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In this study, surface error calculations and stability condi-
tions are presented for milling operations in case of slender
parts. The dynamic behavior of the flexible beam-type work-
piece is modeled by means of Finite Element Method (FEM),
while the varying dynamical properties related to the feed
motion as well as the material removal process are incor-
porated in the model. The FEM-generated direct Frequency
Response Function is verified through a closed form solution
based on the distributed transfer function method. Relative
errors and convergence of the FEM are investigated based on
the analytical solutions of the continuum model, from which,
appropriate element size and mode number can be selected
for modal coordinate transformations. The pattern in the
variation of the natural frequencies is explored using the an-
alytical model in case of high radial depth of cut relative to
the original cross-section of the beam-like workpiece. Both
the stability conditions and the resulted surface errors are
predicted as a function of the tool position. The presented
approach and the results are validated by laboratory tests.

1 Introduction
Cutting is a widely used manufacturing method, how-

ever, this kind of machining process can be disturbed by
harmful vibrations that can reduce the life of the machine
tool and the surface quality. It is an important task to pro-
vide the reliable prediction of machine tool vibrations, both
in terms of increasing productivity and minimizing costs and
losses. The most accepted explanation for the large ampli-
tude machine tool vibrations (chatter) is the so-called sur-

face regenerative effect [1], where the position of the previ-
ous cutting edge influences the chip cross-section [2], which
can be described by delayed differential equations [3].

The range of chatter-free technological parameters is
usually represented in so-called stability charts, which are
determined by the stability of the stationary solution of the
corresponding mathematical model. In the last decades, sev-
eral numerical methods have been developed to calculate
these stability charts in order to support the technological
design. Without completeness, we mention:

i) the methods in time domain such as the semi-
discretization method [4], the full-discretization
method [5], the integration method [6], the Chebyshev
collocation method [7] and the temporal finite element
analysis [8];

ii) the methods in frequency domain such as the zero-order
approximation (ZOA) [9], the multi-frequency solution
(MFS) [10] or the extended multi-frequency solution
(EMFS) [11].

In time domain, the dynamical behavior of the model can
be described by means of the identification of the modal pa-
rameters, which is a complex engineering procedure itself.
An advantage of the frequency domain solutions is that they
can directly use the measured Frequency Response Function
(FRF) after applying some filtering technique.

For high precision machining, for example, the errors of
the machined surface are still relevant even in case of stable
machining operations. These surface errors may appear dur-
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ing both turning and milling processes. In case of stable turn-
ing, there is an offset error generated by the constant cutting
force [12]. Due to the intermittent characteristics of milling
processes, relative vibrations are induced between the tool
and the workpiece even in case of stable cutting operations.
Consequently, not just the so-called Surface Location Error
(SLE) appears, but also the surface roughness (R) [13,14,15].
In [16], the surface location errors and the stability lobe dia-
gram are presented together on a so-called superchart.

It is well known that the dynamical characteristics of the
CNC machine and the workpiece significantly influence the
behavior of the machining process. It is an essential task
to predict this dynamical behavior precisely in order to con-
struct a reliable superchart, from which, one can select ro-
bust parameter combinations to reach high material removal
rate [17]. The dynamical properties may vary during machin-
ing due to the different configurations of the machine tool
structure within the workspace [18,19,20,21] and due to the
variation of the workpiece geometry according to the mate-
rial removal [17, 22, 23, 24]. The latter is dominant for thin-
walled structures, so it is essential to take these changes into
account. Finite Element Method (FEM) is a natural choice
for modelling thin-walled workpieces and to trace the dy-
namical properties during material removal [25, 26, 27].

Although finite element method can be used for any
complex workpiece geometry, the model and the associated
FE mesh have to be updated frequently to make it follow the
variation of the geometry due to the material removal pro-
cess. This requires significant computational time and ef-
fort [25]. The modal matrices of the FEM are quite large
for an appropriately densed finite element mesh. Thus, it re-
quires significant computational effort to obtain the station-
ary solutions of the milling process and to determine their
stability. One way to decrease the size of the matrices and to
save computational cost is the application of modal coordi-
nate transformation [28] by considering only a few dominant
vibration modes [29].

The sufficient number of modes and the resolution of the
FE mesh have to be selected appropriately to reach proper
balance between accuracy and computational needs. These
parameters are usually determined based on test cases for
which analytical solution exists.

In this study, we analyze the dynamical behavior of a
flexible workpiece model that can be used in both for turning
and for milling processes. For this reason, we use a beam-
type workpiece, which is complex enough to capture all as-
pects of the varying workpiece dynamics, but simple enough
for analytical modeling. Note that for complex models such
as turbine blade, pocket milling, rib machining, cutting tubu-
lar and thin walled parts the change in the dynamic properties
are very problem specific and it is difficult to draw a general
conclusion.

First, the model based on FEM is generated for
Bernoulli beam elements, which is later compared to the
exact FRF of the workpiece. Using a suitable Green func-
tion, the closed analytical form is based on the distributed
transfer function method (DTFM) [30]. This eliminates the
need for finite element discretization and the need for solv-

ing the large eigenvalue-eigenvector problem, which may re-
quire high computational resources [31]. Then we examine
the FE mesh resolution and the number of considered modes
in the modal transformation to obtain the parameters of suf-
ficiently accurate FRF for stability and surface error calcula-
tions.

Usually, in case of a general industrial machining pro-
cess, the technological parameters are already given, such as
tool path relating to workpiece geometry, cutting tool and
other machining parameters, they are technology-dependent.
Modifications only in the spindle speed and the feed rate are
allowed due to these limitations from the industrial side.

With this model, we examine in details how dynamic
properties change as a function of the tool position according
to the material removal process of cutting. In the next step,
stability chart and surface property calculations are devel-
oped using an FRF based model for milling operation. The
variations of the dynamic properties caused by the material
removal and the changing tool position are also considered.
Finally, the predicted phenomena are identified by measure-
ment results.

The paper is organized as follows: in Section 2, we pro-
vide the FRF based on FEM model of the workpiece which
is validated through analytical FRF. Then, in Section 3, the
effects of the feed motion are analyzed with respect to the
dynamical parameters. In this section, an extreme case is
illustrated, from which, one can get a picture into the chang-
ing dynamics of the underlying system. Section 4 gives the
governing equation of milling process together with the cor-
responding stability and surface error calculations. A case
study is conducted in Section 5 with numerical and measure-
ment results, where we analyze the machined surface quality
and investigate the effects of the feed motion. Finally, in
Section 6, we summarize conclusions and discuss future re-
search directions.

2 Dynamics of the workpiece
In this section, we describe the mechanical model of the

cutting process, with special attention on the dynamic be-
havior of the flexible workpiece while the material removal
process is also taken into account.

During the machining process, the cutting tool’s actual
position along its path determines the location of the contact
region, that is, the resulting cutting force acts only at the ac-
tual contact point identified by the coordinate e in Fig. 1. In
the dynamical models, only the relative vibrations between
the tool and the workpiece are included. Therefore, only the
direct FRF, with excitation and response at the same position,
have to be taken into account in the stability and surface error
calculations.

From the dynamical point of view, the workpiece dy-
namics can change significantly during the cutting process
in two different ways [32]. One corresponds to the varying
contact position, which is taken into account by means of
the variation of the modal stiffness through the correspond-
ing mode shapes. The other one relates to the effects of the
material removal process. According to the feed motion, the
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Fig. 1. Schematic figure of the applied beam-type workpiece con-
sidering the material removal for milling (a) and turning (b) processes.

cross section is reduced along the preceding tool path. This
leads to changing workpiece geometry and correspondingly
varying dynamical parameters, especially in the natural fre-
quencies of the workpiece.

Due to the reason that one of the main scope of this con-
tribution is to explore the behavior of the varying dynamics,
the workpiece is assumed to be much more flexible com-
pared to the cutting tool together with the whole machine
tool structure. This assumption is valid for thin walled work-
pieces [19], as shown for example in Fig. 1. Thus, the cutting
tool and the workpiece are assumed to be rigid and a flexible,
respectively. Note that for a given workpiece geometry, the
appropriate modal matrices can be extracted from most of the
industrial FEM software. In addition, one can include the dy-
namic characteristic of the cutting tool and the machine tool
and can extend the model by means of measuring and adding
the tool tip FRF to the computed workpiece FRF [18,21,33].

2.1 Discrete model of the workpiece
The mechanical model of the flexible workpiece during

the machining process is shown in Fig. 1c. It is assumed
that the transverse dimensions are negligible relative to the
longitudinal one. In this case, the horizontal (longitudinal)
vibration is not modeled, since the structure is more rigid in
this direction compared to the transverse one. According to
these assumptions, bending vibration dominates the model,
which justifies the consideration of a beam model. For the
actual tool position e, the governing equation assumes the
form

M(e)Ÿ(t)+C(e)Ẏ(t)+K(e)Y(t) = v(e)Fy(t), (1)

where the deformation of the workpiece is described by
the N-dimensional generalized coordinate vector Y and the

dynamical parameters are defined by means of the mass,
damping and stiffness matrices as M(e), C(e) and K(e), re-
spectively. On the right hand side, the general force vec-
tor is composed as a product. Its first term is the vector
v(e) that represents the actual contact position; all its ele-
ments are zero expect the unitary one of the element at the
int(1+(N−1)e/L)th coordinate. The second term, Fy(t) de-
scribes the cutting-force component in the y direction, which
is time periodic in case of milling process. Following the
assumption in [34, 35], the dynamics of the feed motion is
considered to be slow relative to the fast dynamics of Y(t)
and F(t), that is, the variation of the tool position e is con-
sidered to be quasi-static [36].

Up to this point, Eq. (1) can describe both milling and
turning processes. The only difference between them is the
cutting force in the right-hand side, which is discussed in
details in Sec. 4.

According to the theory of modal analysis [29], in case
of proportional damping, the equation of motion in Eq. (1)
can be given as decoupled equations of each modal coordi-
nate ξk. After transforming to the frequency domain of ω, it
reads as

−ω
2
ξk(ω)+ iω2ζk(e)ωn,k(e)ξk(ω)+ω

2
n,k(e)ξk(ω)

= φk(ω),
(2)

where φk(ω) is the modal force of the kth mode shape, ωn,k(e)
is the kth undamped natural angular frequency and ζk(e) is
the modal damping of the kth mode shape, (k = 1,2, ...,m,
where m is the number of the modes). In case of proportional
damping, the damping coefficients ζk(e) can be calculated as

ζk(e) =
αM

2ωn,k(e)
+

αK

2
ωn,k(e), (3)

where αM and αK are the proportional damping coefficients
in C = αMM+αKK (see [29]). With a FEM based model,
the slow variation of the FRF can be given for each mode.
The corresponding scalar valued direct FRF H(ω,e) is given
as a function of the frequency ω and the tool position e:

H̃(ω,e) =
m̃

∑
k=1

T̃ 2
e,k(e)

−ω2 + iω2ζ̃k(e)ω̃n,k(e)+ ω̃2
n,k(e)

, (4)

where T̃e,k(e) is the element of the kth mass normalized mode
shape vector at the contact point and m̃≤m is the number of
relevant modes. Tilde denotes the approximation of the exact
FRF. The discrete model tends to the exact FRF only if the
element size of the corresponding FE mesh tends to zero and
the number of considered modes tends to infinity.

2.2 Distributed parameter model
In order to validate the FEM model, we present the

mathematical background of the closed-form expression of
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FRF through the derivation of the bending vibration of con-
tinuum beams based on DTFM [30]. Since there is a sharp
change in the geometry of the cross section at the tool posi-
tion e, the total length L of the workpiece is distingushed with
index i along the x coordinate of beam. In the displacement
function yi(x, t), the subscript i refers to the corresponding
section: i = 1 for the part that has already been machined
(x ∈ [0,e]), while i = 2 for the intact part (x ∈ [e,L]). The
linearized equations of motion form the partial differential
equations [37, 38, 39]

ρAiÿi(x, t)+ cMiẏi(x, t)+ cKiẏ′′′′i (x, t)+ IziEy′′′′i (x, t) =
1
2

Fy(x, t)δ(x− e), i = 1,2;
(5)

with the corresponding boundary conditions

y1(0, t) = 0, y′1(0, t) = 0,
y2(L, t) = 0, y′2(L, t) = 0 (6)

at the clamped ends, and the interface conditions

y1(e, t) = y2(e, t), y′1(e, t) = y′2(e, t),
Iz1y′′1(e, t) = Iz2y′′2(e, t), Iz1y′′′1 (e, t) = Iz2y′′′2 (e, t)

(7)

that describe the smooth connection between the two seg-
ments. Prime stands for differentiation with respect to the
spatial coordinate x. The material parameters ρ and E are
the density and the young modulus, respectively. Also, cMi
and cKi are the proportional damping coefficients, which
are related to the proportional damping coefficients (see in
Eq. (3)): cMi = αMρAi and cKi = αKIziE.

The cross sections are characterized with area Ai and
area moment of inertia (or second moment of area) Izi. Note
that the governing equation Eq. (5) is suitable to model the
beam-like workpiece during milling and turning processes
(see Fig. 1ab), but the parameters Ai and Izi are calculated
with different formulas.

Laplace transform of Eq. (5) leads to

(
s2

ρAi + scMi
)
yi(x,s)+

(
scKi + IziE

)
y′′′′i (x,s) =

1
2

Fy(x,s)δ(x− e), i = 1,2;
(8)

where y(x,s) = L(y(x, t)) and Fy(x,s) = L(Fy(x, t)) are the
Laplace transforms of y(x, t) and Fy(x, t), respectively, and
s ∈ C represents the complex Laplace domain.

We introduce the following state space vector

ηηηi(x,s) =
(
yi(x,s) y′i(x,s) y′′i (x,s) y′′′i (x,s)

)T (9)

and the corresponding excitation vector

ΦΦΦi(x,s) =
(

0 0 0 Fy(x,s)δ(x−e)
2(scKi+IziE)

)T
. (10)

Therefore, the governing equation and the corresponding
boundary conditions in Eqs. (5) and (6)-(7) can be written
as a first-order ordinary differential equation

ηηη
′(x,s) = A(s)ηηη(x,s)+ΦΦΦ(x,s), (11)

with boundary conditions

Pηηη(0,s)+Qηηη(e,s)+Rηηη(L,s) = 0, (12)

where ηηη(x,s) = (ηηη1(x,s)
T ηηη2(x,s)

T)T and ΦΦΦ(x,s) =
(ΦΦΦ1(x,s)T ΦΦΦ2(x,s)T)T. The coefficient matrix of Eq. (11)
can be given as

A(s) =
(

A1(s) 0
0 A2(s)

)
, (13)

where

Ai(s) =


0 1 0 0
0 0 1 0
0 0 0 1

− s2ρAi+scMi
scKi+IziE

0 0 0

 , (14)

and 0 stands for the 4×4 zero matrix. The coefficient matri-
ces

P =


I 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 , R =


0 0 0 0
0 0 I 0
0 0 0 0
0 0 0 0

 (15)

in Eq. (12) are defined to fulfill the boundary conditions
Eq. (6), while coefficient matrix

Q =


0 0 0 0
0 0 0 0
I 0 −I 0
0 Iz1EI 0 −Iz2EI

 (16)

comes from the interface condition Eq. (7). In Eqs. (15) and
(16), where I and 0 stand for 2×2 identity and zero matrices,
respectively.

The homogeneous solution of Eq. (11) is

ηηη(x,s) = eA(s)x
ηηη(0,s) (17)

where eA(s)x is the exponential of matrix A(s)x, also called
fundamental matrix. Substitute Eq. (17) into the boundary
conditions Eq. (12):

(
P+QeA(s)e +ReA(s)L)

ηηη(0,s) = 0. (18)
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The eigenvalues of the continuum model are the roots sk of
the transcendent characteristic equation

det
(
P+QeA(s)e +ReA(s)L)= 0, (19)

which can be used to extract the modal parameters

sk =−ζkωn,k± iωn,k

√
1−ζ2

k , k = 1, ..., m̃. (20)

Note that this result can be used to validate the parameters of
the FEM, however, the challenging root finding problem of
Eq. (19) is not necessary to determine the exact FRF.

According to [30], the unique solution of Eq. (11),
which satisfies the boundary conditions Eq. (12), can be writ-
ten in the following form

ηηη(x,s) =
∫ L

0
G(x,ϑ,s)q(ϑ,s)dϑ, (21)

where the matrix Green function is given as

G(x,ϑ,s) =
{

W(x,s)Pe−A(s)ϑ if x≥ ϑ,

−W(x,s)ReA(s)(L−ϑ) if x < ϑ
(22)

and

W(x,s) = eA(s)x(P+QeA(s)e +ReA(s)L)−1
. (23)

Finally, the exact scalar valued direct FRF H(ω,e) at
the contact point of the tool can be calculated by means of
the substitution of x = ϑ = e and s = iω into Eq. (22) and by
selecting the matrix element 1,4

H(ω,e) =
G1,4(e,e, iω)

Iz1E(1+ iωαK)
(24)

The indexes in G1,4(e,e, iω) refer to the corresponding 1st el-
ement of the state space vector in Eq. (9) and the 4th element
of the excitation vector Eq. (10).

It should be noted that the DTFM can give exact and
closed-form solution of the FRF without any truncation or
approximation by using only the inverse and the exponent of
8×8 matrices.

2.3 Validation of FE model
The convergence of natural frequencies and mode

shapes regarding to element size of FE model is well-
established. Since for the stability calculation of milling pro-
cess a full FRF function is needed, and the effects of the FE
model parameters on the FRF function is not so common,
therefore, in this subsection, the convergence analysis of the

Fig. 2. Relative error of the natural frequencies as a function of the
number of elements at e = L/2. Parameters are defined in Table 1
for Workpiece I.

FEM is based on the exact analytical solution of the contin-
uum model. First, the resolution of the FE mesh is inves-
tigated through the comparison of the essential natural fre-
quencies in order to determine sufficient element size. The
relative error between the exact natural frequencies calcu-
lated with DTFM and the ones obtained from FEM is

εωn,k =
|ωn,k− ω̃n,k|

ωn,k
. (25)

Figure 2 shows the 4th-order convergence of each natural
frequency which belongs to the Bernoulli beam-type finite
elements. The convergence is limited by the floating-point
arithmetic in two ways. On the one hand, numerical noise
appears below the relative error around 10−8 for both DTFM
and FEM. On the other hand, numerical errors accumulate
in the iterative method applied for the solution of the eigen-
value problem, which is typical for higher frequencies. From
Fig. 2, one can select an appropriate element resolution to
keep the relative error within a desired range. For further
investigation, we select 100 elements along the workpiece.

As a next step, the reduction of the number m̃ of the con-
sidered modes in Eq. (4) is investigated based on the devia-
tion in the resulted FRF. The relative error between the exact
direct FRF H(ω,e) and the one computed by FEM H̃(ω,e)
is given by means of the formula

εH =

∫ L
0
∫

ωmax
0 |H(ω,e)− H̃(ω,e)|dωde∫ L

0
∫

ωmax
0 |H(ω,e)|dωde

(26)

applied for the investigated frequency domain [0, ωmax]. Fig-
ure 3 represents the relative errors in a logarithmic scale for
different domains, which cover a couple of essential natu-
ral frequencies. It is easy to show that the relative error de-
creases by increasing the number of considered modes. Note
that even if we liked to model the first two natural frequen-
cies only in the direct FRF with ωmax = 4500 Hz, then at
least twenty modes (m̃≥ 20) should be considered to achieve
a high accuracy like εH = 10−4.
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Fig. 3. The convergence of the relative error in the function of con-
sidered mode number for the different frequency domains [0, ωmax].
Parameters are defined in Table 1 for Workpiece I.

Table 1. Parameters of the milled workpieces (Workpiece I. and II.)

Parameter Symbol Workp. I. Workp. II.

Width w 15 [mm] 20 [mm]

Thickness v2 3 [mm] 5 [mm]

Length L 105 [mm]

Material AlMgSi05

Density ρ 2935 [ kg
m3 ]

Young’s modulus E 50 [GPa]
Stiffness prop.
damping coeff. αK 1.43 ·10−6 [s]

Mass prop.
damping coeff. αM 45

[ 1
s

]

Also, the achievable accuracy in case of more than fifty
modes is strongly limited by the errors generated by the
floating-point arithmetic. If ωmax is selected for the band-
width of the given excitation, then appropriate number of
modes can be selected with the help of the diagram in Fig. 3.

As a conclusion, to capture the chatter frequency, usu-
ally the first or the second ”lobe rows” play a role, which
is closely related to the first and second natural frequencies.
So one might choose only one or two natural frequencies,
however, not only the first few modes are relevant to create
the proper FRF. Therefore, high number of modes have to be
considered in this type of modeling, consequently, it requires
good resolution of the FE mesh, as well.

3 Analysis of varying dynamics
In this section we analyze the variation of the dynamic

properties along the tool path during the material removal.
In Fig. 4, the amplitude of the direct FRF (colormap)

and the natural frequencies (dashed curves) are presented for

Fig. 4. Direct FRF of the workpiece at the actual tool position, where
the thickness of the plate was reduced by 16.7%. The amplitude and
the natural frequencies are denoted by colormap and dashed black
curves, respectively. Parameters are presented for Workpiece I. in
Table 1.

different tool positions. The natural frequencies of a pris-
matic beam are linearly proportional to the thickness of the
cross-section, which is v for rectangular and d for cylindrical
cross-section. Thus, the natural frequencies at the end posi-
tion (e = L) of the tool are 16.7% smaller than they are at
its starting position (e = 0); for example, ω1(0) = 1155 Hz
→ ω1(L) = 958 Hz. However, during the material removal
process, the natural frequencies change in an intricate way;
it can increase or decrease whether the mass or the stiffness
reduction has larger influence. In the colormap of Fig. 4, the
variation of the abs(FRF) peaks is proportional to the corre-
sponding mode shapes. It also visualizes that the workpiece
is ideally stiff at both ends, moreover, it is dynamically stiff
at the nodes of the corresponding mode shapes.

The effects of material removal can be visualized bet-
ter in Fig. 5, where the relative frequency change for first
and second natural frequencies are represented along the tool
path for different amount of material removal. The larger
the cross-section reduction is, the more the natural frequency
values fluctuate. In an extreme reduction (close to 100%) as
an illustrative example, it tends to a specific characteristic,
referred to as backbone curve of the material removal.

This limitcase can be given if the system is decomposed
into two separate beam segments while the connection be-
tween them is replaced by different boundary conditions (see
the schematic representation in Fig. 6). If we consider a very
high stiffness ratio of the parts, then the stiffer (thick blue)
beam is not influenced by the more flexible (thin red) one and
the stiffer beam can be modelled as a cantilever beam. Mean-
while, the upper end of the more flexible beam is almost fixed
by the stiffer one, so it can be modelled as clamped-clamped
beam. The corresponding natural frequencies can be deter-
mined from the following frequency equations [40], for the
cantilever beam as

cos

(
(L− e) 4

√
ω2

n
A2ρ

Iz2E

)
cosh

(
(L− e) 4

√
ω2

n
A2ρ

Iz2E

)
=−1.

(27)
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Fig. 5. Characteristics of the dimensionless natural frequencies as
a function of the tool position for different cross-section removal rate.

Fig. 6. Decomposition of the beam model; black curves represents
natural frequencies in case of 85% cross section reduction, while blue
and red dashed curves represent the natural frequencies of cross
section reduction tending to 100%.

and for clamped-clamped beam as

cos

(
e 4

√
ω2

n
A1ρ

Iz1E

)
cosh

(
e 4

√
ω2

n
A1ρ

Iz1E

)
= 1, (28)

The natural frequencies of the decomposed models (solu-
tions of Eq. (27) and (28)) are plotted by blue and red
dashed curves, while natural frequencies relating to the orig-
inal model are plotted by black curves for 85% cross-section
reduction in Fig. 6.

Intersections of two backbones curves can be considered
as attractive points, to which the curves of the natural fre-
quencies tend (see points A and B in Fig. 6). Between these
points, the natural frequencies of the original model follow
one of the backbone curve. In the meantime, close to the at-
tractive points, they swap to another backbone curve, where
two adjacent frequencies are close to each other (see for ex-
ample, points C and D in Fig. 6). With the proposed decom-
position method, the pattern in the fluctuation of the natural
frequencies can be identified and visualized.

Recall that the presented workpiece models can be used
for milling and turning operations, as well. In the next sec-
tion, the cutting force is derived for the milling process, and
for the turning process, it can be obtained as its special case.

Fig. 7. Model of the milling process.

4 Milling process
To achieve the stability calculation and to anticipate the

quality of the machined surface, the cutting operation of the
milling process is described.

4.1 Cutting force
The widespread linear cutting force characteristic is ap-

plied, where the cutting force is linearly proportional to the
instantenous chip thickness [41]. It can provide a good esti-
mation for the forced vibration [42] and can suitably describe
the chatter pehonena [4], as well. Note that description of
models for general milling tool can be found in [43], but in
our analysis, we focus on the description of traditional heli-
cal end-mills, only. The radial and the tangential components
of the elementary cutting forces acting on an elementary seg-
ment dz of the jth cutting edge (see Fig. 7) are given as

dFr, j(t) = Krg
(
ϕ j(t,z)

)
h j
(
ϕ j(t,z)

)
dzcosη,

dFt, j(t) = Ktg
(
ϕ j(t,z)

)
h j
(
ϕ j(t,z)

)
dzcosη,

(29)

where Kr and Kt are the radial and the tangential cutting coef-
ficients, respectively. These parameters are usually identified
by several cutting experiments for given cutting parameters
and tool geometry [44]. The screen function is

g(ϕ) =
{

1 if ϕenter < ϕ < ϕexit,
0 otherwise (30)

which tracks whether the jth edge is in contact with the ma-
terial or not in case of radial depth of cut ae (see Fig. 7). The
angular position of the jth cutting edge for constant helix an-
gle and equally distributed teeth is

ϕ j(t,z) = Ωt +
2π( j−1)

Z
− 2πz

Zlp
, (31)
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where Z is the number of the cutting edges, Ω stands for
the spindle speed in [rad/s], lp is the helix pitch and η =
arctanDπ/(Zlp) denotes the helix angle. Also, h

(
ϕ j(t,z)

)
denotes the actual chip thickness, which is the sum of the
stationary hstat

(
ϕ j(t,z)

)
and the dynamic hdyn

(
ϕ j(t,z)

)
chip

thicknesses [4]. The stationary one can be given as the pro-
jection of the feed per tooth fz into the tool tip velocity di-
rection, which translates into

hstat
(
ϕ j(t,z)

)
= fz sinϕ j(t,z) (32)

in case of circular tooth path approximation [2]. It should
be noted that the stationary chip thickness affects only the
forced stationary vibration, and it has no influence on the
stability of the cutting process in case of linear cutting force
function [15]. The dynamic chip thickness relates to the sur-
face regenerative effect of the cutting operation [9], which is
relevant in the stability analysis of the machining process [4].
It reads as

hdyn
(
ϕ j(t,z)

)
=
(
y(e, t)− y(e, t− τ)

)
cosϕ j(t,z), (33)

where y(e, t) denotes the general coordinate that describes
the motion of the workpiece relative to the tool at the contact
point e (see in Fig. 7). Note that the delayed position y(e, t−
τ) represents the vibration copied onto the surface caused by
the preceding cutting edge, where τ = 2π/(ΩZ) denotes the
tooth passing period.

In order to obtain the resultant cutting force, we project
the force components from the local tangential-radial coor-
dinate system into the global x− y coordinate system. Also
note that the SLE computation requires the forced vibration
perpendicular to the surface. This beam model is flexible
only in this direction, so the dFy(t) component is presented
in the next steps. This elementary force components are in-
tegrated along the z coordinate for the axial depth of cut ap
to obtain

Fy(t) =
N

∑
j=1

∫
ap

[
Kt Kr

]
h
(
ϕ j(t,z)

)
g
((

ϕ j(t,z)
))

[
−sinϕ j(t,z) cosϕ j(t,z)

]T dz.

(34)

Note that for certain axial depth of cut values like ap =
lp, 2lp, 3lp, . . ., also called trivial appropriate axial immer-
sions [45, 42], the stationary component of the cutting force
is constant in time (see illustration in Fig. 8.

By means of the above described force model, both the
surface quality prediction and the stability calculation can be
carried out.

4.2 Surface Location Error
In what follows, the calculation steps of SLE induced by

the forced vibration are presented [45]. The machined sur-
face profile is a result by the relative motion of the workpiece

Fig. 8. Cutting force in different axial depth of cuts during one tool
revolution for spindle speed N = 17000 rpm and helix pitch lp = 10
[mm]. Parameters are given in Tab. 2

and the cutting edges. The forced stationary vibration of the
contact point can be determined by means of the direct FRF
H(ω,e) (Eqs. (4) or (24)) according to

y(e, t) = F−1(H(ω,e)φy(ω)
)
, (35)

where φy(ω) denotes the Fourier Transformation of the cut-
ting force (34). The motion of the workpiece relative to the
jth cutting edge is described by means of the superposition of
the rotating edges and the forced stationary vibration y(e, t),
that is

r j(e, t,z) = y(e, t)− D
2

cosϕ j(t,z). (36)

The SLE is determined as the extremum of these in the form

SLE(e,z) = max
t, j

(r j(e, t,z))−
D
2

(up-milling),

SLE(e,z) = min
t, j

(r j(e, t,z))+
D
2

(down-milling).
(37)

As a result, the SLE(e,z) depends not on the tool position
e only, but also on the axial coordinate z of the tool. Con-
sequently, the so-called Maximum Surface Location Error
MSLE(e) parameter is introduced [45], which can be ob-
tained by

MSLE(e) = max
z

(SLE(e,z)). (38)

The described method is capable to forecast the MSLE
values along the tool position for a given set of technologi-
cal parameters. Note that this calculation is based on stable
forced vibration, so it is valid only if the milling operation is
in the chatter-free (stable) domain.

4.3 Stability analysis
In this section, the calculation of stability boundaries

are briefly discussed according to the surface regenerative
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Fig. 9. Stability diagram in the plane of the tool path e and the spin-
dle speed Ω. The red curves show the stability boundaries corre-
sponding different vibration modes provided by the EMFS and the
light red shaded area presents the corresponding unstable domains.

effect, which is based on the method of the so-called Ex-
tended Multi Frequency Solution (EMFS) [11]. The EMFS
is an effective computational algorithm in order to calculate
the stability boundaries. It is based on the real and the imag-
inary parts of the truncated Hill’s infinite determinant. Then,
the stability chart is determined in the plane of the spindle
speed Ω and the tool location e by means of the so-called
Multi-Dimensional Bisection Method [46]. The combina-
tion of MDBM and EMFS is capable to determine the sta-
bility boundaries in a computationally effective way, even if
closed stable or unstable islands appear. Figure 9 shows the
stability chart for parameters presented in Table 1 and 2 con-
sidering that the entire width of the workpiece is machined
(ap = w). It should be noted that this stability diagram does
not show the traditional lobe structure since the vertical axis
is not the axial immersion ap, but the tool position coordi-
nate e. Still, the typical phenomenon, that one sides of the
lobes tend to the natural frequencies or their integer quotients
(ωn/k, k = 1,2, ...) can be observed in Fig. 9

5 Case study
In this section, the previously presented calculation

methods are applied in two different case studies and com-
pared to laboratory tests, for which, peripheral milling tests
of beam-type workpieces are carried out with w = ap. The
technological parameters are shown in Table 1 and 2, the di-
rect FRF is presented in Fig. 4.

5.1 Numerical results
The so-called superchart (see in Figs. 10 and 11) [16,45]

visualizes the stability chart together with the MSLE values
in the plane of the spindle speed N and the tool position co-
ordinate e.

For the test case presented in Fig. 10, the chatter-
free parameter regions (pockets) can be found among the
stability lobes near to the resonant spindle speeds (N ≈

Fig. 10. The superchart with Maximum Surface Location Error and
stability diagram in the plane of the spindle speed and the tool path
for up-milling of Workpiece I; chatter appears within the pink domains.
Parameters: lp = 10 mm; ap = w = 15 mm, v = 3 mm

Fig. 11. The superchart with Maximum Surface Location Error and
stability diagram in the plane of the spindle speed and the tool path for
up-milling of Workpiece II; chatter appears within the pink domains.
Parameters: lp = 10 mm; ap = w = 20 mm, v = 5 mm

15000, 21000, 41000rpm). On the one hand, chatter can be
avoided for the total length of the workpiece. On the other
hand, these regions are usually not recommended from the
viewpoint of the surface errors since significant resonant vi-
brations take place (see Fig. 10). However, it can be observed
that negligible MSLE values are resulted along the spindle
speed and tool position curves belonging to the angular fre-
quencies ωn,1/2 and ωn,2/2.

Figure 11 shows the results of the second test with a
wider workpiece where w = ap = 2lp. Accordingly, the cut-
ting force does not vary in time and no resonance occurs that
would generate large MSLE. In the meantime, however, the
unstable region became larger due to the increased axial im-
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Fig. 12. Schematic representation of superchart with MSLE col-
ormap and stability lobes in the plane of spindle speed and axial
immersion together with the resonant spindle speeds (vertical dotted
lines). The trivial appropriate axial immersions (horizontal dashed
lines) and the non-trivial appropriate axial immersions (slanting black
lines) are given for a single-degree-of-freedom milling model.

mersion.
It is well-known that large resonant stationary vibrations

can occur if one of the natural frequencies is excited by one
of the Fourier components of the cutting force variation. As
a result, considerable MSLE can be generated at resonant
spindle speeds

Ω =
ωn

iZ
, i = 1,2, . . . , (39)

which can be observed at the vertical dotted lines in Fig. 12.
However, for helical cutting tools, there exist so-called trivial
and non-trivial appropriate axial immersions [45, 42], where
no resonant vibrations takes place and negligible MSLE can
be realized even along these ”resonant” vertical lines of the
stability chart. The trivial appropriate axial immersion can
be given by

w = jlp, j ∈ N, (40)

represented by horizontal dashed lines in Fig. 12. Note that
in this case, the cutting edges cover full periods [0, k2π],
thus, they result constant cutting force independently from
the spindle speed Ω. The non-trivial appropriate axial im-
mersion (see the slanting black lines in Fig. 12) can be given
as

w(Ω) = k
Ω

ωn
lpZ, k ∈ N, (41)

for which, no resonant vibrations emerge at the ”resonant”
spindle speeds. This way, we can find low MSLE values for
certain large axial immersions in the stable pockets along the
vertical resonant spindle speed lines.

Table 2. Parameters of the case study [44]

Parameter Symbol Value

Feed per tooth fz 0.05 [mm]

Number of teeth Z 4

Helix pitch lp 10 [mm]

Tool diameter D 8 [mm]

Radial immersion ae 0.4 [mm]

Radial force coeff. Kr 300 ·106
[ N

m2

]
Tang. force coeff. Kr 800 ·106

[ N
m2

]

Fig. 13. Experimental setup

From practical point of view, the favorable cases are
when the ratio of the helix pitch and width of the workpiece
can be expressed as a ratio of two integers:

i
k
=

lp
w
, i,k ∈ N (42)

in order to provide a condition for the number i of the higher
harmonics of the resonant spindle speeds ωn/(iZ) (see in
Fig. 12).

In the case study of Workpiece I in Fig. 10, lp/w = 2/3
and Eq. (42) holds for parameter pairs [i,k] =[2,3], [4,6],
[6,9], ... . This means, that every second (even) resonant
spindle speeds lead to negligible MSLE values (e.g.: ωn,1/2
relates to point A in Fig. 12), while the odd ones create reso-
nant vibrations and large surface errors.

In the case study of Workpiece II in Fig. 11, lp/w =
1/2 and Eq. (42) is hold for parameter pairs [i,k] =[1,2],
[2,4],[3,6], ... , which means that none of the ”resonant”
spindle speeds lead to resonance. This case demonstrate a
special case, where the axial immersion ap is the double of
the helix pitch lp, hence, this situation corresponds to the
trivial appropriate axial immersion which relates to the hori-
zontal red dashed line at w = 2lp in Fig. 12. Thus, the cutting
force is constant, there is no forced vibration and the small
MSLE is determined by the static deformation only.
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Fig. 14. FRF of Workpiece I along the tool position (waterfall dia-
gram) for the first two natural frequencies and mode shapes.

Table 3. Natural frequencies of Workpiece I. before machining (see
Fig. 14 and Fig. 4 at e = 0 [m])

ωn,1 ωn,2

calculated 1142 [Hz] 3155 [Hz]

measured 1099 [Hz] 2914 [Hz]

relative err. 3,77 % 7.64 %

5.2 Measurement results
Measurements were performed both on Workpiece I and

II fixed as a clamped-clamped beam in the NCT EmR-610Ms
3 axis CNC milling machine. The photo of the experimental
setup is presented in Fig. 13. The corresponding parame-
ters are presented in Table 1 and 2, which were identified by
modal analysis and cutting tests [44, 41].

The FRF along the tool path for Workpiece I before
the milling operation was measured by modal testing where
the workpiece was excited at different positions. The first
two natural frequencies and the corresponding mode shapes
are visualized in a Pulse B&K data acquisition system, as
shown in Fig. 14. Note that in this case, the natural fre-
quencies do not change along the plate length, since there
is no changing geometry. The predicted natural frequencies
of the equivalent model can be seen from Fig. 4 at e = 0 m,
and they are compared to the measured values in Table 3. It
should be noted that there was a slight difference between
the measured and the predicted natural frequencies (3,77 %
and 7.64%). The major effect of the discrepancies can be
the ideal modeling of the clamped-clamped ends, which may
be too strict condition in practice. For accurate modeling
of the clampings, it could be replaced by flexibel spring-
damper elements, which parameters can be tuned. There is a
mild asymmetry in the mode shapes, which also indicates not
symmetrical clamping conditions. For our investigation, this
difference (< 8%) is acceptable, because, only to the change
of the workpiece dynamics is in the focus of the paper. Thus,
the effects and description of the optimized constraints are
out of scope of this paper, although there exist several mod-

Fig. 15. Measured surface profile at along the workpiece (a) and
scaled photo of the surface contour (b) in the function of the tool
position for spindle speed N = 17000 rpm; parameters from Table
1 and 2 for Workpiece I.

els in the literature [31, 27].
The first measurement was performed for Workpiece

I at N = 17000 rpm, which is close to the first resonant
spindle speed belonging to the first natural frequency of the
workpiece. Fig. 15 shows the scaled photo of the surface
contour of the workpiece and its laser scanned profile (col-
ored curves) together with the theoretically predicted val-
ues (black curve). The detailed surface profile measurement
method is presented in [47]. It can be seen, that the pattern
of the large MSLE along the length of the workpiece has
similar form to the respective first mode shape. In this test,
no chatter marks were observed. Similar shape were pre-
dicted in Fig. 10 based on the numerical analysis of the cor-
responding mechanical model, but the asymmetry resulted
from the different clampings was not captured by the model.
As Fig. 15 shows, there is a slight difference between the
measured and predicted surface profile (black curve). Since
the amplitude of the resulting vibration, consequently, the
magnitude of surface errors are depending on the ”distance”
from the resonant spindle speed, a slight deviation in the nat-
ural frequencies may cause this discrepancy in the magnitude
of the surface errors.

The spindle speed N = 22000 rpm was also tested which
is near to the second resonant spindle speed belonging to
the second natural frequency. In this case, only negligible
MSLE values were measured as predicted in Eq. (42) for [i,k]
=[2,3]. However, chatter marks can be observed in regions
according to the second mode shape shown in Fig. 16; this is
also presented by the high fluctuations of the measured sur-
face profile. The reasons for this could be that the domain of
the two unstable islands are underestimated and the line of
the selected spindle speed crosses them in the chart Fig. 10.

During the measurement performed for Workpiece II,
we find chatter marks along the whole workpiece for all the
tested spindle speeds as predicted by the numerical results
in Fig. 11. The spectrogram of a typical vibration signal is
shown in Fig. 17, which represents that the varying chatter
frequency along the tool path relates to the fluctuated natural
frequency. Note that, there is no one single dominant chat-
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Fig. 16. Photo of the chatter marks (a) and the laser scanned sur-
face profile (b) for Workpiece I at spindle speed N = 22000 rpm;
parameters from Table 1 and 2.

Fig. 17. Typical spectrum for a fully unstable milling case at spindle
speed N = 21660 rpm.

ter frequencies, but multiple ones, which is typical in highly
interrupted milling [48]. As an example, the machined sur-
face at N = 17000 rpm is presented in Fig. 18, which shows
chatter marks along the full length of the tool path. Note that
negligible shape deviation is detected, because trivial appro-
priate axial immersion is applied (see Eq. (40) for ap = 2lp
).

All the results of the performed measurements are in
correlation with the theoretical predictions. The measure-
ments also show that the varying dynamical properties has
relevant influence on the surface errors and the stability prop-
erties in case of flexible workpieces. The differences can
be explained by the non-ideal and non-symmetric clampings,
which may lead to change in natural frequencies, asymmetry
in mode shapes and consequently, in surface errors.

All the above presented steps of MSLE and stability
computation can be performed in case of more complex ge-
ometry. However, in a general situation, analytical solution
may not exist, but from a detailed FE model one can com-
pute the FRF along the tool path. With this extended FRF,
the stability chart and the surface quality can be predicted
at each step along the tool path. Based on these methodol-
ogy, the cutting technology of the milling operations can be
optimized in order to achieve efficient production and reach
acceptable surface errors.

Fig. 18. Chatter marks on the milled surface for Workpiece II at N =
17000 rpm; parameters from Table 1 and 2.

6 Conclusions
In this contribution, it is shown how the change of the

Frequency Response Function affect the stability and sur-
face errors of the milling operations. To demonstrate this,
the workpiece is considered as a flexible beam, moreover,
the stiffness variation caused by the material removal and the
change in the excitation point (tool position) are also taken
into consideration. First, finite element formulation is de-
rived for the direct Frequency Response Function, then its
parameters are validated through an analytical closed form
solution (called distributed transfer function method). The
pattern of the natural frequency fluctuation caused by the
material removal is explained through extreme cross-section
reduction, for which, analytical solution is provided in the
limit case.

The stability boundaries together with the MSLE values
are presented in the superchart as a function of spindle speed
and tool position.

The case studies show that the chatter-free parameter do-
mains are located at the resonant spindle speeds. It is also
shown that the Maximum Surface Location Errors can be
significant at these spindle speeds. However, if the trivial
or the non-trivial appropriate axial immersions are applied,
then good surface quality can be achieved even for reso-
nant spindle speeds. In this sense, the results of this paper
may help understanding the connections between the mode
shapes/natural frequencies and the location of the unstable
areas and surface errors. The numerical and the experimental
case studies show agreement, which validates the theoretical
predictions.
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list of table captions:
Table 1. Parameters of the milled workpieces (Work-

piece I. and II.)
Table 2. Parameters of the case study [44]
Table 3. Natural frequencies of Workpiece I. before ma-

chining (see Fig. 14 and Fig. 4 at e = 0 [m])
list of figure captions:
Fig. 1. Schematic figure of the applied beam-type work-

piece considering the material removal for milling (a) and
turning (b) processes.

Fig. 2. Relative error of the natural frequencies as a
function of the number of elements at e = L/2. Parameters
are defined in Table 1 for Workpiece I.

Fig. 3. The convergence of the relative error in the
function of considered mode number for the different fre-
quency domains [0, ωmax]. Parameters are defined in Table 1
for Workpiece I.

Fig. 4. Direct FRF of the workpiece at the actual tool
position, where the thickness of the plate was reduced by
16.7%. The amplitude and the natural frequencies are de-
noted by colormap and dashed black curves, respectively.
Parameters are presented for Workpiece I. in Table 1.

Fig. 5. Characteristics of the dimensionless natural fre-
quencies as a function of the tool position for different cross-
section removal rate.

Fig. 6. Decomposition of the beam model; black curves
represents natural frequencies in case of 85% cross sec-
tion reduction, while blue and red dashed curves represent
the natural frequencies of cross section reduction tending to
100%.

Fig. 7. Model of the milling process.
Fig. 8. Cutting force in different axial depth of cuts

during one tool revolution for spindle speed N = 17000 rpm
and helix pitch lp = 10 [mm]. Parameters are given in Tab. 2

Fig. 9. Stability diagram in the plane of the tool path
e and the spindle speed Ω. The red curves show the stabil-
ity boundaries corresponding different vibration modes pro-
vided by the EMFS and the light red shaded area presents the
corresponding unstable domains.

Fig. 10. The superchart with Maximum Surface Loca-
tion Error and stability diagram in the plane of the spindle
speed and the tool path for up-milling of Workpiece I; chat-
ter appears within the pink domains. Parameters: lp = 10
mm; ap = w = 15 mm, v = 3 mm

Fig. 11. The superchart with Maximum Surface Loca-
tion Error and stability diagram in the plane of the spindle
speed and the tool path for up-milling of Workpiece II; chat-
ter appears within the pink domains. Parameters: lp = 10
mm; ap = w = 20 mm, v = 5 mm
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Fig. 12. Schematic representation of superchart with
MSLE colormap and stability lobes in the plane of spindle
speed and axial immersion together with the resonant spin-
dle speeds (vertical dotted lines). The trivial appropriate ax-
ial immersions (horizontal dashed lines) and the non-trivial
appropriate axial immersions (slanting black lines) are given
for a single-degree-of-freedom milling model.

Fig. 13. Experimental setup
Fig. 14. FRF of Workpiece I along the tool position

(waterfall diagram) for the first two natural frequencies and
mode shapes.

Fig. 15. Measured surface profile at along the workpiece
(a) and scaled photo of the surface contour (b) in the func-
tion of the tool position for spindle speed N = 17000 rpm;
parameters from Table 1 and 2 for Workpiece I.

Fig. 16. Photo of the chatter marks (a) and the laser
scanned surface profile (b) for Workpiece I at spindle speed
N = 22000 rpm; parameters from Table 1 and 2.

Fig. 17. Typical spectrum for a fully unstable milling
case at spindle speed N = 21660 rpm.

Fig. 18. Chatter marks on the milled surface for Work-
piece II at N = 17000 rpm; parameters from Table 1 and 2.
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