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a b s t r a c t

Chatter frequencies of milling operations and their strengths are analysed using the semi-discretization

method. It is known that milling processes, being parametrically excited systems, are theoretically

associated with infinitely many chatter frequencies that are given as a base frequency plus an integer

multiplier of the tooth passing frequency (or the characteristic frequency of the cutter) according to the

Floquet theory [1]. The dominant vibration frequencies that are usually associated with chatter

frequencies are, however, hidden among the infinitely many harmonics. In this paper, it is shown that

the amplitudes corresponding to the individual frequency harmonics can be determined in a simple

way by analysing the eigenvectors of the Floquet transition matrix obtained by the semi-discretization

method without increasing the computational cost. The method can be used to determine the dominant

frequency components that help in the identification of the interactions between different modes and

the spindle speed.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

It is well known in the industry that besides the power and
torque limits of the machine, the emerging self-excited vibration
(the chatter) can also limit the machining productivity. Therefore,
the stability predictions are more and more appreciated, espe-
cially for production lines, since the machines should be already
calibrated roughly at the design stage. Apart from the limit depths
of cut provided by the stability charts, the frequencies of the self-
excited vibrations are of importance, too, since they can help to
tune different parts of the machine to avoid chatter.

In practise, two major goals can arise at the design stage of a
machine tool. On the one hand, the machine needs good static
accuracy to reproduce the desired shape of the workpiece with
good quality. This depends on the static stiffness and the control
of the machine tool. On the other hand the machine has to handle
the desired operation (e.g. roughing) without any instabilities,
which requires good dynamical arrangement of the structure. At
this stage, the prediction of the dominant frequencies and their
possible strong harmonics is of importance since the weak modes
of the machine can be identified and the structure can be tuned
according to the calculated spectrum. Also, in machining diag-
nosis, it is important to know the possible sources of any
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vibrations and separate them from the predicted chatter spec-
trum to realize e.g. bearing faults.

The theory of the regeneration in machining was derived by
Tlusty [2] and Tobias [3] in the middle of the 20th century. They
pointed out that the regeneration, especially in turning and in
milling, can cause instabilities. They also showed that stable
pockets exist in the high speed region, allowing the usage of
extremely high depths of cut, which can lead to high productivity.
These stability regions highly depend on the modal behaviour of
the machines. Some machining operations like aluminium
machining usually work with high-frequency modes related to
the tool-toolholder, while some other materials, such as difficult-
to-cut materials [4], operate the low-frequency structural modes.
Consequently, the machine has to be dynamically designed to fit
the required cutting operation.

In the literature one can find several numerical techniques
developed to predict the linear stability of milling processes.
There are methods based on frequency domain, such as the
single-frequency (SF) [5] and the multiple-frequency (MF) [6,7]
solutions, while the semi-discretization (SD) [8] and the time-
finite element [9] are methods based on time domain. For
completeness, there are continuation software packages for gen-
eral anholonome delay-differential equations (DDE), e.g. PDDE-
CONT [10], which are capable to perform both linear and non-
linear analysis of certain delayed systems. Generally, the methods
based on frequency domain can provide the dominant vibration
frequency, but they cannot handle general milling processes
(e.g. serrated cutters [11–13]) and the rigorous linearization of
nonlinear milling models.
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As opposed to turning processes, milling operations are theo-
retically associated with infinitely many self-excited frequencies
(chatter frequencies) according to the Floquet theory of DDEs [14]
as it was shown in [1]. However, the identification of the
dominant frequencies is not trivial. The frequency domain meth-
ods, the SF and the MF solutions, can provide the strengths of the
harmonics, although these methods were mostly used to plot the
dominant frequencies only. In this paper it is shown that the SD
method is also able to derive the strengths of the multiple chatter
frequencies in an efficient way. Moreover, the presented method
can give the spectra of the just developing self-excited vibration
for more complex milling models implemented in time domain.

In the first part of the paper we show the connection between
the Floquet theory and the dominant vibration frequency using
rigorous mathematical derivation. The method is based on the
general representation of milling processes and it has no
significant effect on the computation time of the SD method. In
the second part of the paper we present a case study using the
example from [15]. Through this example one can realize how
the self-excited frequencies can interact with other modes in the
system. A simple but useful frequency plot is introduced here to
understand the relationship between the self-excited frequencies
and the dynamics of the machine. In the last section, the
theoretical results are verified by experimental tests.
2. Milling model

The relative vibration of the tool-tip is described in modal
space defined by the modal coordinates q¼ colðq1,q2, . . . ,qnÞ

(see Fig. 1). The modes are supposed to be real, that is, the
damping is proportional, consequently, the equations of motion
have the following form

€qðtÞþ½2xlon,l� _qðtÞþ½o2
n,l�qðtÞ ¼UtFðt,qðtÞ,qðt�tjÞÞ, j¼ 1, . . . ,Nt,

ð1Þ

where ½2xlon,l� and ½o2
n,l� are (n �n) diagonal matrices with xl and

on,l being the damping ratio and the natural angular frequency of
the lth mode ðl¼ 1, . . . ,nÞ. Due to the regenerative effect, the
resultant cutting force F depends on the current modal coordinate
vector qðtÞ and Nt previous ones qðt�tjÞ, where Nt is the number
of regenerative delays occurring in the system. Note that F
already contains the cutting force contributions of all flutes.

This general representation of the milling operation describes
multiple delay cases that typically occur for non-uniform pitch
angle tool [16] or for serrated tools [11,13] in contrast with the
conventional models with a single delay being equal to the tooth
passing period. In (1), the force is distributed to the modal
Fig. 1. Schematic model of milling process with general modes.
directions by the mass normalized modal matrix

U¼ PdiagðclÞ, where P¼ ½P1P2 . . .Pn�,

Pl is the modeshape vector and cl ¼ ðP
>
l PlmlÞ

�1=2 is the normal-
ization parameter of the lth mode, where ml is the modal mass
corresponding to Pl. Since, the tool is rotating, (1) is time-periodic
at period T, which is the tooth passing period or an integer divisor
of the rotation period depending on the type of the cutter. The
solution can be rewritten as the sum of a stationary and the
perturbed motion, thus

qðtÞ ¼ qpðtÞþuðtÞ, qpðtÞ ¼ qpðtþTÞ: ð2Þ

The linear variational system of (1) can be determined in the form

€uðtÞþ½2xlon,l� _uðtÞþð½o2
n,l�þHðtÞÞuðtÞ ¼

XNt

j ¼ 1

HjðtÞuðt�tjÞ,

where the coefficient matrices are

HjðtÞ ¼
@F

@qðt�tjÞ
ðt,qpðtÞ,qpðt�tjÞÞ, HðtÞ ¼

XNt

j ¼ 1

HjðtÞ: ð3Þ

Note that these matrices are also time-periodic at T, that is,
HjðtÞ ¼HjðtþTÞ. Consider that, if (1) is linear, then HjðtÞ is equal to
the coefficient of qðt�tjÞ in F and the costly calculation of qp by
the boundary value problem defined by (2) and (1) is not
necessary. Finally, the dynamic model can be prepared for linear
stability analysis in its first order representation [17] as

_yðtÞ ¼ LðtÞyðtÞþ
XNt

j ¼ 1

RjðtÞyðt�tjÞ, ð4Þ

where LðtÞ ¼ LðtþTÞ and RjðtÞ ¼RjðtþTÞ’s are the linear and the
retarded time-periodic matrices and the new coordinates are
defined as

yðtÞ ¼
uðtÞ

_uðtÞ

" #
: ð5Þ

The stability of (4) can now be analysed using the SD method.
3. Stability of the variational system

According to the theory of DDEs [18,19], the linearized
equations of motion at (4) generates an infinite dimensional
function space defined by the shift as

ytðyÞ ¼ yðtþyÞ,

where yA ½�tmax,0� and tmax ¼maxðt1,t2, . . . ,tNt Þ. Using an arbi-
trary initial state y0ðyÞ the solution can be given by the so-called
fundamental operator U(t) in the following way

ytðyÞ ¼ ðUðtÞy0ÞðyÞ,

where the linear operator U(t) gives the connection between the
actual state ytðyÞ and the initial state y0ðyÞ. According to
the extension of the Floquet theorem to DDEs [14], the stability
of the system is fully determined by the fundamental operator
which maps the initial state y0ðyÞ to yT ðyÞ, the corresponding
monodromy operator is U(T). The solution after one period is
given by

yT ðyÞ ¼ ðUðTÞy0ÞðyÞ: ð6Þ

Moreover, the Floquet theorem also claims that a general solution
at the present time can be written as a product of a time-periodic
and an exponential term in the form

ytð0Þ ¼ yðtÞ ¼ aðtÞelt , ð7Þ
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where aðtÞ ¼ aðtþTÞ and the complex number l is called char-
acteristic exponent. In this manner, an element of the function
space at the period T is given by

yT ðyÞ ¼ yðTþyÞ ¼ aðyÞelT ely, ð8Þ

If one substitutes (8) into (6) an infinite dimensional eigenvalue
problem can be formulated as

ððUðTÞ�mI ÞsÞðyÞ ¼ 0, ð9Þ

where I is an identity operator, the nonzero complex eigenvalue
m¼ elT is called characteristic multiplier and, according to (8), the
complex eigenvector has the form

sðyÞ ¼ aðyÞely: ð10Þ

Note that sðyÞ is defined over the interval yA ½�tmax,0�. Then,
Eq. (9) has a nontrivial solution if

kerfUðTÞ�mIgaf0g:

The orbital stability of the stationary solution qp of (1) is
asymptotically stable if all the infinitely many characteristic
multipliers have magnitudes less than one, that is, jmmjo1,
m¼ 1,2, . . . (otherwise qp is unstable). qp is marginally stable if
one of the multipliers is jmcj ¼ 1. The original system (1) goes
through a secondary Hopf bifurcation if mc is complex with its
conjugate pair. Period doubling (flip) or cyclic fold (saddle-node)
bifurcation occurs if mc ¼�1 or mc ¼ 1, respectively.
4. Semi-discretization

The SD method is based on the discretization of the infinite
dimensional state space and the periodic coefficients according to
the Floquet theory [14]. The zeroth-order SD method was intro-
duced for general DDEs (including distributed and time-varying
delays) in [8], while the first- and higher-order SD techniques were
presented for point delay in [20,17,21]. Here, the first-order method
is applied. The point of the method is that the delayed terms yðt�tjÞ

are approximated over the discretization interval tA ½ti,tiþ1� as

~y j,iðt�tjÞ ¼
t�tj�ði�rjÞDy

Dy
yi�ðrj�1Þ�

t�tj�ðiþ1�rjÞDy
Dy

yi�rj
,

where, Dy¼Dt¼ T=k with k being an integer approximation para-
meter, rj ¼ intðtj=Dyþ1=2Þ and

yi�ðrj�1Þ :¼ yti
ð�ðrj�1ÞDyÞ, yi�rj

:¼ yti
ð�rjDyÞ

with ti ¼ iDt. This way, DDE (4) is approximated by an ordinary
differential equation (ODE) over the time interval tA ½ti,tiþ1� as

_yðtÞ ¼ LiyðtÞþ
XNt

j ¼ 1

RjðtÞ ~y j,iðt�tjÞ, ð11Þ

where the time-periodic coefficient matrix LðtÞ is approximated by
the average

Li ¼
1

Dt

Z tiþ 1

ti

LðtÞ dt:

With the help of the analytical solution of Eq. (11), one can
formulate a linear map which projects the solution to the next time
step

ziþ1 ¼ Bizi, ð12Þ

where zi ¼ colðyi,yi�1, . . . ,yi�rÞ with r¼ intðtmax=Dyþ1=2Þ. Matrix
Bi is actually the discrete representation of the solution operator
U(t) over the time interval tA ½ti,tiþ1�. Multiple application of (12)
results in

ziþk ¼Uzi ¼ Biþk�1Biþk�2 . . .Biþ1Bizi,
where the transition matrix U is a finite dimensional discrete
approximation of the infinite dimensional monodromy operator
U(T). The (finitely many) eigenvalues of the transition matrix are
close to the multipliers of the monodromy operator depending on
the step size U(T) of the discretization. This explains why the
stability diagrams constructed by the SD method reliably approx-
imate the exact stability boundaries. The discrete representation of
the eigenvalue problem (9) can now be formulated as

ðU�mIÞS¼ 0, ð13Þ

where I is a unit matrix and S is the discrete approximation of the
eigenvector sðyÞ defined at (10). If jmmjo1 for all m, then the system
is predicted to be asymptotically stable.
5. Multiple vibration frequencies

The stability boundaries are the lines in the parameter plane
where critical multipliers (i.e., jmcj ¼ 1) occur. In one side of these
boundaries (usually below), the operation is stable and the tool
vibration tends to the time-periodic stationary orbit qp. In the
other side of the boundaries, the system loses its stability and it
approaches a higher amplitude stable attractor as a threshold of
the unstable motion. These non-smooth orbits are referred as
chatter vibration in the machine tool industry. Note that this
‘outside’ attractor, according to its non-smooth sense, can simply
be a stable periodic orbit, quasi-periodic orbit or a stable chaotic
attractor [22,23]. All of these structures are basically originated
from the orbits occurred at the linear stability limit, which means
the spectra of these non-smooth orbits (chatter) contain the mark
of the just-bifurcated orbits. This explains the practical observa-
tion that the measured spectrum is close to the one predicted
based on linear theories, only.

If the initial state is in the form y0ðyÞ ¼
P1

m ¼ 1 bmsmðyÞ, then,
according to (8) and (10), the solution at each period is given

ypT ðyÞ ¼ b1mp
1s1ðyÞþb2mp

2s2ðyÞþ � � � þbcmp
c scðyÞþbcmp

c scðyÞþ � � � :

ð14Þ

Eq. (14) shows that all of the terms will die out except the critical
one(s) if p is sufficiently large, since all the other characteristic
multipliers are in modulus less than one, i.e.,

ypT ðyÞ � bcmp
c scðyÞþbcmp

c scðyÞ:

Consequently, the critical characteristic exponents in (7) corre-
sponding to the critical characteristic multipliers can be derived
using complex logarithm, that is,

lnjmcjþ iðargmcþ2qpÞ ¼ lc,qT,

where lc,q ¼ acþ ioc,q (q can be any integer number) and the
multiple frequencies can be expressed as

oc,q ¼ joc,bþOqj, where O¼ 2p=T : ð15Þ

Here oc,b :¼ oc,0 ¼ ðargmcÞ=T is the base frequency that can be
calculated directly from the critical multiplier and it indicates the
lowest possible vibration frequency, which satisfies the linear
map (6) formulated by the Floquet theorem, i.e., Toc,bA ½�p,p�.
Eq. (15) implies that infinitely many vibration frequencies arise in
the spectrum. These frequencies are separated by the principle
frequency O as it was shown in [1] and also coincides with [6].
Note that along the stability boundaries, the critical asymptotic
part ac is zero, but in practise during the preparation of a stability
chart the calculated points are never lying exactly on the border.
Thus, for the further investigations ac ¼ ðlnjmcjÞ=T should also be
considered. Using the SD method at a point in the vicinity of the
stability border, the approximated spectrum of the monodromy
operator can be calculated and the critical multiplier mc and the



Table 1
The modal parameters of the modes considered in the calculation of the case study

corresponding with Fig. 1.

l on,l ðHzÞ xl ð%Þ kl ðN=mmÞ Pl

1 510 4 96.2 ½1 0�>

2 802 5 47.5 ½0 1�>
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discretized version of the corresponding eigenvector Sc can be
determined numerically (see (13)). The definition of the eigen-
vectors at (10) gives the possibility to construct the time-periodic
term of the critical eigenvector and to write it in Fourier series
form

acðyÞ ¼ scðyÞe�lc,by ¼
X1

q ¼ �1

ac,qeiqOy, ð16Þ

where lc,b ¼ acþ ioc,b. Consider that, any lc,q can be substituted
instead of lc,b in (16), since elc,qT ¼ mc, but that might cause
numerical and indexing difficulties in the later analysis. In order
to obtain the dominant vibration level, the velocity of the
vibration should be considered. According to (5) the Fourier
coefficient vectors can be decomposed to parts corresponding to
the modal displacement and velocities as

ac,q ¼ colðac,q,vc,qÞ: ð17Þ

In this way, the dominant vibration frequency is associated with
the maximum (highest infinite norm) of the calculated Fourier
coefficients of the vibration velocity. An implicit formula for the
dominant frequency ratio qd can be given as

vc,max ¼ vc,qd
¼ max

1

q ¼ �1
Jvc,qJ1: ð18Þ

Note that any eigenvectors sðyÞ and any of their periodic terms
aðyÞ are defined in the interval yA ½�tmax,0�. This may cause
representation problem of aðyÞ, since the condition tmax ¼ T does
not hold in all cases, e.g. for uneven pitch cutters [16]. In this case,
mathematically, only the truncated versions of the eigenvectors
are available, which means their ‘periodic’ terms cannot be
restored in the entire period. In order to overcome this issue,
the interpretation of the state ytðyÞ should be given over an
extended interval yA ½�T ,0� corresponding to the principal period
T of the milling process.

Using the SD method, only the discrete representation of the
critical eigenvectors can be determined in the following form

Sc ¼ colðSc,i,Sc,i�1, . . . ,Sc,i�rÞ: ð19Þ

The elements of the discretized critical eigenvector in (19) contain
parts associated with modal displacement and velocity as
Sc,i ¼ colðSc,i,Wc,iÞ, similarly in (17). The discrete counterpart of
the periodic terms can be defined based on (16) in the form

Ac ¼

Ac,i

Ac,i�1

^

Ac,i�r

2
66664

3
77775¼

Sc,ie
�lc,b�0

Sc,i�1elc,bDy

^

Sc,i�relc,brDy

2
66664

3
77775, ð20Þ

where again Ac,i ¼ colðAc,i,Vc,iÞ as in (17). Note that, the parts
corresponding to the modal displacement and velocities are
vectors defined based on the modal directions q in the form

Ac,k ¼

Ac,k,q1

Ac,k,q2

^

Ac,k,qn

2
66664

3
77775 and Vc,k ¼

Vc,k,q1

Vc,k,q2

^

Vc,k,qn

2
66664

3
77775,

where k¼ i,i�1, . . . ,i�r. The vector Ac is periodic and has the form
on which low resolution Discrete Fourier Transform (DFT) or Fast
Fourier Transform (FFT) can be applied in each modal direction.
Depending on the resolution of the discretization described
at (12), finite many approximations of the Fourier coefficients
ac,q can be determined in this manner.

During the construction of the transition matrix U some
irrelevant directions can be omitted in order to speed up the
sometimes costly calculation [24,17]. Basically, in milling the
ignored directions are the past modal velocities _uðtþyÞ, where
yA ½�tmax,0Þ, since these do not influence the dynamics. There-
fore, vc,q from (17) cannot be determined directly by DFT or FFT
from Ac, instead one can calculate the approximate Fourier
coefficients of the vibration levels as vc,q ¼ ioc,qac,q.

The dominant frequency ratio qd can be determined from the
resultant approximate Fourier coefficients vc,q applying (18).
Consequently, the dominant vibration frequency is given by

oc,d :¼ oc,qd
¼ joc,bþOqdj, ð21Þ

according to (15).
The major advantage of the above elucidated method is that it

does not have a noticeable effect on the speed of the SD
technique. Since the size of the window equals to the principle
period T, the DFT or the FFT provides a spectrum with the
resolution of the principle frequency O¼ 2p=T [25]. Conse-
quently, the discrete peaks actually coincide with original peaks
ac,q, which are distributed also by the principle frequency O due
to its definition in (16). In this way the dominant frequencies can
be calculated efficiently along the stability limits and an addi-
tional frequency plot can be provided above the stability diagram.
One can plot the harmonics of the dominant vibration frequencies
and represent their weights based on their amplitudes. This
frequency plot may help to identify the source of certain vibra-
tions occurring during machining.
6. Case study

In this section the calculation is shown through an example of
half-immersion down-milling operation with a three fluted cutter
taken from [15]. Two modes in orthogonal directions of the tool-
toolholder-spindle structure are considered with the modal para-
meters shown in Table 1. As it is shown by the modeshape vectors
P1 and P2 the modes coincide with the (x) and (y) directions.

The calculations were done using first order SD method with
NSD¼90 elements to discretize the state ytðyÞ. The stability chart
shown in Fig. 2b was created by fractal method based on triangle
elements. The spectra of the discrete periodical ‘terms’ Ac of the
critical eigenvectors were calculated at the closest points of the
stability limits. In the frequency plot in Fig. 2a the dominant
vibration frequencies are indicated by black colour along the
stability boundaries. The strengths of the other harmonics were
indicated by grey-scale except the peaks that are less than 20%
compared to the strength of the dominant frequency. Certain
resonant frequencies Ol ¼on,l=N of the modes are pointed out
in Fig. 2 referring to the resonant spindle speeds, the flip regions
and the mode interaction zones [26]. In Fig. 2a one can follow that
the dominant vibration frequencies are in most of the cases close
to the natural frequencies. Point D corresponds to period doubling
(flip) bifurcation that can be recognized in Fig. 2a as the frequen-
cies are lying on the lines that are odd multiples of a straight line
with slope 1/2 [27]. Points B and D represent simple cases, when
only the dominant frequency is strong. For points A and C some
other harmonics also show up besides the dominant one. The
relevant multipliers with the unit circle are depicted in Fig. 2b
and the type of the stability loss can be associated in this way at
points (A, B, C, D).
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Fig. 3a,b show the discretized critical eigenvectors Sc (19) and
their periodic ‘terms’ Ac (20). More strictly, to ease the depiction,
only the real part of the displacement parts of Sc and Ac are
showed, namely the Re Sc,k’s and Re Ac,k’s (k¼ i,i�1, . . . ,i�r). In
panels (a) and (b) the values at y¼ 0 correspond to Sc,i and Ac,i,
while the values at y¼�tmax correspond to Sc,i�r and Ac,i�r ,
respectively. If tmax ¼ T the discrete representation Ac of the
periodic term acðyÞ is complete, that is, Ac,i ¼Ac,i�r in Fig. 3.
The black and the grey dots refer to the two modal directions q1

and q2 of the model. The spectra vc,q (17) determined by the SD
method and the FFTs of the modal velocity _uðtÞ (5) calculated by
Fig. 2. Panel (a) shows the dominant vibration frequencies (black) along the

stability border. The strengths of the harmonics are indicated by grey-scale. on,l

(l ¼1, 2) are the natural frequencies of the modes considered in the calculation.

Panel (b) shows the stability chart and the unit circles with the multipliers in the

complex plain for points (A, B, C, D). (Here, Kt¼900 N/mm2 and Kr¼270 N/mm2).

Fig. 3. Panels (a) show the critical eigenvectors of the transition matrix. In panels (b)

FFT’s of the periodic terms (denoted by black dots) and the FFT’s of time domain simulat

the base vibration frequency oc,b. Dashed lines denote the tooth passing frequencies.
time domain simulations (standard DDE23 routine in MATLAB) of
the variational system (4) are depicted in Fig. 3c. One can
immediately recognize (Fig. 3a) that the eigenvectors Sc are not
time-periodic as it was expected at (10).They oscillate around
zero, since those eigenvectors are derived from the variational
system where, in fact, the amplitude of the theoretical stationary
solution is zero. The periodic ‘terms’ Ac, however, may have non-
oscillating component, too (see e.g. point D in Fig. 3b). In this case
the dominant vibration frequency is actually the calculated base
frequency oc,b, that is, qd ¼ 0 (cf. (15) and (18)). In all of the other
cases for points (A, B and C) the periodic terms seem to oscillate
around zero, since they have different dominant vibration fre-
quency as the base one, thus, qd is nonzero (see the triangles
denoting the base frequencies in Fig. 3c).
7. Experimental verification

The presented method to predict the dominant vibration
frequencies was verified experimentally. In this section, we give
an overview of the measurement and the results of the tests
performed using conventional milling operation.

7.1. Measurement environment

A measurement setup shown in Fig. 4 was created to have a
clear and flexible mode perpendicular to the feed direction (x).
Four modes (one in the (x) and three in the (y) directions) and the
corresponding modal parameters are given in Table 2. A contin-
uous variation of the axial depth of cut ap was achieved by using a
the periodic terms of the critical eigenvectors are depicted. Panels (c) present the

ions of the variational system (4) (denoted by continuous line). The triangles mark

Fig. 4. Shows the measurement arrangement used for chatter tests.
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ramp-like (or roof-like) mirror slope on steel (C45) workpiece
with 5 mm highest axial depth of cut in the middle (see Fig. 5d).
This strategy can lead to a more accurate and also quicker
Table 2
The modal parameters of the measurement setup.

l on,l ðHzÞ xl ð%Þ kl ðN=lmÞ Pl

1 94 0.66 58.38 ½0 1�>

2 230.6 1 161 ½1 0�>

3 336.3 0.3 773.4 ½0 1�>

4 375.6 1 632 ½0 1�>

Fig. 5. Panel (b) and (a) show the stability chart and the frequency diagram of the f

dominant self-excited vibration frequencies along the stability limits, while the weake

indicated by circles of sizes proportional to their strengths (cf. (e)). In panel (b) the cr

The arrows show the maximum possible depths of cut that were reached by stable ma

are plotted in (c). The spectra in panels (e) correspond to the critical windows of STFT

associated with the (y) and the (x) directions, respectively (cf. Fig. 4). In panel (a) and (

the tooth passing frequencies oT , the flip-lines oM and the spindle frequencies on and t

their actual values given in (e).
determination of the practical limit of the stability than the often
used ‘step-cutting’ strategy. However, the identification of the
accurate depth of cut is not clear. Here, the average depths of cut
of the individual teeth were considered, which yields to a shift
(D=p) of the effective position compared to the centre of the tool
(thin vertical line in Fig. 5d). The tool was a four fluted N¼4
inserted cutter with helix angle Z� 201 and diameter D¼32 mm.
Because of the limited width of the workpiece near full-immer-
sion milling was performed successively side by side with 31 mm
radial immersion. This causes 20.361 deviation in the entry angle
jen (see Fig. 1) compared to the perfect arrangement. Preliminary
tests were performed to identify the cutting coefficients of the
linear cutting force model [28]. The tangential and the radial
ull immersion milling process. In panel (a) the black and thick lines denote the

r frequencies are showed by thick grey-scale. The measured frequency peaks are

osses mark the limit depths of cut of the tests where the processes lost stability.

chining using test arrangement depicted in (d). Six samples of acceleration signals

denoted by dashed lines in panels (c). In (c) and (e) the black and grey colours are

e) the dashed black lines, the grey dashed lines and the black dotted lines indicate

heir harmonics, too. The measured dominant chatter peaks are marked by oC with



Fig. 6. Shows the workpiece after all test were performed. The marks left by the

chattering tool can be realized easily.
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cutting coefficients were Kt¼1459 N/mm2 and Kr¼259 N/mm2,
respectively.

During the measurements accelerations were collected by a data
acquisition system in the feed direction (x) and the direction
perpendicular to the feed (y). Eight different speeds were selected
and six of those are shown in Fig. 5c, where black and grey colours
correspond to the (y) and (x) directions, respectively. The selected
speeds were: nA,B,C,D,E,F,G,H¼1420, 1480, 1600, 1750, 2000, 2400, 2600,
3000 rpm. The maximum axial depths of cut were kept to be 4 mm
for safety reasons except the measurements A and H that were both
stable all along the shots (cf. Fig. 6). One can directly realize by means
of the measurement-sketch in Fig. 5d that the cutting process jumped
to chatter at higher axial depths of cut than it restored to stationary
cutting. This can be explained by the so-called unsafe zones, which
are the effect of the nonlinearities occurring in the cutting force
characteristics [29–31].

7.2. Evaluation of the results

The limit depths of cut were calculated indirectly from the
measured motion of the tool s using the actual time when the tool
entered into the slope, the time when it lost its stability and the
feed f¼0.8 mm/rev. The instant of entrance into the workpiece
can be obtained directly from the time domain representation of
the signals (Fig. 5c). But, in order to have the instant of stability
loss, the strength of the just-developing-frequency of the self-
excited vibration (in practise the so-called chatter frequency, oC)
needs to be compared with the strongest peak of the forced
vibration (usually the peak of the tooth passing frequency, oT )
related to the same direction. For this purpose, short-time Fourier
transform (STFT) was applied on the time signals using sliding
Hann window of length 1 s with time-step 0.1 s and the spectra
were transformed to vibration level jFFTðvðtÞÞj in frequency
domain. The process was declared to be unstable when the peaks
of the self-excitation and the corresponding forced vibration were
roughly equal and the position of the moving tool was deter-
mined at that time. Using this strategy relatively large error on
the tool-position s results in negligible error on the axial depth of
cut due to the gentle slope. In Fig. 5b the measured stability limits
are indicated by crosses while the stable shots are by arrows with
tips up to the reached maximum depths of cut. Compared with
the predicted stability limit (solid line) the trend of the large ‘lobe’
can be recognized.
The predicted frequencies of the self-excited vibrations and
their harmonics are plotted in Fig. 5a by thick grey-scale, so that,
the dominant vibration frequencies oc,d (21) are black, while the
weaker ones are grey proportional to their strengths. The thin
grey lines show the non-operating (with strengths less than 2.5%)
multiple harmonics oc,q (15) of the dominant frequencies. The
horizontal and the inclined dashed black lines indicate the natural
frequencies on,1...4 (Table 2) and the tooth passing frequencies
oT ¼Nn=ð60 s=minÞ and their harmonics. The lines oM ¼oT=2
and their harmonics, on which the frequencies of the double
period (flip) self-excited orbits can lay, are marked by inclined
grey dashed lines [27].

According to Fig. 5a two things can be realized directly. On the
one hand, only the first three modes have effect on the stability
since the dominant frequencies lay close to the first three natural
frequencies on,1...3. On the other hand some harmonics of the self-
excited frequencies are active (grey-scale), but in the region of the
measurements (nA ½1400,3000� rpm) only small portions of them
are significant. Note that this does not show up in the prediction if
one uses exact full-immersion milling model during the calcula-
tions. In this case, the inside symmetry due to the full-immersion
sense and the approximated circular orbits of the flutes make the
periodical force smoother than it is in the reality. Generally, the
predicted frequencies agree well with the measured spectrum
(chatter frequencies and their harmonics) depicted by circles
in Fig. 5a. The size of the circles are proportional to the measured
peaks and the values next to the circles show the strength of the
predicted peaks (in percentage) compared with the strength of
the dominant frequency.

The critical STFT intervals, where the signs of the stability loss
were first identified are denoted by dashed lines in Fig. 5c. The FFTs of
the signal over the critical intervals are presented in panels (e) for
cases C, D, E and G. The continuous and dashed guidelines in panels
(e) correspond to those in Fig. 5a, while dotted lines denote the
harmonics of the spindle frequency on ¼ n=ð60 s=minÞ. The grey and
black lines indicate the spectra in direction of (y) and (x). In all
samples, the peaks that do not coincide with any harmonics of the
spindle frequencies are the frequencies of the self-excited vibrations
(practically the chatter frequencies oC) or their harmonics. One can
realize that these samples are taken from the critical intervals since
the chatter peaks are about the level of the strongest forced
frequency. Note that for case D, the strongest forced frequency is in
the feed direction (x), while chatter occurs in the perpendicular (y)
direction. For case E, the third spindle harmonic (arising due to
the possible run-out of tool) is the strongest forced peak since it is in
resonance with the first natural frequency of the system on,1

(see arrows above the frames of Fig. 5e). It can be seen that the level
of the chatter peaks and their harmonics correlate well to the
predicted frequencies and their level shown by grey-scale in panel
(a). The second mode, which is in the feed direction, resonates with
the harmonics of the self-excited vibration. This phenomenon is
similar to the so-called mode interaction introduced in [26].

Even though plain milling was performed, face of the milling
cutter leaves strong marks on the workpiece during chattering
motion due to the bending vibrations of the tool. This results in an
indirect visible manifestation of the stability lobes on the work-
piece shown in Fig. 6.

Using the strategy of the stability-loss-detection applied here
combined with a fast stability prediction can give a tool in real-
time stabilization of milling processes. As it can be followed
in Fig. 5c the loss of stability was detected much before the onset
of the large amplitude chatter vibration (cf. the length of the
critical windows in Fig. 5c). For case C, for instance, the detection
was around a second before the chatter was fully developed. This
may give possibilities to introduce real-time controlling techni-
ques based on stability diagrams.
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8. Conclusions

We have focussed on the determination of the dominant
vibration frequencies of milling processes using the semi-discre-
tization method. The algorithm shown here can predict the
strengths of the multiple vibration frequencies with no significant
computational cost. The given method is based on the governing
time-periodic delay differential equation of general milling pro-
cesses and hence it can handle complex geometries and dynamics
of the tool-spindle-machine system. Besides the stability charts of
the process, our method provides a visual and useful representa-
tion of the operating frequencies during machining. This might be
important even at the stage of machine tool design.

We have determined the dominant frequency among the
multiple frequencies of the developing self-excited vibration
(chatter) according to rigorous mathematical theories. We
showed that the ratio of the dominant frequency and the
principal (e.g. tooth passing) frequency is hidden in the eigen-
vectors of the fundamental operator defined by the Floquet
theory. A periodic function can be constructed analytically using
the eigenvectors and the characteristic multipliers. Then, low
resolution DFT or FFT can be applied on the discretized counter-
parts of these periodic functions without having significant effect
on the computational speed of the semi-discretization. In this
way, the weight of the individual chatter frequency harmonics
can be determined efficiently.

An artificial, but representative example was shown, in which
all the effect of the multiple vibration frequencies of the self-
excited vibration can be followed easily on the frequency plot. In
this plot, it is easy to recognize simple and more complex cases
where e.g. different modes of the system interact with the self-
excitation.

As a practical vindication, we have performed milling tests
using ramp-like workpiece fixed on a special holder which has a
main mode perpendicular to the feed direction. Besides the linear
stability limits, the semi-discretization predicted the dominant
frequencies, as well. Moreover, it showed the effect that other
modes of the system can resonate with the harmonics of the
dominant frequency of the self-excited vibration (in practise the
chatter frequency).
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