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Abstract In this contribution, we examine the evolu-
tion of surface errors during consecutive milling oper-
ations. Its description is based on a nonlinear implicit
map, which is suitable to investigate the surface qual-
ity. It describes the series of consecutive Surface Loca-
tion Errors (SLE) in roughing operations. As one of the
principal results of the paper, bifurcations related to the
fixed point of the implicit map are analyzed via normal
form theorem. We determined a formula for the criti-
cality of the bifurcation, which allows the approximate
computation of the arising period-two solution. The
method is demonstrated for the surface error model of
milling, and the results are verified by numerical com-
putations. Although the amplitude of the SLE would
be negligible, its derivatives has a great influence in the
model, which can cause stability problems.

Keywords Milling · Stability · Surface location error ·
Implicit map · Bifurcation analysis

1 Introduction

In the production industry, milling is a widely used
manufacturing method. Due to the intermittent nature
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of the material removal processes, the cutting edges
enter and exit into the material periodically. This phe-
nomenon leads to two kinds of vibration, which may
limit the achievable productivity. The mitigation of
these vibrations is still an open research field [1]. One
of them is referred to as chatter, which is a self-excited
oscillation relating to the stability loss of the cutting
process [2] while the other one is related to large ampli-
tude forced vibration near to resonant spindle speeds
[3].

The most accepted phenomenon to describe chatter
is the so-called surface regeneration effect or memory
effect [4,5], that is the instantaneous chip thickness
depends on the present and the delayed relative posi-
tions between the cutting tool and the workpiece. It
can be modeled by delay-differential equations (DDE)
[6], for which the stability limit draws the line between
chatter-free (stable) and chatter (unstable) vibrations
in the space of the technological parameters. That is
referred to as stability chart or stability lobe diagram
illustrating chatter-free regions [7]. These charts can be
used to optimize roughing operations, where the work-
piece oversize is removed with several consecutive
immersions. Usually, the most productive chatter-free
parameter regions, where the highest material removal
can be achieved, are located near the resonant spin-
dle speeds. However, large amplitude vibrations occur
there due to the resonant excitation of the periodic
milling force [8,9].

This vibration is copied to the surface and creates the
so-called surface location error (SLE), which is an off-
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Fig. 1 Effects of the surface error on the radial depth of cut

set error defined by the largest deviation between the
machined and the desired surface [10–13]. This SLE
directly reduces the radial depth of cut which modi-
fies the machining process (see Fig. 1). Due to the fact
that SLE is relevant at finishing operations [10], dur-
ing the prediction of this surface error, the widely used
methods do not consider that the SLE can influence
the radial depth of cut. However, in the case study in
[14], the measured vibrations amplitude resulting sur-
face errors were in the range of the radial depth of cut.
Therefore, the SLEcan still have a significant impact on
the surface quality in case of consecutive immersions
during roughing. At every immersion, the machined
surface differs from the desired one due to the SLE.
The offset errors modify the radial depth of cut and
generate different cutting force, which leads to a mod-
ified subsequent surface error. During this process, the
SLE can accumulate and the phenomenon leads to a
new surface quality parameter denoted by the cumula-
tive surface location error (CSLE).

The general concept of the CSLE was firstly intro-
duced in [15]. In this model, it is considered that the
initial surface position is shifted relative to the desired
one by the surface location error generated in the previ-
ous cut. This leads to an explicit nonlinear scalar map
which determines how one SLE develops into another
immersion-by-immersions. It is published first in [16],
then further investigation relating to measurement-
basedmodelwas carriedout in [17],while experimental
validation of this explicit model can be found in [18].

This explicit model is not enough to describe this
complex phenomenon, and it has a significant draw-

back, that it considers only the previous SLE error.
However, the actual SLE influences the results similarly
that leads to completely different results and a much
more complex mathematical model. This improved
model, where the surface error arises not only from
the error in the previous cutting but also from the cur-
rent one, was first introduced in [19] for turning oper-
ation. Here, static deformation error and its evolution
were investigated by means of a numerical method,
where the corresponding model is based on an implicit
nonlinear map. This implicit model describes a similar
memory effect that can be found in the general surface
regeneration phenomenon [5], and it better describes
the process of SLE evolution, since it takes into account
not only the events of the past but also the effects of the
current error.

In the existing literature for explicit maps, the linear
stability analysis and nonlinear investigation [20] such
as bifurcation analysis [21] and normal form calcula-
tions [22] are extensively investigated while engineer-
ing applications are diverse [23–25]. A comprehensive
literature review about investigation of explicit maps
can be found in [26,27] and all the references therein.

Implicitmaps aremore complexmathematically.On
the one hand, they usually used during discretization in
numerical simulation of differential equations, such as
the implicit Euler, the implicit Runge–Kutta and the
Adams–Moulton methods [28], where the main aspect
of the investigations is about the performance and con-
vergence of the numerical solver. On the other hand,
implicit maps also occur in engineering applications
[29,30]. Linear stability analysis of fixed point can be
found in [29,31], while the readers can findmore infor-
mation about implicit systems in [31]. Yet, these works
have not addressed normal form calculations in implicit
systems and the nonlinear analysis in implicit maps is
not discussed. To the best knowledge of the authors, so
far the normal form analysis has not been extended to
implicit maps.

This paper intends to fill this gap and tackle the chal-
lenges arising from the combination of implicit scalar
systems and bifurcation analysis. Our contributions are
twofold. One of the main goals of this research is to
extend the implicit model of the CSLE formilling oper-
ation, while the other goal is to understand how these
errors are evolving. Therefore, we derive the compu-
tational steps of a complete bifurcation analysis with
linear and nonlinear investigation of the implicit map.
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The rest of the paper is organized as follows. In Sect.
2, we determine the stability of the system by analyz-
ing the fixed point of the corresponding implicit map
and calculating its critical normal formcoefficients.Via
these coefficients, we use analytical formulae to obtain
the approximate amplitude of the bifurcating solutions
as a function of the bifurcation parameter. Sections
2.1 and 2.2 present the general form of the governing
implicit scalar map and the corresponding linear sta-
bility analysis of the fixed point. Section 2.3 provides
the bifurcation investigation, where the coefficients of
the normal forms are given. Then, in Sect. 3, the com-
putation of the SLE and the corresponding mechanical
model are brieflydiscussed. InSect. 4, the implicitmap-
ping of the SLE values is introduced for consecutive
roughing operations and the CSLE is defined. In Sects.
4.1 and 4.2, the linear and nonlinear stability investi-
gation are performed parametrically for SLE mapping
based on the results presented in Sect. 2. In Sect. 5, a
case study for a selectedmilling operation is conducted
providing the resulting stability charts and bifurcation
diagrams. Finally, in Sect. 6, we conclude our findings
and discuss future directions.

2 Implicit discrete system

2.1 Governing equation

Consider the following governing nonlinear implicit
scalar discrete map depending on a parameter in the
form

xi+1 = f (xi , xi+1;α), (1)

where x ∈ R and α ∈ R represent state variable and
bifurcation parameter, respectively, and f : R × R ×
R → R is supposed to be sufficiently smooth (differ-
entiable). Note that this system is implicit, since the
state variable appears at the left and right hand side in
(1).

Here we use the following implicit equation notion
for (1)

F(xi , xi+1;α) = f (xi , xi+1;α) − xi+1 = 0, (2)

where F has the same properties as f .
According to the Implicit Function Theorem, if ∂F

∂xi
is nonsingular, then exists a smooth locally defined
function

xi+1 = g(xi ), (3)

where g : R → R and it satisfies that F(xi , g(xi );α) =
0.Here the degree of smoothness of the function g is the
same as that of F and generally g cannot be expressed
explicitly in closed form.

2.2 Fixed point and its linear stability

Iterating the map (1), the solution may converge to a
fixed point, where the state maps to itself, that is xi =
xi+1 =: x∗, which indeed satisfies

F(x∗, x∗;α) = 0. (4)

Note that as a consequence of the Implicit Function
Theorem, the fixed point also satisfies x∗ = g(x∗).

We are interested in to analyze the local dynamics in
the vicinity of the fixed point. First, expanding (3) into
Taylor series and eliminating the higher-order terms
and by introducing the perturbation ui = xi − x∗, the
implicit variational map can be defined as

ui+1 = g′(x∗)ui + O(u2i ). (5)

Note that u ≡ 0 is the trivial solution of (5), and the
bifurcation analysis of x is equivalent to the analysis
of the trivial solution u ≡ 0. In (5), g′(x) is derived by
the total differentiation of (2) after substituting (3) and
dropping the notation of the parameter dependence:

d

dxi
F

(
xi , g(xi )

)
∣∣∣∣
x∗

= ∂F

∂xi

∣∣∣∣
x∗

+ ∂F

∂g(xi )

∣∣∣∣
x∗

g′(x∗) = 0. (6)

It is referred to as implicit function derivation theorem
in the Appendix of [29]. This form can also be found in
[31] after Eq. (4.11). By using (3), one can find identity

∂F
∂g(xi )

= ∂F
∂xi+1

, and using (2) the partial derivatives

simplify to ∂F
∂xi

= ∂ f
∂xi

and ∂F
∂xi+1

= ∂ f
∂xi+1

− 1. The
coefficient of the linear term in (5) can be rearranged
as

g′(x∗) = −
∂ f
∂xi

∂ f
∂xi+1

− 1

∣∣
∣∣∣∣
x∗

, (7)

For convenient description, wewill use a short notation
fa := ∂ f

∂xi
and fb := ∂ f

∂xi+1
for the partial derivatives

with respect to the state variables in the first and second
argument of f . Then the characteristic equation of (5)
becomes

μ + fa
fb − 1

∣∣
∣∣
x∗

= 0, (8)
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where the characteristic multiplier is

μ = − fa
fb − 1

∣∣
∣∣
x∗

. (9)

If |μ| < 1, then the fixed point is linearly asymptoti-
cally stable, otherwise it is unstable [26,27]. By inves-
tigating (8), one can show that the system loses stability
viaflip (perioddoubling) bifurcation at a critical param-
eter αcr where μ = −1 which leads to period-2 solu-
tions around the fixed point and via fold (saddle-node)
bifurcation at a critical parameter αcr where μ = 1.
Note that only flip and fold bifurcations are possible
since (1) is a scalar map. Note that for the so-called
Neimark–Sacker (torus) bifurcation, one needs at least
two-dimensional system in (1) [26]; however, it is out
of the scope of the current work since, in our applica-
tion, the SLE is scalar-valued.

2.3 Bifurcation analysis

The linear stability analysis only provides information
about the local behavior around the fixed point, but does
not give information about how the system behaves far-
ther from it. Furthermore, it does not provide informa-
tion on how close to the fixed point the local stability
behavior is valid.

In this section, we perform the bifurcation analysis
of the implicit system in (1) which can approximate the
domain of attraction providing insight into the global
behavior of the system. Based on the theory of nonlin-
ear dynamical systems, the dominant dynamics can be
investigated on an invariant manifold. In case of scalar
system, this manifold is described equivalently by the
map in (3). Setting the system parameter α close to the
critical bifurcation parameter αcr, one can approximate
the essential dynamics by the normal form equations
on the manifold. For the normal form calculation and
bifurcation analysis, the third-order approximation of
the map (3) is needed [26]

ui+1 = g′(x∗)ui + 1

2
g′′(x∗)u2i

+1

6
g′′′(x∗)u3i + O(u4i ). (10)

In this way, arising solutions and their stability can
be characterized where the fixed point undergoes a
bifurcation.

Since the governing equation is implicit in the state
variable, the derivation of its third-order approximation

is based on the total differentiation (implicit differen-
tiation) of (2). The derivation steps are similar as pre-
sented in Sect. 2.2, but higher-order total derivatives
are needed. The detailed derivation of the third-order
approximation is discussed in Appendix A.

2.3.1 Flip bifurcation

Using the nonlinear near-identity transform in [26,32,
33] ui = ûi + g′′(x∗)

4 û2i for flip-type bifurcation μ =
−1, the second-order term can be eliminated yielding
the normal form

ûi+1 = −ûi − δcrû
3
i , (11)

where the leading coefficient reads as (see the formulae
after Eq. (5.69) in [26])

δcr = −
(1
4

(
g′′(x∗)

)2 + 1

6
g′′′(x∗)

)
, (12)

where the complete formula for the derivatives of g can
be found in Appendix A.

In case of flip bifurcation, in the vicinity of the bifur-
cation point αcr the steady-state oscillations can be
approximated as a function of the bifurcation parameter
α [26] as

ûi =
√

γcr

δcr
(α − αcr)(−1)i , (13)

where γcr and δcr are the so-called root tendency and
leading coefficient, respectively. By taking the deriva-
tive of the characteristic equation (8) at the critical point
αcr, one can obtain the root tendency

γcr = dμ

dα

∣∣∣∣
x∗, αcr

= fb;α − fa;α
fa

∣∣∣∣
x∗, αcr

, (14)

where fa;α := ∂2 f
∂xi ∂α

and fb;α := ∂2 f
∂xi+1∂α

denote the
mixed partial derivatives with respect to the state vari-
ables and the bifurcation parameter. This root-tendency
represents the speed by which the critical characteris-
tic multiplier crosses the −1 during the flip bifurcation
leading to stability loss.

Based on the above derivation, we can define the
closed-form formula for the leading coefficient in case
of implicit scalar system:

δcr = − 3( faa − fbb)( faa − 2 fab + fbb)

12 f 2a
+

2 fa( faaa − 3 faab + 3 fabb − fbbb)

12 f 2a

∣∣∣∣
x∗, αcr

,

(15)
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where the second- and third-order partial derivatives of
f with respect to the state variables are definedbasedon

the indices, e.q.: fab := ∂2 f
∂xi ∂xi+1

and faab := ∂3 f
∂x2i ∂xi+1

.

The general conditions for the existence and unique-
ness of the arising oscillations are provided by means
of the transversality condition γcr �= 0 and the nonde-
generacy condition δcr �= 0, [26]. Here, we assume that
these conditions are fulfilled.

The criticality of the flip bifurcation is determined
by the sign of the leading coefficient in (15). The bifur-
cation is subcritical and the arising oscillations in (13)
are unstable for δcr > 0 while the bifurcation is super-
critical and the oscillations are stable for δcr < 0. Note
that the arising oscillation of the state variable can be
approximated as xi = x∗ + ui .

2.3.2 Fold bifurcation

In case of fold bifurcation, the critical characteristic
multiplier is μcr = 1 and the corresponding normal
form reads as

ui+1 = ui + 1

2
g′′(x∗)u2i , (16)

which can be obtained by the second-order approxima-
tion of map (3). Here, the genericity conditions for the
existence and uniqueness are provided by the nonde-
generacy condition g′′(x∗) �= 0 and the transversality

condition ∂g
∂α

∣∣∣
s∗

�= 0 [26].

In the followings, the evaluation of the series of the
surface location error (SLE) values in milling opera-
tions and the corresponding implicitmap is investigated
to demonstrate the above derivations.

3 Computation of surface location error

In this section, the mechanical model of the milling
process and the main steps of the SLE computation are
summarized based on [14].Here, themechanicalmodel
is kept as simple as it is possible but detailed enough to
contain all relevant dynamics for the SLE computation.
Therefore, the quality of themachined surface property
is determined numerically in case of straight fluted tool.
The workpiece is considered as a rigid body, and the
milling tool is described as a flexible part (presented
in Fig. 2). In case of chatter-free machining process,
the forced stationary periodic motion can be calculated
as the solution of the following ordinary differential

fz

ae

Ω

vf

x

y

F

Fig. 2 The mechanical model of the milling process and repre-
sentation of the surface location error in case of down-milling
operation

equation (ODE) in the modal space by using the modal
coordinates vector of q(t) ∈ R

d

q̈(t) + [2ζkωn,k]q̇(t) + [ω2
n,k]q(t) = U�F(t), (17)

where F is the periodic directional force acting on the
workpiece, d is the number of degrees of freedom, and
the modal parameters such as ζk , ωn,k and U are the
natural angular frequency, the corresponding relative
damping ratio and the modal transformation matrix,
respectively [34].

In this study, linear forcemodel is considered [35] in
which the resultant cutting force is linearly proportional
to the chip width w and the chip thickness h. The chip
thickness consists of two parts, stationary and dynamic
chip thickness [5]. The stationary one is resulted from
the projection of the feed motion in the direction of the
cutting edge. The dynamic one corresponds to the sur-
face regenerative effect of the machining process [4].
Nowonly the periodicmotion is analyzedwhich creates
the surface error for which the dynamical components
cancel out; hence, only the stationer component of the
chip thickness is used. For the SLE computation, only
the forced periodic vibration of the tool-tip is needed
in the direction of the machined surface normal (per-
pendicular to the tool path). Therefore in our model,
only the dynamics along the y direction are analyzed,
and only the y component of the resultant cutting force
acting on the tool-tip is included. The radial and the
tangential cutting force component projected to the y
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direction is given by

Fy(t) =
Z∑

j=1

ap fZ sin ϕ j (t)g(ϕ j (t))(Kr cosϕ j (t)

−Kt sin ϕ j (t)), (18)

where Z is the number of the cutting edges, ap is the
axial depth of cut, fZ is the feed per tooth, Kr and Kt

are the radial and tangential cutting force coefficients,
respectively [14].

These parameters are usually identified by several
cutting experiments for given cutting parameters and
tool geometry [36]. The current angular position of the
j th cutting edge is denoted by ϕ j (t) = Ωt + 2π( j −
1)/Z , where Ω is the angular spindle speed in rad/s.
Note that the spindle speed in round-per-minute (rpm)
is usually denoted with n in the machining society. The
so-called screen function g indicates that the j th edge
is in contact with the material between the enter ϕenter

and exit angle ϕexit only

g(ϕ) =
{
1 if ϕenter < ϕ < ϕexit,

0 otherwise.
(19)

These angles are the nonlinear functions of the dimen-
sionless radial depth of cut a = ae/D, reads as

ϕenter =
{
0 if up-milling,

arccos 2a − 1 if down-milling,

ϕexit =
{
arccos 1 − 2a if up-milling,

π if down-milling,

(20)

where ae is the radial depth of cut and D is the diameter
of the tool.

In order to avoid uncertainties resulting from the
modal fitting, frequency response function H(ω) canbe
directly used to compute the forced stationary vibration

y(t) = F−1(H(ω)φy(ω)
)
, (21)

where φy(ω) denotes the Fourier transformed the cut-
ting force (18) and F−1 denotes the inverse Fourier
transformation. The motion of the j th cutting edge is
described by means of the superposition of the rotary
motion of the edge and the forced stationary vibration
of the tool centre point y(t), that is

ry, j (t) = y(t) + D

2
cosϕ j (t). (22)

Fig. 3 Resulted dimensionless surface location error in the func-
tion of the dimensionless radial depth of cut

Then the SLE is determined as the extremum of the
cutting edge motion:

SLE = max
t, j

(ry, j (t)) − D

2
(up-milling),

SLE = min
t, j

(ry, j (t)) + D

2
(down-milling).

(23)

The SLE depends on various cutting parameters. It is
linearly proportional to the feed per tooth fZ, and in
case of straight-edged-tool, it is linearly proportional to
the axial depth of cut ap in case of linear force model.
The spindle speed n has a strong nonlinear influence
since the natural frequencies of the system could be
excited by the Fourier harmonics of the cutting force,
which can lead to large resonant vibrations and large
SLE values at certain resonant spindle speeds [37]. The
SLE is also a nonlinear function of the radial depth
of cut, too, as seen in (20). This influence has a key
role in the following analysis; therefore, this function
is denoted by s = fSLE(a),where s = SLE/D denotes
the dimensionless surface location error. This nonlinear
function demonstrated in Fig. 3 near the first resonant
spindle speed for up-milling (the parameters detailed
in Sect. 5).

Note that since the function fSLE is interpreted in
the range of a ∈ [0, 1], where there is no milling for
a = 0 and full immersion for a = 1. We extend the
validity range of the function as follows

fSLE(a) =

⎧
⎪⎨

⎪⎩

fSLE(0) if a < 0,

fSLE(a) if 0 ≥ a ≥ 1,

fSLE(1) if a > 1.

(24)

This mathematical extension is valid in an engineering
point of view, if a is larger than 1, it represents a situa-
tion when the tool is completely in the material and if
a is less than 0, it represents a case, when the tool does
not touch the surface and there is no machining at all.

Note that in this calculation method, first, we define
the radial immersion, then we compute the resulting

123



Bifurcations analysis in implicit maps

cutting force and the corresponding vibration, which
finally leads to an SLE value [10–12]. In this way, we
do not take into account that the SLE can affect its
radial depth of cut itself. To describe this phenomenon,
we introduce the implicitmodel,which closes this com-
putational loop in the next section.

4 Implicit model of cumulative surface location
error

The dimensionless SLE for the i th consecutive immer-
sion si can be calculated by a map as si = fSLE(ai ),
where the current dimensionless radial depth of cut ai
is composed by the pre-set radial depth of cut a0, the
actual error si and the previously resulted one si−1 in
the form as

ai = a0 + si−1 − si , (25)

as shown in Fig. 4a, consequently, the enter and exit
angles in (20) can change in each step. Note that there is
an analogy between this model and the surface regener-
ative effect [5], where the actual chip thickness depends
on the feed, the present and the delayed positions of the
tool. It can be modeled by delay differential equations,
while the evaluation of the SLE is based on station-
ary solution. Thus, it can be described as a difference
equation realized by the following implicit map

si+1 = fSLE(a0 + si − si+1), (26)

where fSLE ∈ R → R with the state variable s and it
is assumed to be smooth. This implicit map can be pre-
sented in the same form as the governing equation (1)
by considering the following form f (si , si+1; a0) =
fSLE(a0 + si − si+1). For the special pattern of deriva-
tives, which will be needed for the linear and nonlinear
investigations, see detailed derivation in Appendix B.

The implicitmap (26) determines how an SLE devel-
ops into another SLE over immersion-by-immersion.
The series of the SLEs may converge to a fixed
point, which is called cumulative surface location error
(CSLE = lim

i→∞ SLEi ). In other words, fixed point is a

state that dynamics maps to itself si = si+1 ≡ s∗, that
is, in the special implicit map in (26), the fixed point
can be determined simply by

s∗ = fSLE(a0). (27)

It means that every point of the function fSLE is also
a fixed point, but still, the surface errors do not always

Ω SLEi

+1

a0

a0SLEi

a0vf

ai+1

Fig. 4 Schematic model of the surface evaluation in successive
immersions

converge here immersion-by-immersion, because it
depends on the stability of the fixed point and also on
the global dynamics.

4.1 Linear stability analysis

In this section, we analyze the local dynamics in the
vicinity of the fixed point. The corresponding charac-
teristic multiplier can be calculated using (9), which
simplifies to

μ = f ′
SLE(a0)

1 + f ′
SLE(a0)

. (28)

As it is shown in (28), μ can be expressed as a hyper-
bolic function of the derivatives of the fSLE(a0) at the
fixed point. By investigating (28), one can show that
the system loses stability via flip bifurcation μ = −1
(period-2 solutions around the fixed) at a critical pre-set
radial depth of cut a0,cr where

f ′
SLE(a0,cr) = −0.5. (29)

Note that usual fold (or saddle-node) bifurcation can-
not occur in this system since it is not possible that μ

reaches 1.

4.2 Nonlinear investigation

In the followings, we derive the required formulas for
bifurcation analysis. The root tendencies at the criti-
cal point a0,cr can be calculated according to (14) and
using that in case of flip bifurcation (29) holds, which
simplifies (14) to

γcr = 4 f ′′
SLE(a0,cr). (30)
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Table 1 Technological parameters

Number of edges Z 3

Tool diameter D 8 mm

Tool overhang L 45 mm

Axial depth of cut ap 6 mm

Feed per tooth fz 0.15 mm

Tangential force coefficient Kt 644 × 106 N/m2

Radial force coefficient Kr 237 × 106 N/m2

The leading coefficients can be calculated for the
implicit CSLE model by the formula in (15) consider-
ing the special patterns in the derivatives presented in
Appendix B

δcr = −8

3
f ′′′
SLE(a0,cr). (31)

Finally, the approximated oscillations of the period-2
solution in the vicinity of the fixed point based on (13)
can be can be given by

ui = si − s∗ =
√

−3

2

f ′′
SLE(a0,cr)

f ′′′
SLE(a0,cr)

(a0 − a0,cr)(−1)i .

(32)

Note that the analysis based on normal form calculation
is valid only in the vicinity of the bifurcation point
and can catch neither the trend of the period-2 solution
farther from the critical point nor the presence of fold
bifurcation of period-2 solutions.

5 Case study: cumulative surface error in milling

In this section, we demonstrate numerical bifurcation
analysis of the implicit scalar system provided by the
evolution of surface errors in case of milling opera-
tions. In the conducted case study, all the computations
were performed for the parameters presented in Table
1, while the measured tool-tip FRF of a long peripheral
milling tool was used, which is shown in Fig. 5.

Figure 6 shows the surface location errors with gray
colormap in the plane of the spindle speed n and the
dimensionless radial depth of cuta.Here, down-milling
and up-milling are represented above each other, as
a = 0 represents no machining for both cases. It is
well-known that large resonant stationary vibrations
can occur if one of the natural frequencies is excited
by one of the Fourier harmonics of the cutting force.

Fig. 5 Measured direct tool-tip’s FRF (receptance) in the y
direction for the tool described in Table 1 [17]

As a result, considerable SLE is generated at resonant
spindle speeds (e.g., n ≈ 14.2, 7.1, 3.55 krpm).

According to (27), these errors (SLE) are also the
fixed points of the implicit model of the surface evo-
lution process (CSLE= Ds∗ ). The stability properties
can be determined with further computation steps, as
it is presented in Sect. 2 to ensure that surface error
remains in the vicinity of the predicted one after sev-
eral consecutive immersions.

It is important to note that large surface errors
(around 1 in the dimensionless error) are not realistic.
In that case, this model is likely to be inadequately,
because the corresponding large amplitude resonant
vibration can cause the cutting edges to exit thematerial
on a cut-by-cut basis and can influence the enter and
exit angles. Furthermore, the circular approximation of
the tool path is not valid anymore and some other linear
approximations during the modeling lose their validity
and nonlinear investigation would be needed [38,39].
In practice, significant SLE value (s � 0.2) should be
avoided, this the precise calculation this large ampli-
tude vibration is out of scope of this paper.

5.1 Linear investigation

The linear stability limit of the fixed point is calculated
by the formula in (29). It can be directly computed in
the plane of technological parameters by computing
a contour line over a dense grid or by using the so-
called multi-dimensional bisection method (MDBM)
[40], which is a more efficient algorithm. Note that
here we use numeric derivation to calculate f ′

SLE in
(29). These curves correspond to flip bifurcation.

Boundaries of the linearly unstable parameter do-
mains are visualized with green/red curves in Fig. 6.
Selecting technological parameters from thesedomains,
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Fig. 6 Stability charts of the fixed point of the CSLE model;
Red contour represents the location of subcritical flip bifurca-
tion while green refers to the supercritical ones, gray scale shows
the magnitude of the calculated fixed points. Note, however, the

milling model at a = 0 and a = 1 provides the same SLE, the
gradient are different leading to different CSLE stability behav-
ior. (color figure online)

the final surface error cannot be predicted at the end of
the roughing operation due to the fact that the SLE
diverges from the fixed point at each immersion. Thus,
the oversize of the workpiece will be uncertain before
the finishing operation, therefore the corresponding
technological parameters may be unfavourable dur-
ing the process design. Note that chatter vibrations due
to classical regenerative effect may occur along with
the CSLE stability problem [17]; however, it is out of
the scope of the current work.

Note that chatter andCSLEstability are notmutually
exclusive; however, typically one can be found where
the other is not. Unfortunately, theCSLE stability prob-
lem is more typical at favorable pockets of the stability
lobes of classical regenerative vibrations (chatter) near
the resonant spindle speeds.

5.2 Nonlinear investigation

The bifurcation analysis is carried out based on
Sect. 4.2. The criticality of the flip bifurcation is inves-
tigated based on the sign of the normal form coefficient

δcr in (31). In case of supercritical/subcritical bifurca-
tion (which are marked by green and red dots in Fig. 6,
respectively), a branch of stable/unstable periodic-2
solution emerges from the flip points. Note that where
green and red curves are met, the bifurcation is non-
generic since the normal form coefficient is zero. To get
a clear view of the global dynamics, Fig. 7 present the
bifurcation diagrams along horizontal cross sections at
a = 0.3 for down-milling and a = 0.54 for up-milling
(see dotted lines in Fig. 6). Here, the approximated
amplitude of the surface error oscillations around the
fixed point are plotted with black dashed curves as a
function of the bifurcation parameter n (spindle speed).
Note that for the fixed point, this amplitude is zero cor-
responding to the horizontal axis. For down-milling, as
shown in Fig. 7a the fixed point is unstable for spindle
speeds n ∈ [13, 14.5] krpm, while for up-milling oper-
ation (see Fig. 7b), it is unstable between n ∈ [6.3, 7]
krpm. The flip bifurcations, denoted in both panels by
F1, F3 and F2, F4, are supercritical and subcritical,
respectively.

From the engineering point of view, the subcritical
case is the more dangerous, since it causes an unstable
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Fig. 7 Bifurcation diagrams for down-milling operation a near
the first resonant spindle speed around n ≈ 14 krpm at a = 0.3
radial depth of cut and for up-milling b near the second reso-
nant spindle speed at a = 0.54 radial depth of cut (see dot-
ted lines in Fig. 6). Stable and unstable solutions are presented
as green and red curves, respectively. Black dashed curves are
the results of analytical normal form calculations while colored
curves are obtained by the two-step map. The supercritical (F1,
F3) and subcritical (F2, F4) flip bifurcation points are marked by
black crosses while fold bifurcations of the period-2 solutions
are denoted by black stars. (color figure online)

period-2 solution around the linearly stable fixed point.
It also indicates the presence of a stable period-2 solu-
tion by folding back this unstable one, which creates
a bistable parameter region (see a similar phenomenon
in [41]). Here, the final surface location error can con-
verge either to a stable fixed point or to a stable period-2
solution depending on initial conditions. Consequently,
this bistable parameter domain increases the unfavor-
able parameter range even further.

5.3 Two-step mapping and verification

Theverification of the analytical results of the emerging
branches could be performed by means of long numer-
ical iterations for different bifurcation parameter val-
ues. This is computationally inefficient and leads to
errors close to bifurcation points due to the very slow
converging solutions (|μ| ≈ 1). However, a compu-
tationally more efficient technique can be used based
on the direct computation of all the period-2 solutions
along the bifurcation parameter. Two-step mapping of
(26) must be considered by substituted successively
into itself

[
si+1

si+2

]
=

[
fSLE(a0 + si − si+1)

fSLE(a0 + si+1 − si+2)

]
. (33)

In case of period-2 solutions, all the even andoddvalues
are the same s0 = s2 = . . . =: s∗

0 and s1 = s3 = . . . =:
s∗
1 . Considering these properties in (33), the period-2
solutions s∗

0,1 can be calculated bymeans of solving the
following equations
[
s∗
0
s∗
1

]
−

[
fSLE(a0 + s∗

1 − s∗
0 )

fSLE(a0 + s∗
0 − s∗

1 )

]
=

[
0
0

]
. (34)

One can directly compute these solutions within a
selected domain of spindle speed by means of the
MDBM, which can find the solution curves for three
variables (n, s∗

0 , s
∗
1 ) for two implicit nonlinear equa-

tions. The maximum amplitude of u of the calculated
period-2 solutions are plottedwith continuous curves in
Fig. 7. As excepted, the approximated analytically cal-
culated bifurcation curves (black dashed curves) well
follow the trend of the numerical solution near the fixed
point.

The stability of the period-2 solutions provided by
the two-step map can be analyzed by the implicit func-
tion derivation theorem presented in [29]. In Fig. 7,
stable and unstable period-2 solutions are colored with
green and red, respectively. Note that in contrast to the
fixed point where only flip bifurcation occurs, here,
fold type stability loss can also happen. This fold point
(denoted by black stars) takes place where stable and
unstable period-2 solutions merge.

Note that period-p solution can be constructed in
a similar way which is briefly presented in Appendix
C, for which the linear stability behavior can be deter-
mined based on [42].

5.4 Numeric iteration

In order to illustrate different kind of behavior dur-
ing the evolution process of the surface error, four
points were selected in Fig. 7a and successive implicit
iteration of (26) based on [43,44] were performed.
These iterations are not straightforward because multi-
ple solution can exist for implicit equations (1) or (26),
thus the uniqueness of the solution is not guaranteed.
We bypassed this problem in the implementation of the
numerical computation: we calculated the new solu-
tions by a Newton–Raphson method starting from the
previous solutionwhich provides only a single solution.
This issue could be solved with dynamic time-domain
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(A) (B)

Fig. 8 The evolution of the dimensionless surface location errors
immersion-by-immersion in case of linearly stable and unstable
fixed point for parameter points A (n = 12.8 krpm) and B (n =
13.6 krpm) in Fig. 7a

simulation which takes into account complex interac-
tionbetween tool-workpiece engagement during forced
vibration [38,39], but it would require excessive com-
putational resources and loses the advantages of the rel-
atively simple solution offered by the implicit model.

The surface errors are plotted immersion-by-
immersion in Figs. 8 and 9. A globally stable case is
illustrated in Fig. 8a, where after an initial oscillation,
the surface location error converges to the stable fixed
point (green dash-dotted line). Panel b represents the
case for a linearly unstable fixed point, where alternat-
ing surface errors emerge due to the small initial per-
turbation of the fixed point, which tends to the period-2
solution (green dotted lines).

The behavior in case of bistable parameter region
is illustrated in Fig. 9. Here, we use the same tech-
nological parameters and start the iteration from two
different initial conditions, which highlights the role
of the unstable period-2 solution (red dotted lines). In
our case study, if we select an initial value between the
unstable period-2 solution (s∗U

0 , s∗U
1 ), the surface error

converges to the stable fixed point (panel a), otherwise,
it goes to the stable period-2 solution (s∗S

0 , s∗S
1 ) (panel

b). In other words, the unstable period-2 solution deter-
mines a threshold that separates the attraction zone of
the stable solutions.

From the viewpoint of the CSLE stability problem,
during the parameter design of roughing operation, the
globally stable fixed point (point A) can be acceptable
because in all other cases, the oversize of theworkpiece
may not be precisely predicted before the finishing pro-
cess.

6 Conclusion

In this study, we introduce an approach to analyze
the bifurcations of implicit scalar maps. The presented

(A) (B)

Fig. 9 The evolution of the dimensionless surface location errors
immersion-by-immersion in case of bistable parameter point at
n = 14.52 krpm and a = 0.3 during down-milling for dif-
ferent initial conditions. The initial conditions for point a is
s0 = −0.2783 while for point b is s0 = −0.2784. See the
location C and D in Fig. 7a

method uses the Implicit Function Theorem and its
differentiation form. Analytical formulae for normal
form coefficients are derived, from which approxi-
mated amplitude and stability of the arising solutions
and criticality of the bifurcation point can be deter-
mined.

The derived theory for implicit maps was applied
in an engineering problem. The evolution of surface
errors during roughing operations was investigated.
The essence of the proposed method is the introduction
of the novel implicit map, which takes into account not
only the effects of the past but also the effects of the
current state, while it describes how one error devel-
ops into another. The stability analysis of this problem
shows that the final surface location error cannot be
predicted at the end of the roughing process, which
can affect the finishing operation. In addition, we have
shown that stability loss can not only occur in resonant
spindle speeds (where a large surface location error
occurs), but it can also happen where the surface error
itself is small, but has a large derivative along with the
radial depth of cut. Also, we proved that only flip-type
bifurcation could occur for the SLE model, which may
lead to alternating final surface errors. With the pro-
posed method, the traditional stability chart relating to
the regenerative effect can be extended, from which
chatter-free and CSLE stable technological parameters
can be selected in order to support the technological
design.

During the nonlinear investigations of the special
milling case, we utilized further simplifications to
determine the coefficients of the normal form. It has
shown that bistable parameter ranges can also occur due
to the presence of subcritical flip bifurcation. From the
engineering point of view, it must also be avoided since
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these domains further increase the range of the uncer-
tain SLE prediction. These analyses may open ways
for efficient cutting parameter optimization strategies
crossing the border toward reliable and optimal cut-
ting. Our further goals are to perform measurements
for the surface error problems to validate and support
the theoretical results.

Although, the proposed bifurcation analysis of non-
linear implicitmaps is applied only onmilling example,
this could be used generally in any application field. To
support general usage, it is still left for future work to
extend the normal form computation for systems with
higher dimensions.
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Appendix A

For thebifurcation analysis of the implicit system in (1),
the second- g′′(x∗) and third-order g′′′(x∗) terms in the
approximation of the explicit map (3) are also needed.
These can be similarly defined as presented for g′(x∗)
in Sect. 2.2. The second-order total differentiation of
(2) with the substitution xi+1 = g(xi ) leads to

d2

dx2i
F

(
xi , g(xi )

) =

∂2F

∂x2i
+ 2

∂2F

∂xi∂g(xi )
g′(x∗) + ∂F

∂g(xi )
g′′(x∗) = 0.

(35)

The second-order partial derivatives simplify to ∂2F
∂x2i

=
∂2 f
∂x2i

and ∂2F
∂xi ∂g(xi )

= ∂2F
∂xi ∂xi+1

= ∂2 f
∂xi ∂xi+1

. Finally, sub-

stituting (7) and rearranging the terms results in

g′′(x∗) = − ( fb − 1)( faa − 2 fa fab − faa fb) − f 2a fbb
( fb − 1)3

∣∣∣
∣
x∗

.

(36)

Here, we use the same short notation as presented after
15.

Considering the critical parameter in (9), (36) can
be simplified for flip bifurcation (μ = −1):

g′′(x∗) = − faa − 2 fab + fbb
fa

∣∣∣∣
x∗

(37)

and for the fold bifurcation (μ = 1):

g′′(x∗) = faa + 2 fab + fbb
fa

∣∣∣
∣
x∗

. (38)

The third-order g′′′(x∗) term, which is necessary for
the normal form calculation of the flip bifurcation, can
be calculated by computing the third-order total differ-
entiation of (2):

d3

dx3i
F

(
xi , g(xi )

) = 0, (39)

from which, one can express g′′′(x∗) considering μ =
−1 as

g′′′(x∗) =3( fab − fbb)( faa − 2 fab + fbb)

f 2a
−

fa( faaa − 3 faab + 3 fabb + fbbb)

f 2a

∣∣∣
∣
x∗

.

(40)
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Appendix B

In case of the milling example, the following relations
for the partial derivatives of the function fSLE(a0+si −
si+1) hold

f ′
SLE(a0) := ∂ fSLE

∂a0

∣
∣∣∣
a0

= ∂ fSLE
∂si

∣
∣∣∣
a0

= − ∂ fSLE
∂si+1

∣
∣∣∣
a0

(41)

f ′′
SLE(a0) := ∂2 fSLE

∂a20

∣
∣∣∣
∣
a0

= ∂2 fSLE
∂s2i

∣
∣∣∣
∣
a0

= ∂2 fSLE
∂s2i+1

∣
∣∣∣
∣
a0

=

− ∂2 fSLE
∂si∂si+1

∣
∣∣∣
a0

= ∂2 fSLE
∂si∂a0

∣
∣∣∣
a0

= − ∂2 fSLE
∂si+1∂a0

∣
∣∣∣
a0

(42)

f ′′′
SLE(a0) := ∂3 fSLE

∂a30

∣
∣∣∣
∣
a0

= ∂3 fSLE
∂s3i

∣
∣∣∣
∣
a0

= − ∂3 fSLE
∂s3i+1

∣
∣∣∣
∣
a0

=

− ∂3 fSLE
∂s2i ∂si+1

∣
∣∣∣
∣
a0

= ∂3 fSLE
∂si∂s2i+1

∣
∣∣∣
∣
a0

(43)

which simplify the formulae of the root tendency in
(14) and the leading coefficient in (15) to (30) and (31),
respectively.

Appendix C

Here, we briefly discuss the calculation steps for deter-
mining period-p solution and its stability property.
First, p consecutive map of (1) are considered and
represented as a multi-variable mapping: the p-step-
mapping in the following way
⎡

⎢⎢⎢
⎣

si+1

si+2
...

si+p

⎤

⎥⎥⎥
⎦

︸ ︷︷ ︸
si+1

=

⎡

⎢⎢⎢
⎣

f (si , si+1)

f (si+1, si+2)
...

f (si+p−1, si+p)

⎤

⎥⎥⎥
⎦

︸ ︷︷ ︸
f(si ,si+1)

(44)

where si ∈ R
p collects the state variables and f :

R
p ×R

p → R
p is vector valued. The p-step-mapping

problem can be reformulated as

F(si , si+1) := f(si , si+1) − si+1 = 0, (45)

where F has the same properties as f . According to the
periodicity condition, every pth values are the same,
that reads si = si+kp =: s∗

j , where k = 1, 2, . . . and
j = i mod p. Considering these properties, the period-
p solutions be denoted by s∗0 = colp−1

j=0 s
∗
j . Note that

s∗1 = Cs∗0, where = C is the circular shift matrix. The

periodic solution can be calculated based on the nonlin-
ear equations F(s∗0,Cs∗0) = 0 constructed as follows:
⎡

⎢⎢
⎢⎢⎢
⎣

f (s∗
0 , s

∗
1 )

f (s∗
1 , s

∗
2 )

...

f (s∗
p−2, s

∗
p−1)

f (s∗
p−1, s

∗
0 )

⎤

⎥⎥
⎥⎥⎥
⎦

−

⎡

⎢⎢
⎢⎢⎢
⎣

s∗
1
s∗
2
...

s∗
p−1
s∗
0

⎤

⎥⎥
⎥⎥⎥
⎦

=

⎡

⎢⎢
⎢⎢⎢
⎣

0
0
...

0
0

⎤

⎥⎥
⎥⎥⎥
⎦

. (46)
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