulse, 358;
on danger of certain speeds for fly-

wheels of such engines, 359

Resilience, Longitudinal, ofBar (Gradual
Impulse), 681 2: see for resilience of

bars, Impact
Resistance, Electric, how affected by

strain, 1647, 1740

Resistance, Solid of Equal, defined, 5 (e) ;

for cantilever, 56, case (4) ;
for beam

under impact, 370 (c) ;
Eankine on,

468; Zetzsche, for heavy stretched

prism, 656; Decomble on, 1024;
Clebsch's treatment of, 3386 (d)

Rfuk'(iu.r, /'"., his text-book on strength
of materials (1853), 875

1 i il>* : see A relies

Rigidity, Coefficient of, term introduced

by Bankine, erroneous theory of, 421

Rigidity, Flexural, of beam, C. et A.

p. 8 (a), 1709 (d); principal torsion-

flexure rigidities, 1692 ;
of plate, 1713

Rigidity, use of term for slide-modulus,
1709 (d)', confusing multiplicity of

uses, 1709 (d)

Rigidity, Quasi-, resulting from gyro-
static structure, 1784, 18067, 1811,
1816

Ring: see Chain, Link of; heavy: see

Hoop
Ritter, A., his text-book of technical

mechanics (1863), 912 7; his ele-

mentary theory of carriage springs,
913 ;

his treatise on iron and roof

structures, 915 (b) ;
his erroneous

theory of rotating disc, 915 (e)

Ritter's Method, for determining stresses

in framework, 915 (b)

Rivets, ratio of shearing to tensile

strength in iron, 1145 (ii) ; shearing
strength of iron, 1108 ; rivet holes
tested by wedging to rupture, 1107;
how affected by change of tempera-
ture, 1116

;
how they alter strength

of plate, 1135, 11267; rivetted

joints, Eankine on, 468
;

'

Lloyds'
'

experiments, 1135
;
effect of hardening

in oil rivetted steel plates more than
counterbalances loss of strength due
to rivetting, 1145

(i)

Rocksalt, elastic constants of, 1212
;

double-refractive power under com-

pression, 789 (b) hardness of, 836 (/)

Rodman, his reports on ordnance (1860
70), 1037; his theory of initial

stress, 1038 (g)

Rods, general theory of, resume of re-

searches on, 1228 ; history of theory
of, 1252, 1418 ; Kirchhoff's treatment,
finite shifts, 1251 66, obscure step,

1258, assumes Saint-Venant's stress-

conditions, 1262, 1359; body-shift
equations, 1261

; strain and kinetic

energies, 1261, 1263, 1268; relations

between total stresses or loads and
strain, 1265, 1266, 1283 (b) ;

com-

parison of Kirchhoff and Clebsch's

treatment of the problem, 1257, 1258,

1263, 1270, 1282, 13589; Boussi-

nesq attempts to demonstrate Saint-
Venant's stress-conditions, 1421 4,

supposes rod aeolotropic and with
cavities in cross-section, 1420, stretch-

modulus varying across cross-section,
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1 l -'">, his treatment compared with

Saint-Venant's, 1427 8, analysis of

general solution. 1 i'_".t : Thomson and
- tiv.itmrnt, compared with

of Kirchhoff and Clebsch, K,s7, 1691,

1695; dith'eulties as to their iv]ihii.v-

ment of body-force by surface load,

etc., and their neglect to investigate
form of distorted cross-section, 16.15

6
Rod*, initially curcl, uxis of double

curvature, views of Saint-Venaut,
Poisson, Wantzel, Binet, Lagrange
and Bresse, 153, 155 ; general equa-
tions, 1264, 1368, 1425, 1435; equa-
tions for total shears, 1435 6 ; solu-

tion for case of small shifts, 13701 ;

validity of Saint-Venant's stress-con-

ditions for, 1422. 1435 ; vibrations of,

Bresse's equations, 534 ; axis of single
curvature, on stability of rods of

uiu-qual flexibility in form of hoops
and circular arcs, rotation round
central line, etc., 1697; when bent

solely by couples, 1369. Additional
material for the theory of plane curved
rods will be found in the memoirs of

Bresse on arches, 514 31, of Winkler
.inks of chains, 61841 and of

Phillips on spirals, 6779
initially straight, flexure of,

HO|,|H:. .v.i.5 Kupffer's doubtful for-

mula for flexure of loaded, 747, 759 (c),

corrected, 760 2 ; experiments on
statical flexure of, 767 ; general equa-
tions of, deduced by Kirchhoff, 1251

66; indefinitely thin, and extremely
small shifts, 128490; torsion and
flexure equations, 1287 ; thrust taken
into consideration, 1288

;
Clebsch's

discussion, 135874, his assump-
1359, doubtful neglect of terms,

; equations of motion,
-4

; stresses in, 137 I
. Thomson

and Tail's treatment, 168797 ;

heavy and stretched, 1290; doubtful

formula for flexure of crystalline

rod, 1227 ; rod whose length shall be

unaffected by heat, how to be found,
1 l '7 : see also Flexure, T>

etc.

Rod*, initially * <n* of,

general equations of motion, 13724 ;

12267, Kirchhoff, 12'.' 1

.-h, 1373 (a), 1874, Boaaiinesq,
1431

; loops and nodes calculated by
Seebeck, 471, formulae f

;,MIHMM, 1228, experiments on,

826; when clamped at one end and

loaded at the other, 551 () ; deter-

mination of constants in solution,

614, 616
;
when the terminal con-

ditions vary with the time, 680 2;
loade.l and vibrating, Kupffer's for-

mula, 751, 759 (c), examined and
corrected, 763 6; with and without

loads, 769; heavy loaded rod, 775,

780, 1431, solution when weight is

neglected, 776 7, approximate solu-

tion, 778, when unloaded, 779, further

approximations, 781, application to

Kupffer's results, 782 4
; when cross-

section varies, 1302 7, thin wedge,
1304, safe amplitude of vibration,
1305 ; very sharp cone, 1306, safe

amplitude, 1307 ; according to Baudri-
mont transverse vibrations do not

obey the usual (Bernoulli-Eulerian)
theory, 821, difference not to be ac-

counted for by rotatory inertia or

distortion of cross-section, 821
;
Mon-

tigny, however, confirms usual theory,
822 ; transverse and longitudinal vi-

brations of same tone, 825
; case of

rod infinitely long in one direction,
when constraint or load at one end
varies with the time, 1527 33, when
initial shift and speed of each point
is given, 1534, bearing mass subjected
to a force varying with time, 1539;
tranxverxe impact, limiting safe velo-

city of striking mass, 1537, bar carry-

ing a mass, which is subjected to

transverse impact, 1540 : see /;/<;/. r

longitudinal, F. Neumann's de-

duction of general equations for right-
circular cross-section, 1224, his doubt-
ful solution, 1225; Kirchhoff. I'J.'l

(a), Clebsch, 1373 (6), Boussinesq,
1431 ; nodes determined by Seebeck
with sand, 475 ; when terminal con-
ditions are functions of the time as

in piston rods and cranks, 680 2 ;

longitudinal and transverse vibrations

of same tone, 825; longitudinal hn-

non-impelled end fixed, 4017,
4104; non-impelled end fixed or

free, maximum strain, duration of

blow, kinetic-energy, etc., 154760:
eee Impact

tonional, 191, 1291 (a), 137 i

1874, 1481
tUulicn-kinttic analogue, 1267,

1270, 1283 (6) and (c), 1864

'i, his experiments on stretch-

squeese ratio referred to, 1901

RoffUten, /;., on strength of materials

1868), 892, 986; hi* treatment of

10'HI

,

(1868),
Ill-Mil.-.
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Rohrs, on oscillations of suspension
chains (1856), 612

Rolling, effect on stretch-modulus of

brass and iron, 741 (a) : see also

Working
Rolling Load, on beam, girder or bridge,

372, 5401 ; history of problem, 372,
377 ; isolated on bridge with doubly-
built-in terminals, Phillips, 552, solu-

tion corrected by Bresse, 540; iso-

lated on bridge with doubly supported
terminals, Phillips, 553, solution cor-

rected by Saint-Venant, 3736; bend-

ing moment, 375, deflection, 376,
Saint-Venant takes account of peri-
odic terms, 378 80

;
the same problem

(in Ui ,^ Problem) solved by Boussinesq,
1553, extension to case of continuous
load by Kenaudot, 381, 372 ; Bresse,
on very long train crossing very short

bridge, 382, 541, his theory repeated

by Kopytowski, 558, by Winkler,
664; investigation of whole problem
by Kopytowski, errors in treatments,
555 60; Homersham Cox's erroneous

theory, reproduced by Winkler, 663,

by Morin, 881 (b), by Mahistre, 963,

by Mallet, 964 ; experiments on de-

flection due to, 10134
Rondelet, on strength of wooden
columns, 880 (a) ; on strength of

stone, 880 (b)

Roof-Trusses, 881 (c), history of, C. et A.

p. 5 : see also Framework

Rotating Disc, Hitter's erroneous theory
of, 916 ()

Rotation of plane of polarised light,

produced by magnetic force, how
affected by compression in flint and
crown glass, 698 ;

the more feeble in

glass, the greater the mechanical

strain, 786, 797 (d); theory of cir-

cularly polarising media, 1324; theory
of optical, 1481 ; theory of magnetic,
1482

Roy, C. S.
t
on after-strain, stretch-

traction curve, hyperbolic (1880 8),

(i) p. 579, ftn.

Riihlinann, his History of Technical

Mechanics cited, 884; his Elements
of Mechanics (1860), 917; on strength
of thread of screws, 966

Rupture : see also Failure, Fracture,

Strength, Absolute; and Safety, Limit

of ; conditions for, 4 (/), 5 (a); gene-
ral conditions for, 5 (d), 32; history
of theory of, 164; Poncelet on, 164,

169 (c), 321 (b); conditions for, used

by Lamd and Clapeyron, 166; by
compression, 169 (c), due to lateral

stretch, 855, 856; of cast-iron, of

cement, 169 (c) ; condition for, with

skin-change of elasticity, 169 (/) ;
for

wooden prism with variation in

stretch-modulus, 169 (/); behaviour
of a material up to, 169 (n) ; by
flexure, 173; relations between con-

stants of instantaneous and ultimate,
175 ;

for flexure of beam with loading
in plane of inertial asymmetry of

cross- section, 177 (a); experiments by
Blanchard, Kennedy and others on

rupture by compression, 321 (b) and
ftn.

;
ratio of coefficients of, by pres-

sure and tension, 321 (b) 6; of arches,
Ardant's formulae for, C. et A. p. 7;
Wertheim considers that of hard
bodies takes place by slide and that of

soft bodies by stretch, the strain being
torsional, 810, cf. Sir W. Thomson's
views, 1667; rupture stress not a

proper guide in construction, 875 ;

rupture surfaces of cylinders and

spheres, 880 (b) ; rupture planes of

massive slopes of rock, 1583
; rupture

surfaces of stone, 909, 1182
; rupture

is not to be determined from elastic

equations, difficulty of maximum
stress difference limit, general dis-

cussion of conditions of failure, 1720;
failure better measured by stretch than

by stress limit, 1327, 1348 (f))(h),
1386 (b)

Russian, measures of length and weight,

(i) p. 520, ftn.

Saalschiitz, on forms taken by a loaded
rod or flat spring (1880), 1694, ftn.

Safety, Factors of, 1/10 in France, 1/6
in England, 321 (b) ;

Eankiue's table

of, 466 (x).

Safety, Limit of, properly measured by
stretch and not traction, 5 (c); rela-

tions between safe tensile and com-

pressive stresses for wood, cast-iron,

wrought-iron, 176; Clebsch's assump-
tion of stress limit, 320; comparison
of stress and stretch limits, the latter

generally on the side of safety, 321 (a),
321 (d), 1720, 1327, 1348 (g)(h), 1386

(b) : see Failure

Saint-Guilhem, on slope of natural talus

of earth, sand, etc., 1588, 1623
Sat nt- Venant, Memoirs and Notes: Chief
memoir on Torsion of prisms (1855),
1 61

;
note on flexure of prisms

(1854), 62; notes on transverse im-

pact of bars (1854), 63, (1857) 1047,
(1865) 200; chief memoir on flexure

of prisms (1856), 69100; notes on
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theory of li-ht ( 1856), 101, (1863) 154,

(1873) 2M ; notes on velocity of

sound (is-,., . UM, 1867) 202; note
en moments of inertia (1856), 103 ;

notes on torsion (1858), 109, 110,
I.-.7. (1879) -J'.U; note on vi-

brating cord (1860), 111; note on con-

ditions of compatibility (1861), 112;
note on number of unequal elastic

coefficients (1861). 11:*; memoir on
kinds of elastic homogeneity

.in l-j.'i
; memoir on distri-

bution of elasticity round a point
l-jr.l.vj; notes on elastic

line of rods of double curvature (1863),
l~>5; memoir on rolling friction

; note on strain-energy due
to torsion (1864), 157; notes on kine-

matics of strain (1864), 159, (1680)
294; annotated edition of Navier's

Lemons (185764), 160199; note on
loss of energy by impact (1866), 201,
Ju'j; memoir on longitudinal impact
of bars (1867), 203219; notes on
longitudinal impact (1868), 2212,
(1868) 223, (1882) 2956, 297;

utions to Moigno's .s'Mf
/'/

i -229; memoir on amor-

phic bodies (1868), 230232; papers
on plasticity (1868), 233, (1870*

248, -.Ml. -J to -257, (187S)
258264, (1875) 267 ;

note on stresses

for large strains (1869), 234; note on

application of potential of second kind
to elastic equations i

: . nu>

moir on initial stress, strain and dis-

tribution of elasticity (1871), 237
_M1 ; papers on loose earth (1870),

reports and analysis of others'

work, on I-.vv (18701), 2423: on
Lefort on Boussinesq

', (1884), 1619: on Tresca
noteson thermal vibrations

268, 271274 ; papers on atoms
'. (1H78) 275280, (1884)

408; note on shear (1878), 270; me-
moir on elastic coefficients (1878), 281

284; memoir on torsion of prisms
on banes in form of circular sectors

(1878), '285290; annotated edit.....

of Clebsch's Treatise
(1883), 1325, 298

400 ; memoir <

graphical representation of longitudi

<i), 4017; posthu-
mous memoir on the graphical repre-
sentation of the laws of the lonr
nal and transverse impact of ban
(edited by Flamant 1889), 410-4

dear uc* of life and
work by Phillips. Boussinesq and

Flamaut, and in .\\ifmv and the
Ttiblett,-* bi<><irnjthi<inffi, 415; character

of, 416; summary of his work, 416;
analysis of his works by himself up to

1858, and up to 1864, (i) p. 2

References to : his theory of torsion

misinterpreted by Wertheim, 805 ; his

results for prisms on rectangular base

confirmed by Wertheim's experiments,
807 ; his suggestion of method of

approximation in theory of pulveru-
ience, 1599, 1612; his report on Bous-

sinesq's theory of pulverulence, 1619;
his theorem as to maximum slide,

4 (5), 1604 ; his stress-strain relations,
assumed by Kirchhoff, 1262, 12857,
cf. 135960, attempt to demonstrate

by Boussinesq, 1421 i
;
his results for

helical springs given by Thomson and
Tait, 1693 ;

his problems of torsion

and ' circular flexure
'

dealt with by
Thomson and Tait, 1710, 1712; ap-
plication of his theory of rupture to

torsion and flexure of cast-iron, 1053
Sniiit-Venant's Problem, so called by

Clebsch, 2; treatment of by Clebsch,
1280, 133245, by Kirchhoff, 1280;
the assumptions ^ =^=^=0, argu-
ments in favour of, 316

; Boussinesq
on, 317, 14214; objections to in

case of buckling, 318; Kirchhoff,
Poisson and Cauchy on flexure of

rods, 316
S<in<i, slope of natural talus of, 1588;
experiments of (i. H. Darwin and
theory of Boussinesq as to thrust of,

160911, 1623

Sandblast, its method of action a

bable theoretical explanation, 1538, ftn.

S<i>i<ktone : see Stone
N.I I///. /:. , free vibrations of linear systems

of elastic bodies, 615

Sapphire, hardness of, 840, 836 (</)

. pupil of Saint- Yi-nant's, 416;
Saint-Venant's views on his theory of

li^-lit, 265; his equations for double-
refractive medium, 1476, 1559

', his experiments on torsion, 31,
his results for nodal lines of

circular plates tested by KirchhofTs

theory, 1242 (6) ; his views on vibra-

tions of rods -

IT.'.

Schejfler, 7/.,on strength of struts, beams,
etc. (1858), 648-50; on stren

tubes (1859), 654- .

of .Lull. I. Mipp.Mtm- \\.ilN iiu.l ii,. 11

(1857), H8, reas*d

strength of beams due to

their terminals (1858), 9445
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0., on form of chains for

suspension bridges, 579

Schneebeli, his experiments on stretch-

squeeze ratio, 1201 ()
Sch nire h, F. .experiments on the strength

of wrought-iron and stone (1860),
1133

Sch'oneiminn, C., effect of temperature
and of rivet-holes in reducing strength
of plates (1858), 1127

Schrntter, A., on crystalline texture of

iron and effect of repeated torsion

(1857), 992
Schiibler, Ad., on bridge-construction

(1857, 1870), 8879
XflncarZy obscure theory of struts, 956
Schwedler, on braced and latticed girders

(1851), 10045
Scoffen, J., on useful metals and their

alloys (1857), 891

Scoresby, Jr., effect of hammering, bend-

ing and twisting on magnetisation, (i)

p. 564, ftn.

Screwing, old dies weaken bolts less

than new, 1147

Screws, strength of, 905, 1147, of thread

of, 966 7 ;
wooden give way by shear-

ing, 967

Sealing-wax, rupture surface of, 810,
1667

Sbert, on impact of elastic bar, 341

Seebeck, on transverse vibrations of

stretched elastic rods (i.e. stiff strings)

(1849), 471 3
; on vibrations (in Pro-

firamm 1846), 474 ;
contributions to

Dove's Eepertorium (1842), 475; died

1849, 475 ; upon testing hardness of

crystals, 836 (i) and (j) ;
his error as to

hardness of Iceland spar corrected,
839

Segnitz, erroneous treatment of torsion

(1852), 481

Seguin (the elder), builds first suspension
bridge in France (1821), (i) p. 622, ftn.

St'guin, endeavours to explain cohesion

by molecules attracting according to

law of gravitation (1855), 865

Sellmeyer, adopts F. Neumann's view of

dispersion, 1221
Semi-inverse Method, 3, 6, 11

; applied
to flexure, 9, 71 ; history of, 162

;
its

justification, 189; applied to plastic

problems, 264

Senarmont, his results for crystals re-

ferred to, 683, 686, 1219 and ftn.

Set, 169 (b) ;
effect on stretch-modulus

and cross-stretch coefficients, 194
;

tiexural, 709 : see also Bent; torsional,

702, 709, 714: see also Tort; unaccom-

panied by change of volume, 736 ;

remarks on nature and relation of

stretch and squeeze sets, (i) p. 547,
ftn. ; torsional, increases elastic resist-

ance of soft-iron, 810
; its relation to

load in flexure of bronze, cast-iron

and cast-steel, 1084
; at first set-strain

curve is linear, afterwards regular but
not linear, 1084 5

; due to flexure,
exhibited by drawing lines on beam of

lead, 1119; produced by repeated
heating of cast-iron, 1186 ; effect on
thermo-elastic properties of the metals,
1645 (B), 1646

s'Gravesande, his method of finding
stretch-modulus, 1289

Shadow, absence of when wave length of

incident ray is great compared with
size of reflecting object, 1409 (iii)

Shear, appropriated by Eankine to stress,
465 (a) ; used by Thomson and Tait
for strain, 1674 ;

elastic constants in

its expression in case of plane of

elastic symmetry reduced by rotation

of axes, 4 (0) ; elementary discussion

of, 179 ;
inadmissible theory due to

Bitter, 915 (a) ;
fail-limit for, 185 ;

Hopkins' theorem as to maximum
shear, 270, 1458, 1604

;
total in terms

of bending moment, 319, 534, 556,
889, 1361, ftn., 1435 (a), in beam
partly covered by continuous load,
557

Shear, Cone of, Kankine on, 442
;
used

by Lam< and Kesal, 567 (6)

Shearing Stress, Kankine, 468

Sheppard, Ii., uses beam of lead with
lines on faces to measure flexural set,

1119

Shift, definition of, 4 (a) ; large, with
small strain, equations of elasticity

for, 190 (b) ; large, elastic equations
for, 124450 ; strain-energy for, 1256 ;

integral tangential shift for strained

and unstrained curve in solid, 1679
81

Shift-Function, when twist vanishes,
1681

Shot, work done by impact of, 916 (d)

Side-long Coefficients (
= plagiothliptic

and plagiotatic coefficients), 1779

Silhcrmann, J. T., on elongation of

scales of measurement (1854), 848

Silicum, influence on strength of cast-

iron, 1047 (c) ;
amount of, after re-

peated meltings of cast-iron, 1100

Silk, after-strain in threads of, effect of

change of temperature on torsional

elasticity of, (i) p. 514, ftn.

Silver, thermo-elastic properties, 752,
756 ;

after-strain and temperature,
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756 ; stretch-modulus and density of,

824; ratio of kinetic* and
static stretch-moduli, 1751 ; hardness

of, (i .11., 836 (b)

Similar ladies, similarly strained, how
shifts and strains related, 1718 (a)

Skewnesses, defined, 1776 (6); strain-

energy, if they be annulled, 1778 ;

hi UK of, in thlipsinomic coeffi-

Skin-t'liange, of elasticity, 169 (/); in

iron columns, 974 (<) ; tenacity and
h-modulus of cast-iron bar dif-

ferent at core and periphery, 169 (c)

(/), 1111
; effect of, on crushing

strength of glass, 856, on its tensile

ngth, 859

(or measurer of hardness),
Seebeck's, 836 (i ), Franz's, 838, Grailich

and Pekirek, 842

Slat,; >tivn-:th and deflection of, 1174
Sli<l,; di-finition of, 4 (/3); Saint-Venant

changes from cotangent to cosine of

slide angle, (i) p. 160, ftn. ; analysis of,

principal axes and ratio, 1674 ;
value

(ay/) of, in any direction, 4 (5); Saint-

Venant's theorem as to maximum of,

4 (5), !'( t ; in terms of stretch and

squeeze, 4 (8) ; condition for failure by
); elementary discussion of, 17 (

.,

1 \r.t\, 1459 ; flexural slide, 183 (a) ; slide

and stretch in any direction first given

by Lame, 226 ; for large shifts, 228 ;

slide due to torsion : see Torsion ;

due to flexure : see Jtea in* and
are; slide initial, strain-energy of

isotropic body subjected to, 178795
/, Rankine on, 1 _'

Slidi'-I.imit, in terms of stretch-limit of

safety, 5

see under Modulus

velocity of, 219

Snai'jiiii'i, oVtincil, H)6 (a)

../.// Resistance: see Rt*i*t-

once. Solid* of <

Solid, ,

i,,,,md,',l
l>!/ f ", stresses

and strains due t<> simpl*- pressure on
l.-iiM-nt (if suri.-i nrfacc

deflection due to anv di*tn tuition of

i-e pressure, 1408; approximate
solution, 1498 ; surface deflections for

resflureunit i round

uniformly loaded circular areas, 1501
2

;
circular areas with load tl

along radius, l.'.oi ; uniformly de-

proHned circular an 1 areas,
1604 ; effect of shear applied to Kinall

element of bounding surface, 1506 ;

nature of load that depression may be

proportional to pressure. 1507 ; stresses

and strains produced by pressing a

rigid solid against the plane surface,
1508 13 ; when the rigid solid is one
of revolution, 1510 (a), any rigid solid

1510 (b), rigid flat disc, elliptic disc,

1510 (c), discontinuity at edge, 1511 ;

rigid surface pressing with a point
of synclastic curvature on plane sur-

face of indefinite elastic solid, 1512 3

Solid, Elastic, heart/ and bounded In/

xlopht'i plane, stresses in, 1577 ; strains

in, application to geological problem
of massive slope of rock, 1583, 1589,
ftn.

Solid, Elastic, of any shape, pressed by
smooth elastic solid of any shape at

point of synclastic curvature, 1514 ;

case of two elastic spheres, 1515 6

Solid, Elastic, infinite, subjected to body-
force, 1519 ; general solution, 1519 (a),

1715 (6) ; single force on element,
1519 (6) ; body-force on spherical ele-

ment, 1715 (a)

Solid, Elastic aeolotropie, its equations
reduced to those for an isotropic
solid, if the ellipsoidal conditions hold
and the cross-stretch and direct slide

coefficients have a constant ratio,

1557 8 ; vibrations in such a solid,

1559

Solid, Elastic, isotropic and inflnitf,

solution for vibrations of various

types in, sources in oscillating par-
ticlep and doublets, 1767 9; equations
of motion for case of incompressihilit y

(= jelly) and their solution, 1810
Solids, Elastic of special forms: see

under name of form i.e. Sphert, Cy-
lin.li-r, etc.

Sound, effect of on magnetisation. Ml:
\\ h v it is checked by pulverulent mass
like sand or sawdu>t. I.V.W. ftn.

s,,nnd. r,-l,:-itii /. (is. 10-j. 219; proof of

value for bar, 202 ;
in liquid an .

bodies, 483 ; comparison of magnitudes
iii.l. liiMtrly great and in a limited

elastic solid, 435 6 ; in rods and

prisms according to Hank inc. 487 8;
in ir< - value determined for

longitudinal vibrations of metal rods
increases with length of rod, 888;
numerical Tallies for metals, 694

Sound rods and string,
471-5 ; torsional, 808

; according to

Wertheim in tomional. pitch depends
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Spermaceti, tensile and crushing

strengths increased by solidification

under pressure, 1156

Sphere, of gravitating liquid, period of

free oscillations, 1659; comparison
with period of ellipsoidal deformation
of solid globe of steel of size of earth,

1659

Sphere, Solid Elastic, or spherical cavity
in infinite elastic solid with given
surface shifts, 1659

Sphere, Solid Elastic, radial vibrations of,

1327 ; surrounded by shell of different

material subjected to surface pressure,
1201 (d)

Sphere, Solid Inelastic, \vH\\ non-slipping
oscillations of rotation and translation

in an infinite elastic medium, 1308
10 ; reflecting waves in an infinite

elastic medium, 13921410; special
solution for case when wave length is

great as compared with radius of

sphere, 14079
Spheres, Solid Elastic, impact of, area of

contact, duration, etc., 15157, 1684

Spherical Coordinates, equations of elas-

ticity in terms of, (i) p. 79, ftn.

Spherical Harmonics, Solid, introduced

independently by Clebsch and Sir W.
Thomson, 1395, 1397, 1651

Spherical Shell, conditions for expansion
without distortion, the distribution of

elastic homogeneity being spherical,
123 ; as a form of piezometer, 124

;

general problem solved by Sir W.
Thomson in terms of solid spherical

harmonics, 1051 8, 1717 (i), removal
of body-force, 1653, solution of general

equations, 1654, given surface shifts,

1655, given surface stresses, 1656,
force-function a solid harmonic, 1658

;

under internal and external pressures
considered by F. Neumann, 1201 (c),

Kirchhoff, 1281, Clebsch, 1327; Love,

Basset, etc. on general problem, 1296
bis ; radial vibrations of, 551 (b) ;

of

glass, strength of under external and
under internal pressure, 857 9

Sprain, defined, 466, ftn.

Springs, built-up of Laminae, Phillips'
fundamental memoir, 482 508

;
roll-

ing-stock springs, matrix lamina, 485;

curvature, strain and deflection, 485
90 ;

action between laminae, 492 ;

resilience, 493; best form for, 494;

shape of laps, 495 ; calculation of

dimensions, 496 500 ;

' reserve
'

spring, 502 4
; experimental data,

507 ; experiments confirming Phillips'

theory, 596; graphic tables for

Phillips' formulae, 921, ftn. ; Ritter's

elementary theory, 913 ;
Blacher on,

955
; general formula for deflection of

carriage springs, 371 (ii)

Springs, of Railway Stock <ind Jinjferx,

resilience of, 595 7 ; deflection, set

and strength (buffing and bearing
springs), 969 (a) ; india-rubber springs,
969 (b); 'grooved' plate spring, 969

(c) ; springs formed of alternate discs

of iron and vulcanised caoutchouc,
851 ; deflection and set of various

types of railway springs, 969 (c) (d)

Sprinfis, of single fiat Lamina, forms
taken by when variously loaded, 1694
and ftn.

Springs, Spiral, of watches, 6749;
their isochronism, 676

Springs, Helical, Kirchhoffs treatment,

12689, 1283 (c) ;
Clebsch 's, 1365;

Thomson and Tait's, 1693; results

of Wantzel, Giulio, Saint-Venant,
Hooke, Binet, J. Thomson and Kirch-

hoff referred to, 153, 155, 1693

Squeeze-Modulus : see Stretch-Modulus

Stability, criterion of, applied to prove
uniqueness of solution of elastic equa-
tions, 1278 ;

of small relative motions
of parts of elastic solid, 132830;
problems in stability of wires, 1697

Stability, of loose earth: see Earth, loose

and Pulverulence
Standards of Length, elongation of, 848

Steel, thermo-elastic properties of, 752,

754, 756; W. Thomson's thermo-
elastic theory verified by Joule for,

696 ; after-strain and temperature,
756; effect of temperature on slide-

modulus, 690, on stretch-modulus,
1753 (b) ;

not rendered brittle by cold,

697 (c) ;
hardness of, (i) p. 592, ftn. ;

cut and cleaned by sandblast, 1538,
ftn.

; may be cut by rotating iron disc,

836
(/i) ;

stretch-modulus and density
of (rolled, cast, wrought), (i) p. 531

;

stretch-modulus of English and Rus-

sian, 742 (a), 743; stretch-modulus

determined by transverse vibrations,

771; stress applicable without pro-

ducing set, 597 ;
absolute strength and

stricture, 902, '1123, 1142
; strength of

German, 1122
;
French experiments

on, 897; rupture surfaces, 1143; effect

of hardening in oil and in water,

1145; fracture of hardened, 1667;
effect of magnetisation in producing
strain in, 688 ; effect of longitudinal

pull on magnetisation, Villari critical

field, 17289 ;
effect of torsion on

magnetisation of, 812
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.SVv/, BiMMMT, strength of exaggerated
by shape of test piece, 111*>

stress-strain diagrams for,

1 1 ' - i ; I . i dors' carves for
,
1 190 ; tensile

and torsional strengths, stricture of

Krupp's, lli:i; >tn-n^th ami ela

when prepared by Uchatius' process,
1114

; crushing strength of, 1039 (e) ;

axles of, resistance to impact, 995,

1000; processes of manufacture, 891

(e) ; platex of, strength of, parallel and

perpendicular to direction of rolling,

1130; elastic limit and structure of,

1130
; annealing only slightly reduces

strength. 11:50; effect of tempering,
annealing, etc. , on absolute strength,

rupture stretch, stretch-modulus,
elastic limit, resilience, 1134 : see also

Steel, Plates

Steel, ( periments and formulae
for strength of, 978

I'ln t en, absolute strength and
stricture greater in direction of rolling,
if puddled, converse if cast, 1142; if

tod and hardened in oil, as strong
as unrivetted plates, 1145 ; Liiders'

curves in steel plates of dredger
buckets, 1190, ftn. and (i) frontispiece

Steel, Pmlilli'il. for links of cables, abso-
lute strength of, 1132

Steel Wire, thermo-electric properties
under strain and working, 1646;
stretch-modulus and density of, (i) p.

effect of tort on moduli, 17V, ;

Kirchhoff's determination of stretch*

squeeze ratio, 12713; absolute

strength of, (i) p. 7 ":*. ftn.
; pianoforte,

absolute strength of, 1 1 _' i

general equations of a vi-

brating elastic medium (1857'.
insverse vibrations of rods (1859),

616
-on, U., on neutral axis, 1016;

experiments on cast-iron.

Sttfnett, denned, 466 (v) ; how it affects

note of musical string, 472 3, l .;7 I.

h<>w it affects note of mem-
brane, 1439

/, J. D. M iiRvene and
tensile strength of oast- and wrought-

: 1
1 1:,

Stoke*, Sir O. (J. f his

views M to elastic constants by Haint-

Venant, 198; first calls attent;

difficulties of nm-constaucy, 17 V

his doctrine of continuity, !!'

results for bridges subjected to rolling

load, 372, 8789 ; comparison of his

solnt, with Bonn-

sinesqX 1658; his experimenu on

Iceland spar cited against Rankine's

hypothesis of aeolotropy of den-ity
in ether, 1781 ; his solution of equa-
tions for vibrations of infinite elastic

iiu-ilium reai-hed. 1 ">_>; ; extension of
his results for diffraction, etc., to

aeolotropic medium of simple kind,
1560

Stolftow, on coefficient of induced mag-
netisation for soft-iron, 1314

Html,-, stress formulae and elastic con-
stants for, 314; rupture of, 321

(ft),

1
; empirical law for crushing strength

of, 1175 ; strength in frozen condition,

1176; defect of Hooke's law in, 1177;
important influence of manner in

which faces of cube of stone are
bedded during test, 1175, 1180;
strength of, 880 (b), 1133, 1153, 1176,
1179; strength and deflection, 1174;
crushing strengths and rupture sur-

faces of granite, limestone and sand-

stone, 1182
; strength and density of

sandstone, marble and granite, 1178,
1180 ; cracking and crushing loads of
German stones, 1181 ; crushing and
transverse strength of colonial stones,

1183; crushing strength of Iri^h

Basalt, 909, of American stones, 1175,
of colonial stones, 1183, of Italian

stones, 1184 ; rftumt, of English and
French experiments, 1175

Stn?ij, }:. />'., on strength of long
pillars (1864), 977 ; on lattice

(1H62), 102930
Storer, II. R., on bursting of gutta-

percha tubes (1856), 1160
Strain, pure, definition of, 1677; appro-

priated by Rankine to relative ili-

placement (1850), 419; homogeneous,
Thomson and Tait on, 167280,
Kiivhhoff's treatmcn resolu-

tion of homogeneous strain into

stretch, slide and dilatation, 1675,
combinations of pure strains, 1678 ;

general analysis of, Saint-Veuant, 4,

Boussinesq, by simple geometry, 1466

9, in terms of |>iiu<i|>:il stretches,
1575 ; components of, might be taken
us the stivtrhi'* Hi the >|\ r.U'.-s of ;i

tetrahedron, 1640; s. ..son's

general analysis of stress and strain,

types of reference, orthogonal systems,
17668, principal strain types,

1 ; generalised expressions for com-

ponents of, when shifts or strains

are large, 4 (), 1*4850, 1446, 1661 ;

|M-|I||JUJ.-Mt. tT.Vt.'M l.o.llr |.||liill!\. !\

laotropic, deduction of ellipsoidal
slant linen.
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230 1; initial state of, in general

equations, 237 ; error of Saint-

Venant's method of dealing with on
multi-constant lines, 2389, 1469

apparatus for recording automati-

cally, 9989, 1032; directions of

maxima and minima rendered visible

by applying acid to a planed section,

1143, ftn., 1190; graphically analysed
by aid of Liiders' curves, 1190 and ftn.

in spherical condenser, 1318; in

isotropic iron-sphere due to magnetic
force, 1319 21; effect of strain on
thermo-electric properties of metals,
1642 6; thermal effect produced by
sudden strain, 68996, 1638, 17502

Strain, Combined, slide, flexure and tor-

sion, 50; of prism of elliptic cross-

section, 52 ;
case of two equal stretches,

two slides equal and third zero, 53 ;

case of two slides vanishing at fail-

point, elasticity asymmetrical, general
solution for prism under flexure, trac-

tion and torsion, 54
; case of non-dis-

torted section subjected to slide and
torsion, 55

;
case of cantilever, 56, Case

(iv) ; influence of length of short rect-

angular prisms on resistance to flexure

and slide, 56, Case (i); prism of circular

cross-section subjected to flexure, tor-

sion and traction, 56, Case (iii), of ellip-

tic cross-section, 1283; flexure and
torsion in shaft, 56, Case (v); torsion

and flexure for prism of rectangular

cross-section, 57, Case (vi) ; special
cases of skew loading, 58; flexure

and torsion of prism of elliptic cross-

section, 59; numerical examples of

combined strain, 60
; flexure, traction

and slide, 180; torsion and flexure,
183

;
traction and flexure, 1289 ;

trac-

tion and shearing in case of axles,

1000

Strain-Ellipsoids, 159, 1194, 1673, 1677;
inverse strain ellipsoid, 1676; Sir W.
Thomson's strain ellipsoid, 1756

Strain-Energy, first legitimate proof that

it depends only on strain and not on
manner in which strain is reached,

1641; function only of initial and
final configurations if equilibrium of

temperature maintained, 1463; as

quadratic function of strain-compo-
nents, 1254, 12778, 1709 (c) ; in

terms oforthogonal strain-components,
1759; in terms of principal strain

types, 1760 1
;
in terms of principal

stretches, 1235; in terms of stresses,
when elasticity is ellipsoidal, 163;

expressed symbolically, 134; deduced

from rari-constancy by Lagrauge's
process, 229, 667; when products of

shift-fluxions are not negligible, or

shifts are large, 1250, 14446; when
thermal terms are included, 1200; is

of two kinds, elastic and ductile, the
sum expressing total resilience of body,
1085, 1088

;
ductile strain-energy erro-

neously calculated by Mallet, 1128
of rod, 1261, 1266, 1268, 1283 (b) ;

of plate, 1237,1296, 1699, 1703; of wire

(or thin rod), 1690, 1692; for infinite

elastic medium, with zero shifts at

infinity, 1787, when incompressible,
1812 3, ftn., when subjected to uni-

form initial slide and incompressible,
1789 97 ; for jelly and for ideal ether,
1812

Strehlke, his experimental values of

nodal circles of circular plates tested

by Kirchhoff's theory, 1242 3; his

views on nodal lines of square plates
criticised by Muttrich, C. et A. p. 4

Strength, ultimate (
= absolute), 466 (i),

Proof, 466 (ii) ; limit to, a stretch rather

than a stress, 5 (c), 321 (a), 321 (d),

1327, 1348 (g)(h), 1386 (b), 1720; in

hard solids, 1667 ;
in plastic solids a

shear (? a slide), 236, 247, 1586, 1667 ;

tensile, how related to density, 891 (),
1039 (a), 1086; increased by repeated
stress, 1754; increased by straining

up to rupture, 1125; measured by
resilience, 1128

; ought to be measured
for iron and steel by breaking stress

per unit-area of section of stricture,

1150; tensile and cornpressive in-

creased by solidification under pres-

sure, 1156; crushing, of stone increased

by lateral support, 1153, 1180; tensile,

of wrought-iron cables, 879 (e) ; tensile

and crushing of glass in various con-

ditions and forms, 8546, 85960;
ratio of tensile to shearing for iron,

879 (d), 903, 966, for steel, 1145 (ii);

transverse or flexural, 920 ;
of beams

under flexure produced by skew-load-

ing, 65; graphical tables in case of

beams, 921 and ftn. ; strength of

materials used in construction, views
and theories of Ortmann, With, Gras-

hof and Bomaen, 922 5 (see on
transverse strength, Beams, paradox
in theonj of, Iron, Cast, Iron, Wrought,
etc. ) ; torsional, with empirical stress-

strain relation, prisms of circular and

rectangular cross-section, 184 (b) and

(c) ;
mutual relations of tensile, trans-

verse, torsional and crushing strengths
in cast-iron, 1043, theory of, 10512,
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application of Saint-Venant's theory
to Woolwich experiments, 1053: see

also Rupture
appropriated by Bankine to dy-

namic aspect of elasticity. J

iifrallv ailojitfil in this sense in

1855, 1632, ftn. ; how defined by Sir

W. Thomson, 1756; defined by Saint-

Venant, 4 (c), by F. Neumann, 1193 ;

itimi of, importance of molecular
cU-tinitioi!. .-nil analysis of,

4, 11 '.i I, by simple geometry, 1 r>>

8, in terms of principal tractions,
: in any direction in terms of

stress in three non-rectilinear direc-

.4 (e); symbolical representation
of, 132; generalised components of,
1 -.'I'). 11156; value of, on rari-

constant hypothesis, when squares of

shift-fluxions are not neglected, 234;

may depend on speed as well as mag-
nitude of strain, 1709

Stress, Accumulation of, due to vibra-

tions, 970 and ftn.,' 992 and ftn.,

1001, 1143

Stress-Centres, used by Rankine, 465 (6),

by Bresse, 515

Stress-Ellipsoids, 513; discussed by F.

Neumann, 1194, by Clebsch, 1326,

by Sir W. Thomson, 1756; Stress-

director Quadric, in tangential coordi-

nates, 1326

Strest-l-'.<innt'mn*, obtained, when there

is a force-function, for elastic, plastic
and pulverulent masses, lf>n

solved in case of limiting equilibrium,
160

Stress, Initial, general elastic equations
for, 1'J.t l:u

; introduced into general
elastic equations to second order, 549 ;

can only be found on rari-constant

hypothesis. 130 131; ffiVct of. in

r on propagation of light, 1 l~>

6 ; made use of by F. Neumann to ex-

plain double- refraction, 1216 7; made
use of by Boussinesq for ether. 1467

74 ; use criticised by Sir W. Thom-
son, 1779, but afterwards used by
him to explain double-refraction, 1789

97 ; considerable strain produced by,
effect on elastic formulae, 190; Saint-
Venant'a erroneous determination of

equations for, 198 (rf) ; introduced into

equations of elasticity, 282; effect on
elastic constant*, 240; on stretch*

modulus, 241; in large castings doe
to differential cooling, 1068

Stret*, Principal, in beams,
468, 1190

Stress-Strain Relation*. 4 (f): see also

I, IT. II.

Hooke'sLaw, generalised; practically
assumed to be linear by Cauchy and
Maxwell, 227, by Kirchhoff, 1235, by
Clebsch, 1326; why linear, 192 (a);
Moriu's experiments on its linearity,
198 (a); how deduced (Green, Clebsch,
W. Thomson, Stokes), 299 ; appeal to

Taylor's or Maclaurin's Theorem and
to law of intermolecular action, 300,
1635 ; Saint-Venant considers it from
Green's stand-point, 301

; his omitted

terms, 3023; Saint-Venant rejects

modifying action, 303 4; for wood,
stone and metals with empirical for-

mulae for the elastic constants, 314
;

non-linear for cast-iron, 729,935, 1109,

1118, 1177, for wood, 1159, for stone,

1177, for combined tensile and tor-

sional strain in steel pianoforte wire,
171'2 (n), for elastic fore-strain in

caoutchouc, 1161, for elastic fore-

strain in organic tissues, 828 35;

application of Saint-Venant's non-
linear relations to flexure and torsion

of cast-iron, 1053

expressed by curves, for iron, 879

(a), for bronze, cast-iron and cast-

steel, 1084 ; form of relations for elas-

tic, fluid and pulverulent masses, 1 ~> 7 I ;

for various types of elastic symmetry,
117, 314, 420; for crystals: see Crys-
tals

unification,

anti-barytic and abarytic, 458; horaa-

lotatic, 459 ; homalocamptic, homa-

lostrephic, and euthygrammic, 461
and ftn.

Stress, r:ii/'l>ni'ir, general formulae for,

465 (&) (c), 1563, 1578; com-
bination of stresses in one plane, 465

(c) ; Kopytowski on, 556
Stress, II <///,./, defined, 466 (x)
stn-ti-i.. ix

r)
in any direction, 4

(ft), 5 (6), 1575; stretch and tli

any direction given by Lame, 226 ; for

felgt Shift*, 228,1445
.v ;</,// I. hint

of Safety, 66, 3201: see

. Limit

of
h -Mod nlH* : see Moduln*
h-Moduln, 151,1206

/'> (- Poisson's

Ratio, }), value of, 169 (</) ;
for wood,

169 (d) ; Clebsch, and at one time
Saint-Venant, held it most be < 4,

808 (b) ; determinate from distortion

of cross-section in flexure experi-
ments, 786 and ftn., determined by
Wertheim by stretching hollow prisms,

802; Wertheim on his value for it,

80
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819; erroneous treatment of by
Wohler, 1003 ; F. Neumann on its

value and on methods of ascertaining
it, 1201 (a), (b) and (e), he found it

variable for wires, 786 ; its value for

regular crystals, 1208; r<'sttin<' of

experiments to find this ratio, 1201

(e), 1636; Kirchhoff's determination
for steel and brass, 1271 3

;
its value

may vary between wide limits and yet

give nearly identical results for notes

and nodal circles of circular plates,
1242 3

;
its value for set at section

of stricture in case of cast-steel, 1151 :

see also Constanta, Elastic

Stricture, of cast-steel. 1113, 1134,
1151 ;

of wrought-iron and steel, 1137,
50 ; may occur at one, two or three

sections, 1144
;
effect of working and

hardening, etc., on, 1145
;
influence

on plastic experiments, 1569 ; when

repeated, occurs at different sections

and higher loads, 1754

Strings, obscure treatment by Mainardi,
580 ;

inextensible and flexible, heavy,
1322, under centrifugal force, solution

in elliptic functions, 1322, on a given
surface, 1322

;
elastic and perfectly

flexible, 1323; flexible and inexten-

sible (Thomson and Tait), 1686
;
vi-

brations of, 551 (a), when stretched

and of variable density, 617; point of,

subjected to transverse motion, 681
;

F. Neumann's deduction of equations
for, 1222 (a) (b) ; wave-motion in,

reflection and refraction of wave at

join of two diverse pieces, 1222 (c) ;

transverse vibrations when slightly

stretched, 1291 (c), 1374 ;
when very

tightly stretched, 1291 (d) ;
musical

note of, how affected by stiffness,

4723, 1374, 1432

Struts, Bankine on Gordon's formula,
469 ; Scheffler's theory of, based on
eccentric loading, 649, modified form
of this theory leading to the Gordon-
Kankine formula, 650 ; obscure treat-

ment by Schwarz, 889, 956, by
Bitter, 914 ; thrust taken into account
in rod problem, 1288

;
Clebsch's treat-

ment, 13667, 1386 (e) ; buckling or

not, under longitudinal impact, 407

(2), 1552 ; cast-iron do not obey Eu-
lerian theory, 1117 (v) : see also

Columns

Sturm, his theory of piezometer referred

to by F. Neumann, 1201 (c)

Summary, of Saint-Venant's work, 416 ;

of the decade 185060, 1191 ;
of the

older German Elasticians, 1416; of

Boussinesq's work, 1626; of Sir \V.

Thomson's, 1818

Uri'ltjes: see B//<///<*, Sus-

, hardness of, 840

, used to express stress

symbolically, 132, 443

Symbolic E.r]>ressions for stresses, strain-

energy, elastic constants and equa-
tions, 1324, 4438

Symmetry, Elastic, types of, orthotatic

and cybotatic, 447 ; rhombic, 450 ;

hexagonal, 450; orthorhombic, 450;
orthogonal, 450; cyboid, 450, 1775;
non-axial, 450

; isotropic, 450 : see

also Crystal, Aeolotropy
Szabo, J., influence of stress on the

molecular condition of bodies (1851),
861

Tacke, on strength of earthenware pipes,
1171

Tait, G. P., Treatise on Natural Philo-

sophy: see Thomson and Tait; ex-

perimental results on compressibility
of water, mercury and glass, 1817

Talc, hardness of, 839

Tanakadate, effect of twist on magnet-
ised and loaded iron wire (1889), 1735

Tangential Coordinates, used for stress-

surfaces, 1326

Tasinomic, Coefficients, table of, 445
;

conditions for incompressibility in

terms of, 1779; Surface or Qnartic,

expressed symbolically by Bankine,
446, 136; first given by Haughton,
136 ; cases of, 138 ; reduces to ellipsoid,
if there be ellipsoidal elasticity, 139;
discussion of, 198 (e) ; Bulk-modulus,
1776

Tate, J., on collapse of globes and

cylinders and on strength of glass

(1859), 85360; assists Fairbairn in

experiments on collapse of tubes, 984

Tearing, defined, 466 (a)

Technical Elasticity, Saint-Venant's re-

searches in, (i) p. 105 et seq. ;
Clebsch's

work in relation to, 1325, 1390
Technical Researches, of decade 1850

60, 8731190
Teinometer, Chromatic, principle of, used

by Wertheim, 794, (Dynamometre
Chromatique) 797 (e)

Tellkampf, his treatise on suspension-

bridges (1856), 883

Temperature and Elasticity: see Thermal

Effect and Heat

Tempering, effect on elasticity and

strength of cast-steel, 1134

Tcnbrinck, on steel, 897 ;
on iron bar, 902
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Tension 7?ar, heavy and ofeqnal strength,
1386 (a)

, on longitudinal vibrations
of rods (18589), 825 (a) (c); on the
coexistence of torsional and transverse
vibrations in rectangular rods, 825 (/)

/, his account of abacs, 921. ftn.

/, shape of specimen (gr<

etc.) may exaggerate strength, 1146;
ion;. 1086, 1189, 11~>1,

ll.vj. 1153, 1154, 1158, 1180
Tests, for metals give very different re-

for different kinds of same metal,
1014 (i), 1752

"A-x, on technical elasticity and
strength of materials, 873917

Thermal Axes, do not coincide with elastic

and other physical axes, 12189 and
ftns.

"rodneed by stretching
metal (iron-wire, cast-iron, copper,
lead), 689; difference between cases of

gutta-percha and vulcanised india-

rubber, 689; by compressing metals
and vulcanised india-rubber, 690; by
torsion of steel and copper wires, 690 ;

influence of change of temperature on
length of silk and spider threads under

'7 (b); on torsion of silk

threads, (i) p. 514, ftn. ; on torted wires,
714 (17)_(19); on strained bodies,

spiral springs, twisted wires, india-

rubber, etc., 1638; on elasticity gene-

rally, 748 57, of a permanent nature,
737, 7556, 771, of a transitory
nature, 737, 7524, 770; on dilata-

tion-modulus, 1638 and ftn.; on slide-

modulus, 723 (a), 740, numerical
values for copper, steel and brass,

754, for iron, copper, brass, 1753 (6);

on stretch-modulus, 723 (a\.

numerical values for glass and metals,

752, 756, 770, for steel, 1753 (6), com-

parison of Kupffer's and Kohlrausch's

formulae, 752 4
;
influence of work-

ing, 770
on after-strain, 740, tables

metals, 766 7 ; produced by dami'liu-

vibrating rods at points oth< i

nodes, 827; on tensile strength of

>n plates and riv.

1 1 1.-,-6, 1126-7; of a red heat on
chains and wire ropes, 1186; from
lu-Ilting 1111,1 sl,,wly lua'i^tnw.-ulvrll

teel, 1145 ieated

heating on cast-iron is to produce set,

1186; MM Y.lluri < ntical field for soft-

manner in which temperature af-

fects elastic constants, 274; Saint-

Venant considers all thermal effect

would disappear if on the rari-oonstant

hypotheses stresses only include linear
terms in shift-fluxions -J7 1 ; thermal
terms introduced into strain-energy,
1200, 1 !;:<. U',38; thermal effect on
optic axes of crystals, 12189 and
ftns., on strain in crystals, 1196,
1211

; F. Neumann's theory of altera-

tion of crystalline axes with tempera-
ture, 1216, 1220: see also Thermo-

elasticity
Thermal Expansion, Coefficient of, for

brass, 730, for iron, 1111; supposed
relation to stretch-modulus, 717 9

FfciTMO-dlyiMMiat, Socoml Law of, gene-
ral theory of elasticity deduced from,
1631

Thrrmn-i'Inntifiti/, general equations,
deduced by F. Neumann, 1196, for

crystalline bodies, 1197; fundamental
formulae, 1633, 1638; formulae con-

necting sudden application of stress

with increase of temperature, 1750:
see also Thermal F./ect

Thermo-electric f;/fecf, of strain, 1642
7 ; of stretching part of iron, copper
and other wires and heating junction
of stretched and unstretched parts,
1642 3 ; changes produced in thermo-
electric scale by elastic and set strains,

1645; effect of working (hammering,
annealing, etc.), and of tort, It', n,

Thi'rmnmeter, how affected by change of

pressure from vertical to horizontal

position, 1201 (c)

Thli]>*inomic Coefficient*, Rankine de-

fines and uses. 425, 448; deteniiin.-d

for brass and crystal glass, 425 ; table

of, 448; used by Saint-Venant, 807,
:u 1 ; dilatation in terms of, 1779;
conditions for incompressibil
terms of, 1

Thomson. J . om as to helical

spring rit.-l. l-J;u. 1693

Thomson, J. J., cited as to magnetisation
unil.-r stress, 818, 1787; on Kirchhoff's

theory of strain due to mu

Thom*< malysis of tli.-ir

pay (1867),
16681726; twist and curvature,

166971; treatment of strain. 1672-
i i 1 1 1 pact. 16824 ; on catenaries,

wires and rods, 168697 ; on plates,

16981708; on the general eqr
of elasticity and on elastic constants,

on Saint- Venant's Problem
and on stress at angles, 1710 8; on

boundary conditions for plate, 171 1 .

362
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on general solution by potentials, etc.,

of elastic equations, 1715 6
;

on
elastic spheres, 1717 ; on the rigidity
of the earth and solid earth tides,

171926
Cited: on longitudinal impact of

bars, 205 (1683); apply conjugate
functions to torsion of prism whose
base is sector of circle, 285, 287

(1710); on kinematics of strain, 294

(167281) ; on anticlastic curvature,
325 (1671); on tbin plate problem,
388; their solution for infinite plate
with straight contour, 1522 3

;
on

contour conditions for thin plate, 394,
14401, 15224 (1704); on elastico-

kinetic analogue, 1267, 1270

Thomson, Sir W. (Lord Kelvin), on
mechanical representation of electric,

magnetic and galvanic forces (1847
and 1890), 162730, 180813; on

integration of elastic equations (1847),
1627, 162930; on the thermo- elastic,

thermo-magnetic and pyro-electric

properties of matter (1857 1878),
1631 41

;
on thermo-electricity in

metals in a state of strain (1856),
1642 3 ; on effects of mechanical
strain and of magnetisation on thermo-
electric qualities of metals (1856 7,

1875), 16447; elements of a mathe-
matical theory of elasticity (1856),

1648, 175664; on the stratification

of vesicular ice by pressure (1859),

1649; note on gravity and cohesion

(1862), 1650; on elastic spheroidal
shells (1864), 165162; on the rigid-

ity of the Earth (1863), 16635 ;
on

the elasticity and viscosity of metals

(1865), 1666, 1741; Treatise on Natu-
ral Philosophy (with Tait, 1867),
1668 1726; on electro-torsion (1874),
1727; effects of stress on magnetisa-
tion (18757), 17289; effects of

stress on inductive magnetisation in

soft-iron (1875), 1730; effects of stress

on magnetisation of iron, nickel and
cobalt (1878), 17316; on the direc-

tion of induced longitudinal current
in iron and nickel wires by twist

when under longitudinal magnetising
force (1890), 1737; on rigidity of
Earth (1872), 1738; on internal fluid-

ity of Earth (1872), 1738; on internal
condition of Earth (1882), 1739; on
aeolotropy of electrical resistance pro-
duced by aeolotropic stress (1878),
1740; Elasticity (article in 'Encyclo-
paedia Britannica,' 1878), 174164,
1817 ; Lectures on molecular dynamics

and the wave theory of light (1884),
1765 83 ; on elasticity as a mode of

motion (1882), 1784; on gyrostats and
gyrostatic media (18834), 17856;
on the reflection and refraction of light

(1888), 17878; on initial stress to

explain Fresnel's kinematics of double-

refraction (1887), 178997; on mole-
cular constitution of matter (1890),
17981805

;
on a mechanism for con-

stitution of the ether (1890), 18067;
viscous fluid, elastic solid and ether

(1890), 180815; on ether, electricity
and ponderable matter (1890), 1816;

summary of researches, 1818
Cited: refers to experiments on

copper, etc., which Saint-Venant finds

discordant, 282 (4); discussion of his

views as to elastic constants by Saint-

Venant, 193, 196 ; makes strain-energy
a function only of strain, (i) p. 202, ftn.

(see, however, 1709); criticises Ean-
kine, 423, 426, 1781 (a) ;

on elasticity
of solid Earth, 567, 570; on general

equation of elasticity of any strain,

671; his thermo-elastic theory con-

firmed by Joule, 68993, 696; on
static and kinetic moduli, 728; his

views on elastic constants for large
strain cited, 1247; his generalised

equations of elasticity involved in

those of Kirchhoff, 1250
;
that strain-

energy is a function of six-strains by
reason of mechanical theory of heat,
is due to, 1254 ; his contractile ether,

1393, ftn. ; on elastic theory of light,

1484, ftn. ;
first

'

potential
'

solution

due to, 1628, anticipates Boussinesq
in a certain potential solution, 1519

(6); introduces with Clebsch 'solid'

spherical harmonics, 1651

Thrust, of arches, Ardant's values for,

C. et A. pp. 6 and 10 (d), Bresse's

values, 5257: see Arches, Wall,
Pulverulence

Tides, in solid earth, force-function as

solid harmonic, 1658 ;
in polar coor-

dinates, 1721; ellipticity of spheroid
produced in earth by tidal action,
1723 (iii) ;

its discussion, 1724 ;
effect

of elastic yielding of earth on water

tides, 1725; failure of attempt to

evaluate effective rigidity from ob-

servation of fortnightly and monthly
water tides, 17256

Tin, stretch-modulus of, 743, and density,

(i) p. 531
;
ratio of kinetic and static

stretch-moduli, 1751 ;
tensile strength,

ductility, (i) p. 707, ftn.; increase of

tensile strength and density if solidified
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underpressure, 1156; hardness of, (i)

'->, ftn., 836 (6), sir,, (i) p. 707,
fti i.

; molecular state of, influenced

by vibrations, 862; thermo-electric

properties under strain, 16456;
is' curves for bars of pure tin,

ll.M,

Tinning, effect on strength of iron-plates,
1 1 r> (hi)

see Wheel*

Ti**ot, on distortion of spherical surface

in elastic solid into ellipsoid, 'J'.i i

tiu-ir rhistic fore- and
strain, 82"

Tiimlint'in, //., on Villari critical field

for temporary magnetisation of nickel

0), 1736
, hardness of, 840, 836 (d)

history of problem, 315, 800;

publication of Saint-Venant's chief

iiu-moir on, 1; report on memoir on,
. 1; general equation of, 4

(/c), 17; de-

finition of, 16; in case of large shifts

and small strains, 17, 22 ; of prism of

elliptic cross-section, 18, 1283; com-

parison with Coulomb's theory, 19,
criticised by Clebsch, 1349, after-

wards used by him, 1389; variation

of angle across prism's cross-section

n quires lateral load, 20; fail-points
solutions of equations of,

'.; of prisms of rectangular cross-

section, 25, 29; cross-section remains

perpendicular to sides of prism under,
25 ; case of plate, 29 ; of square cross-

section, 30; of any rectangle, general
tn and empirical formula.

iHsion of Duleau's and Savart's

expt-i :
; of prisms with cross-

section in form of star, square with
acute angles, square with round. *d

angles, 37, and fail-points for

sections, 39; uselessneas of proj

angles in resistance to, 37; example
of erroneous results obtained from old

theory of, 38; of prisms of triangular
cross-section, 40 42, 67; of

prism
of

any cross-section, 43; when there are

unequal slide- in i oss-seotion,
ont-ral equations of, in this case,
olution foi loss-section,
-'83 ; for rectangular cross-section,

47; other cross-sections, 48; table of
< of slide for point* of cross-

section of prism with unequal slide-

moduli in of hollow-

US, 49
(a) (6); cross section

bound.-d by rmifornl Hip*.'*, liil*; of

railway rai

nal stretch produced by, varies as cube

of torsion, 51, 581, 800, ftn.; that re-

sistance of, is due to slide first stated

by Young, 51; combined with other

strains, 50; for circular cross-section,
1280: for elliptic cross- section, 52,

->3 : for rectangular cross-section,

57, Case (vi): circular section, 56,
Cases (iii) and (v); elementary proof
of formulae for, 109; of prisms with
cross-sections in form of doubly
symmetrical quartic curves, 110; ec-

centric axis about which bar is torted,
does not affect amount, 110, 181 (d),
1434 (e): of right circular cylinder,
182 (a); strain-energy due to, 157;
deduction of general equation of, from

principle of work, 157; general equa-
tions of, elementary proofs for, 181;
maximum slide and position of the

fail-points, 181 (e) ; general formulae
and examples, 182; of railway rail,

182 (b) ; of prisms with cross-sections

bounded by curves of fourth degree,
182 (d)\ when cross-section nearly
an isosceles triangle, 182 (d) ;

with
variation of slide-modulus across cross-

section, cases of wooden and iron

cylinders, 186; numerical examples
of, 187 ; general equations of, 190 (d) ;

of prism with only one plane of elastic

symmetry, case of elliptic cross-section,
190 (</); comparison of \\Vrthrim,
iMilrau ami Savart's experiments on,
with theory, 191; producing pla>t

>f prisms whose base is the sector

of a < -290: expression for

>hitt,286: numerical table of torsioual

moment, 288: annular sectors, 288,
1710: on slide and fail-points, 289
90 ; formula giving very approximately

ilue of moment of, for great
toss-sections, 291; assump-

tions made by Saint-Venant and
reasons for them, 31618

theim's researches, angles of
torsion not proportional to loads, even
for elastic strain, 803 (c), not to length

803
(r/j;

torsion decreases
How prism

formulae for diminution in case of
uvular rvlindris without theoretical

basis, 808 (<), also in case of rect-

of cavity in case of sheet-iron, 808;
iuvordin- to \\.Tth. mi )u* ,\p,ti-
mentff for hollow and solid circular

cylinders give better results for *i
than ij

=
J. H04 ; of cylinders on .

of Saint-

Tenant's theory, 806; experiments
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on hollow and solid rectangular
prisms, use of Cauchy's erroneous

formulae, 806, they confirm Saint-

Venant's theory, 807; of aeolotropic
bodies (sheet-iron and wood), obscurely
dealt with by Wertheim, 808; Wer-
theim's views of rupture by torsion in

case of hard and soft bodies, 810
Clebsch's treatment of Saint-

Venant's Problem (combined torsion

and flexure), 133246; symmetrical
cross-section, 1347; solution by con-

jugate functions, 1348 (c) ; special
case of torsion of prism with cross-

section bounded by two confocal

ellipses, 1348 (d) (e); Kirchhoffs
treatment of special cases, for circular

section, 1280, for elliptic section,

1283; Boussinesq's analysis, 1434

(a) (6); Thomson and Tait's treat-

ment, 1710, conjugate functions and
torsion of prisms with cross-sections

like annular sectors, 1710; F. Neu-
mann's erroneous theory of torsion of

crystalline rods, 1230; Eankine on,

469; untenable theories of, Segnitz,
481, Bitter, 916 (c),

' bundle of fibres,'

481 (581, 800, ftn.), criticised by
Clebsch, 1349

Torsion, Experiments on, Duleau and
Savart, 31, 191; Wertheirn, 191,

80310; Kupffer, 73541; on cast-

iron shafting, 882 ; on impulsive and
repeated loading on bars and axles,

9914, 999 1003; on cast-iron

beams of various cross-sections, 1039

(c) (d) ; application of Saint-Veiiant's

non-linear stress-strain relation to

experimental results for torsion of

cast-iron, 1053: see also Tort

Torsion, influence of flaws on, 1348 (/) ;

Boussinesq on cavities in cross-section,
1430

Torsion, hydrodynamical analogues to,

1419 (c), 1430, 1460, 1710
Torsion and Magnetisation, torsion due

to non-axial magnetisation of iron

wire, 1727 ;' effect on magnetisation of

loaded wires of torsion, 1734 5;
Wertheim's researches, 811 7; in-

fluence of torsion on temporary and
permanent magnetisation, 814; in-

fluence of torsional elastic strain and
set on magnetisation, 815 6; effect

of impulsive and repeated loading by
torsion on magnetic properties of

axles, 994; Wiedemann on relations

of torsion to magnetisation, 714 (12)

(16) : see also Trt
Torsional Resilience, 611

Torsional Set: see Tort
Torsional Vibrations, 191; how affected

by resistance of air, temperature,
weight of vibrator, 735

;
how influenced

by traction, 735 (iii), 741 (b); how
affected by after-strain, 7389, 751

(d) ;
in silk threads, how influenced

by rise of temperature, (i) p. 514, ftn.
;

Wertheim on, 809
; subsidence of

torsional oscillations in wires, viscous

action, how influenced by longitudinal
traction, different vibrators, etc., etc.,

1743-8
Tort (=torsioual set), develops aeolo-

tropy in wires and alters stretch- and
slide-moduli, 1755; laws of torsional

set, 714, 803 () (b) ; influence of

temperature on, 714 (17) (19); its

effect on thermo-electric properties of

metals, 1646; electro-magnetic effect

of, 702, 714, 709, 790 ; comparison of

tort and magnetic phenomena, 714;
correlation of tort and magnetisation,
714 (12) (16), 8156; remarks on,
1734, 1737

Tortuosity, of curves discussed, 1669
71

Toughness, defined, 466 (iv)

Traction, of prism with three planes of

elastic symmetry, 6; of heavy prism,
74 ; fail-limit for, 185

; combined with
flexure and slide, 180; its effect on
torsional vibrations, 735, 741 (b)

Tractions, Principal, expressions for

traction and shear in any direction in
terms of, 1277

Treadwell, D., on the strength of cast-

iron pillars (1860), 976; on the con-
struction of cannon by shrinking on

hoops (1857), 1075

Tredgold, erroneous theory for strength
of cast-iron cylinders, 962 ;

his modu-
lus of resilience, 340 (ii), 1089, 1091

Tresca, Saint-Venant's report on Tresca's
communications to Academy, 233;
Saint-Venant's proof of his experi-
mental result as to coefficients of

plasticity, 236; his principle that

plastic pressure is transmitted as in

fluids, 259 60
;
his results do not agree

with Saint-Venant's, 262; recognises
importance of plastic experiments
suggested by Saint-Venant, 267 ;

Saint-

Venant on the theoretical aim of his

researches, 293 ;
considers that there

is a mid-state between elasticity and
plasticity, 244; demonstrates the
constant value of maximum shear
for plastic stress, 247; on problems
in plasticity, 1602 (c) (</); on the
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action of a punch, 1511, lf><'

on tii.' (; iMi.-ity and strength of steel

plat. >, 11:51: on the elasticity of

aluminium. 11'>1

history of, C. et A. p. 5
(i) : see

tmework
strength of simple tubes and

igthened by belts, t>~

collapse of tubes, used as boiler flues,

experiments and empirical formulae,
982 4; bursting of, by internal

pressure, 983; empirical formulae for

collapse of, 986 7; bursting of gutta-
::i, 1160, of earthenware, 1171

i eg, Pipes
Tubular Hridges und Girders, 1007,

1015

geometrical discussed, hodograph
for, 1669 71 ; components of strain,

: expression of integral tangential
shift in terms of, 1681

"'/. defined, 466(</)

steel prepared by his process,
iin

t'nditlatory Theory: see Light and Ether

t'ni-eonxtancy: see Constant*. Stretch-

Sijui'f'i- Hiiti'i, lliiri-i-oiistaiu'i/, etc.

I'nitjueness, of solution of equations of

uy. ll:,s, 1199, 1240,
1-J7-

Unicin, II". C'., assists Fairbairn in ex-

nents on collapse of tubes (1858),

ttrnrtnm (1888), 1046

.nt of, use of in elastic

problem -9
>n, defined, (i) p. 3.'1, ftn.;

used in theory of arches, 518
/, of pressural and slide waves

proved in elementary manner, *J

elastic waves of various types in di-

vcrw? mati-riiils, Isl7

Vine, on statically indeterminate reac-

tions, IP p. ill/ft...

Iniiliography and criticism of

node of counting, 82:

sajoas' mode oi >le and
of compounding, 826; thermal effect

u'ing constitution of metal, 1185,

tcncc of 1 il and transverse
of torsional and trans-

verse, H-J:, ; intluenoe of on msgnetisa-
-11; general laws of, 678

, isotropic,
lUukine'a form of solution, 4.

poff's solution, 510, Boussinesq's so-

lution by aid of potentials, 1485, by
aid of '

spherical
'

potentials, 1525
;

form of, when started by various types
of elementary vibrators, 1767 9;
about a fixed and rigid spherical sur-

face, 13921410; aeolotropic, 1764,
when there are three planes of elastic

symmetry, 594 ;
of a medium obtained

by deformation of an isotropic me-
dium, 1557

Vibrations, Stability of, in case of elastic

solids, 132830
Vibrations of Special Bodies: of <////>-

suitlnl shell. ~>14 8; of sphere, radial,

_'7; of plates, 613, 12414,
1296 &w, 1300 (6), 1383 4, when aeolo-

tropic, 1415, when infinite, 1462; of

membranes, 551 (h), 1223, 1300 (c), 1385,
when stiff, 1439; of rods, deduced from

systems of particles, 550 1, trans-

verse, 6146,8212,825. l.'x r_".H.

i:i7-' -3, 1431, when loaded, 751 (c),

759 (), 769, 77484, 1431, when
cross-section varies, 1302 7, longi-

tudinal, 823-4, 825, 1224, 1291

1431, torsional (for prism, rod or

191, 751 (d), 13731. 909, I'J'.'l. 1 l.U.

subsidence of, 734, 739, 17448; of
curved rods, Bresse's equation.
of strings, 617. ,1. deduced
from those of systems of particles,
550-1

\'ii-'it. his experiments on rupture cited

liy Saint-'. :u, 880
on cohesive power of cements,

1168

I'iitnnl,-*, on adaptation of suspension-

bridges to railway traffic (1857), 1025

Villareeaujr, Y., on hydrostatic arch,

i. on relation of stress to magneti-
sation (lb-

nilnn //. for soft-iron

1, 1733, for cobalt, 1736, for :

L7M
memoir, criticised by Saint-

\'n-tii.: , applied to theory of

elasticity, 427-9, 667, 1195
Vticoti /., equations for, 1744,

ftn., 1809

</, 784, 748, 750; in

Sir W. Thomson's
fense, 1666; con-

fosion of afu-r Htrain with frictional

reaistance. 750, 1718 (fc). 174:i

related to plactieity, 1748; according
to Kir \\ . 1 homson no simple law

between visooos resistance and strain-

velocity, 1744 ; experiments on subai-
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dence of torsional vibrations, 1744;
effect of longitudinal traction, 1745;
subsidence of vibrations in aluminium
wires, 1746; influence of repeated
vibrations on rapidity of subsidence,

1747; law of subsidence of range for

undisturbed oscillations and for those

of different period, 1748; 'creeping
back' influence, 1748; model elastic

vesicular solid, vesicles filled with oil,

1748

VMckers, on strength of iron-plates and
boilers, 1126

Vogel, H., on dependence of stretch-

modulus on atomic weight (1860), 717

Vogler, on graphic tables, 921

Voigt, TV., his experiments on and theory
of impact of bars, 203, 210, 214; his

memoir on multi-constancy, (i) p. 286,
ftn. ;

his experiments on stretch-

squeeze ratio referred to, 1201 (e) ;

first publishes F. Neumann's formulae
for stretch-modulus in any direction

of regular crystal and for torsional

resistance, 1206, 1230; his values of

the elastic constants of rock-salt and

fluorspar, 1212
; adopts F. Neumann's

view of dispersion, 1221; his theory
of luminous point simplified by Kirch -

hoff, 1308 10; his views on rays of

light referred to by Kirchhoff, 1311;
on non-fulfilment of rari-constant re-

lation for regular crystals, 1780

Volkmann, A. W., on elasticity of organic

tissues, experiments and controversy
with Wundt (1859), 8315

Volpicelli, on coefficient of restitution

(1852), 847

Wade, reports on strength of metals for

cannon (1856), 103746; on hard-

ness of metals, 1040 3
; experiments

on cast-iron cited, 937 (b)

Walls, thrust of pulverulent mass on

supporting, 1590 1
; upper and lower

limits for thrust, 15989, 16068;
approximate formulae for, 1611, nu-
merical tables for, 1625 ; vertical walls

with mass having horizontal talus,

16128, 1621

Wantzel, suggests form of solution of tor-

sion equations in case of rectangular

prism, 26; on elastic rods of double

curvature, 155
;
his theorem of straight

rod bent to helix by terminal couples

proved by Thomson and Tait, 1693

(a)

Warr, G. F., his text-book on strength
of materials (1851), 874

Watch springs, 6745

, ratio of kinetic and static dilata-

tion-moduli for, 1751 ; compressibility
of, 1817; resistance to stretching,

1709, ftn.

Wave, in rari-constant medium, 1213

4, in incompressible medium, 1215, in

crystals, 1216 8, in initially stressed

medium, 146974, 178997, in aeolo-

tropic elastic solid, 1764, 17735, if

incompressible, 1775; presmral, how
dealt with by F. Neumann, 1215 6,

by Boussinesq, 14713, by Sir W.
Thomson, 17745, 1781: see also

Light, Refraction Double, Vibration*

Wave-Front, possible forms of, 1475

Wave-Surface, 1472, 1483: see Fresnel
Wave- Velocity, of elastic, distortional

and pressural, waves in infinite solid,

longitudinal in rod, 1817

Weber, E., on after-strain in muscle

(1846), 828

Weber, G., on tensile and torsional

strength of Krupp's cast steel (1855),
1113

Weber, W., effect of temperature in his

experiments on kinetic moduli con-
sidered by Seebeck, 474

Weblike Aeolotropy, defined, 1776 (b);

annulled, 17768; inconsistent with

ellipsoidal conditions, 1776 (b) ; exists

in regular crystals and certain braced

systems, 1780

Wedge, very thin, transverse vibrations,
notes, fail-point of, 1305 6

Weisbach, J., his Ingenieur-Mechanik
(1846, 1877), 884

Welding, best position for weld in links

of chains, 629 ; difficulty of, in steel

links, 1132, 1147; results of experi-
ments on in iron, not conclusive,
1147

Werner, A. G., gave first scale of hard-
ness (1774), 836 (d)

Wertheim, bibliography of his papers and
criticism of his work by Verdet, 820;

report by Cauchy and others on his

memoirs (1851), 787; (and Breguet) on

velocity of sound in iron (1851), 785 ;

on polarisation produced by compres-
sion of glass (1851), 786; double-

refraction artificially produced in

crystals (1851), 788; second memoir
(1852), 789 ; notes on currents induced

by torsion in iron (1852), 790
;
memoir

on the relation of elastic to chemical

properties (1854), 791; on double-re-

fraction temporarily produced in iso-

tropic media, etc. (1854), 7927;
memoir on torsion (1855), 798 818;
on the compressibility of solids (1860),
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819; memoir on flexure, 820; com-
mits suicide (1861), 820

References to: on torsion, his ex-

periments and errors, 191 ; on caout-

chouc, 192 (&) (e); (and Chevandier),
experiments on wood, 169 (/), 198 (e),

284; Rankine on his hypothesis of

X= 2/i, 424, tested by Kirchhoff's

theory of thin circular plates, 1242- -3 ;

his hollow prism method of finding

stretch-squeeze ratio considered by F.

Neumann, 1201 (6); his views as to

set and his values of kinetic moduli
criticised by Seebeck, 474 ; his experi-
ments on influence of temperature on
moduli referred to by Kupffer, 723;
his value for stretch-modulus of gold,
772; his results for the stress-strain

relation in organic tissues confirmed

by Volkmann, 8312
Wi-i/much, his contribution to law of

intermolecular action, C. et A. p. 1

Wheek, tires of, flexure and stress in,

when shrunk on, 584 8; Mahistre's
obscure treatment of, 590

Wiebe, H. t on strength of rivetted iron

plates, 1121

Wiedeniann, G., on torsion, flexure and

magnetism (1860), 706 15; on axes
of electrical conduction in crystals,

1219; his treatise on electricity and

magnetism cited, 818; on relation of

stress to magnetisation, 1727, 1735
JH///V Problem, of rolling loads on

bridges, 344, 372, solved byBoussinesq,

inimot. 1. I... report on cast-iron ord-

nance (1858), 104851
Wilson, J., on 'grooved' plate springs,

'

(<*)

/, C'., on lattice girders and the

distorted form of bracing bars (1859),

. . on the strain and strength
of links of chains (1858), 61841 ; on

strength of flues, boilers, and fly-

wheels (1860), 6427; general equa-
tions of stress and application to

special case of flexure (1860), 660
>n continuous beams (1862),m

Wire, stretch-modulus and density of

metals, 773, of brass, iron, steel and
i p. 531 ;

tables of slide- and
stretch-in < vant of iso-

tropy in, 12713, 16'.' awing,
decreases density, 1149, influence of,

on strength, 1131; strength absolute,

depends partly on first power and

partly on square of diameter, 1131;

subsidence of vibrations in, due to
'viscous' action, 1744 8

U'irr-ltope, how weakened by heating,
splicing, etc., 1136

// o/, with central line of

double-curvature, Kirchhoff on helical,
1268 9 1 Thomson and Tait on heli-

cal, 1693
;
kinks in twisted and bent,

1670; Thomson and Tait's general
theory, 1687 97; disregard distortion
of cross-section and yet require it to

reach torsional rigidity, 1687, 1691,

really fall back on Bernoulli Eulerian

theory, 1691; strain-energy for, 1690;
principal torsion-flexure rigidities,
1692 ; principal helices, 1692 ;

wire of

equal flexibility as equable rotating

joint, 1697 (a); wire with circular

central line and plane of greatest

flexibility inclined to plane of central

line, bending of, 1697 (b) ; special cases

of bending and rotating wires in form
of hoops, etc., 1697 (i) (iii) ; see also

Rod, SpriiKjn, etc.

With, on strength of materials, 923

Wittstein, on strength of screws,
966

Wi'ihicr, A., initial form of central line,

that a bar when loaded may become

straight (1853), 919; early experiments
on repeated flexure and torsion of

railway axles (185860). 9971003 ;

on plate-web and lattice girders (1855),
1017 ; cited as to effect of alternating
load on strength, 407 (1)

IVollaiston, on hardness of diamond,
836 (e)

Wolten, G.
t
on deflection of Flemish

railway bridges (1856),
1020

)('<"/, thermo-elastic properties of< 694;
variation of stretch-modulus of, across

trunk of tree, 169 (/) ; elastic constants

of, 198 (<), 282 (9), 308, 3123 ; stress

formulae and elastic constants for,

safe tractions for, 176; stretch-

moduli of various kinds, 1157; strength
of, 879 (<); tensile and crushing
strengths, with and across fibre, de-

flections of 80 specimens, 1158, of
8000 specimens (including set and
elastic strain), 1159 ; flexure of various

kinds, limit of elasticity (oak, beech),

large beams have less stretch-modulus
than small, 1157 ; rupture of, :<

2; torsion of wooden prism, 186;
ban of, under flexure have increased

i subjected to traction, 918 ;

d of cutting beams from

tree, 1167; advantageous forms of

wooden trusses, 1167 ; arches of, ex-
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periments on, C. et A. p. 7 ; columns
of, 880

Work-Function, Clapeyron's Theorem for

work done by elastic forces, 608 ;
de-

duction of resilience of torsional,
flexural and tensional springs, 609
11 ; expressed symbolically, 134

;
in

terms of stresses, 163 : see also Stniin-

I-'.m'rtjy

Working, effect on elasticity, 732, 1129 ;

effect of rolling and hammering on
stretch-modulus of brass and iron,

741 (a) ; effect of, on after-strain, 750

(b) ;
effect of, on modulus of gold,

772 ; nature of, probably accounts for

irregularity in set, 803 (b) ; effect of

hardening in water and oil, suddenly
cooling, cold-rolling, galvanising, etc. ,

on steel and iron, 1145, its influence

on density of iron and steel, 1149; its

effect on thermo-electric properties of

metals, 1646

Wrenching, defined, 466 (a)

Wring, defined, 466 (a), ftn.

W. R. .R., on beams of strongest cross-

section (1858), 951

Wundt, W., on elasticity and after-strain

in moist organic tissues (1857), 829
30 ; controversy with Volkmann, 831

5

Yellow Metal, strength of, 1166

Yield-Point, 169 (b); relation to Fail-

Point, 169 (g); is identical with Ca-

valli's
' limit of stability,' 1084

Young, first stated longitudinal stretch

of prism under torsion varies as cube
of torsion, 51; first stated that tor-

sional resistance is due to slide, 51
;

his theorems on impact of elastic bar,
340, 363

;
his theorem in resilience,

proved for flat springs, 493 (c), for

spiral springs, 675 ; his theorem for

maximum velocity of longitudinal im-

pact, 1068, generalised for transverse

impact on rod, 1537, for transverse

impact on plate, 1538, for longitudinal

impact of truncated spindles and
solids of resolution, 1542

Young's Modulus : see Modulus, Stretch

Zaboroicski, 3,, on cohesion (1856), 867

Zehfnss, G., deflection and stress for uni-

formly loaded, built-in circular plate

(1860), 6579
Zetzsche, F., proper form for heavy
column treated as 'solid of equal
resistance' (1859), 656

Zinc, thermo-elastic properties of, 752,
756 ;

after-strain and temperature,
756 ; stretch-modulus and density of,

(i) p. 531
;
ratio of kinetic and static

stretch-moduli, 1751 ; fracture, tensile

strength, etc., of, (i) p. 707, ftn.
;

hardness of, (i) p. 592, ftn., (i) p. 707,
ftn.

; rendered crystalline by trans-

mission of heat, 1056 ; molecular pro-

perties of, 1058 ; thermo-electric pro-

perties under strain, 1646

Zoppritz, K., theory of transverse vibra-

tions of a clamped-free elastic rod,
loaded at free end (1865), 7749;
theory of transverse vibrations of

heavy rod (1866), 7801 ; recalcula-

tion of Kupffer's experimental results

(1866), 7824 and
(i) p. 531



CORRIGENDA AND ADDENDA

TO VOLUME I.

CORRIGENDA.

Art. 922.

I have used an expression in this article with regard to

Weyrauch's contribution to the problem of rari-constancy which is

undoubtedly liable to misinterpretation. It might be supposed
from what I have written that Weyrauch had obtained rari-

constant equations on the assumption that the intermolecular action

although central was any function whatever, e.g. a function of

'aspect' or involving 'modified action terms.' What he really

does (Theorie elastischer Korper, 1884, p. 132) is to take a central

action R between two elements of masses m and m, at distance

r of the form :

R = mm (F(r)
-

1)
........................

when-, in his own words :

>"'i ganz allgenicin cine Function <1 -rj nigen Grossen

bedeutet, welche neben der Entfrrnnng r auf R Einfluss nclnm-n."

Tin- ..r (nurse is something different from taking R of tin-

'(/', /) .............

Further, it iu represents the value of t before strain or at tinn-

,, and t the value at tiim /. Weyrauch assumes (p. l.U) that

t
-

/, tnr ili; material in the neighbourhood of the element m may
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be treated as constant and brought outside the sign of summation

for elementary actions. This would be impossible, if i i were

due to 'modified action/ because the modifying elements (or

molecules) would be themselves in the immediate neighbourhood
of ?H, and the modifying action would probably be a function of

their distances which are themselves commensurable with the

linear dimensions of the "
neighbourhood of the element m."

By taking R of the form (i) and not (ii) Weyrauch much limits

the generality of his results, and by choosing i i a constant for

the neighbourhood of an element, he practically reduces his (i i )

to little more than the temperature-effect. But even this may
serve to indicate that wider laws of intermolecular action than

that in which it is central and a function of the distance only may
be found to lead to rari-constant equations.

Art. 959.

The formulae for the buckling load on struts were taken from

notes of mine in which 21 and not I was the length of the strut.

This, however, does not apply to the point of maximum traction

or other results of this same Article. We have with this correction

the following results for a strut of length I :

Buckling force for doubly built-in strut

Buckling force for built-in pivoted strut

^ 2-047

Eco

1 +
"-f-

2-047

Buckling force for doubly pivoted strut
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I much regret that this error should have escaped my attention,

and trust all possessors of the first volume will make the above

changes in the text.

Arts. 7956.

I have reproduced an error of Neumann's which I ought to

have seen and corrected. The wrong signs are given to all the

quantities M, Nt P in Art. 796. If these are corrected a

negative sign must be inserted in the second table of Art. 795

before all the l/F's. The value of l/E in Art. 799 is then

accurate.

Arts. 13923.

The word '

copper
'

should be replaced throughout by
'

brass.'

Art. 1467.

The form of the beam section, which is X ,
has dropped out of

the type.

Index, p. 899, Column (ii) and Arts. 81316.

The title Bresse has been inserted between Sevan and 7>

when it ought to follow Brawn on p. 900, Column (i). There should

also be a reference under Bresse to Arts. 813 16. I find that the

lithographed course of lectures there referred to is due to this

scientist, to whom we thus probably owe the first theory of the
' core/
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Arts. 352, 353, 3545, 7456.

A paper by A. Muttrich on Chladni's figures for square-

plates appeared in 1837 in the Geschichte des altstddtischen

Gymnasiums. Dreizehntes Stuck, Kbnigsberg. It is entitled:

Beitrag zur Lehre von den Schwingungen der Fldchen, and contains

8 pages and a plate of figures. Pp. 1 5 suggest practical

methods of supporting the plates, of setting them vibrating,
and of keeping their surfaces dry and clean. Pp. 6 8 give
Miittrich's conclusions and the grounds on which he bases them.

Two of them are opposed to Strehlke's views of 1825 as given
in our Vol. I., Art. 354, namely Muttrich holds :

(i.) Straight lines are possible forms for the nodal lines of

plates with free edges.

(ii.) Nodal lines can intersect one another.

The experimental proof of these results lies in the demonstra-

tion of a gradual transition from one system of nodal lines to

another, when intermediate stages are necessarily intersecting

straight lines.

Miittrich's third conclusion is that the nodal lines themselves

are in a state of vibration and that only their nodal points are

true nodes for the plate. It seems to me possible that this

oscillation of the nodal lines results from longitudinal vibrations

in the plate which again are due to its sensible thickness, or to

the mode of support and excitation.

Art. 937.

A copy of Ardant's work which was printed as a separate

publication by "order of the minister of war" has reached me since
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tl it- printing of Vol. I. The title is: Ktude* PS et exptri-

inentales sur tetulHssement des charpentes a grand* portee, Metz,

1840. It contains .1
;

pp. i v
;
the report referred to

in our Vol. I., Art. 937, pp. vi xvii
;

the text of the work

pp. 1 94; Appendice pp. 95 122, and concludes with five pages
i liM lJ7i of contents and twenty-nine plates of figures. It is

"l>vious that the work is one of considerable size, and as it

possesses some importance, I give here a resume' of its contents.

[i.] Chapter I. (pp. 1 11) briefly describes the origin and

history of wooden trusses designed to cross considerable spans,

more especially roof-trusses. These range from the 4th century
roof of the Basilica of Saint-Paul's, through the frame ' a la

Palladio,' the arched truss of Philibert de rOrme, and the Gothic

roof to the English truss with iron tie-bars, and to the arched forms

common in France in 1840. Ardant gives at the end of the

chapter a summary of the conclusions he has formed upon tin-

comparative merits of arched timber trusses and trusses built up
of straight pieces of timber. He believes the former to be very

interior to the latter in both economy and strength ;
while the

latter can be easily made to present as pleasing an artistic effect.

He holds the adoption of the former to have arisen partly from

the mistaken notion that a semi-circular arch produced little or

no tin ust on the abutments, partly from an unreasoning extension

of the theory of stone arches to wood and iron :

Dans la premiere de oes constructions, on utilise la pesanteur, la

rigidite et I'inflexibilitl relatives des pierres ;
dans les seconder, c'est

I'elasticite* et la cohesion ties parties qui sont les qualites essentielles

(p. 10).

I

it. r II. gives an account of the fifteen arches and frames

(with spans so large as 12*12 metres and rise so large as .V H

metres), upon \\hi.-h rx|-rinn-nt8 were made, as well as the

apparatus \\ith which they were made.

[ii] Chapters III, I \ . and V. cite the theoretical results of

the Appni'lix t'-r tli thrust m t the load in the cases of

il.u- arches and of a simple roof-truss of straight timber* 'I
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thrust for the latter is not materially greater than that for the

former. Hence no gain is obtained by combining the two, which

appears to have been frequently done in practice :

On tirera de cette comparaison une conclusion assez opposed a

Popinion de la plupart des constructsurs, savoir
;

Que dans les cas ordinaires de la pratique, un cintre demi-circulaire

exerce autant de pousse"e que la ferme droite sans tirant, a laquelle on

le re"unit pour composer une charpente en arc
;
et que, par consequent,

on pourrait, en augmentant 1'equarrissage de cette ferme, supprimer le

cintre sans qu'il en resultat sur les appuis, une action horizontale plus

considerable (p. 25).

These chapters then compare the experimental measure of the

thrust with that given by theory. The comparison gives an

accordance fairly within the limits of experimental error. Un-

fortunately Ardant did not make a sufficiently wide range of

observations for the results to be quite conclusive. He cites an

experiment of Emy which led the latter to believe that circular

arches had no thrust. He then considers experiments made by
Reibell at Lorient. These appear to be the only other important

experiments which had been made on large circular wooden arches.

An account of them was published in the Annales maritime* et

coloniales 22e
ann^e, 2e

se'rie, T. XL, p. 1009. Reibell did not get
rid of the friction at the terminals of the arch, but allowing for

this Ardant finds the corrected values of the thrusts agree well

with his formulae (pp. 32 33). From this double set of experi-

ments he draws the following conclusions :

(a) The thrust of a semi-circular arch due to an isolated

central load never exceeds i of the load.

(6) Whatever be the manner in which a continuous load is

distributed along the arch, the thrust for a semi-circular arch never

exceeds J to of the total load.

(e) That flatter arches produce thrusts which are to those

which arise in the case of a semi-circular arch in the ratio of the

half span to the rise.

(/) That the thrust is independent of the particular mode of

construction of the arch, when its figure, dimensions and the load-

distribution are the same.
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Chapter V. shews that the thrust-formula obtained in the

Appendix for the truss with straight timbers, and without a tie, is

confirmed by experiment.

[iii.] Chapter VI. begins with some general discussion on

elasticity, the elastic constants and the coefficients of rupture.
Ardant then cites a formula of the following kind for the deflec-

tion, /, of a circular arch at the summit, the terminals being both

pivoted :

P] .V

' ' J5W '

where 2X is the span, F the rise, E the stretch-modulus, o>** the

moment of inertia of the cross-section, P the total load and K a

constant depending on the distribution of the load etc. Here the

arch is supposed to be of continuous homogeneous material and of

uniform cross-section. Ardant now applies this formula to the

deflections he has found by experiment for his arches built up of

curved pieces or planks pinned or bound together. The results

given in Chapter VII. he holds to satisfy this formula, provided E
be given values depending on the nature of the structure, from J to

f$ of its value for a continuous arch or beam of the same material.

The experiments even on the same arch seem to me to give such

divergent values for E, that I think this method of exhibiting the

deflection can only be looked upon as an expression of experi-

mental results for practical purposes. With certain assumptions
Ardant also obtains an expression for the deflection of a roof truss

without tie, built up of straight beams (pp. 48 40). I do not

consider this expression to be theoretically or experimentally

justified. Ardant proceeds at the end of Chapter VII. (pp.

fil 68) to determine the resistance to rupture of his arches.

Here he applies to rupture a formula deduced from the theory of

continuous arches on the hypothesis that linear elasticity holds up
to rupture. At best the theory c<ml<l only apply to the fail-point

(i.e. failure of linear elasticity) of continuous arches. A like treat-

ment <>t rupture leads to absurd results in the case of the flexure

of beams, so it can har.lly be expected to give better results in the

case of arches: see our \. 1 i An. 1491 and Vol. II. Art 17^

as we might naturally rx|MTt his "coeffiY 'varies

r. K. IT. n. .'Hi
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from arch to arch, and its ratio in each case to the "
coefficient of

rupture
"

for a continuous arch is equally variable. The results

however, of his experiments resumed on (pp. 67 8) are suggestive

for the practical design of such arches and roof-trusses as he has

experimented on.

[iv.] In Chapter VIII., it is sufficient to notice here Ardant's

conclusion that the truss built up of straight beams is for the same

amount of material stronger than the built-up wooden arch :

II semble d'apres cela que si les charpentes en arc conservent quelque

avantage sur les fermes droites, c'est uniquement celui d'avoir une

forme plus graciense, et que sous les rapports importants de la soliditS

et de 1'Economic, les premieres sont tres-inferieures aux autres (p. 75).

Chapter IX. gives methods of calculating suitable cross-

sections for the various parts of arches of the types on which

Ardant has experimented. It also gives some attention (pp. 77

80) to the thickness and height of the masonry which will stand

the thrust of a given roof-truss. It concludes with two numerical

examples of the application of the formulae of the appendix to the

calculation of the dimensions of metal arches.

[v.] We now reach the Appendice, which is entitled : Theorie

de la flexion des corps prismatiques dont I'axe moyen est une droite

ou une courbe plane (pp. 95 122). This contains the first theory

of circular arches which attains to anything like completeness (see

our Vol. I. Arts. 100, 278, 914), and it anticipates Bresse's later

work on this subject : see our Vol. I. Arts. 1457 8, and Vol. II.

Chapter XI. for an account of the book referred to in these Articles.

We note a few points with regard to this Appendix.

(a) Pp. 95 100 give the ordinary Bernoulli-Eulerian theory
of flexure. On p. 98 Ardant speaks of the product of the stretch-

modulus and moment of inertia of the cross-section (namely EO>K*

in our notation) as improperly termed the moment d'dasticit^. It is

the moment de roideur of Euler (Ek* in his notation : see our Vol. I.

Art. 65) or the ' moment of stiffness.' This ' moment of stiffness,'

E<)K*, occurs so frequently that we have ventured to term it the
'

rigidity
'

of a beam. It follows from this definition that the product
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of tin- rigidity and curvature is equal to the bending-moment.
Tims for the same value of the bending-moment the curvatures of

ries of beams vary inversely as their rigidities.

(6) Pp. 100 103 deal with rupture on the old lines, i.e. as if

linear elasticity lasted up to rupture. The results obtained are

thus only of value when we treat the 'coefficient of rupture' R
which occurs in them as the

'

fail-limit.' Accordingly the Tables

on p. 103 for rupture-stresses are meaningless when applied to the

previous flexure formulae. On pp. 99 and 101 we have the

rigidity and fail-moment (here called moment de rupture) calcu-

lated for
'

skew-loading
'

or for the case when the load-plane does

not pass through a principal axis of inertia of each cross-section :

see our Vol. I. Arts. 811, 1581, Vol. II. Arts. 14, 171. To judge

by Ardant's reference to Persy's lithographed Cours, the latter

possibly did more for the theory of skew-loading than I judged
from an examination of only one edition of that Cours : see Vol. i.

Art. 811. The value given by Ardant on p. 101 for the fail-moment

of a beam of rectangular cross-section under skew-loading is incor-

rect, it applies only to the case of square cross-section. The true

value is given in our Vol. II. Art. 14.

(c) Pp. 104 115 are occupied with a consideration of the

elastic line under various systems of loading in the case of straight

beams, besides a discussion of combined strain. The results

obtained are afterwards applied to various types of simple roof or

Ige trusses, in which the members are supposed mortised and

not merely pinned at the joints. Ardant's treatment of these

sea seems to me from the theoretical standpoint extremely

doubtful, and I should hesitate before applying his results even

to the practical calculation of dimensions. The remark in ::(-.

p. 107, on the sign to be given to a certain quantity is, I think, erro-

neous. Th- t ail
-|..,iiit

..f a 1). -.-.in is not necessarily where the stress

is greatest, as Ardant like WeUbach (see Vol. I. Art 1378) holds.

! A ill be at the point of maximum stretch, and this will be at the

of the cross-section in tension or compression according as

load-point is outside or inside the whorl of the cross-section :

see Vol. i. p. 879.
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(d) Pp. 115 121 contain the theory of flexure of circular

ribs or arches. Ardant's work here was up to his date the most

complete treatment of the subject, and his Table on p. 45 for

thrust and deflection based upon this theory may even now be of

practical service. He obtains the thrust and deflection for circular

ribs with an isolated load, or with uniform loading distributed

along either the span or rib, when the terminals of the rib are

pivoted. He finds also for a complete semi-circle, that the points

of maximum horizontal shift are about 63 from the vertical. He
throws all his results into very simple approximate forms, which

he holds accurate enough for practice. I refrain from quoting these

theoretical results, because they have been worked out with greater

generality and accuracy by Bresse in a work with which I shall deal

fully in Chapter XI. At the same time Ardant's researches must

be remembered as an important historical link between those of

Navier and Bresse. That the latter had studied them may be

seen from our Vol. I. Art. 1459.

What I have noted in Ardant's memoir will probably be

sufficient to mark its importance. Experiments on such large

wooden arches and frames have I believe not been repeated and

it seems improbable that they ever will be. The results obtained

will therefore remain of value, so far as roof-structures of the

types with which Ardant dealt are concerned. In addition to the

experimental data of the memoir I may mark Ardant's conclusion,

that the same theoretical formulae hold for an arch of continuous

material and one built-up of bent pieces of wood or planks bolted

or bound together, provided we reduce the stretch-modulus in a

certain proportion. Finally I have already noted the historical

value of the memoir as a step in the theory of circular arches

or ribs.

Art. 974.

Poncelet. Cours de me'canique industrielle, fait aux artistes

et ouvriers messins, pendant les hivers de 1827 d 1828, et de

1828 d 1829. Premiere partie. Pre'liminaires et applications.

Metz, 1829. I have procured a copy of this work since the

publication of Vol. I. It contains xvi pages of prefatory matter,

240 pages of text, and 8 pages of contents at the end. The first
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preliminary 14") sections agree with those in the third rditin by
Kretz (1870). In the ApitUrtiux the Metz edition agrees fairly

with Kretz's up to -< ction 197; after this it deals with the

resistance and motion of fluids, thus containing nothing concerning
the resistance of solids to which the Deuxieme Partie of the 3rd

edition is devoted. The few paragraphs on the Elasticity des

/>s, pp. 17 20, are thus all it contributes to our subject: see

our Vol. I. Art. 975. The chief interest of the work is the place

it takes in the origin of modern technical instruction.

Art. 1249.

A further memoir by Brix which had escaped my attention

may be referred to here : Ueber die Tragfdhigkeit aus Eisen-

bahnschienen ziisamniengesetzter horizontaler Trdger. This is an

offprint from the Verhandlungen des Vereins zur Beforderung des

Gewerbfleisses in Preiissen, Berlin, 1848, 16 pages and a plate.

Owing to some peculiar local conditions at a Berlin mill it was

necessary to build bridges, of which the girder-depth had to be

very small, over the mill-races. For this purpose pairs of railway
rails with flat bases (' sogenannte Vignolsche ') were placed base to

base and used as girders. The bases were riveted together at short

intervals. Experiments were made on the flexure and ultimate

strength of two such girders ;
in the one the bases were riveted

close together, in the other there were placed at the rivets small

rvening blocks of cast-iron. The first part of the paper

(pp. 1 6) is occupied with an account of the experiments made

upon these two girders, for the details of which too individual to

be of much gen I must refer to the paper itself. Th.

rupture, by shearing of the rivets, only seems to shew that the

area of th< ri\. ting was very insufficient, as the load required to

produce failure in a bar under flexure by longitudinal shearing is

immensely greater than that required to produce failure by stretch

in the 'fibres,' the order of the ratio ..i these loads being practically

that of th. length to tin diameter of the bar.

The second part of the paper that specially due to Brix

deals with the theory of the flexure of a beam (a) with both

terminals supported, (6) with our t-nnin:il supported and one
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built-in, (c) with both terminals built-in the load in all cases being

partially uniform and continuous and partially isolated and central.

The treatment of these problems by the Bernoulli-Eulerian theory

presents no difficulties, but it has long been known that the

absolute strength of beams under flexure calculated by this theory

is very far from according with experiment (see our Vol. II.

Art. 178). Hence there does not seem much value in the

numerical results given on pp. 12 16 and based on the preceding

experiments. Two points in Brix's work may be noticed. He
assumes the maximum curvature (which gives the maximum
stretch and so the fail-point) to be either at the built-in end or

the centre of the beam in case (6), but this is by no means obvious,

it requires an investigation similar to that given by Grashof in Arts.

58 9 of his Theorie der Elasticitdt, 1878. Secondly, he shews,

I believe for the first time, that the fail-point for a uniformly
loaded beam, either doubly-built-in or built-in and supported, is at

the built-in end
;
in the former case the bending-moment at the

centre is only half its value at the built-in ends.

Arts. 1180 and 1402, ftn.

A copy of Seebeck's paper in the Programm of the Dresden

Technical School (1846) has reached me. It contains a good deal

of valuable matter, and I have taken the opportunity of referring

to it with other papers of Seebeck's in the course of Vol. II.

Art. 474.

CAMBRIDGE : PRINTED BY C. J. CLAY, M.A. AND SONS, AT THE UNIVERSITY PRESS.
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