
Analysis of the Influence of Mill Helix Angle on Chatter Stability  
 

M. Zatarain1(2), J. Muñoa2, G. Peigné3, T. Insperger4  
1Tekniker Fundazioa, Dept. of Mechatronics and Precision Engineering, Eibar, Basque Country, Spain 

2Ideko Technological Centre, Elgoibar, Basque Country, Spain 
3Institut de Recherche en Communication et Cybernétique de Nantes, Ecole Centrale de Nantes, France 

4 Budapest University of Technology and Economics, Dept. of Applied Mechanics, Hungary 
 

 
Abstract 
Current methods for estimating chatter stability limits for milling do not consider the influence of the helix 
angle and the consequent phase lag between the forces appearing at different sections of the mill. Budak 
and Altintas’ multifrequency solution is extended to include the helix effect, and results are compared with 
results of semi-discretization and experiments. 
As a conclusion, the helix has an important influence on the areas of added lobes (flip lobes), while the 
influence on the traditional lobes is negligible. Flip lobes become closed curves separated by horizontal 
lines where the depth of cut equals a multiple of the helix pitch. 
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1 INTRODUCTION 
Chip removing machine tools find a productivity limitation 
due to the appearance of self excited vibration. The basics 
of that problem is well known since a long time ago.  
Mathematical models able to represent the behaviour of 
milling process are much more complex than those 
representing continuous processes. Nevertheless, during 
the last years important advance was done in obtaining 
good theoretical approaches for milling stability. 
These new mathematical models permitted the 
identification of a kind of instability not described 
previously, which was called as ‘period doubling’ or ‘flip’. 
Mathematically this phenomenon was shown to exist, and 
it was also found in experiments, but no engineering 
explanation of it was given. This kind of instability is 
associated with repeated impacts at fixed frequencies, 
typically twice the natural frequency of the system. 
The use of helicoidal mills in end milling processes gives 
rise to a less discontinuous milling process. Because of 
that, it could be possible that the helix angle has a positive 
effect on the repetitive impact driven instability (flip). This 
work aims to analyse this effect from a multifrequency 
analysis approach, and validate the analysis by semi-
discretization and experimentation.  
 
2 STATE OF THE ART 
Tobias [1] and Tlusty [2], almost simultaneously, published 
papers explaining chatter as a regenerative phenomenon. 
Later, Merrit [3] presented the problem as a feed back 
loop, which clarified a lot the formulation. 
For many years these basic approaches were used, by 
reducing the dynamics of the machine to an equivalent 
single degree of freedom system. 
In 1995 Altintas and Budak [4] presented the method 
which enables working with several degree of freedom 
models. At the same time, they analysed the geometrical 
nonlinearities of the milling process, obtained an approach 
to the solution by using a Fourier series development of 
the directional factors and solved the system by 
considering the zero order term only. 
Later, Budak and Altintas [5] worked out the system by 
considering several terms of the Fourier development, 
which gives rise to solutions very close to those obtained 
by using the fundamental term only. 

The single frequency approach has been shown to be very 
precise, but when radial immersion of the mill is small, the 
existence of additional stability lobes was found. Davies et. 
al. [6] used a discrete map model for highly interrupted 
milling processes, where the time in the cut is infinitesimal 
and the cutting process is modelled as an impact. 
Insperger and Stépán [7] used an analytical approximation 
method called Fargue-method. Later, they developed the 
technique of semi-discretization [8]. Bayly et. al. [9] 
obtained similar results using temporal finite elements. 
Merdol and Altintas [10] showed that the multifrequency 
resolution is also able to represent accurately the flip 
instability phenomenon.  
Just a few papers analysed the chatter in milling with 
inclusion of the effect of the helix angle. Balachandran et 
al. [11] performed time domain calculations, while 
Gradišek et. al. [12] worked by the semi-discretization 
method. Nevertheless, none of them analysed the effect of 
different helix angles. Some papers [12][13] presented 
some instability regions with ‘lenticular’ shape, but they 
were not associated with the helix angle of the mill. 
 
3 REPETITIVE IMPACT DRIVEN CHATTER  
The most usually found chatter mechanism is that of feed 
back of vibration from the marks left by the tool on the part 
in the previous pass. This kind of vibration is called 
‘regenerative chatter’. When the marks have a phase lag 
with the relative vibration between tool and part there is the 
possibility that the additional force produced by the marks 
increments the energy of the vibratory system (force and 
speed in phase) or decrements it (force and speed in 
counter phase).  
Instability due to flip is characterized by a cutting 
frequency exactly equal to twice the chatter vibration 
frequency. A harmonic force of frequency double the 
vibration frequency will not produce any change in the 
vibratory energy, and, therefore, a self excited vibration 
could not be explained like that. However, short, repetitive 
impacts with a frequency twice the vibration frequency, 
and amplitude dependent on the amplitude of the vibration 
could increase the vibratory energy.  
Figure 1 shows the effect of increasing the vibratory 
energy by repetitive impacts: The red line represents 
system vibration, while the blue bars represent the impulse 
produced by the impact once every revolution. That 
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impulse is proportional to the displacement, and produces 
a momentum increment. The result is that the amplitude of 
vibration increases continuously. 
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Figure 1: Repetitive impact driven vibration. 

Repetitive impact driven instability phenomenon requires 
impulsive type of forces. If harshness could be reduced, a 
lower tendency to instability could be expected.  
 
4 MULTIFREQUENCY THEORY INCLUDING THE 

EFFECT OF HELIX ANGLE  

Milling process stability analysis in the frequency domain 
for straight fluted mills was presented in detail in several 
papers [4] [5] [10]. To reduce the mathematics involved to 
the minimum, here only a draft of the modifications to be 
done on those formulations in order to include the helix 
angle effect will be shown.  
Again, with the goal of simplifying explanation, an X 
direction single degree of freedom system will be used. 
The development could be easily extended to other 
degrees of freedom by repeating the same procedure 
explained in the aforementioned papers.  
Instantaneous chip thickness h for a particular flute of the 
mill at angular position ν  with respect to the Y axis is: 

( ) ( ) ( )( )τδδν −−+= ttah p.sin  (1) 

where δ = δx is the relative instantaneous displacement 
between tool and part due to system deformation, ap is the 
feed per tooth, t  is time and τ  tooth pass period. 

 
 

 
Figure 2: Milling forces and pictures of helical mill. 

Assuming a linear cutting force model, the force can be 
calculated as 
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where kt is the specific tangential force, ρ means the ratio 
of passive force to tangential force, subindices t,r,a refer to 

the tangential, radial and axial directions, and c,s are 
respectively the cosines and sines of the angular position ν 
of the flute. 
From the three force components, only that in the X 
direction is of interest, as a single degree of freedom 
system was assumed in that direction. So: 
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where ψ(ν) is the instantaneous directional factor. 
In this equation, the term ap is only responsible for the 
forced vibration and has no responsibility on the system 
stability. So, it is possible to delete it from the equation.  
If the directional factor is developed in a Fourier series we 
obtain 
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where Ω is the tooth pass frequency. 
If the approach by only the first term is used, the single 
frequency solution is obtained. That solution produces 
correct results for large radial immersions of the mill, but 
for small radial immersions more terms of the Fourier 
series have to be used. Those terms allow the flip lobes, or 
repetitive impact driven lobes, to appear. 
If the system has a constant amplitude vibration with 
frequency ω at the stability limit, then substitution of the 
instantaneous directional factor by its Fourier development 
gives: 

( ) tjj
t

k

tj eekbef ......
1 ..1.... ωτωψ Δ−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
−= −

∞

−∞=

Ω∑  (5) 

where Δ is the amplitude of the harmonic displacement. 
Equation (5) shows that a vibration of frequency ω 
produces forces with frequencies ω, ω+Ω,  ω−Ω, ω+2Ω,  
ω−2Ω, etc. These forces will give rise to displacements at 
the same frequencies. Therefore, it is necessary to work 
out a system of simultaneous vibrations at all those 
frequencies. If only the terms corresponding to frequencies 
ω, ω−Ω,  ω+Ω  are included, then: 
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Dynamic behaviour of the system is represented by 
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where H(ω) is the transfer function between force and 
displacement at frequency ω. Substituting in (6): 
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Stability is analysed by calculating the eigenvalues of this 
system [4] [5]. The eigenvalues of matrix M, multiplied by 
b.ks must equal –1. In the practice, it is necessary to vary 
the frequency ω until the imaginary part of the eigenvalue 
is zero, and b is calculated so that b.ks.λ =–1 is fulfilled. 
The development up to now did not consider the angular 
shift between the planes of the tool at different heights, 
that is, the effect of the helix. That shift angle causes the 
highest planes get into contact later than the lowest ones 
(right handed helix mills). Because of that, to include the 
axial position of each plane, equation (1) becomes: 
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where p = D π / (N tan(η)) is the helix pitch of the mill with 
N the number of flutes, D diameter of the tool and η helix 
angle, and ν0(t) is the angle determined by the flute with 
the Y axis at the lowest plane (at z=0). 

 Total force should now be calculated by an integration of 
the force at each plane along Z direction. In that way: 
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Thus, Fourier development of directional factor should be 
performed by an integration in the Z direction. Then: 
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where ψk is the kth Fourier term of directional factor when 
helix angle is not considered, and ψ∗

k is the same Fourier 
term when the effect of the helix angle is included. 
Equation (11) could be worked out in the same way as the 
traditional system, but the problem appears that the 
directional factors vary with axial immersion b. An iterative 
solution, consisting of assuming b, calculating directional 
factors, solving the system to get a new b value, and 
starting again, produces good results most of the times. 
Zero order directional factor agrees with the usual one, as 
function g0 (defined at equation (12)) equals 1. For other 
orders, if the evolution of gk is represented against the 
axial immersion of the mill, Figure 3 is obtained. 
Figure 3 shows that when immersion approaches mill helix 
pitch, directional factors of orders 1 and larger will cancel, 
what means that the system is reduced to the fundamental 

solution presented in [4]. For other immersions, the 
magnitude of directional factors is reduced, what gives rise 
to a reduced tendency to repetitive impact driven chatter 
(flip). 
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Figure 3: Evolution of |gk|. 

4.1 Theoretical results based on multifrequency  
The theory developed was applied to a simple case of a 
single degree of freedom system described in Figure 6. 
The theoretical results are shown in Figure 4. The blue line 
indicates the result for a straight flute mill, while red lines 
and isles indicate the limit depths for the helical mill.  
Immediatly noticeable is that for helical mills there are 
some instability isles in the flip region, and the next limit 
(red continuous line) is practically coincident with the zero 
order solution. There is no instability due to flip when the 
depth of cut is a multiple of the mill helix pitch.  

Figure 4: Instability areas for helical mill. 

Straight and helical mill limits are practically coincident 
except for the flip region. There, for the lowest speed 
values, the blue line and red first isle coincide, but for 
higher speeds the limit depth for helical mill is larger. 
The results for multifrequency model were checked by a 
previously mentioned model, developed by using the 
method of semi-discretization [8]. Stability limits obtained 
by the two methods are exactly the same, which 
guarantees that the theoretical results are correct. 

4.2 Experimental validation  
A set of tests was performed on an aluminium 7075 T6 
part on a fixture with high flexibility in Y direction. The feed 
direction coincides with X axis. Figure 5 details the main 
characteristics of the test.  
The tests were oriented to verify the presence of the first 
unstable island. Therefore the cutting tests were carried 
out in the range 9000-11750 r/min (shadowed box in 
Figure 4). Specific force parameters were identified in a 
mechanistic way to be kt=804.3 N/mm2, kr=331 N/mm2. 
Low diameter end mills can have an important influence on 
chatter stability. For that reason, the mill selected was 
mounted on the tool holder with a free length as short as 
possible. Limit depth of cut due to the mill flexibility was 
estimated to be sufficiently larger than that due to the 
flexible fixture. 

k.b/p 



Dynamic parameters: 
ω=319.375 Hz.  
K=21.6 N/μm. 

ξ=1.96% 
Y direction 

Tool characteristics: 
N=4 

Diameter=20mm 
Helix=30º 

Pitch=27.2mm 
Cutting Conditions: 

 

 

Feed=0.1mm/flute 
Feed Direction= X+ 
Radial immer.=1mm 

(Down milling) 

 

Figure 5: Aluminium part and flexible fixture. 

As the tool had 4 flutes, frequency of chatter due to period 
doubling (flip) was two times rotating speed, where there is 
strong forced vibration. So, it is not easy to objectively 
assess the presence of chatter from the vibration 
measured. For that reason, Figure 6 describes the 
vibration level measured during the tests by means of 
isolines. The theoretical stability limits (red lines), and the 
stability limits for an equivalent mill with straight flutes 
(blue lines) are also included in the figure. The vibration 
level isolines have the same island shape found in the 
theoretical approach. We can conclude that the 
experiments fully validate the theory developed. The 
presence of an instability island was correlated with 
unstable cuts with a high vibration level. 

Figure 6: Experimental measurements versus stability lobes.

 
5 CONCLUSIONS 
The theory for inclusion of helix angle effect on Budak and 
Altintas’ multifrequency chatter stability models [5] was 
developed. The helix angle was shown to reduce the 
importance of higher order harmonics. Therefore, zero 
order solution can be valid for almost all circumstances. 
The analysis showed that helix angle of the mill can have 
an important role on instability due to repetitive impact 
driven chatter (flip). If the axial depth of cut is equal to a 

multiple of the helix pitch, only zero order directional term 
remains, since the helix averages the variation of the 
directional factors. Cancelling of harmonics of the 
directional factor prevent the appraising of added lobes 
As a consequence, period doubling instability areas are 
closed islands, separated by horizontal lines where the 
depth of cut equals a multiple of the mill helix pitch length. 
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