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Abstract Stabilization of a pinned pendulum about its
upright position via a reaction wheel is considered, where
the pendulum’s angular position is measured by a single
accelerometer attached directly to the pendulum. The control
policy is modeled as a simple PD controller and differ-
ent feedback mechanisms are investigated. It is shown that
depending on the modeling concepts, the governing equa-
tions can be a retarded functional differential equation or
neutral functional differential equation or even advanced
functional differential equation. These types of equations
have radically different stability properties. In the retarded
and the neutral case the system can be stabilized, but the
advanced equations are always unstable with infinitely many
unstable characteristic roots. It is shown that slight model-
ing differences lead to significant qualitative change in the
behavior of the system, which is demonstrated by means of
the stability diagrams for the differentmodels. It is concluded
that digital effects, such as sampling, stabilizes the system
independently on the modeling details.

Keywords Feedback delay · Accelerometer · Functional
differential equations · Semi-discretization · D-subdivision
method · Stabilization

B Tamas Insperger
insperger@mm.bme.hu

Balazs A. Kovacs
balazs.kovacs@mm.bme.hu

1 Department of Applied Mechanics, Budapest University of
Technology and Economics and MTA-BME Lendület Human
Balancing Research Group, Budapest, Hungary

1 Introduction

Functional differential equations (FDEs) describes systems,
where the rate of change of the state depends on the state at
deviating arguments. Typically these equations can be cat-
egorized into three groups [1,2]. (1) If the rate of change
of the state depends on the past state of the system, then the
corresponding mathematical model is a retarded functional
differential equation (RFDE). (2) If the rate of change of
the state depends on the past values of both the state and
its rate of change then the governing equation is called neu-
tral functional differential equation (NFDE). (3) If the rate
of change of the state depends on the past values of higher
derivatives of the state then the system is described by an
advanced functional differential equations (AFDEs). A pos-
sible representation of these equations is

ẋ(t) = f(x(t), x(t − τ), ẋ(t − τ), ẍ(t − τ)), (1)

where x ∈ R
n is the state variable and τ is the time delay.

While retarded and neutral FDEs are often used to model
different phenomena in engineering and physics, advanced
FDEs rarely show up in engineering applications due to their
inverted causality, which can be demonstrated by the follow-
ing example. Consider the simple scalar AFDE

ẋ(t) = ẍ(t − τ). (2)

Here, the change of rate of the state (say velocity) at time
instant t depends on the second derivate of the state (say
acceleration) at time instant t−τ . By a time-shift transforma-
tion t̃ = t − τ and by introducing a new variable z(t) = ẋ(t)
the equation can be written in the following form

z′(t̃) = z(t̃ + τ), (3)
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where ′ stands for derivation with respect to t̃ . Thus, the rate
of change of state is determined by the future values of the
state, which explains the terminology advanced.

While stability properties of RFDEs and NFDEs depend
on the system and control parameters, AFDEs are always
unstable with infinitely many unstable characteristic roots
[3,4]. Therefore real physical problems are usually described
by RFDEs or NFDEs (see, e.g., Xu et al. [5], [6]). For
instance, if the displacement and the velocity is fed back
with a delay in a second-order system, then the govern-
ing equation is a RFDE [7,8]. If the acceleration is also
fed back with delay, then one obtain a NFDE. In the case
when the jerk (the first derivative of the acceleration) is fed
back with delay, then the governing equation becomes an
AFDE.

In this paper, a balancing task is modelled using differ-
ent concepts resulting in a variety of governing equations
involving RFDEs, NFDEs and AFDEs. The model under
investigation is originated from the model used in [9].
Namely, it is assumed that the angular position of the bal-
anced body is measured by an accelerometer. However, as
opposed to the model in [9], where a static model of the
accelerometer was used, here we model the accelerome-
ter as an oscillator. Both continuous-time (analogue) and
discrete-time (digital) feedbackmechanisms are investigated
for different sampling concepts and it is shown that discrete-
time sampling has major effect on the stability properties.
The different models are compared by means of stability
diagrams.

2 Mechanical models

A simple mechanical model of balancing tasks is shown in
Fig. 1. The body to be balanced is pinned at point O and a
control torque Q is provided by a reaction wheel (also called
inertial wheel) connected to the body at point B. The reaction
wheel is driven by a DC motor, whose torque is assumed to
be controlled directly. Due to the action-reaction effect, this
mechanism can be used to apply a control torque on the body
(see, e.g., [10]). The angular position ϕ of the body versus
vertical is measured by an accelerometer, which is modelled
as a spring-mass system, attached to the body at point A. The
output signal y of the accelerometer, which is used as input
in the controller, is assumed to be proportional to the relative
displacement ξ of the block of massm0 in the piezo-ceramic
crystal such that

y = Kaξ, (4)

where Ka [V/m] is the characteristic constant of the acc-
elerometer. The control mechanism is realized with a simple
PD controller. It is assumed that the angular position and the

Fig. 1 Mechanical model: the pinned body, the accelerometer and the
reaction wheel

angular velocity of the reaction wheel is not controlled. The
linearized equations of motion reads

(
Jo + m0a

2
)

ϕ̈(t) + m0aξ̈ (t)

− (mgH − m0ga) ϕ(t) − m0gξ(t) = Q(t), (5)

m0aϕ̈(t) + m0ξ̈ (t) + k0ξ̇ (t) − m0gϕ(t) + s0ξ(t) = 0,
(6)

where m is the mass of the body, H is the distance between
the center of gravity C and the pivot point O , Jo is the
mass moment of inertia with respect to the axis o normal
to the plane of the figure through point O of the pendu-
lum, m0, s0 and k0 are the modal mass, the stiffness, and
the damping parameters of the accelerometer and a is the
distance between the suspension point O and the accelerom-
eter. The parameters of the body are fixed to H = 0.2 m,
m = 0.5 kg and Jo = 0.2 kgm2. The modal mass and stiff-
ness parameters of the accelerometer are taken from [11], as
m0 = 9.65 × 10−7 kg and s0 = 141 N/m, while the damp-
ing parameter is set to k0 = 0.01 Ns/m. The parameters m,
H , Jo, m0, s0 and k0 are fixed during the study, while the
different values of a are investigated.

The control torque Q is calculated using the output y
of the accelerometer according to the PD feedback scheme
Q = Py + Dẏ, where P and D are the proportional and the
derivative control gains. The idea behind this feedback is that,
in case of a fixed position ϕ ≡ ϕ∗ with ϕ∗ �= 0 and |ϕ∗| being
small, the displacement ξ and therefore the output y are pro-
portional to the angular position ϕ. Four different concepts
are considered for the calculation of the control torque Q.
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(C1) Real-time analogue control:

Q(t) = P y(t) + D ẏ(t). (7)

(C2) Analogue control with a constant feedback delay τ :

Q(t) = P y(t − τ) + D ẏ(t − τ). (8)

(C3) Discrete-time control with sampling period h and with
feedback delay:

Q(t) = P y(t j−r ) + D ẏ(t j−r ), t ∈ [t j , t j+1),

t j = jh, j ∈ Z
+. (9)

Here r ∈ N is the delay parameter and τ = rh is the
feedback delay.

(C4) Discrete-time control with numerically calculated der-
ivative term:

Q(t) = P y(t j−r ) + D
y(t j−r ) − y(t j−r−1)

h
,

t ∈ [t j , t j+1),

t j = jh, j ∈ Z
+. (10)

The fact that the characteristic time constant of the
accelerometer (1/

√
s0/m0) is smaller by a factor of 5000

than that of the pinned body (1/
√
mgH/Jo) implies that

the dynamic effect of the accelerometer can be neglected.
Based on this concept, we consider four different models by
neglecting terms involving the dynamic parameters of the
accelerometer.

(M1) In a quasi-static model, we assume that all the terms
involvingm0 and k0 are negligible except for the static
term m0gϕ(t) in Eq. (6). In this case Eq. (5) can be
simplified to

Joϕ̈(t) − mgHϕ(t) = Q(t), (11)

while Eq. (6) gives

ξ(t) = m0g

s0
ϕ(t). (12)

This model with control concepts C1, C2, C3 and C4
gives respectively the models 1.0, 1.1, 1.2 and 1.3
analyzed in [9].

(M2) In a semi-quasi-static model, we assume that again all
the terms involving m0 and k0 are negligible except
for two terms, namely, the static termm0gϕ(t) and the
dynamic term m0aϕ̈(t) in Eq. (6). The corresponding
equation of motion is the same as (11), but the dis-
placement ξ can now be given as a linear combination

of the angular displacement and angular acceleration
as

ξ(t) = m0g

s0
ϕ(t) − m0a

s0
ϕ̈(t). (13)

This model gives cases 2.0, 2.1, 2.2 and 2.3 in [9]. The
combination of model M2 with control force models
C2andC3 results in anAFDEand in anNFDE, respec-
tively. For more details on these models, see [9]. Note
that if a = 0 then models M1 and M2 are identical.

(M3) An extension ofmodelM2 is that only the termm0ξ̈ (t)
is neglected in Eq. (6), and the term k0ξ̇ (t) is left
unchanged. In this case the system is governed by Eq.
(11) together with

m0aϕ̈(t) + k0ξ̇ (t) − m0gϕ(t) + s0ξ(t) = 0, (14)

This model corresponds to a 1.5-degree-of-freedom
dynamical system, since only the first derivative of the
state variable ξ(t) shows up in the governing equa-
tions. Although the validity of this model might be
questionable, it provides a transition between model
M2 and model M4 with some interesting features.

(M4) No terms are neglected in Eqs. (5) and (6). This model
corresponds to a 2-degree-of-freedom dynamical sys-
tem with generalized coordinates ϕ and ξ .

Models M1 and M2 were already analyzed in details in
[9]. Here, we extend the analysis by models M3 and M4,
which together with the four models of the control force
give eight different cases. Different models are named by
combining the above notations. For instance, M3C1 refers to
mechanical model M3 with control force model C1.

3 Analysis of the different models

In this section all combinations of themechanicalmodels and
control concepts listed in Sect. 2 are discussed and their sta-
bility properties are investigated by means of stability charts.
The equations of motion is written in the state space form

ẋ(t) = Ax(t) + BQ(t), (15)

where the state variable x and the matrices A and B is given
for the individual model combinations.

3.1 Mechanical model M1

In this model, the system is governed by (15) with

x =
[
ϕ

ϕ̇

]
, A =

[
0 1
b 0

]
, B =

[
0
B

]
, (16)
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where B = 1/Jo and

b = mgH

Jo
= 4.905

1

s2
(17)

is the system parameter. The output signal of the acceleration
can be given using (4) and (12) as

y = Kam0g

s0
ϕ. (18)

SincemodelM1 is a special case of modelM2, the properties
associatedwith different controlmodels are not detailed here.

3.2 Mechanical model M2

This model is governed by (15) with A and B given in (16)
as in model M1, but here the output of the acceleration is
determined by (4) and (13), which give

y = Kam0g

s0
ϕ − Kam0a

s0
ϕ̈. (19)

The special case a = 0 gives model M1.

3.2.1 Model M2C1

In model M2C1, the acceleration signal y and its derivative
ẏ are fed back without any delay. Consequently, the control
torque can be given as

Q(t) = K(x(t) − εẍ(t)), (20)

where

ε = a

g
(21)

is a parameter proportional to distance a between the sus-
pension point and the accelerometer and

K = [−p −d
]

(22)

with

p = Kam0g

s0
P, d = Kam0g

s0
D. (23)

The characteristic equation of the system can be written in
the form

D(λ) = −εdλ3 + (1 − εp)λ2 + dλ + (p − b) = 0. (24)

If ε �= 0, then the system is unstable independently of the
other parameters. If ε = 0 (this case give model M1C1),
then the system is asymptotically stable if and only d > 0
and p > b.

3.2.2 Model M2C2

In case of model M2C2, the delay of the feedback loop is
also involved into the model, and the control torque has the
form

Q(t) = K(x(t − τ) − εẍ(t − τ)), (25)

The characteristic equation in this case reads

D(λ) = − εde−λτ λ3 + (1 − εpe−λτ )λ2 + de−λτ λ

+ (pe−λτ − b) = 0. (26)

The case ε = 0 gives model M1C2, which is the basic
equation for balancing problems in the presence of feed-
back delay [12]. The stability regions in the plane (p, d)

are bounded by the line p = b and the parametric curve

p = (ω2 + b) cosωτ, d = (ω2 + b)

ω
sinωτ, (27)

with ω ∈ R
+. The corresponding stability charts can be seen

in Fig. 2 with τ = 0.2 s. It is known that this system is always
unstable if the system parameter b is larger than the critical
value bcrit = 2/τ 2 (see [13]).

If ε �= 0 (the case of M2C2), then the highest derivative
appears with a delayed argument, thus the governing equa-
tion is an autonomous AFDE. Consequently this system is
always unstable with infinitely many unstable roots (number
of unstable roots, NUR = ∞), if εd �= 0.

3.2.3 Model M2C3

In engineering applications, feedback loops are typically
implemented using digital controllers [14–16]. In this case,
the system is governed by (15)with (9). Due to the piecewise-
constant forcing, this system can be solved as an ODE over a
sampling interval [t j , t j+1) and, if r ≥ 1, afinite-dimensional
discrete map can be constructed in the form

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x j+1

ẍ j+1

Q j

Q j−1

...

Q j−r+1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

P 02×2 02×1 . . . 02×1 RB

A2P 02×2 02×1 . . . 02×1 SB

K −εK 0 . . . 0 0

01×2 01×2 1 0 0

...
...

. . .
...

01×2 01×2 0 . . . 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
�M2C3

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x j

ẍ j

Q j−1

Q j−2

...

Q j−r

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(28)

123



698 B. A. Kovacs, T. Insperger

Fig. 2 Stability boundaries and
the number of unstable roots
(NUR) for M1C2

Fig. 3 Stability boundaries for
M1C3 (ε = 0) and M2C3(
ε = H

2g

)
with τ = 0.2 s

where x j = x(t j ), ẍ j = ẍ(t j ), Q j = Q(t j ),

P = eAh, R =
∫ h

0
eA(h−s)ds,

S =
∫ h

0
A2eA(h−s)ds + A, (29)

and 0n×m is a n × m zero matrix with n,m ∈ Z
+. This

discrete map corresponds to the semidiscretization of model
M2C2 [12]. The stability of the system can be defined by
the eigenvalues of the monodromy matrix �M2C3 in (28).
The system is asymptotically stable if all the eigenvalues
are in modulus less than one. Some sample stability charts
are presented in Fig. 3 for different ε, and for different r
parameters.

3.2.4 Model M2C4

In this case, the system is governed by (15) with (10).
Similarly to model M2C3, the solution can be given over
a sampling interval [t j , t j+1), and, if r ≥ 1, a finite-
dimensional discrete map can be constructed in the form

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x j+1

ẍ j+1

Q j

Q j−1

...

Q j−r

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

P 02×2 02×1 . . . RBK1 RBK2

A2P 02×2 02×1 . . . SBK1 SBK2

C2 −εC2 0 . . . 0 0

01×2 01×2 1 . . . 0 0
...

. . .
...

01×2 01×2 0 . . . 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
�M2C4⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x j

ẍ j

Q j−1

Q j−2

...

Q j−r−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (30)

where Q j = ϕ(t j ) − εϕ̈(t j ), P,R,S are defined in (29) and

C2 = [
1 0

]
, K1 = − p + d

h
, K2 = d

h
. (31)

123



Retarded, neutral and advanced differential equation models for balancing using an… 699

Fig. 4 Stability boundaries for
M1C4 (ε = 0) and M2C4(
ε = H

2g

)
with τ = 0.2 s

The stability of the system can be defined by the eigenval-
ues of the monodromy matrix �M2C4 in (30). Some sample
stability charts are presented in Fig. 4 for different ε, and for
different r parameters.

3.3 Mechanical model M3

Equation (11) with (14) can be written in the state space form
of (15) with

x =
⎡
⎢⎣

ϕ

ϕ̇

ξ

⎤
⎥⎦ , A =

⎡
⎢⎣

0 1 0

b 0 0
m0(g−ab)

k0
0 − s0

k0

⎤
⎥⎦ ,

B =
⎡
⎢⎣

0

B

−m0aB
k0

⎤
⎥⎦ . (32)

This model corresponds to a 1.5-degree-of-freedom dynam-
ical system. The output of the accelerometer is given by (4),
which is used as input for the different control torquemodels.

3.3.1 Model M3C1

Equation (15) with (32), (7) and (4) yields the characteristic
equation of form

D(λ) =
(
1 − m0aBd

k0

)
λ3 +

(
s0
k0

− m0aBp

k0

)
λ2

+
(
m0gBd

k0
− b

)
λ +

(
m0gBp

k0
− b

s0
k0

)
= 0.

(33)

It can easily be see that this system is unstable for any control
gain parameters p and d.

3.3.2 Model M3C2

Equation (15)with (32), (8) and (4) gives a systemofNFDEs.
The associated characteristic equation reads

D(λ) =
(
1 − m0aBd

k0
e−λτ

)
λ3 +

(
s0
k0

− m0aBp

k0
e−λτ

)
λ2

+
(
m0gBd

k0
e−λτ − b

)
λ

+
(
m0gBp

k0
e−λτ − b

s0
k0

)
= 0. (34)

The so-called D-curves, which separate the regions with dif-
ferent NUR in the plane (p, d), are the line p = Hms0/(m0)

and the parametric curve

p = (ω2 + b)(s0 cosωτ − k0ω sinωτ)

Bm0(g + aω2)
, (35)

d = (ω2 + b)(k0ω cosωτ + s0 sinωτ)

Bm0ω(g + aω2)
(36)

with ω ∈ R
+. Note that this system is always unstable with

NUR= ∞ if 1 < |m0aBd/k0|. If 1 > |m0aBd/k0|, then
the system can be stabilized by a properly chosen pair (p, d).
A sample stability chart can be seen in Fig. 5, which shows
the D-curves for ε = a/g = 3 × 10−5 1/s and for τ =
0.2 s. It can be shown that the system has infinitely many
unstable roots if d > |k0 Jo/(m0a)| and it has finite NUR if
d < |k0 Jo/(m0a)|.

3.3.3 Model M3C3

Piecewise solution of Eq. (15) with (32), (9) and (4) over a
sampling period gives the finite dimensional discrete map
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Fig. 5 D-curves and the NURs
for M3C2 with τ = 0.2 s

Fig. 6 Stability boundaries for
M3C3 with τ = 0.2 s

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x j+1

ẋ j+1

Q j

Q j−1

...

Q j−r+1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

P 03×3 03×1 . . . 03×1 RB

AP 03×3 03×1 . . . 03×1 TB

−pC3 −dC3 0 . . . 0 0

01×3 01×3 1 . . . 0 0

...
...

. . .
...

01×3 01×3 0 . . . 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
�M3C3

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x j

ẋ j

Q j−1

Q j−2

...

Q j−r

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(37)

where P and R are defined in (29) with (32) and

T =
∫ h

0
AeA(h−s)ds + I, C3 = [

0 0 1
]
. (38)

The stability of the system is determined by the eigenval-
ues of the monodromy matrix �M3C3 in (37). The system is
asymptotically stable if all the eigenvalues are in modulus
less than one. Some sample stability charts are presented in
Fig. 6 for different ε and for different r parameters.

Model M3C4

Equation (15)with (32), (10) and r ≥ 1 generates the discrete
map

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x j+1

Q j

Q j−1

...

Q j−r

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

P 03×1 . . . RBK1 RBK2

C3 0 . . . 0 0

01×3 1 . . . 0 0

...
. . .

...

01×3 0 . . . 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
�M3C4

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x j

Q j−1

Q j−2

...

Q j−r−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(39)

where P and R are defined in (29) with (32), and K1 and K2

are defined in (31). The stability of the system is determined
by the eigenvalues of the monodromy matrix �M3C4 in (39).
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Fig. 7 Stability boundaries for
M3C4 with τ = 0.2 s

The stability charts are presented on Fig. 7 for different ε and
for different r parameters.

3.4 Mechanical model M4

The full dynamics of the system shown in Fig. 1 can be
modeled as a 2-degree-of-freedom system. Equations (5) and
(6) can be written in the form of (15) with

x =

⎡
⎢⎢⎣

ϕ

ξ

ϕ̇

ξ̇

⎤
⎥⎥⎦ , B =

⎡
⎢⎢⎣

0
0
B

−m0aB

⎤
⎥⎥⎦ , (40)

and

A =

⎡
⎢⎢⎣

0 0 1 0
0 0 0 1
b B(gm0 + as0) 0 aBk0

(g − ab)m0 −aBm0(gm0 + as0) − s0 0 −k0(a2Bm0 + 1)

⎤
⎥⎥⎦ . (41)

3.4.1 Model M4C1

Equation (15) with (40–41) and (7) with (4) yields the char-
acteristic equation of form

D(λ) = λ4 +
(
k0
m0

+ aBd + a2Bk0

)
λ3

+
(
aBgm0 + a2Bs0 + s0

m0
+ aBp − b

)
λ2

−
(
aBgk0 + Bgd + b

k0
m0

)
λ

−
(
Bgp + Bg2m0 + aBgs0 + b

s0
m0

)
= 0. (42)

It can be shown using the Routh–Hurwitz criteria that this
systemcannot be stabilizedwith any control parameters, sim-
ilarly to model M3C1.

3.4.2 Model M4C2

When the feedback delay is also involved into the model,
then Eq. (15) with (40–41) and (8) with (4) gives a sys-
tem of RFDEs. The associated characteristic equation has the
form

D(λ) = λ4 +
(
k0
m0

+ aBde−λτ + a2Bk0

)
λ3

+
(
aBgm0 + a2Bs0 + s0

m0
+ aBpe−λτ − b

)
λ2

−
(
aBgk0 + Bgde−λτ + b

k0
m0

)
λ

−
(
Bgpe−λτ + Bg2m0 + aBgs0 + b

s0
m0

)
= 0.

(43)

The D-curves separating the regions with different NUR
in the plane (p, d) are the line p = mHs0/m0 +m0g + as0
and the parametric curve
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Fig. 8 Stability boundaries and
the number of unstable roots
(NUR) for M3C2 with
τ = 0.2 s, α0 = 5 Hz

Fig. 9 Stability boundaries for
M4C3 with τ = 0.2 s

p =
(
ω4 + ω2

(
s0 − b + agm0 + Ba2s0

) + b s0
m0

+ gm0 + as0
)
cosωτ − k0ω

(
b
m0

+ aBg +
(

1
m0

+ a2B
)

ω2
)
sinωτ

B(g + aω2)
,

(44)

d =
(
ω4 + ω2

(
s0 − b + agm0 + Ba2s0

) + b s0
m0

+ gm0 + as0
)
sinωτ − k0ω

(
b
m0

+ aBg +
(

1
m0

+ a2B
)

ω2
)
cosωτ

Bω(g + aω2)

(45)

with ω ∈ R
+. Stability properties of the system depends on

the dynamic properties of the accelerometer, which can be
characterized by its natural frequency α0 = √

s0/m0/(2π).
For large α0, the system is unstable for any control gain
parameters with finite NUR. The actual parameters of the
accelerometer taken from [11] gives α0 = 2 kHz, for which
modelM4C2 is unstable. As α0 is decreased, the NUR is also
decreased, but the system remains unstable for any small α0.
A sample stability chart with the NURs can be seen in Fig. 8
for ε = H

2g , τ = 0.2 s, and α0 = 5 Hz. It can be seen that the
D-curves goes through the origin (p, d) = (0, 0) and there
is no region with zero NUR. Here, the NUR was determined
using Stepan’s formula [17]. For more technical details on
these formulas see [18] and [19].

3.4.3 Model M4C3

Piecewise solution ofEq. (15)with (40), (41) and (9)with r ≥
1 and (4) over a sampling period gives the finite dimensional
discrete map

⎡
⎢⎢⎢⎢⎢⎣

x j+1

Q j

Q j−1
...

Q j−r+1

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

P 04×1 . . . 04×1 RB
C4 0 . . . 0 0
01×4 1 0 0

...
. . .

...

01×4 0 . . . 1 0

⎤
⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
�M4C3

⎡
⎢⎢⎢⎢⎢⎣

x j

Q j−1

Q j−2
...

Q j−r

⎤
⎥⎥⎥⎥⎥⎦

, (46)
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Fig. 10 Stability boundaries
for M4C4 with τ = 0.2 s

Fig. 11 Stability diagrams of the different models
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Fig. 12 Time histories for models M3C3, M3C4, M4C3, and M4C4 for p = 5.1, d = 1.7, r = 5 and initial condition ϕ(ϑ) = 0 for ϑ ∈ [−τ, 0)
and ϕ(0) = 0.01 rad

where P and R are defined in (29) with (40) and (41) and

C4 = [
0 −p 0 −d

]
. (47)

The stability of the system can be defined by the eigenval-
ues of the monodromy matrix�M4C3. Some sample stability
charts are presented in Fig. 9 for different ε, and for different
r parameters.

3.4.4 Model M4C4

Equation (15) with (40), (41) and (10) with r ≥ 1 and (4)
induces the discrete map

⎡
⎢⎢⎢⎢⎢⎣

x j+1

Q j

Q j−1
...

Q j−r

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

P 04×1 . . . RBK1 RBK2

C4 0 . . . 0 0
01×4 1 . . . 0 0

...
. . .

...

01×4 0 . . . 1 0

⎤
⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
�M4C4

⎡
⎢⎢⎢⎢⎢⎣

x j

Q j−1

Q j−2
...

Q j−r−1

⎤
⎥⎥⎥⎥⎥⎦

,

(48)

where P,R are defined in (29) with (40) and (41) and K1 and
K2 are given in (31) andC4 = [

0 1 0 0
]
. The stability of the

system is determined by the eigenvalues of the monodromy
matrix�M4C4. Some stability charts are presented on Fig. 10
for different ε, and for different r parameters.

4 Comparison of the different models

Four different mechanical models (M1–M4) subjected to
four different control concepts (C1–C4) were analyzed for
the balancing task shown in Fig. 1. The main differences
in the mechanical models is the model of the accelerom-
eter, which is used to measure the angular position of the
body to be balanced. The stability properties of the different
modeling concepts were illustrated via stability diagrams in
the plane of control parameters. A summary of the results
are shown in Fig. 11. Each panel corresponds to one of the
sixteen models. Models M1C1–M1C4 and M2C1–M2C4
were already investigated in [9]. An interesting feature is
that a slight difference in the modeling concepts changes
the dynamic behavior of the model radically. While model
M2C1 cannot be stabilized for any control gain parameters
and model M2C2 is unstable with infinitely many unsta-
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ble characteristic roots, the introduction of sampling effect
described by models M2C3 andM2C4 stabilizes the system.
The main contribution of this paper is that the mechanical
model is extended with a more detailed dynamic model of
the accelerometer.

Models M4C1–M4C4 describes the accelerometer as an
oscillator, while models M3C1–M3C4 neglects some terms
in the modeling equations. Omission of further terms yields
models M2C1–M2C4 and M1C1–M1C4. These models set
up an interesting transition shown by the vertical columns in
Fig. 11. The transition M1C1–M2C1–M3C1–M4C1 shows
that, for control concept model C1, when the feedback delay
is neglected (τ = 0), only model M1 can be stabilized and
models M2,M3 andM4 give unstable system for any control
gain parameters.

An interesting transition between the models is given
by the series M1C2–M2C2–M3C2–M4C2, which results in
RFDEs,AFDEs andNFDEs of qualitatively different asymp-
totic properties. Model M1C2 is described by an RFDE,
which can be stabilized by properly chosen control gains.
Model M2C2 is governed by an AFDE, which is associated
with infinitely many unstable characteristic roots indepen-
dently on the control parameters. Model M3C2 is governed
by an NFDE, which can be stabilized if the derivative con-
trol gain is less than a critical value otherwise the system is
unstable with infinitely many unstable characteristic roots.
Model M4C2 is described by an RFDE, but the system
cannot be stabilized since any control gains combinations
gives a system with finitely many unstable characteristic
roots.

The stability diagrams for models M1C3–M4C3 and
M1C4–M4C4 shows that the qualitative differences between
the different mechanical models disappear when the sam-
pling effect of the (digital) controller is involved into the
model. For control concept model C4, when the digital
effect is combined with a discrete calculation of the angu-
lar velocity, the stability diagrams for mechanical models
M2, M3 and M4 are practically identical. This kind of sta-
bilizing effect of the digital controller might be associated
with the stabilizing effect of parametric forcing. This phe-
nomenon is often demonstrated by the parametrically forced
inverted pendulum, which is governed by the Mathieu equa-
tion (see, e.g., [12]). The piecewise constant state variable
x(t j−r ) = x(t j − rh) over the interval t ∈ [t j , t j+1) can also
be written as x(t−ρ(t)), where ρ(t) = rh+ t−Int(t/h) is a
time periodic delay and Int denotes the integer part function.
Thus, digital sampling actually introduces an h-periodic time
delay, which is a kind of parametric forcing in the feedback
delay.

In order to illustrate the stabilization of the digital effect,
time histories are shown in Fig. 12 for modelsM3C3,M3C4,
M4C3, and M4C4 with the same control gain parameters
taken from the stable region and with same initial condi-

tions. It can be seen that control concepts C4 have better
performance with respect to overshoot and settling time.

In practice, different behavior of a real structure and its
mathematical model is often attributed to the unmodeled
dynamics or noise. In this paper, these unmodeled dynamics
were partly modeled and their effect on the system behav-
ior was analyzed for a simple balancing task. It was shown
that slight modeling details may have a significant effect
on the qualitative properties of the model for a given con-
trol concept model, but these differences vanishes when the
sampling effect of the digital controller is involved into the
model.
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